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Validation is a degree of which how correct a model represents the behavior of its system
counterpart from the perspective of intended use of the model. The degree of representa-
tion of the model or abstraction is determined by the modeler according to user demands
and objectives. Whenever the modeler and simulation user’s demands are satisfied, the
model is considered as valid.

In this paper, verification and validation of the DEVS models in DEVS-Suite environment
are discussed. A case example called OSPF–DEVS simulator is applied and verification and
validation tests are performed on it to show usefulness of DEVS formalism. Performed ver-
ification and validation tests are followed using a technique developed by Forrester and
Senge. Particular attention is paid to reliability and maintainability in view of the state-
of-the-art network simulator ns-2. Results are documented to lend confidence to simula-
tion users and to show DEVS-Suite environment’s capabilities not to increase model
infrastructure.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Confidence in simulation models is provided by verification and validation (V&V) tests. Validation is a level of which a
model mimics the behavior of its system counterpart [32]. The degree of representation of the model or abstraction is deter-
mined according to the model objectives. Whenever a simulation user demands are met, the model can be considered as
valid and has confidence. Validation is an important, a highly required and also a difficult phase in developing simulation
models [3]. For the sake of a valid and correct model, quantitative and qualitative tests must be performed [17,10]. The suc-
cess of a specific test does not prove that the model is valid. No model can be validated, verified and accredited with passing
specific tests [17]. If behaviors of both the model and its system counterpart are within acceptable tolerance, the model is
said to be valid [32].

Validation is a difficult and inconceivable process that many modelers either do not perform or leave incomplete the task.
The reason of incomprehensibility of the validation stems from a number of issues in verification and validation process
[22,21]. These issues include how V&V level is needed, demand for automated and formal tools, selection and inaccuracy
of real world data and time limitation [21,3]. Main motivation was to develop and implement modeling and simulation
application to bring solutions to the issues above and to show suitability of the DEVS-Suite simulator for V&V process.
In this work, the Open Shortest Path First (OSPF) model [33] on top of DEVS-Suite environment was applied to formal val-
idation model in order to exemplify environment’s power on validation process. A verification and validation technique pro-
posed by Forrester and Senge [10] is chosen in the process from many techniques available for modeling and simulation
study [4,5].
. All rights reserved.
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DEVS-Suite is a general-purpose, discrete event simulation environment which supports validation, visualization and
tracking capabilities [14,23]. This is the new generation of the DEVSJAVA simulator [1] based on DEVS formalism [32]. This
simulator also supports variable structure modeling [12]. The DEVS-Suite user-interface provides a consistent, an efficient,
an integrated hierarchical component-based representation of models with run-time I/O and state trajectories and tabular
data visualization. These properties of the DEVS-Suite simulator facilitate to process outcomes to be documented com-
pletely to establish confidence and correctness over simulation models [15].

One of the main purposes of the performed work is to answer the key question about the validation process: How vali-
dation level is needed for a specific modeling and simulation study? In order to determine the validation level, requirements
are specified, associated DEVS experimental frame is developed and validation tests are performed. Specified requirements
of the modeling process help to define the scope of the evidence needed to show that the model is validated for its intended
use. Therefore, the scope of the experimental frame helps to determine the scope of the validation level easily. Performed
work implements adopted V&V method from early phases of the modeling process to the end, i.e. it covers model objective
specifications. Many studies in this area use V&V methods at the last phases of the application. The main purpose of V&V is to
ensure that the simulation tool is made according to the requirements of the users and does indeed meet the intended
purpose.

The performed work includes an application of the formal V&V method to the DEVS formalism as a formalized system
specification. The design of many modeling and simulation V&V tools is usually non-formalized. Lack of any formal definition
causes a low confidence, performance, bad-scalable and non-repeatable approaches. Well-formalized V&V process facilitates
verification of optimal system design and efficiency. Instead of non-formalized V&V process, stage-by-stage design, verifica-
tion, validation and final integration are more preferable [34]. DEVS formalized modeling approach has many important
traits for V&V process by which validation is done in a robust, rapid and system theoretic way [32]. The developed study
takes advantages of the DEVS formalism in doing formal validation process.

The need for automated V&V tools is a big challenge in modeling and simulation process [21]. In this study, results show
that DEVS-Suite simulator runs faster, increases V&V coverage and decreases the costs. It has improved visualization and
easy-to-use interface which makes learning automated V&V process testing.

The remainder of this paper is organized as follows: Section 2 gives background in which it briefly reviews the validation
of simulation models, gives brief introduction about DEVS-Suite, ns-2 and OSPF protocol. Section 3 elaborates validation tests
performed in DEVS-Suite. Section 4 covers evaluation of the developed framework. Section 5 presents conclusions and future
works.
2. Background

2.1. Validation of simulation models

2.1.1. What is validation?
Validation is a degree of which how correct a model represents the behavior of its system counterpart from the perspec-

tive of intended use of the model [32]. The degree of representation of a model or abstraction is determined by the modeler
according to the user demands and objectives. Whenever the modeler and simulation user’s demands are satisfied, the mod-
el is considered to be valid. In other words, model validation must be evaluated for its condition of usefulness instead of per-
fectness. Validation is a highly required and an integral part of the entire simulation lifecycle by which the model is credible
and accredited. Model validation process is intended for building the correct model and it helps to find the right model [3].
Simulation validity is related to simulation design and simulation usage purpose. Validation process has to be performed by
both the modeler and the simulation user [17].

In order to validate a model, quantitative and qualitative tests can be performed [17,10]. In DEVS framework, an exper-
imental frame is used to perform validation tests. If behaviors of both the model and its system counterpart are within
acceptable tolerance, the model is valid [32]. Validation tests are various rather than a single detailed test by which confi-
dence of the model increases as it passes them. Passing a test does not mean the model is valid, on the other hand, the failure
of any test allows the modeler to make decision on the model redesign process.
2.1.2. Validation process
Fig. 1 shows verification and validation processes in discrete event modeling and simulation study with its experimental

frame. Whole process is exemplified using the OSPF–DEVS [33] model together with its experimental frame for verification
and validation. In DEVS modeling, the experimental frame is used to make deeper decisions on the model. Though its main
function is to transfer outcome measures to variables, it is also used in evaluating how well model objectives are achieved.
Fig. 1 helps to map V&V onto whole modeling process rather than giving an idea that V&V process is a singular phase or step
in modeling. V&V is a continuous process confluent with modeling and simulation activity [4].

As shown in Fig. 1, modeling activity starts with problem statement and description of objectives. Upon development of
the conceptual model, conceptual model validation is conducted to determine detail level of the proposed model. Validation
of the conceptual model means that the detail of proposed model is sufficient and the performed assumptions are accurate.



Fig. 1. Verification and validation in DEVS modeling process and experimental frame.
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The theory validation is about to the technical depth of the developed model, its underlying formalisms, approaches, stan-
dards and theories. For example, the OSPF protocol model is developed according to the RFC 2328 standard [9]. The theory
validation requires to ask some questions such as which the theory is exploited in the models? and which theories are com-
bined? [16].

Operational validation refers to determining whether model outputs are sufficiently correct according to the data ob-
tained from the real world. Operational validation activity includes validation of the required model representations, their
associated knowledge bases, simulation algorithms, formalisms, models and their associated data [28]. Operational valida-
tions are directly related to the model credibility [17].

Besides kinds of validation above, two aspects of verifications can be applied: specification and implementation verifica-
tion. Specification verification ensures to truly specify the model behavior defined in the conceptual model, while implemen-
tation verification deals with all specifications are coded in the model run on the DEVS-Suite environment as built.

2.1.3. Validation challenges
Though many advantages are benefited in modeling and simulation study, there are number of issues in verification and

validation process. This section summarizes challenges about V&V process which are well defined in [22,21]. The Article in
[21] describes major modeling and simulation V&V challenges and proposes new solutions. In the following, some of these
challenges are summarized:

� V&V level: Determining how much V&V is needed is very crucial since it depends on the user requirements. The model
V&V process continues to meet its user objectives. Therefore, how much V&V tests are needed is the primary issue in
M&S process.
� Demand for automated tools: Automated V&V techniques are required in modeling and simulation process to perform

large V&V experiments. Enhanced V&V capabilities are also essential for better confidence.
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� Demand for formal tools: The design of most modeling and simulation V&V approaches and tools are usually non-formal-
ized. Lack of any formal definition causes a low performance, bad-scalable and non-repeatable V&V methods. Well-for-
malized V&V process facilitates verification of optimal system design and efficiency. Instead of non-formalized V&V
process, stage-by-stage design, verification, validation and final integration are more preferable [34]. The formalized
design approaches such as DEVS have many important advantages for V&V process [32].
� Universality of V&V: As already mentioned, model validation and model objectives are tightly coupled. A model can only

be validated as required as its design objectives. It is impossible to validate a model generally. A model could only be val-
idated if its validity for every purpose was proven [21]. Such a model requires much cost, a great deal of codes, data and
computational resources.
� Selection of the real world data: Since view points of the modelers on the real world may vary, a model is valid according to

the modeler, while it may not be valid to another.
� Inaccuracy of real world data: In V&V process, comparison of model outputs against the real world data is an important

step. In case of less accuracy or lack of the real world samples, V&V value of the model is affected inversely. On the other
hand, if a model is developed to research on alternative methods and systems, no real world data exists.
� Time limitation for V&V process: The scope of V&V process must be covered every aspect of a model. More tests on a model

increase confidence on it. In most cases, the developer has not enough time to verify and validate everything.

2.1.4. Validation techniques
Many verification and validation techniques are available for modeling and simulation study [4,5]. Most of these

techniques are related to modeling and simulation process. Various V&V techniques are summarized in [2] and an approach
proposed by Forrester and Senge [10] is given in particular. Validating and verifying DEVS simulation models are presented
in [15].

1. Forrester and Senge [10]: Qualitative and quantitative models can be validated using this method. This validation
approach defines sets of tests and elaborates their contribution to the model confidence. Fig. 2 shows these tests in three
categories. These categories are system structure tests, model behavior tests and policy implications tests. Tests of system
structure evaluate structure of the system and its parameters. Tests of the model behavior assess indirectly model struc-
ture by analyzing a model’s behavior. Tests of policy implications evaluate the response of a real system to a changed
policy.

2. Whitner and Balci [30]: Information about the structure of a model, modeling techniques and practices employed, data
and control flow within the model, and syntactical accuracy can be evaluated using this technique.

3. Khazanchi [13]: Qualitative and conceptual models can be validated using this approach. The approach includes a set of
criteria and some of them are related to plausibility, feasibility and effectiveness of the model.

2.2. DEVS-Suite validation framework

DEVS-Suite is an object-oriented implementation of the DEVS formalism and an open source, discrete event, general-pur-
pose simulation environment [14]. DEVS-Suite can simulate models specified using the DEVS formalism [32]. It is a new
generation extended from the DEVSJAVA simulator and the DEVS Tracking Environment. The main modules of the DEVS-

Suite are as follows:

� Simview [1]: Simview which was developed for the DEVSJAVA supports component viewing of DEVS source code as block
components. In DEVS-Suite, execution of the models can be animated in terms of the input/output messages for coupled
models and the state changes for the atomic models. The simulation experiments can be triggered with test inputs – pre-
defined inputs for every model can be selected from its dialog box at the beginning of the simulation. At the end of the
Fig. 2. Verification and validation methods of Forrester and Senge [10].
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simulation, user-defined statistical metrics for any of the model components can be obtained with the so-called trans-
ducer models. The simulator also has an option window while loading the model, which includes simview and tracking
options.
� Tracking Environment [24]: The architecture of the DEVS-Suite simulator environment is the Model Facade View Control

(MFVC) [24] by which simulation data can be displayed with its animation and viewing of time trajectories generated by
the parallel DEVS abstract simulator.
� Timeview [23]: Every atomic and coupled model component can have its own time-based trajectories and log files for

inputs and outputs as well as the common phase and sigma state variables for atomic models.

The DEVS-Suite has some important treats for successful validation. The DEVS-Suite has very powerful and robust sim-
ulation engine which enables the modeler to simulate flexible application of a model’s steps. It also provides easy access to
parameters/settings via menus and dialog boxes in the simview. The DEVS-Suite’s object orientation supports easy update
and/or rerun of the model chain. Its tracking capability provides more detailed logging/tracking of operational assumptions,
easy replication of simulation runs. Simulation data can be presented in tables, logs and files.

The DEVS-Suite has integrated reporting and validation table generation and support batch or step by step operation. In
Fig. 3, DEVS-Suite and its associated technologies are depicted.

2.3. Ns-2 network simulator

The open source network simulator ns-2 [19] is an object-oriented, discrete event network simulator. It is written in C++
and uses OTcl as a command and configuration interface. It is focused for research studies in local and wide-area network
protocols. This simulator implements network transmission protocols such as Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP), traffic source behavior such as File Transfer Protocol (FTP), Telnet, Web, CBR and VBR, router queue
management mechanism such as DropTail, RED and CBQ, and other routing algorithms [19]. It supports simulation of TCP,
routing, and multicast protocols for wired and wireless network models and is primarily used for simulating local and wide
area networks. The network simulator ns-2 supports modeling, simulation, and visualization of the network technologies
and functionalities:

� Wired, wireless and satellite networks with their routing algorithms such as DV, LS, PIM-DM, PIM-SM, AODV, and DSR
[8,27].
Fig. 3. DEVS-suite simulator infrastructure [23].
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� User traffic sources such as HTTP, FTP, Telnet, and CBR.
� Failure models such as deterministic, probabilistic loss, and link failure.
� Queuing disciplines such as DropTail, RED, FQ, SFQ, and DRR and QoS such as IntServ and Diffserv.
� Packet flow, queue build up, and packet drops.
� Protocol behavior: TCP slow start, self-clocking, congestion control, fast retransmit, and recovery.
� Node movement in wireless networks.
� Annotations to highlight important events.
� Protocol state (e.g., TCP congestion window).
� Automatic traffic and topology generation.

The ns-2 is usually used for design, testing, and comparison of new network algorithms, protocols and technologies. It is
based on the seven-layer network synthesis and designed as packet-based, which means that all packet interactions are in
focus. The simulator becomes relatively straightforward to use once the users gain an in-depth knowledge of its concepts and
implementation. However, development of the new models can be challenging due to factors such as few user-friendly man-
uals and complicated installation. The ns-2 simulator is said to be extended with new visualization and other capabilities to
support teaching computer network theory and principles [11]. However, details describing such capabilities are not pro-
vided. The ns-3 simulator, the next generation has been under development since 2006 and the latest stable release 3.14
was available by June 5, 2012 [20].

2.4. OSPF protocol overview

Routing protocols in the network systems can be split into two main categories: link state routing and distance vector rout-
ing. Currently, and in particular for the Internet, while distance vector protocols are used for inter-gateway interactions, link
state protocols are used for intranet [26]. Open Shortest Path First (OSPF) is an important link state routing protocol. It is an
open standard routing protocol and is an efficient interior gateway (IGP) routing protocol that is faster than the routing infor-
mation protocol (RIP), which belongs to the distance vector protocols family. It employs the Dijkstra algorithm while esti-
mating the shortest paths [7]. The OSPF protocol is defined to have three phases in order to capture its behavior as a
discrete event model. These phases are described as follows:

� Startup phase: As soon as a router connects to the network, it broadcasts the Hello messages to all neighbors, later each
router tabulates own neighbor tables.
� Update phase: Each router casts an update message at fixed time intervals called ‘‘link state advertisements (LSA)’’ by

which topology database is formed. All routers must have same topology database of a local network.
� Shortest path tree phase: Routers then estimate a ‘‘shortest path tree’’ that depicts shortest paths to every destination

routers.

3. Validation tests of the OSPF–DEVS model

Validation is the most important phase in development of a model. Validation tests are needed in a modeling study since
a model cannot be accepted unless it passes them [5,3]. Validation schemes are generally framework based methodical pro-
cedures as well as dynamic processes which have to be applied by the modeler during the model development. There are
many model validation schemes summarized in [5,17]. From these schemes, a widely approved validation scheme is pre-
sented in [10] and followed in this study. In this scheme, confidence in the model increases as model passes more tests. This
validation scheme is adopted and applied in this study due to its appropriateness for dynamic models such as distributed
systems and networks. Applied validation scheme is mainly divided into four phases. These phases are (1) specifying model
objectives, (2) validating the model structure, (3) validating the model behavior and (4) policy implications.

Adopted approach includes performing each of the recommended tests above as fully as possible in the DEVS-Suite, doc-
umenting and reporting the results with each test’s evaluation, assessing and capturing the number of insights gained from
the test and contrasting the tests in terms of their benefits/costs. In the following sections, these steps are followed to val-
idate the applied model and summarized.

3.1. Test simulation environment and configurations

The OSPF model is applied to several processes to improve its confidence. These processes are summarized in previous
sections. In these processes, some environmental parameters are configured similarly as close as possible to the real world
settings. Section 3.3.2 briefly tabulates these configuration parameters and Table 2 compares selected parameters with the
real world Internet network parameters. By doing so, it is claimed that simulation experiments are carried out under some
sense of reality, though exact reality cannot be established on limited capacity computing environments (for example, large-
scale network simulations have been scaled up to hundred thousands size, whereas Internet has billions size computers [6]).
Table 1 shows simulation experiment parameters in V&V tests such as used environment and approaches. While comparing



Table 2
OSPF–DEVS simulator parameters and Internet.

Parameters OSPF–DEVS simulation Internet

Exterior routing protocol BGP BGP
Interior routing protocol OSPF OSPF & RIP
IP address model IPv4 IPv4 & IPv6
IP address size 4 Byte 4 Byte
Message type Advanced IP Packet IP Packet
MTU 552 Bytes 576(fragmented) to 65,548 Bytes(unfragmented)
Header size 20 Bytes 20 Bytes
LSA max age Infinity 1 h
Number of hops 15 hops 15 hops
Node processing time 1 s 1 Mb/s to 40 Gb/s
Queue length 200 KB (362 packets) 32–500 packets
Link bandwidth 25 Mb/s 25 Mb/s to 10 Gb/s
Link delay 3 ms 3–16 ms
Layer 2 2 (Internet core and autonomous systems)
Scale 10,000 nodes/hosts Hundreds of millions of hosts and users
Model Waxman N/A
Observation time 1000 s N/A
Inter arrival time 1 s N/A

Table 1
Simulation model parameters of ns-2 and DEVS-Suite.

Parameters for verification and validation process

Approach Forrester and Senge [10]

Structure verification OSI layers
Parameter verification Internet
Traffic density 442 Kbps to 4.9 Mbps
Network size 4–10 thousands nodes
Behavioral validation tools DEVS-Suite 2.1 and ns-2 2.32
Used machine 2.66 GHz Core2Duo processor and 4 GB RAM
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the OSPF model, some small differences exist because of different internal parameter settings and/or different level of mod-
eling detail in the simulation tools.

3.2. Model objectives specification

It is important to set objectives correctly when starting to model a system. In the previous sections, some background
about motivation and problem entities are given. Once again, it is good to list main objectives to model such a system. It
is aimed to develop a network simulator having such kind of properties;

� system theoretic design with modular and hierarchy,
� easy to deploy,
� good visualization,
� high performance and scalable,
� highly tractable,
� advanced testing framework,
� parallel and distributed capability.

Except for the last one, the model has all properties above. Parallel and distributed capability of the model is still ongoing
research and will be done by DEVS/HLA framework [25].

3.3. Validation of the OSPF–DEVS model structure

Structure validation tests are performed during the modeling process in which the modeler tests the model during build
up phase. These tests are very crucial in order to design a reasonable and correct model. These tests require to refer theo-
retical definitions and knowledge [2]. Empirical and theoretical structure tests are experimented with the model to show
its structural confirmation. These experiments are separated into two categories: (1) network structure and (2) the OSPF
confirmation tests. Network structure confirmation test was accomplished by several theoretical tests including appropriate-
ness of the OSPF model to network theory, for example how Open System Interconnections (OSI) layers are represented on



Fig. 4. OSI network layers mapping to OSPF–DEVS.
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the DEVS-Suite. OSPF protocol confirmation tests are performed by empirical tests and the OSPF protocol is confirmed via
graphs and tabular data. Empirical tests of the OSPF–DEVS model includes comparison of the OSPF model structure with
information obtained directly from the real system.

3.3.1. Structure verification tests
Theoretical structure tests of the OSPF model are carried out with comparison model structure with generalized knowl-

edge about the system. The DEVS network model is developed in [33] according to the network OSI standard with several
abstractions. Since protocol implementation and education are in focus, first abstraction is to flatten seven segment OSI lay-
ers to three layers (see Fig. 4).

3.3.2. Parameter verification tests
Just after the structure verification test that resembled the target system, parameters are configured to form model

behavior that synchronous to reference data. This process is highly required and the benefits obtained from these tests were
high. This kind of verification includes comparison of the model parameters with the real system [10]. In Table 2, the OSPF–
DEVS model parameters are compared to the Internet system. For example, queue lengths, delays and bandwidths are se-
lected as real as Internet network. However, some parameters such as scale are not modeled since computational devices
are limited as depicted in boundary adequacy test. Besides, IP address and data packets are very realistic.

3.3.3. Extreme conditions tests
Extreme conditions test is performed to reveal simulated system’s normal operating boundaries. Extreme conditions test

is important in terms of the model structure and behavior. It can be used for detecting model structure defects and also can
be used for enhancing model’s usefulness by specifying operating conditions [10].
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In the OSPF case example, it is tried to determine operating conditions by experimenting the model in heavily conditions.
An example network having 3000 nodes and 6200 links is experimented under varying traffic conditions ranging from
442 Kbps to 4.9 Mbps. As seen in Fig. 5, the OSPF–DEVS model deserves its stability till approximately 4.4 Mbps traffic den-
sity. After that value, the model looses its preciseness and correctness. For example, packet lost ratio was 96% in heavily traf-
fic condition test.

Extreme condition tests are tightly related with sensitivity analysis. Upper and lower limits for the traffic density were
established. Fig. 5 shows the lower and upper limits for the OSPF–DEVS model. When the value for a traffic density is set
outside of 4.4 Mbps, the model behavior cannot be relied upon. These tests are very crucial and give much knowledge about
clarification of the model’s useful domain of applicability.

3.3.4. Boundary adequacy tests
Boundary adequacy tests examine the model boundary for the objectives specified at the beginning. First of all, it is

important to determine the boundaries of the model. Inspecting model diagrams, model equations may help to identify con-
stants affected the system. At the beginning of the model design, several assumptions and decisions are made for expected
outcomes when specific inputs are given. The benefits from these tests were high (see Table 5).

3.3.5. Dimensional consistency tests
Dimensional consistency test copes with dimensional analysis of the OSPF–DEVS model. First, network models up to ten

thousands nodes are developed and measured the efficiency of the networks. The efficiency is estimated as performed net-
work tasks such as message delivery, scheduled events and routing databases’ correctness. In Fig. 6, the efficiency trajectory
of the OSPF model is shown. For small scale models, the efficiency is ideal (i.e. simulator is running with highly correctness),
however in large models, simulator is deviating from reality (for example, 99.5% for 10,000 nodes).

To show dimensional consistency of the OSPF–DEVS simulator, its resource consumption is measured and compared to
the memory demands of several simulators. From these values, how much is being used to describe the traffic and architec-
ture can be revealed. Nicol [18] reports that ns-2 demands 52.2 KB per connection, and the JavaSim demands 17.3 KB per
connection. In Table 3, these values are compared to the OSPF–DEVS Simulator. Generally, memory demands are caused
by routing table implementation and visualization. Due for lightweight Java GUI capability, DEVS visualization load is sur-
prisingly low in the OSPF–DEVS simulator.

3.4. Validation of the OSPF–DEVS model behavior

Besides structural validity tests, certain tests are needed to measure how accurately the model can reproduce the major
behavior patterns shown by the real system. These tests are performed both with the DEVS-Suite Tracking Environment and
the ns-2. The Tracking Environment provides detailed imprints of the model by means of time diagrams.
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Table 3
Per-connection core memory demands of the simulators.

Simulation tools Per connection
memory footprint (KB)

JavaSim 17.3
Ns-2 52.2
OSPF–DEVS (with SimView) 39.5
OSPF–DEVS (without SimView) 31.6
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Fig. 7. OSPF–DEVS reproduction of the node’s behavior.
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3.4.1. Behavior reproduction tests
Behavior reproduction tests help to evaluate degree of matches between the model-generated behavior and the real sys-

tem. These tests include symptom generation, frequency generation, relative phasing, multiple mode and behavior charac-
teristic tests [10]. In Fig. 7, the behavioral reproduction comparison is given. In Fig. 7, a finite state machine of a node atomic
model is shown. This state trajectories are formed theoretically in designing of such a network model. Fig. 7b is from time-
view facility from the DEVS-Suite environment showing state transitions of a node’s run. Fig. 7 proves that in the OSPF–DEVS
simulator, the node model exactly follows the states as specified in its definition. In other words, node correctly mimics and
reproduces behavior as such in its definition.

Another behavior reproduction test is done in comparison with the ns-2 network simulator. In order to validate behavior
of the OSPF–DEVS model, first a small scale topology is considered (four routers and links). In this study, widely accepted
network simulator 2 (ns-2) is selected instead of a real system, since the selected simulator has enough detail in the network
domain. Furthermore, same configurations are used in the experiments in order to show the key structural differences be-
tween modeling the DEVS-Suite and the ns-2 (see Table 1). Finally, comparison with analogous ns-2 test traces is included.

According to the configuration parameters listed in Table 1, simulation experiments with both the ns-2 and the OSPF–
DEVS simulators are performed for 10 s. The throughput and end to end delay results as a function of time are shown in
Fig. 9.
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As depicted in Fig. 9a, after a stabilization phase time (2 s), throughput curves converge to nearly the same average values,
822.4 KB/s. for the ns-2 and 1489 packets � 552 bytes = 821.9 KB/s. for the OSPF–DEVS. This shows that both simulators
produce same outputs for same traffic configuration.

Another important performance metric is end-to-end delay. End-to-end delay is a time value as a packet’s life time from
its creation time in source node to its destination. Different from throughput trajectories, difference between end-to-end de-
lay values was bigger than expected (see Fig. 9b). In the OSPF–DEVS environment, the router model is designed based on a
simple processor model with a queue. The modeler selects the router model’s processing time. Routing delay is a time period
that router takes to route a packet and is equal to total passed time needed for evaluating the packet header, checking the
routing table which varies with table size, and assigning the packet to its intended output port of the router model. Unlike
OSPF–DEVS, ns-2 uses a single virtual clock to execute events that are scheduled in a list. By considering the part of the trace
file in Fig. 8, the first line says at time 0.240667, router 3 handles a CBR packet which it receives. The second line depicts at
the same simulation clock time that router 3 also makes available the processed packet to a link. Thus, no time is consumed
from the time the router receives a packet to the time the packet is made available on the link – i.e., the routing delay time
caused by process load of the router processor is not accounted for. Consequently, difference in Fig. 9b comes from
(a)

(b)
Fig. 9. Simulated performance measurements of ns-2 and OSPF–DEVS for throughput and delay.

Fig. 8. A snippet of the ns-2 trace file.



Table 4
Event frequency of the selected simulators.

Simulator DEVS-Suite Ns-2

Number of events per second 1000 28,388

Table 5
Evaluation of the V&V test results.

V&V test Difficulty OSPF–DEVS success Total benefit (success/difficulty)

Structure verification L H VH
Parameter verification M H H
Extreme condition M M M
Boundary adequacy L M H
Dimensional consistency H H M
Behavior reproduction H VH H
Ns-2 throughput comparison M H VH
Ns-2 delay comparison M L VL

VH – very high, H – high, M – medium, L – low, VL – very low.
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processing time value of routers in the OSPF–DEVS. This value is zero in the ns-2 simulator while it is a value bigger than zero
in the OSPF–DEVS simulator. Therefore, average end-to-end delays are different.

Routing tables are also observed for four router nodes to be consistent – the creation of tables was validated step by step.
In Table 4, event resolution of the DEVS-Suite and the ns-2 simulators are shown. Since ns-2 has lower level of abstraction

it supports more realistic simulation of packets and their interactions, therefore large number of events are generated and
stored. This is not suitable while scaling large networks. The DEVS formalism and its associated tools such as DEVS-Suite
allow the modeler to create models with higher level of abstraction which leads to focus big picture omitting redundant de-
tails. By this fact, after completion of the simulation study, the total number of events (event frequency) in the ns-2 is greater
than DEVS-Suite by a factor of 30 (i.d. DEVS can do same task by generating 30 times less events than ns-2).
4. Evaluation

In order to evaluate outcomes from verification and validation tests performed with the OSPF–DEVS simulator, some cri-
teria are taken into consideration. Evaluation of the OSPF–DEVS simulator is the process of determining the appropriateness
of it [29]. Evaluation is handled by three topics. These topics are test results, modeling approach and educational use eval-
uations. Test results evaluation includes the assessments of the capability, software accuracy, data accuracy and results accu-
racy of the OSPF–DEVS simulator.
4.1. Test results evaluation

In Table 5, results from OSPF–DEVS V&V tests are evaluated. Evaluation is done in terms of their difficulty and the OSPF–
DEVS performance. Difficulty of a specific test is related to total effort, hardness and required time to perform it. The OSPF–
DEVS model success is related to how OSPF model meets model objectives specified. Later, total benefit is calculated by a
ratio of these values. Table 5 shows that most of these tests are beneficial except from end-to-end delay comparison tests.
Since DEVS-Suite allows the modeler to develop high quality models, these results are not surprising.
4.2. Modeling approach evaluation

As noted earlier, OSPF–DEVS model emphasizes routing by supporting the packet-level abstract. This high level of
abstraction affords better execution efficiency, for example when compared with the ns-2. This is due in part to having sig-
nificantly less number of events generated and processed. DEVS approach allows the modeler to create highly tractable mod-
els. DEVS approach is developed as an extension of the Moore machine formalism [31]. DEVS formalism is a kind of finite
state automaton approach in which states and outputs are created by the current state and the inputs. As contrary to other
finite state approaches, DEVS has brought a new concepts to the simulation community such as state lifespan and a hierar-
chical concept. These innovations have rendered possible to create very efficient simulation software. In the DEVS compo-
nent connection architecture, a basic entity is a component called atomic model. Each atomic model owns one or more
communication ports. By the way, two atomic models are connected by ‘‘wiring’’ their ports together. DEVS formalism relies
on network models to facilitate entity or message movement and decision making.
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4.3. Educational usability evaluation

Ease of use of the simulator is tightly related to the question ’’Is the simulator user friendly and do the students benefit
from the simulator?’’. In [35], the evaluation of the OSPF–DEVS simulator in classroom settings is presented. In that work, to
evaluate the OSPF–DEVS simulator, graduate students of computer network course are asked to use it and the ns-2 simulator
in three homework assignments. The students’ evaluations and analysis have shown the extent to which each of these tools
can support computer network protocol education. Following sections evaluate the simulator in terms of visualization, web
access, reusability, deployment and user base.

4.3.1. Visualization
Visualization support in the OSPF–DEVS application includes tracking the creation and update of the neighbor table, LSA

database, and finally, the routing table that is calculated using the shortest path algorithm. Although tools are provided to
track the changes on routing tables, this level of visualization is not supported in the ns-2 and it is difficult to add such capa-
bility due in part to the use of both C++ and Tcl programming languages. Using the DEVS-Suite, students can track and view
the logic behind the routing protocol as well as the discrete event-based run of the network system.

4.3.2. Web access
The common way simulators are made available to students is to install them on personal computers or computers in

laboratories at the universities. To avoid basic difficulties such as software installation and upgrades, it is useful to make sim-
ulators web accessible. This is desirable in addition to making simulators available to users based on anyplace and anytime
principle. Using Java Web Start technology, the simulator can be run over the Internet, therefore it can be used for distance
learning applications.

4.3.3. Reusability
Code reuse of the simulation models and components is a very good way to increase model development productivity and

application maintainability. Instead of developing all the things, students should always look for well-designed models,
application frameworks and customizable components. Reusability of the OSPF models in the DEVS-Suite environment al-
lows students to make rapid changes, exploit new features globally, and spend less time testing and debugging in course
practices.

4.3.4. Deployment
One of the problems in network education courses having practice with the ns-2 is installation and deployment. Students

are getting bored while installing the ns-2 network simulator on their machines. One of the reasons is that ns-2 is using two
programming language basis and hence requires infrastructure programs over tens. Another reason emerges from its hard
platform-dependent structure. In our simulator, deployment is very easy with a executable jar file and it is also platform
independent since Java has many running platforms.

DEVS-Suite has not problems neither in terms of background technology which is just need for the Java Virtual Machine,
nor in terms of platform dependency which Java is already cross-platform technology. Consequently, process of managing
and automating the packaging, testing, distribution and installation of the DEVS-Suite application even for its online ver-
sion is easier and more affordable than the ns-2.

4.3.5. User base
Finally, the scale of the user-base of a tool is important. This is because large user communities help not only to sustain

the simulator up-to-date, but also to improve and add new capabilities to it. DEVS-Suite is an open source project and the
DEVS community continues to grow.

5. Conclusion and future work

According to the structural and behavioral validation tests, OSPF–DEVS simulator gives correct results and the logic of the
system is also correct (see Table 5). The designed simulator also offers an improvement over the practices intended to sup-
plement. Simulator is easy to learn and to become proficient on, and the simulator is useful as a training tool. Simulator is in
fact maintainable by other modelers than the developers.

Structural tests and behavioral validation tests give at least some assurance that the structure and behavior of the OSPF–
DEVS model is reasonable. DEVS-Suite more suitable for system level simulation as opposed to the ns-2 being suitable for the
detailed network protocol designs (algorithms). The results of this study should help further development of the network
simulator tools and may also lead to development of new kinds of simulators for the computer networks and possibly other
types of the complex systems.

Future work includes developing automated V&V tools and evaluating them through some test cases. Additionally, the
OSPF–DEVS simulator can be extended with data analysis features and more detailed network layer components. Another
desirable addition is to use variable structure DEVS since in some cases it can better represent the dynamic nature of the
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distributed computer networks. Another attractive capability is to visually develop models and automatically generate
source code using the Eclipse and some other tools.
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