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A B S T R A C T   

Despite the creation of thousands of machine learning (ML) models, the promise of improving patient care with 
ML remains largely unrealized. Adoption into clinical practice is lagging, in large part due to disconnects be-
tween how ML practitioners evaluate models and what is required for their successful integration into care 
delivery. Models are just one component of care delivery workflows whose constraints determine clinicians’ 
abilities to act on models’ outputs. However, methods to evaluate the usefulness of models in the context of their 
corresponding workflows are currently limited. To bridge this gap we developed APLUS, a reusable framework 
for quantitatively assessing via simulation the utility gained from integrating a model into a clinical workflow. 
We describe the APLUS simulation engine and workflow specification language, and apply it to evaluate a novel 
ML-based screening pathway for detecting peripheral artery disease at Stanford Health Care.   

Statement of Significance  
Problem The adoption of ML models into clinical workflows is lacking 

because traditional ML evaluation metrics fail to accurately 
assess how useful a model will be in practice. 

What is Already 
Known 

Prior work has simulated individual model impact in the 
context of specific care delivery workflows. However, these 
efforts have limited generalizability to other models/ 
workflows and exhibit overreliance on non-modifiable 
assumptions. 

What This Paper 
Adds 

Our contribution builds on prior work through the 
development of a flexible, reusable set of methods that allow 
for the systematic quantification of the usefulness of ML 
models by simulating their corresponding care management 
workflows. The APLUS library can help hospitals to better 
evaluate which models are worthy of deployment and identify 
the best strategies for integrating such models into clinical 
workflows.   

1. Introduction 

While the development of models in healthcare via machine learning 
(ML) continues at a breakneck pace [1–4], deployment of models into 
practice remains limited [5–7]. As an example, a recent survey found 
evidence of adoption for only a small fraction of over 250,000 published 
clinical risk prediction systems [8]. The primary reason for limited 
adoption is that models are only one component of the care delivery 
workflows that they are designed to improve [6,9–11]. Healthcare 
workflows are complex: successful care delivery often depends on the 
coordination of several providers across multiple departments to 
execute many steps in highly specific, context-dependent sequences 
[12]. Their ability to execute is impacted by resource constraints, pa-
tient needs, and existing protocols [13,14]. Asking a clinician to incor-
porate information output by an ML model may require redesigning 
workflows or altering behavior. For example, a workflow mapping ex-
ercise done at Kaiser to understand how an early deterioration model fit 
into care delivery identified 44 different states and 6 different de-
partments needed to act upon the model’s output [10], while process 
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mapping at Stanford Hospital revealed 21 steps and 7 handoffs necessary 
to put an ML model for advance care planning into practice [15]. 

Traditional metrics for evaluating ML models are insufficient for 
assessing their usefulness in guiding care [6,7,16–19]. Popular metrics 
such as Area Under the Receiver Operating Characteristic curve 
(AUROC), F1 Score, and Accuracy ignore a workflow’s capacity con-
straints as well as the variable costs of misprediction. For example, the 
cost of administering an unnecessary cancer screening (false positive) 
may be much lower than the cost of failing to detect cancer (false 
negative). The outcomes that actually matter to a health system – 
namely, cost-effectiveness and net benefit to patients – are not captured 
by these traditional metrics [6,7,16–19]. An approach which does take 
these factors into account is utility analysis. There has been extensive 
research on using utility as a north-star metric for predictive models. 
Vickers et al. 2006 introduced decision curves as an improved method for 
comparing predictive models [17], and Baker et al. 2009 introduced a 
similar concept called relative utility [20]. While these utility-based 
metrics complement traditional ML metrics like AUROC, they still suf-
fer from an important underlying limitation – namely, they estimate 
theoretical rather than achievable utility gained from using a model 
[6,9,14]. They assume that every model prediction gets acted upon, and 
thus ignore the structure and constraints of the relevant workflow (e.g. 
budget, staffing, data acquisition delays, human error, etc.) [6,9,21]. 

Because deploying an ML model into a healthcare setting has a cost 
in terms of time, money, and potential risk of harm to patients 
[14,22,23], proactively assessing the overall benefit of using a model to 
guide care is essential for two reasons. First, deciding which models to 
implement – even a simple tool can cost hundreds of thousands of dollars 
[23]. Second, for deciding how best to integrate a chosen model’s output 
into a care delivery workflow. 

In the remainder of this paper, we refer to this process of conducting 
a utility-based analysis of a model within the context of the workflow 
into which it will be deployed as a usefulness assessment. In essence, a 
usefulness assessment aims to quantitatively answer the question: If I use 
this ML model to guide this workflow, will the benefits outweigh the costs, and 
by how much? Prior work has used simulations to identify potential 
changes to clinical workflows that can reduce operational inefficiencies 
in healthcare settings [24–28], but efforts to quantify the usefulness of 
model-guided care delivery workflows are limited. Existing approaches 
rely on bespoke simulation pipelines that are specific to the workflow 
being evaluated and are not designed for reuse [9,29–33]. 

To bridge this gap in tooling, we have developed APLUS, a simula-
tion framework for systematically conducting usefulness assessments of 
ML models in triggering care management workflows. Of the various 
aspects of clinical decision support systems that merit study, our 
framework is specifically focused on measuring the integration and 
evaluation of ML models prior to their deployment [11]. Our framework 
can simulate any workflow that can be represented as a set of states and 
transitions, and includes the ability to incorporate individual-level 
utility analyses [29], heterogeneous treatment effects and costs, and 
preferential allocation of shared resources. We make APLUS available as 
a Python library and demonstrate its use by conducting a usefulness 
assessment of a classification model for identifying patients with pe-
ripheral artery disease (PAD) [34]. 

2. Methods 

In this section, we describe the design of APLUS including its simu-
lation engine, workflow specification language, and the analyses it 
supports. The code for APLUS is available on Github at https://github.co 
m/som-shahlab/aplus. 

2.1. Simulation engine 

Inspired by prior work to develop simulation tools for patient flow 
[25–28], we take a patient-centric, discrete-event approach to workflow 

simulation. Specifically, we developed a synchronous, time-driven 
discrete-state simulator [35]. Given a set of patients and a workflow 
(defined via the specification language described below in 2.1.2 Work-
flow Specification Language), the simulation engine progresses all patients 
through the workflow and tracks their state history, transitions taken, 
and utilities achieved. We model each individual patient’s journey 
through the workflow as an ordered sequence of states occurring over a 
set of evenly spaced time steps, where cycles are permitted. Each state 
and transition is associated with a non-negative integer duration which 
represents the number of time steps that it takes to complete. Within a 
single timestep, states are unordered, with two exceptions: (i) states that 
are dependent on the completion of previous states will always occur 
after those prior dependencies have been completed, (ii) patients who 
reach a state which has at least one transition that depends on a shared 
resource will be sequentially processed based on an end-user-defined 
function that preferentially ranks patients for access to that shared 
resource. This enables modeling of a limited resource that is allocated 
based on a patient’s predicted risk – e.g. Stage IV cancer patients getting 
first access to a novel therapy. 

When there are multiple possible transitions that a patient can take 
from a state, there are two possible ways that a specific transition can be 
selected by the simulation engine. Transitions can be associated with (i) 
a probability of occurrence or (ii) a conditional expression. For transi-
tions associated with a probability (e.g. patients have a 30 % chance of 
going down the “high-risk” pathway and a 70 % chance of going down 
the “low-risk” pathway), the simulation engine samples from the set of 
possible transitions proportional to their specified probabilities. This is 
best suited for workflows in which one might have a rough sense of what 
proportion of patients go down each treatment pathway, but it is diffi-
cult to articulate more precise criteria. For transitions associated with a 
conditional expression (e.g. patients with attributes X and Y are “high- 
risk”, patients with attributes W and Z are “low-risk”) the simulation 
engine sequentially evaluates each expression and selects the transition 
whose expression evaluates to True, thus allowing APLUS to generalize 
to essentially any situation that can be expressed as a set of Boolean 
conditions. For example, heterogeneous treatment effects and costs can 
be simulated via a conditional expression predicated on a patient-level 
property variable, as defined below in 2.2 Workflow Specification Lan-
guage. A gene therapy workflow might take a patient to the “treatment 
succeeded” state if the patient has a specific gene mutation, and other-
wise send the patient to a “treatment failed” state. Patients belonging to 
different “context groups” (i.e. subpopulations) can have different 
workflow trajectories applied to them via these conditional transitions 
[36]. Transitions can also be conditioned on the availability of system- 
level resources to model the impact of resource constraints. 

The simulation engine is written in Python. The outputs that it 
generates are a set of Python dictionaries and objects which are subse-
quently analyzed via the methods described below in 2.1.3 Utility 
Analyses. 

2.2. Workflow specification language 

Building on previous work on mapping healthcare workflows 
[9,37,38] and clinical guidelines [39–41] into machine comprehensible 
representations [42], we created a lightweight workflow specification 
language for APLUS. Our language was designed with three key points of 
differentiation in mind. First, our target end user is an informatician 
with intermediate programming skills, rather than a clinician or busi-
ness operations analyst. Thus, we prioritized the ability to easily modify 
workflows programmatically over concerns like user interfaces or in-
tegrations with clinical ontologies. Second, we wanted to enable fast 
iteration over many workflow variations. Thus, we prioritized simplicity 
and speed of writing over support for edge cases that would add sig-
nificant complexity. Third, we wanted APLUS’s core simulation engine 
to support a broad range of workflows without modification. Thus, our 
language prioritizes expressive flexibility. A detailed schema is available 
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at the APLUS GitHub repository. 
We represent a care delivery workflow as a state machine consisting 

of a set of states and transitions. We take a “patient-centric” view, i.e. the 
state machine represents the journey of an individual patient through 
the workflow. We represent our specification language using YAML, a 
popular markup language that aims to be both human- and machine- 
readable [43]. Thus, the only dependency for creating a workflow 
specification is a basic text editor (e.g. vim, TextEdit, Notepad). 
Concretely, an APLUS workflow specification has three sections: met-
adata, variables, and states. 

The metadata section contains information needed to initialize the 
simulation. This includes the name of the workflow, the locations of 
relevant files that will be imported (e.g. a CSV containing predictions 
from a relevant model), and column mappings for tabular data (e.g. 
which column in a CSV corresponds to patient IDs). 

The variables section contains a list of all of the variables that will be 
used in the simulation. Variables can be referenced in the definition of 
any state or transition in the states section. There are four main types of 
variables that are currently supported: (1) Simulation-Level Variables are 
tracked by the simulation engine itself and measure the progression of 
time within the simulation. Examples include: the number of timesteps 
the simulation has already run, the duration of time that a patient has 
spent in the hospital, the duration of time that a patient has before being 
discharged, etc. (2) Patient-Level Properties represent unique, individual- 
level properties associated with each patient. Examples include model 
predictions, ground truth labels, age, stage of cancer, etc. (3) System- 
Level Resources represent attributes of the overall system (e.g. hospital, 
department, outpatient clinic, etc.). As such, they are shared across all 
patients. When one patient depletes a system-level resource, that change 
will be reflected across all other patients. Examples include budget, MRI 
availability, specialist capacity, etc. (4) Constants are variables in the 
purest sense – they are not directly associated with the overall workflow 
or any individual patient. They can be any primitive Python type 
(integer, float, string, or boolean) or basic Python data structure (list, 
dict, set). Examples include: 0.98, [1–3], True, etc. 

The states section describes the structure of the workflow. We 
represent a workflow as a state machine, and thus the states section 
contains a list of all states in the workflow, as well as the possible 
transitions between them. There are three types of states: start, end, and 
intermediate. All patients begin their journey at the same start state, pass 
through 0 + intermediate state(s) over the course of the simulation, and 
finish their journey at one of the end states. A patient moves between 
states via transitions. If only one transition is specified for a state, then 
every patient who reaches that state will take that transition. If a state 
has multiple transitions, however, the simulator will follow whatever 
rules were specified for each transition to decide which one to take. 

In order to measure the outcomes from executing a workflow, utilities 
must be associated with each state and/or transition. Utilities are 
grouped by their unit of measurement, so multiple distinct types of 
utilities can be simultaneously tracked. This permits the assessment of a 
model across a wide range of performance indicators of interest to a 
health system, including time-related (e.g. length-of-stay), clinical (e.g. 
patient outcomes), financial (e.g. monetary cost), or resource-related (e. 
g. staff utilization) [44]. Utility values can also be conditioned on 
arbitrary expressions. This allows for conducting individual-level utility 
analyses by including patient-level variables in a utility’s associated 
conditional expression [29]. This tends to be the most difficult step of 
specifying a workflow, as the end user must obtain these utility values 
via literature review, expert interviews, or financial modeling [32]. For 
example, a usefulness assessment that had been previously conducted on 
an advance care planning workflow derived utilities from a previously 
published randomized controlled trial [9]. 

In order to represent the temporal nature of workflows, durations of 
time can be associated with each state and transition. These durations 
represent the number of discrete time steps that a patient waits after 
reaching a state or taking a transition. For example, if we have a 

workflow where patients stay in a hospital for multiple days post- 
surgery and are evaluated once a day for additional treatment, then 
we could set up two states named “rest” and “evaluation”, where the 
transition between “rest” and “evaluation” takes 0 timesteps since they 
occur on the same day, but the transition between “evaluation” and 
“rest” takes 1 timestep since after evaluating a patient, we progress to 
the next day. 

In order to model how resource constraints change over time, 
resource deltas can be associated with each state and transition. A 
resource delta encodes how a system-level resource changes after a 
transition is taken. For example, a transition which directs a patient to 
an MRI machine might have a resource delta of “-1” for the resource 
“MRI capacity.” This setting allows for fine-grained control over the 
depletion and augmentation of shared resources which influence the 
delivery of care. 

2.3. Utility analyses 

APLUS conducts three categories of analyses to assess a model’s 
usefulness: predictive performance, theoretical utility, and achievable 
utility under workflow constraints. The analysis outputs automatically 
generated by APLUS (with examples in Appendix A) are as follows:  

(1) Plots which summarize the model’s predictive performance, 
including Receiver Operating Characteristic (ROC) curve, 
Precision-Recall curve, Calibration curve, Work v. PPV/TPR/ 
FPR, and Model Cutoff Threshold v. PPV/TPR/Work. Work is 
defined as the proportion of model predictions that are positive, 
PPV is the model’s positive predictive value, TPR is the true 
positive rate, FPR is the false positive rate, and model cutoff 
threshold is the value above which we consider a model’s prob-
abilistic output to be a positive prediction. These standard mea-
surements of model performance gauge the ability of an ML 
model to make accurate predictions.  

(2) Plots which summarize the model’s theoretical utility, i.e. the 
outcomes achieved by following the model’s predictions after 
weighting them by their corresponding utilities. The plots that we 
generate include ROC curve with utility indifference curves, 
Precision-Recall curve with utility indifference curves, Decision 
curve, Relative Utility curve, PPV v. Mean Utility Per Patient, 
Model Cutoff Threshold v. Mean Utility Per Patient, and Work v. 
Mean Utility Per Patient. A decision curve is a plot of a model’s net 
benefit across different risk thresholds. Net benefit is defined as the 
difference between the TPR and FPR of a model, where the FPR is 
translated onto the same scale as the TPR via an “exchange rate” 
which depends on the relative utility of true v. false positives 
[17]. As an analogy, one can imagine net benefit being the 
“profit” of using a model, where the “revenue” is generated in one 
currency (true positives) while the “costs” are generated in 
another currency (false positives), and thus there is an interme-
diary step in which the currency of costs (false positives) are 
“exchanged” into the currency of revenue (true positives) [45]. 
Risk threshold is defined as the cutoff value above which a model’s 
probabilistic output is considered to be a positive prediction. 
Thus, a decision curve allows a reader to quickly compare 
different models’ expected utilities across various risk thresholds. 
A slight variation is the relative utility curve [46]. The relative 
utility of a model at a given risk threshold is the maximum net 
benefit achieved by the model divided by the net benefit achieved 
by a perfect classifier [46].  

(3) Plots which summarize the model’s achievable utility within the 
context of its workflow, i.e. how much utility we expect the 
model to achieve given the constraints of the overall care delivery 
pathway that it impacts. The plots that we generate include 
Model Cutoff Threshold v. Mean Achieved Utility Per Patient, 
Mean Achieved Utility Per Patient v. Optimistic Baseline, and 
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Mean Achieved Utility Per Patient under Workflow Variant #1 v. 
Mean Achieved Utility Per Patient under Workflow Variant #2. 
We define Optimistic Baseline as the case in which all of a model’s 
predictions get acted upon. Note that these evaluation metrics 
integrate information about the entirety of the workflow, and can 
also relax some of the assumptions made in generating the theo-
retical utility plots. For example, decision curve analyses assume 
that utilities are uniform across all patients, an assumption that 
does not need to be enforced within an APLUS simulation [19]. 
Additionally, theoretical utility analyses ignore the possibility of 
downstream constraints turning positive predictions into true/ 
false negatives, or turning negative predictions into true/false 
positives (e.g. if alternative tests or clinicians determine that a 
patient originally assigned a negative prediction should be 
treated as a positive case). 

3. Application of APLUS to risk models for PAD screening 

In this section, we present a case study of conducting a novel use-
fulness assessment via APLUS of ML models for the early detection of 
PAD. 

3.1. Clinical background of PAD 

To demonstrate APLUS in action, we applied it to a novel usefulness 
assessment scenario – identifying patients with PAD via a state-of-the-art 
ML model for further screening [34] – and show that our framework can 
be used to select the optimal model and workflow combination to 
maximize the model’s usefulness to patients. PAD is a chronic condition 
which occurs when the arteries in a patient’s limbs are constricted by 
atherosclerosis, thereby reducing blood flow [47]. A total of 8–12 
million people in the US have PAD [48], costing the US healthcare 
system over $21 billion annually [49]. Left untreated, PAD is associated 
with a higher risk of mortality, serious cardiovascular events, and lower 
quality of life [50]. Despite these risks, PAD is often missed by health-
care providers. Roughly half of all PAD patients are asymptomatic [50], 
and one study showed that even when a previous PAD diagnosis was 
documented in a patient’s medical record, only 49 % of primary care 
physicians were aware [48]. A broad suite of treatment options is 
available to patients suffering from PAD, ranging from lifestyle changes 
to drugs to surgery [50,51]. The earlier that a patient is diagnosed, the 
better the chances of preventing disease progression and thus avoiding 
the need for costlier interventions [32,34]. The low-risk and non- 
invasive ankle-brachial index (ABI) is the primary test used to di-
agnose PAD today [32,52]. However, the most recent guidance from the 
US Preventive Services Task Force cited “inadequate evidence” on the 
usefulness of population-wide ABI testing to identify asymptomatic PAD 
patients who might benefit from further treatment [53]. 

3.2. Previously developed ML models for PAD screening 

Ghanzouri et al. 2022 developed three ML models to classify patients 
for PAD based solely on EHR data: a deep learning model, a random 
forest, and a logistic regression with respective AUROCs of 0.96, 0.91 
and 0.81 [34]. Each model assigns a probabilistic risk score to each 
visiting patient which indicates their likelihood of having PAD. Patients 
with risk scores above a certain threshold (chosen to be 0.5 in their 
study) are classified as having PAD and recommended for follow-up ABI 
testing [34]. We extend this prior work by conducting a usefulness 
assessment on incorporating a PAD classification model’s predictions 
into clinical decision making at Stanford Health Care. 

3.3. Specification of the PAD screening workflows 

To apply APLUS to this use case, we first mapped out the states, 
transitions, and utilities of possible model-guided PAD screening 

workflows. Based on interviews with practitioners (chiefly, co-author 
ER, who is a practicing vascular surgeon), we identified two work-
flows to consider: (1) a nurse-driven workflow which assumes the exis-
tence of a centralized team of nurses reviewing the PAD model’s 
predictions for all patients visiting their clinic each day; and (2) a doctor- 
driven workflow which assumes that the PAD model’s predictions appear 
as a real-time alert in a patient’s EHR during their visit to the clinic. 
These interviews yielded natural language descriptions of both work-
flows, which we then translated into the APLUS specification language. 

In both the nurse-driven and doctor-driven workflows, our experi-
ments assumed that there were 3 possible end outcomes for patients: 
“Untreated”, “Medication”, or “Surgery.” These roughly capture the 
spectrum of treatment options available for patients with PAD – either 
the patient’s visit is concluded without treatment, the patient is pre-
scribed medication to reduce the risk of cardiovascular disease, or the 
patient undergoes a procedure like angioplasty or bypass [50,51]. We 
assume that patients who end up in the “Surgery” state have also been 
given medication prior to their procedures. The utility of each of these 
outcomes depends on the ground truth PAD status for a specific patient. 
For example, “Untreated” is the best option for patients without PAD but 
has the largest cost for patients with PAD. “Medication” is the ideal 
outcome for patients with moderate PAD but is undesirable for patients 
without PAD. “Surgery” is the costliest outcome for all patients, but the 
relatively best option for patients with severe PAD. We combined 
clinician input with utility estimates from Itoga et al. 2018 to define the 
utilities associated with the end outcomes of each workflow in terms of a 
multiplier on remaining years living to reflect quality-adjustment on 
lifespan [32]. Given that a healthy patient with no PAD has a baseline 
utility of 1, we used the following relative utilities for various outcomes: 
0.95 for patients without PAD who are prescribed medication, 0.9 for 
patients with PAD who are prescribed medication, 0.85 for patients with 
moderate PAD not prescribed medication, 0.7 for patients without PAD 
who undergo surgery, 0.68 for patients who have severe PAD and un-
dergo surgery, and 0.6 for patients with severe PAD who do not undergo 
surgery [32]. The corresponding YAML workflow specification files are 
available in the APLUS Github repository. 

In both workflows, we also assume the existence of a cardiovascular 
specialist who can evaluate patients after they are referred by a doctor or 
nurse. We assume that the specialist has a set capacity for how many 
patients she can see per day. However, once a patient reaches the 
specialist, we assume that the specialist makes the optimal treatment 
decision for that patient. Thus, prioritizing which patients use up the 
limited capacity of the specialist is the key driver of our simulated 
workflow’s achieved utility. 

The doctor-driven workflow assumes that model predictions will 
appear as an alert within the EHR of a patient during their visit to the 
clinic. If the attending physician notices this alert, she can choose to 
either ignore the alert or act on it. We assume that physicians ignore 
alerts at random. If a physician decides to act on an alert, she will either 
administer treatment herself or refer the patient to a specialist. The main 
constraints on this workflow are the probability that the attending 
physician reads the alert (previous studies have shown that up to 96 % of 
alerts are overridden [54–56]) and the specialist’s schedule. 

The nurse-driven workflow assumes the existence of a centralized 
team of nurses tasked with reviewing the predictions of the PAD model 
for each patient who visits the clinic on a given day. Based on these 
predictions, the nursing staff decides which patients to directly refer to 
the specialist, thus cutting out any intermediate steps with a non- 
specialist physician. The main constraints on this workflow are the ca-
pacity of the nursing staff and the specialist’s schedule. We assume that 
the nursing staff does not suffer from alert fatigue, i.e. they will not 
randomly ignore predictions from the PAD model. This is an assumption 
we have made in this study, and we acknowledge that nurses might 
suffer from alert fatigue as well. This is an example of a potentially 
significant assumption which can be easily changed within APLUS by 
anyone interested in replicating our experiments under a different set of 
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nurse-driven workflow constraints (e.g. including a probability that 
nurses ignore alerts). 

One important distinction between these two workflows is that the 
nurse-driven workflow is centralized whereas the doctor-driven work-
flow is decentralized. In other words, the nurse-driven workflow batches 
together all model predictions for each day before patients are chosen 
for follow-up, while in the doctor-driven workflow each doctor decides 
whether to act on a PAD alert immediately upon receipt of the alert 
independently from the decisions of other doctors. Thus, specific to the 
nurse-driven workflow with a daily capacity of K, we consider two 
possible strategies that the nurses can leverage for processing this batch 
of predictions: (1) ranked screening, in which the nursing staff follows up 
with the K patients with the highest PAD risk scores; or (2) thresholded 
screening, in which a random subset of K patients are selected from the 
batch of predictions whose predicted PAD risk score exceeds some cutoff 
threshold. 

3.4. Simulation parameters for the PAD workflows 

We acquired a dataset of 4,452 patients (henceforth referred to as the 
“dataset”) who had both ground-truth labels of PAD diagnosis and risk 
score predictions from all three ML models developed in Ghanzouri et al. 
2022 [34]. This data was directly sourced from the authors of Ghanzouri 
et al. 2022 [34], who had previously run their models on this cohort of 
patients at Stanford Hospital and who share two co-authors with this 
paper (ER and NHS). For each combination of model/workflow that we 
evaluated, we simulated 500 consecutive days of patient visits. For each 
simulated day, the number of visiting patients was determined by 
randomly sampling from a Poisson distribution with a mean of 35 (this 
distribution was chosen to reflect historical patterns of the rate at which 
patients who would trigger the PAD model visit Stanford clinics). Then, 
given the number of patients visiting on a given day, we randomly 
sampled (with replacement) that number of patients from our dataset. 
The same set of sampled patients was used across all simulations to 
ensure comparability of results. 

Based on clinician interviews and a literature review, we identified 
the following parameters for our simulation. First, we assumed that 
patients with PAD have an ABI sampled from a normal distribution with 
a mean of 0.65 and standard deviation of 0.15, while patients without 
PAD have an ABI sampled from a normal distribution with a mean of 
1.09 and standard deviation of 0.11 [47]. We used an ABI of 0.90 as the 
cutoff threshold between PAD and no PAD [57]. Our simulated ABI test 

showed roughly 95 % sensitivity and 95 % specificity on our simulated 
patients, which is consistent with previous estimates for the accuracy of 
an ABI test [32,47,52]. To simulate the increased risk of serious com-
plications from untreated PAD, we assumed that if a PAD patient saw a 
specialist, then they would need surgery only if their ABI score was <
0.45, whereas a PAD patient who did not see a specialist would even-
tually require surgery if their ABI score was < 0.55. The overall pro-
portion of simulated patients with an ABI score < 0.45 was 9 %, while 
the proportion of simulated patients with an ABI score < 0.55 was 26 %, 
which emulates the fact that roughly 7 % of patients with PAD will 
require surgical intervention [48], and that 26 % of patients with 
symptomatic PAD should eventually progress to needing some form of 
surgery to manage their PAD [32]. We also assumed that an ABI score >
0.8 was moderate enough to be treated by a non-specialist physician, but 
that a score < 0.8 must be referred to a specialist [57]. 

For the doctor-driven workflow specifically, we assumed that only 
patients who have a PAD risk score ≥ 0.5 will generate an alert, which is 
consistent with the threshold used in Ghanzouri et al. 2022 (42). The 
representations of these two workflows in the APLUS specification lan-
guage, as well as visualizations of their states and transitions, can be 
found in our Github repository: https://github.com/som-shahlab/aplus. 
The specifications can be viewed in any basic text editor, but for ease of 
visualization we recreate diagrams of the nurse-driven and doctor- 
driven workflows in Fig. 1. 

We evaluated the doctor-driven and nurse-driven workflows across 
ranges of possible values for two constraints: (1) nurse capacity for the 
nurse-driven workflow and (2) probability that a PAD alert is read for the 
doctor-driven workflow. Nurse capacity is defined as the total number of 
patients per day that the nursing team can follow-up with for an ABI test. 
Probability that a PAD alert is read (also referred to as probability alert is 
read or simply alert fatigue) is the chance that a doctor acts on an alert 
generated when a patient is classified by a model as having PAD. 

3.5. Usefulness assessment of the PAD workflows 

We evaluated each PAD model’s utility relative to three baselines: 
Treat None, where the model simply predicts a PAD risk score of 0 for all 
patients; Treat All, where the model predicts a PAD risk score of 1 for all 
patients; and Optimistic, where there were no workflow constraints or 
resource limits on model predictions. Concretely, we measured each 
model’s expected utility achieved per patient above the Treat None 
baseline as a percentage of the utility achieved under the Optimistic 

Fig. 1. States, transitions, and transition conditions for the (a) nurse-driven workflow and (b) doctor-driven workflow. All patients begin at the “Patient Visits Clinic” 
state in the top left of the charts. Then, patients progress according to their individual-level properties, and end at one of 3 treatment options: “Untreated”, 
“Medication”, or “Surgery”. Trapezoids represent capacity constraints, diamonds represent decision points, squares are intermediate states, and pills are end states. 
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scenario. In other words, we measured how much of the total possible 
utility gained from using a model was actually achieved under each 
workflow’s constraints. The Treat None baseline should therefore always 
have a relative achieved utility of 0 %, while all models should have a 
utility value of 100 % in the Optimistic setting (as all patients are simply 
sent to the specialist for screening). For clarity, we do not show the Treat 
None baseline in any of the following plots, as it is always trivially set to 
0 %. 

4. Results 

In this section, we summarize the results of conducting our APLUS 
usefulness assessment on the doctor-driven and nurse-driven PAD 
workflows under realistic capacity constraints. 

4.1. Simulating unlimited downstream specialist capacity 

For our first set of experiments, we assumed that the capacity of the 
downstream specialist was infinite to isolate the impact of nurse ca-
pacity on the nurse-driven workflow and alert fatigue on the doctor- 
driven workflow. 

(A) Nurse-driven workflow: As detailed below, APLUS revealed 
that the choice of model for a nurse-driven workflow mattered only 
under the medium- and high-capacity settings, and certain screening 
strategies. This was because the three models had similar top-K precision 
(i.e. they were all able to identify the most obvious PAD cases), and thus 
in low-capacity settings where only the top few model predictions could 
be acted upon, the choice of model does not matter. In higher-resource 
settings, however, the deep learning model offered a significant boost in 
utility. 

To determine this, we first used APLUS to evaluate the thresholded 
screening strategy, in which a random subset of K patients is selected 
from the batch of patients whose predicted PAD risk score exceeds the 
cutoff threshold. As shown in Fig. 2a, the deep learning ML model 
(purple line) achieves the highest expected utility per patient across all 
treatment strategies under this thresholded screening regime. A nursing 
staff which leverages the deep learning model to prioritize patients can 
achieve roughly 50 % of the total possible utility under the optimistic 
scenario with a screening capacity of only 5 patients per day, and almost 
80 % of the total possible utility with a screening capacity of 10 patients 
per day. As the nursing capacity increases, we see the difference between 
the relative utility achieved by the deep learning model and the random 
forest model (blue line) increasing from 4 absolute percentage points 
under a capacity of 3 patients/day to 13 percentage points under a 

capacity of 6 patients/day. 
We observe similar overall trends in Fig. 2b when simulating a 

ranked screening strategy in which the nursing staff follows up with the K 
patients with the highest PAD risk scores. However, APLUS reveals 
slightly different results in low resource settings (i.e. nurse capacity <
4). In a low-capacity setting, all three ML models achieve relatively 
similar utilities. This makes sense, as nurses are only able to act on each 
model’s most confident prediction under this constrained setting, and 
thus the achieved utility of the model depends only on the accuracy of its 
top-3 highest scoring predictions, rather than its overall predictive 
performance across all patients. The difference between the achieved 
utility of the deep learning model (purple line) and random forest model 
(blue line) is smaller than it is under the thresholded screening strategy, 
ranging from only 1 absolute percentage points with a capacity of 3 
patients/day to 7 percentage points with a capacity of 6 patients/day. 

Using APLUS, we can now conclude the following: For workflows 
with a nurse capacity ≥ 4, a deep-learning-guided ranked screening 
approach, rather than a thresholded screening approach, yields the 
highest expected achieved utility. For workflows with a nurse capacity 
< 4, however, the results are mixed – the three ML models do not appear 
to be differentiated from a utility standpoint, and the ranked screening 
approach does not yield a consistently higher utility than the thresholded 
screening approach. This indicates that there are enough additional steps 
and constraints in the nurse-driven workflow under these low resource 
settings that the choice of model or patient prioritization does not make 
a tangible difference. 

As an additional experiment, we were curious about the impact of 
varying the cutoff threshold used for each of the ML models on their 
expected achievable utility. The results shown in Fig. 3 provide a hint for 
why the deep learning model showed superior utility in our previous 
analysis – the probability distribution it learned more accurately re-
flected the binary prediction task it was given than either of the other 
two models. This can be seen in the significantly sharper, immediate 
jump in expected utility that the deep learning model (far left) experi-
ences as its cutoff threshold increases from 0 compared to the more 
gradual slope in the utility curves of the random forest (middle) and 
logistic regression (far right). 

This reflects the better calibration and accuracy of the deep learning 
model, as its predictions have a highly bimodal distribution clustered 
around 0 and 1 (of its total set of probabilistic predictions, 63 % are <
0.01 while 16 % are > 0.99). As shown in Fig. 3, this makes the deep 
learning model highly sensitive to increases in cutoff threshold around 
0 and 1, whereas the more dispersed probability distributions learned by 
the random forest and logistic regression cause their cutoff thresholds to 

Fig. 2. (a) Utility achieved by the nurse-driven workflow under thresholded screening across different nurse capacities using the optimal model cutoff threshold. (b) 
Utility achieved by the nurse-driven workflow under ranked screening across different nurse capacities. The deep learning model is most differentiated under a 
thresholded screening strategy, and only at high nurse capacity levels. All plots assume unlimited specialist capacity. 
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have a more gradual impact on their achieved utilities. By making these 
types of differences more readily apparent, APLUS can help to debug and 
compare models. 

(B) Doctor-driven workflow: We simulated a doctor-driven work-
flow in which we assumed that every physician who sees a patient with a 
predicted risk score ≥ 0.5 would receive an EHR alert recommending 
follow-up [34]. The one exception was the Treat All case, in which an 
alert was automatically sent for all patients. Again, this simulation 
assumed that the capacity of the specialist was infinite to isolate the 
impact of the probability that an alert is read. We see in Fig. 4 that a 
strategy of Treat All (red line) uniformly generates the highest expected 
utility under this doctor-driven workflow, with alerts triggered by the 
deep learning model (purple line) coming in a distant second. This was 
expected, as our workflow assumed that patients assessed by a specialist 
would always have better outcomes than patients who were not. Thus, 
any increase in the number of alerts that we simulated would also in-
crease the number of patients referred to a specialist, and since the 
specialist had unlimited capacity under this experimental setting, this 
would always result in better outcomes for patients. 

4.2. Simulating finite downstream specialist capacity 

A more realistic setting is a downstream cardiovascular specialist 
with finite capacity. Thus, we repeated the above experiments under the 
assumption that our specialist could see a maximum of 2 referred pa-
tients per day. 

(A) Nurse-driven workflow: Though the deep learning model still 

shows the strongest performance of all treatment strategies across all 
nursing capacity levels, its achievable utility caps out at a nurse capacity 
of 3 patients per day. This is because the downstream specialist’s ca-
pacity is the limiting factor capping the achievable utility of the model. 
Thus, a policymaker deciding how to staff a nursing-driven workflow in 
which the downstream cardiovascular specialist can only see 2 patients 
per day could feel comfortable with staffing to a capacity of 3 patients 
per day, regardless of how many patients might be flagged by the model. 

We see this clearly in Fig. 5. The thresholded screening strategy is 
shown in the far-left panel and shows that the deep learning model 
(purple line) yields high improvements in utility over alternative 
treatment strategies. However, this difference quickly becomes negli-
gible at higher nurse capacity levels (e.g. > 3 patients per day). This is 
the opposite of the conclusion that we had previously reached under an 
unlimited capacity setting. There, we found that the deep learning 
model’s advantage grew as the nursing team’s capacity grew. This 
example illustrates the importance of factoring in capacity constraints 
when evaluating models, as they can substantially distort the incre-
mental gain of increasing resource allocation to act on a model’s output. 

This result is replicated under the ranked screening strategy in Fig. 5b, 
which shows that the ML models do not exhibit substantially different 
achieved utility across potential nurse capacities. This is similar to the 
parity across models that we observed in our analysis of unlimited 
specialist capacity when considering low-resource nursing teams. 

(B) Doctor-driven workflow: In the case of the doctor-driven 
workflow, Fig. 6 shows strong differentiation across all three ML 
models in the limited specialist setting. However, we now see that the 
deep learning model (purple line) achieves a higher relative utility than 
the Treat All (red line) strategy once the probability of an alert being 
read is above 0.4. This can be explained as follows. When doctors are 
more likely to respond to alerts, more patients will be referred to the 
specialist, but the specialist will have to turn people away because of the 
specialist’s limited capacity (set to 2 patients/day in this experiment). 
Thus, ensuring that we only send patients who are likely to have PAD to 
the specialist becomes more important as doctors become increasingly 
willing to act on the alerts they see (and thus exceed the capacity of the 
specialist to handle referrals). The accuracy of the model therefore has 
more influence on the workflow’s utility as the probability increases that 
a doctor reads an alert. In our case, the deep learning model had the best 
predictive performance, hence the utility when using this model was 
greatest at higher levels of alert responsiveness. 

4.3. Comparing the two proposed integration pathways 

Given the results of our first two analyses, which demonstrated the 
superiority of the deep learning model, the next question we aimed to 
answer was which of the two workflows offered the optimal deployment 
strategy for the model. For this experiment, we focused on quantifying 

Fig. 3. Utility achieved by the (a) deep learning model, (b) random forest model, and (c) logistic regression across various model cutoff thresholds. The sharper peaks 
in the random forest and logistic regression plots indicate that the probability distributions they learn have more dispersion than that learned by the deep learning 
model. All plots assume unlimited specialist capacity and a thresholded screening strategy. 

Fig. 4. This plot shows the utility achieved by the doctor-driven workflow 
across different levels of alert fatigue using a model cutoff threshold of 0.5, 
assuming unlimited specialist capacity. 
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the trade-off between nursing capacity and alert fatigue, as this was the 
primary question that came up in our conversations with clinicians. Our 
guiding question was as follows: How many patients would a staff of 
nurses need to screen per day to have the nurse-driven workflow yield 
the same expected utility as a doctor-driven workflow with a given level 
of alert fatigue? 

To answer this question, we used APLUS to measure the deep 
learning model’s achieved utility under different nurse capacities (using 
a ranked screening strategy) and compared this against the utility ach-
ieved under the doctor-driven workflow as the probability that doctors 
read alerts increased (where an alert was generated if the predicted 
probability of PAD for a patient was ≥ 0.5). We then subtracted the latter 
from the former to calculate the incremental gain in achievable utility 
that could be expected by adopting the nurse-driven workflow at that 
capacity level over a doctor-driven workflow at that alert fatigue level. 
We plotted the results as a heatmap in Fig. 7, under the assumption that 
the downstream specialist can see 5 patients per day. The y-axis is the 
nursing capacity that a cell’s utility value is calculated at, while the x- 
axis shows the level of alert fatigue in the doctor-driven workflow that 
corresponding to that cell’s measurement. Red squares (positive 
numbers) indicate that the nurse-driven workflow is expected to yield 
more utility at that capacity level than the corresponding doctor-driven 
workflow, while blue squares (negative numbers) indicate that the 

doctor driven workflow should be preferred. This allows a policymaker 
to quickly determine what nurse capacity is required for the nurse- 
driven workflow to have a greater expected utility than the doctor- 
driven workflow with a given level of PAD alert acceptance. 

5. Discussion 

We have demonstrated the use of APLUS to quantify the relative 
utility achieved by using the three ML models proposed in Ghanzouri 
et al. 2022 to drive two possible workflows for PAD screening [34]. In 
our evaluation of these models, we factored in the consequences of the 
downstream patient care decisions that they enabled, as well as the 
impact of resource constraints on their usefulness. Our results affirm that 
the deep learning model results in the largest gains in relative utility 
compared to the other proposed models under certain workflow settings, 
but we also found that constraints on the capacity of a cardiovascular 
specialist to handle referrals can create a hard bound on the achievable 
utility of a model-guided screening workflow. Our simulations also 
helped to quantify the trade-off between choosing a nurse-driven v. 
doctor-driven workflow for model implementation. Specifically, we 
investigated the impact of screening capacity on the nurse-driven 
workflow and the impact of alert fatigue on the doctor-driven work-
flow. We identified the conditions under which one of these integration 
pathways yields higher expected utilities, and thus greater usefulness, 
via a sensitivity analysis of nurse capacity and alert fatigue. 

The plots generated by APLUS can help to quantify the expected 
utility that can be achieved by deploying each of the three ML models 
into one of the two workflows considered. This yielded insights that 
were not readily apparent by simply looking at ROC curves – namely, the 
parity across models in low-capacity settings for the nurse-driven 
workflow (in which case the simpler/more explainable model, logistic 
regression, may be preferable given its identical performance to the 
opaque deep learning model), the significantly higher utility unlocked 
by the deep learning model in the doctor-driven workflow (especially at 
lower levels of alert fatigue), and the incremental value of using one 
workflow over the other at different capacity levels as shown in the 
heatmap of Fig. 7. All of these utility-based results depended on simu-
lating both the model and its surrounding workflow via APLUS, and 
could not have been determined via traditional ML evaluation metrics 
like AUROC. 

Though we focus on PAD screening as a case study, APLUS gener-
alizes to a broader range of ML models and decision support situations. 
APLUS can simulate any scenario involving a machine learning model to 
classify or predict patient state that meets two conditions: (i) the clinical 

Fig. 5. (a) Utility achieved by the nurse-driven workflow under thresholded screening across different nurse capacities using the optimal model cutoff threshold. (b) 
Utility achieved by the nurse-driven workflow under ranked screening across different nurse capacities. We see that the achievable utility of all models is unaffected 
by increases in nurse capacity beyond 3–4 nurses. All plots assume a specialist capacity of 2 patients/day. 

Fig. 6. This plot shows the utility achieved by the doctor-driven workflow 
across different levels of alert fatigue using a model cutoff threshold of 0.5, 
assuming a specialist capacity of 2 patients/day. 

M. Wornow et al.                                                                                                                                                                                                                               



Journal of Biomedical Informatics 139 (2023) 104319

9

workflow of interest can be represented as a set of states and transitions 
(i.e. a finite state machine), and (ii) there is a cohort of patients with 
their associated ML model outputs available as input to APLUS. 

To assess the generalizability of our approach, we also conducted 
APLUS usefulness simulations for another care delivery workflow that 
had been previously evaluated in terms of clinical utility – a model- 
guided workflow for prioritizing advance care planning (ACP) consul-
tations [9]. We were able to successfully replicate the results of the 
previous study’s analyses (for brevity, results are not shown; the code is 
available at the APLUS GitHub repository). The primary differences 
between the ACP use case and the PAD screening use case are that the 
model used for the ACP use case is a mortality prediction model (its 
output is a probability of death 3–12 months in the future for an indi-
vidual patient) rather than a PAD classification model, and the clinical 
workflow triggered by model output differs as well (see [9] for ACP 
workflow details). 

The process for conducting the ACP usefulness assessment was very 
similar to that for the PAD screening use case. The ACP workflow, 
defined via interviews with clinicians, was converted into the APLUS 

specification language, utilities were sourced from the palliative care 
literature, and a dataset of patients and their associated mortality model 
predictions were acquired from the original authors of the ACP machine 
learning model. Any one of these steps may present a challenge when 
simulating other workflows using APLUS: utilities can be hard to 
quantify, workflow steps may be vaguely defined, or the ML model may 
be inaccessible to researchers. 

Additionally, we performed custom analyses to evaluate the effect of 
alternative care pathways for ACP on the model’s usefulness. For an 
informatician applying APLUS to their own model-guided workflow, 
writing such custom analyses will likely require additional effort. This is 
both a limitation and strength of APLUS – APLUS can support arbitrary 
downstream analyses because it imposes minimal assumptions on the 
workflow simulations, which comes with the tradeoff of requiring 
additional custom tuning to support specific use cases. 

The design of our workflow specification language has several key 
strengths. First, unlike prior usefulness assessments which directly 
hardcoded the structure of the workflow into the simulation and analysis 
logic [9,31,32], APLUS explicitly separates the act of defining a workflow 

Fig. 7. This heatmap shows the incremental gain from using the nurse-driven workflow over a doctor-driven workflow at a given capacity level for each workflow, 
assuming a specialist capacity of 5 patients/day. The y-axis represents capacity for the nurse-driven workflow, and the x-axis represents the probability that a doctor 
reads an EHR alert in the doctor-driven workflow. The value of the cell at coordinates (i, j) in the heatmap shows the incremental gain in achievable utility that can be 
expected by using a nurse-driven workflow with capacity i instead of a doctor-driven workflow with an alert fatigue level of j. Thus, positive numbers (i.e. red cells) 
indicate that the nurse-driven workflow is preferable to the doctor-driven workflow at their corresponding capacity levels, while negative numbers (i.e. blue cells) are 
situations in which the doctor-driven workflow should be preferred. That is why the top rows, which show nurse capacity at its highest, are dark red, while the far- 
right rows, which represent the highest probability that doctors read their EHR alerts, are dark blue. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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from the act of simulating and analyzing it. This facilitates interopera-
bility between APLUS and existing analysis pipelines with minimal code 
refactoring. Additionally, APLUS logs the entirety of each patient’s 
trajectory such that their journeys can be reconstructed post hoc, which 
enables arbitrary downstream analyses without the need to re-run the 
simulation. Second, our simulation engine can simulate virtually any 
workflow that can be represented as a set of states and transitions in 
which a patient can only ever be in one state concurrently. The ability to 
specify many types of transition conditions allows APLUS to handle 
intricate branching logic within a workflow. Third, because APLUS 
simulates the actual trajectories of patients rather than simply repre-
senting patients/workflows as a set of equations, it supports more 
complex workflows, branching conditions, and probability distributions 
than would be feasible to analytically describe. Fourth, our specification 
language takes advantage of the expressivity that YAML enables, 
including human-readability, straightforward version control, minimal 
dependencies (e.g. just a text editor), and a simple interface for pro-
grammatically manipulating the settings of a workflow (e.g. any of the 
existing YAML-parsing libraries for Python). This allows an analyst to 
quickly generate and test many workflow variations. Fourth, APLUS 
supports the specification of variables (i.e. utilities and resource con-
straints) that have varying units. This enables the end user to simulta-
neously measure how quantities such as QALYs and dollars are impacted 
by a model-guided workflow, rather than having to conduct two sepa-
rate simulations focused on each unit of measurement in isolation. This 
also helps to increase replicability by forcing the end user to be precise in 
how they define the properties of their workflow. Beyond the software 
that we have developed, another unique aspect of our work is our close 
collaboration with a clinician partner (ER) who was directly involved in 
designing the workflows that we simulated. This ensured that our ex-
periments accurately reflected real-world care delivery pathways. 

There are several limitations of our work. First, an analyst is still 
required to do the preliminary legwork of mapping out a care work-
flow’s steps. This is an inherently non-technical task which can represent 
a large bottleneck in the usefulness assessment process, because it re-
quires either actively scheduling and conducting interviews with 
stakeholders and operations personnel [9], or automated process mining 
of clinical pathway patterns which requires detailed analysis of previ-
ously collected data/event logs [44,58]. To aid in this process mapping 
step, we recommend that analysts partner with members of a hospital’s 
operations, quality improvement, or business management offices. 
Second, because our framework makes minimal assumptions about the 
structure/length/design of the workflow being simulated, the end user 
must specify many detailed aspects of their workflow. While we do 
provide plausible defaults, this task can be time consuming for complex 
workflows and requires the informatician to decide on the proper level 
of simplification. Third, our choice of time-driven discrete-event-based 
simulation suffers from several known computational inefficiencies, 
such as a lack of parallelizability and inefficient modeling of longer time 
intervals, that can be addressed through further algorithmic refinement 
of our core simulation engine [35,59,60]. 

Our framework is general enough to assess a wide range of work-
flows, and we look forward to demonstrating the full depth of APLUS’s 
capabilities by applying it to future usefulness assessments. By reducing 
the need to write bespoke scripts, our work can help to accelerate and 
systematize this process across health systems. At Stanford Health Care, 
this work is one component of a larger effort to develop a delivery sci-
ence for fair, useful, and reliable adoption of models to guide care 
management workflows [61]. Accomplishing this goal requires auto-
mated methods such as APLUS. 

More broadly, we aim for our research to be useful for both large 
health systems with expertise in ML deployments, as well as health 
systems without much experience. At academic medical centers which 
aim to conduct usefulness assessments across dozens of models, our tool 
can help to systematize and scale this evaluation process [61,62]. For 
health systems with more limited resources and less expertise in ML, the 
availability of an off-the-shelf tool like APLUS which can readily quan-
tify the benefit of investing in the implementation of an ML model may 
encourage funding its development. 

6. Conclusion 

We have presented APLUS, a framework for conducting usefulness 
assessments of ML models that considers the properties of the care 
workflows that they drive. We applied APLUS to yield implementation 
insights for a new care delivery workflow – the early screening of PAD 
via machine learning. More broadly, our simulation engine can assist in 
understanding the usefulness of model-guided care prior to committing 
to deployment. We hope that our library enables other researchers to 
study a wide range of workflows, thereby deepening our field’s under-
standing of the impact of workflow constraints on ML model usefulness 
in healthcare. 
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Appendix A 

A set of plots that are automatically generated by APLUS to measure a 12-month all-cause mortality model’s predictive performance and theo-
retical utility. 
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