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A B S T R A C T   

Model selection is an important issue in support vector machine-based recursive feature elimination (SVM-RFE). 
However, performing model selection on a linear SVM-RFE is difficult because the generalization error of SVM- 
RFE is hard to estimate. This paper proposes an approximation method to evaluate the generalization error of a 
linear SVM-RFE, and designs a new criterion to tune the penalty parameter C. As the computational cost of the 
proposed algorithm is expensive, several alpha seeding approaches are proposed to reduce the computational 
complexity. We show that the performance of the proposed algorithm exceeds that of the compared algorithms 
on bioinformatics datasets, and empirically demonstrate the computational time saving achieved by alpha 
seeding approaches.   

1. Introduction 

Gene selection is now widely used in genomic sciences, such as dis
tinguishing driver mutations from driver genes [10,24], discovering 
significant features for drug sensitivity prediction [1,18], or identifying 
panels of biomarkers to aid in cancer prognosis [30,37], etc. Given 
microarray data with thousands of genes and tens or hundreds of sam
ples, the gene selection task is to select the most informative genes that 
are relevant to a specific classification task. 

Many gene selection algorithms have been studied in the literature. 
From a computational perspective, these approaches can be broadly 
divided into three groups, namely, filter, wrapper, and embedded. Filter 
methods rank genes by measuring the relevance between genes and class 
labels. They are independent of classifiers and are often computationally 
more efficient compared to wrapper and embedded methods. However, 
the performance of an inductive algorithm is not guaranteed [6]. In 
contrast, wrapper and embedded methods rely on a classifier, using 
classification accuracy as an indication of feature quality. They use the 
prediction provided by a classifier to evaluate subsets of features. 
Wrapper methods incorporate the performance of a classifier as a 
evaluation criterion to choose the best gene subset. However, they often 
suffer from overfitting problems and the computational complexity is 
large [34]. Embedded methods select genes as part of the model con
struction process, and are specific to given learning algorithms, and 
therefore may be more efficient than the other two types methods [3]. 
Recursive feature elimination (RFE) algorithms are typical approaches 

in the literature [22,15]. Among them, the most widely used RFE al
gorithm is support vector machine-based recursive feature elimination 
(SVM-RFE) [22], which is first introduced for microarray data analysis. 
However, it is a significant challenge to estimate parameters of SVM-RFE 
from a limited number of samples. SVM-RFE recursively eliminates 
redundant genes using coefficients computed by an SVM classifier. 
Therefore, parameters of SVM-RFE are exactly same as the parameters of 
SVM. As SVM is very sensitive to model parameters, the performance of 
SVM-RFE should also be sensitive to the model parameters. If inappro
priate values are selected, SVM-RFE may fail to generate the optimal 
subset of genes. Therefore, model selection is an important step in SVM- 
RFE. 

Generally, SVM-RFE has linear and nonlinear versions, depending on 
the type of SVM classifier it incorporated. In the case of kernel SVM, 
SVM-RFE at least has two model parameters: the kernel parameter and 
the penalty parameter C. If random kernels are used [13,12], more 
kernel parameters should be considered. In the case of a linear SVM, 
model selection is the process of tuning regularization parameter C such 
that SVM achieves the best generalization performance for a complete 
set of features. General speaking, generalization performance is 
measured by the error rate of a classifier over the test set [27,45]. In this 
paper, we focus on the model selection problem of linear SVM-based 
RFE algorithm termed as linear SVM-RFE. Over the past two decades, 
a large number of model selection methods have been introduced to 
improve the classification accuracy. Intelligent and bioinspired methods 
such as genetic algorithm (GA) [44], particle swarm optimization (PSO) 
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[5], gravitational search algorithm (GSA) [26] and gradient-based al
gorithms [4,31], are popular choices to tune hyperparameters of SVM. 
Although they operate model selection in a small parameter space, they 
suffer from model selection problems of additional algorithm parame
ters (e.g., fitness function, learning rate and stopping criteria) and low 
convergence speed. The work in [40] used cross-validation (CV) to 
optimize the hyperparameters of SVM to minimize the CV error esti
mate. The works in [7,39,23,38] suggested to tune the hyperparameters 
of SVM using internal metrics, such as Xi-alpha bound, approximate 
span bound, radius-margin bound and distance between two classes 
(DBTC). In [17] these internal metrics were compared with CV on 110 
benchmark datasets, and it was shown that CV performs the best in 
terms of the expected error on unseen data. The work in [28] proposed a 
granularity selection criterion to reduce the computational cost of CV 
procedure. In addition, the work in [41] suggested a guideline to 
implement cross-validation more effectively. However, few guidelines 
were provided to tune parameter of SVM-RFE. 

The model selection step of linear SVM-RFE aims to find an appro
priate value of regularization parameter C such that SVM achieves the 
best generalization performance on the selected gene subsets. SVM-RFE 
requires training d linear SVMs with a decreasing number of features, 
where d is the number of features in the dataset. A natural way to tune 
parameter of SVM-RFE is to perform model selection before every SVM 
training process. The work in [29] used an adaptive kernel width cri
terion to find the optimal parameters of SVM recursively. The work in 
[47] studied a two-step cross-validation to find the optimal parameters 
of SVM models, and then conducted the SVM-RFE algorithm. Work in 
[35] directly adopted previous SVM model selection strategies in the 
SVM-RFE process. However, these works did not consider the general
ization performance of SVM for the optimum gene subset. 

In this paper, we propose an approximation strategy to evaluate the 
generalization performance of a linear SVM-RFE, and design a new 
criterion to tune the penalty parameter C. Because the computational 
complexity of the proposed algorithm is high, we suggest several alpha 
seeding strategies to reduce the computational cost of the proposed al
gorithm. The effectiveness and efficiency of the proposed algorithms 
together with nine state-of-the-art algorithms are validated by a series of 
experiments using bioinformatics benchmark datasets. The remainder of 
the paper is organized as follows. In Section 2, we briefly review the 
related work. In Section 3, we present a model selection algorithm for 
linear SVM-RFE. In Section 4, we suggest several alpha seeding strate
gies to reduce the computational cost of the proposed algorithm. In 
Section 5, we further discuss our experimental results and finally, we 
conclude the paper in Section 6. 

2. Related work 

This section introduces a linear SVM-RFE algorithm. Given a binary 
classification dataset X =

{(
xi, yi)

}N
i=1, where xi ∈ Rd, yi ∈ { − 1,1} is 

the target value of xi, and d is the number of features. 

2.1. Linear support vector machine 

The goal of linear SVM is to find an optimal hyperplane that best 
separates the two classes. Linear SVM is regarded as a margin maximi
zation problem, which leads to the following optimization problem 

min
w,b,ξ

1
2
‖w‖

2
+ C

∑N

i=1
ξi

s.t. yi(w⋅xi + b) + ξi⩾1

ξi⩾0, i = 1,…,N,

(1)  

where w ∈ Rd and b ∈ R denote the weight vector and the bias term, 
respectively, C is a penalty parameter, and ξi are slack variables that 

allow some training samples to fall out of the margin. 
Using Lagrange for solving problem (1) and introducing a set of 

Lagrange multipliers αi, this yields the following optimization problem 

min
α

1
2
∑N

i=1

∑N

j=1
yiyjαiαjxixj −

∑N

i=1
αi

s.t.
∑N

i=1
yiαi = 0, 0⩽αi⩽C.

(2)  

Let α solve the dual problem (2), then the weight vector w is solved as 
follows 

w =
∑N

i=1
αiyixi. (3)  

2.2. Linear SVM-RFE 

A linear SVM-RFE starts with all feature variables, ranks them based 
on the criteria of the weight vector w of a linear SVM, and eliminates the 
feature with the lowest ranking score. This process is repeated until the 
optimality condition is met. At each loop of the SVM-RFE, the co
efficients of w in Eq. (3) are used to compute the feature ranking score. 
This means that SVM-RFE requires training SVM d times. 

The linear SVM-RFE has a parameter C that needs to be tuned. Model 
selection of a linear SVM-RFE refers to the process of tuning regulari
zation parameter C such that a linear SVM achieves the best feature 
selection performance. The best feature selection performance is usually 
evaluated by the classification accuracy of a SVM classifier for the op
timum number of features. However, SVM-RFE does not generate the 
optimal number of features, which makes the best feature selection 
performance very hard to estimate. 

3. Model selection algorithm of linear SVM-RFE 

3.1. Approximation performance for the optimum number of features 

SVM-RFE is an iterative algorithm that works by fitting a linear SVM 
on an initial set of features. Before training such a linear SVM, model 
selection should be conducted. The goal of model selection is to tune the 
parameter C to achieve the lowest generalization error. Generalization 
error is the expected prediction error of SVM over a test dataset for all 
features. However, we cannot perform model selection through the 
generalization error on a high dimensional microarray data with many 
irrelevant or redundant features. This is because a linear SVM is hard to 
distinguish all sample categories when the number of samples is far 
smaller than the number of features. Among these features, only very 
few related features are important to well distinguish sample categories. 

Although SVM-RFE generates a lot of nested subsets of features, it 
does not specify the optimum subset of features. Many literatures 
studied how to evaluate the generalization performance of SVM-RFE. 
The work in [42] evaluated the performance of partial least squares 
based recursive feature elimination (PLS-RFE) for feature subsets varied 
from 1 to 50. Work in [46] evaluated the performance of SVM-RFE for 
feature subsets varied from 1 to 400. The work in [19] presented the 
classification accuracies for the number of selected features equals to 50, 
100, 200, 1,000 and all features. Work in [32] presented testing results 
of the classification for feature subsets in the range of [10:10:140]. 

To approximate the best performance of a linear SVM-RFE, we 
evaluate the performance of linear SVM-RFE for feature subsets varied 
over [ra : rb : rc] when combined with a linear SVM classifier, where ra,
rb, and rc are user specified parameters. This means that we can compute 
the generalization error of a SVM for (rc − ra)/rb+1 nested subsets of 
features generated by the linear SVM-RFE. 
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3.2. Model selection criterion 

In this section, we aim to answer two questions: “How do we measure 
the generalization error of SVM for (rc − ra)/rb+1 nested subsets of 
features?” and “How should we integrate these results to perform model 
selection?” 

To answer the first question, we study a K-fold cross-validation 
resampling strategy. All training samples are divided into K disjoint 
sets of approximately equal size. In each of the k iterations, a linear SVM 
is trained on K − 1 sets and tested on the other set, and the mean clas
sification error rates over k test sets are reported. For each nested subset 

of features, we obtain a mean classification error rate. 
To select the best value of parameter C, we give a candidate value set 

of parameter C. For each candidate value of C, we run SVM-RFE one 
time, and finally obtain (rc − ra)/rb+1 mean classification error rates. 
Suppose that the number of mean classification error rates is M. Let ζibe 
the error rate vector of the ith linear SVM-RFE, and ζij be the error rate 
value associated with the jth nested subset of features. 

We define the following model selection criterion of a linear SVM- 
RFE 

ci =
σζi

ζ i
, (4)  

where ζ i and σζi are mean and standard deviation of vector ζ i, 

ζ i =
1
M

∑M

j=1
ζij, (5)  

and 

σζi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

j=1(ζij − ζ i)
2

M − 1

√

. (6)  

Eq. (4) demonstrates the ratio of mean to its standard deviation, which 

measures the relative variability of mean classification error rates. 
Smaller ci denotes that the mean classification error rates have small 
relative variability among nested subsets of features. Thus, the best 
value of parameter C can be selected by the minimum value of ci. In 
summary, Algorithm 1 describes a model selection algorithm of linear 
SVM-RFE, which we abbreviate as “model selection SVM-RFE”(MS- 
SVM-RFE). The algorithm takes five parameters: 1) candidate value set S 
of parameter C; 2) several nested subsets of features [ra : rb : rc]; 3) the 
partition factor K in K-fold. 

Algorithm 1. MS-SVM-RFE algorithm  

The main idea of Algorithm 1 is to obtain mean classification error 
rates for (rc − ra)/rb+1 nested subsets of features, which are computed 
by the K-fold cross-validation resampling strategy, and we use these 
mean classification error rates as the approximation of the generaliza
tion error of a linear SVM-RFE. Line 4 implements a linear SVM-RFE 
algorithm on a dataset and obtains a feature ranking list r. According 
to the ranking list r, line 6 generates the nested subsets of features in the 
sequence of r1,r2,…,r((rc− ra)/rb+1). In the nested subset r1, there are ra top- 
ranked features in the ranking list r. In the nested subset r2, there are 
ra+rb top-ranked features in the ranking list r. Similarly, the nested 
subset ri has ra+rb ∗ (i − 1) top-ranked features in the ranking list r, and 
so on. Lines 11–13 calculate the error rate value ζij associated with the 
ith linear SVM-RFE and the jth nested subset of features. 

4. Implementation details 

4.1. Time complexity analysis 

In this section, we analyze the time complexity of Algorithm 1. 
Suppose N is the number of instances, d is the number of features in each 
instance, m is the number of elements in the set S, n is the number of 
nested subsets of features. The main computational cost of Algorithm 1 
involves the computation of multiple linear SVM-RFEs and the 
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measurement process of the generalization error of the linear SVM-RFE. 
A linear SVM-RFE has a time complexity of O(Nd2

/2) if one feature is 
eliminated from the current feature set. Then the time complexity 
related to linear SVM-RFE in Algorithm 1 is O(mNd2

/2). In addition, 
measurement process requires training linear SVM Kmn times. In each 
learning component, linear SVM has a time complexity of 
O(N(K − 1)(ra + rb)/2K). Therefore, Algorithm 1 has a total time 
complexity of O(mNd2

/2 + Nmn(K − 1)(ra + rb)/2). 

4.2. Alpha seeding methods 

Training a SVM requires solvinga quadratic programming (QP) 
problem (2). Generally, problem (2) can be solved in three ways: active 
set method [16], interior point method [11], and sequential minimal 
optimization (SMO) method [33]. In this paper, we implement the idea 
of alpha seeding in the context of training SVM using an active set 
method. Algorithm 1 involves solving successive QP problems of SVM, 
then alpha seeding can be employed to reduce the computational cost. 
Alpha seeding refers to the strategy of seeding the next SVM training 
using the solution of previous SVM training [9]. It has been proved to be 
a powerful strategy to measure generalization error by leave one out 
(LOO) [25], GrowC [8] and K-fold cross validation [43]. In this section 
we aim to analyze how this method is incorporated into solving suc
cessive QP problems in the Algorithm 1. 

In the first part of Algorithm 1, linear SVM-RFE is implemented m 
times. For each SVM-RFE, d linear SVMs are trained with a decreasing 
number of features. The work in [14] suggested a direct alpha seeding 
method to reuse the solution of the ith optimized extreme learning 
machine (OELM) for training the (i + 1)th OELM. As the optimization 
problem of OELM is similar to SVM, this alpha seeding method can be 
used to accelerate the training process of linear SVM-RFE. 

Suppose α is the solution of the ith SVM, then the initial point ̃α of the 
(i + 1)th SVM can be set as 

α̃ ≡ α (7)  

This alpha seeding method is work for linear SVM-RFE because two 
successive SVMs share the same training samples. 

In the second part of Algorithm 1, linear SVM is trained m ∗ n ∗ K 
times, which means a linear SVM is trained n ∗ K times for each 
candidate value of parameter C. The details of these n ∗ K SVM models 
are listed in Table 1. In order to apply alpha seeding strategy to train all 
SVMs in Table 1, we first train the 11th SVM with a feasible initial point, 
and obtain a solution α11. Then we use two alpha seeding methods to 
train other SVMs. 

The first alpha seeding method is used to reusing the solution of 11th 
SVM to train later k1th SVMs. For example, use α11 to train 21th SVM 
and obtain a solution α21, and use α21 to train 31th SVM, and so on. This 
alpha seeding method is discussed in the work [43], which refers to 
multiple instance replacement (MIR). 

The K-fold cross-validation divides all training samples into K subsets 
of approximately equal size. Take 11th SVM and 21th SVM for example, 
we train the 11th SVM on 2st to Kth subsets, and train the 21th SVM on 
1st subset and 3st to Kth subsets. Then, 11th SVM and 21th SVM share 
(K − 2) subsets, denote by T. The unshared training set in the 11th SVM is 
denoted by U, and the unshared training set in the 21th SVM is denoted 
by V. We also denote IU = {i|xi ∈ U},IV = {i|xi ∈ V}, and IT = {i|xi ∈ T}. 

When we train the 11th SVM, the solution of alpha values must 
satisfy the equality constraint of Eq. (2) 
∑

u∈IU

yuα11
u +

∑

t∈IT

ytα11
t = 0. (8)  

The initial alpha values of the 21th SVM also must satisfy the same 
constraint 
∑

v∈IV

yvα11
v +

∑

t∈IT

ytα21
t = 0. (9)  

Following the intuition of support vectors, the alpha values of the shared 
subsets between the two SVMs are set the same value (i.e. α21

t = α11
t ). 

Then, we must satisfy the following constraint 
∑

u∈IU

yuα11
u =

∑

v∈IV

yvα21
v . (10)  

Suppose the decision function of a linear SVM is 

f (x) =
∑N

i=1
αiyixi⋅x+ b, (11)  

the output of the 11th SVM can be expressed as 

f 11
i =

∑

u∈IU

yuα11
u xi⋅xu +

∑

t∈IT

ytα11
t xi⋅xt + b, (12)  

where f11
i denotes the output of the 11th SVM for the ith sample. The 

output of the 21th SVM can be expressed as 

f 21
i =

∑

v∈IV

yvα21
v xi⋅xv +

∑

t∈IT

ytα21
t xi⋅xt + b. (13)  

Subtracting Eq. (13) from Eq. (12) gives that 

△fi =
∑

v∈IV

yvα21
v xi⋅xv −

∑

u∈IU

yuα11
u xi⋅xu. (14)  

To satisfy the KKT conditions of (2) 
⎧
⎨

⎩

αi = 0 ⇔ yifi⩾1
0 < αi < C ⇔ yifi = 1,
αi = C ⇔ yifi⩽1

(15) 

△fi should be expressed as 
{

△fi = 1 − fi,when αi = 0 or αi = C
△fi = 0,when 0 < αi < C.

(16) 

Table 1 
Notation of SVM models for each value of parameter C. In each row, all SVMs are 
trained on the same samples with different features. In each column, all SVMs 
are trained on the different samples with same features.   

Number of features 

Fold ra ra + rb … rc 

1 11th SVM 12th SVM 1jth SVM 1nth SVM 
2 21th SVM 22th SVM 2jth SVM 2nth SVM 
… k1th SVM k2th SVM kjth SVM knth SVM 
K K1th SVM K2th SVM kJth SVM Knth SVM  

Table 2 
Benchmark datasets.  

Dataset #Total #Training #Test #Positive #Negative #Features 

Colon Tumor 62 30 32 22 40 2000 
Leukemia 72 38 34 47 25 7129 

Lung Cancer 181 32 149 31 150 12533 
Prostate Cancer 136 102 59 77 34 12600  
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By Eqs. (10) and (14), α21
V can be computed by the following system 

[
y∘△f + α11

U xX ⋅xU

yT
U ⋅α11

U

]

=

[
xX ⋅xV

yT
V

]

α21
V , (17)  

where △f = [△f1,…,△fN] ∈ Rd. The second alpha seeding method is 

used to reuse the solution of k1th SVM to train later kjth SVMs. For 
example, use αk1 to train the k2th SVM and obtain a solution αk2, and use 
αk2 to train the k3th SVM, and so on. Take 11th SVM and 21th SVM for 
example, they share the same subsets with different features. Based on 
the intuition of support vectors, the solution of the kjth SVM can be 
directly used as the initial point of the k(j + 1)th SVM by Eq. (7). 

5. Experimental study 

5.1. Parameter setting 

In this section, we compare our MS-SVM-RFE (MSR) algorithm1 with 
three state-of-the-art resampling procedures described in the work [41]: 
K-fold cross-validation, Hold-out, K-times repeated hold-out. More 
specifically, 9 resampling procedures are employed:  

1. 3-fold cross-validation (kf3).  
2. 5-fold cross-validation (kf5).  
3. 10-fold cross-validation (kf10). 

Table 3 
Best parameter C of compared algorithms.  

Algorithm Colon Tumor Leukemia Lung Cancer Prostate Cancer 

Kf3 2− 9 2− 7 20 20 

Kf5 2− 8 2− 8 21 20 

Kf10 24 2− 8 20 21 

5xho 2− 9 2− 6 2− 8 2− 3 

10xho 2− 8 23 2− 8 2− 1 

20xho 2− 9 2− 7 2− 7 2− 3 

50/50 25 20 2− 3 2− 3 

20/80 210 21 2− 4 2− 4 

80/20 27 22 2− 2 2− 4 

MSR 2− 6 2− 3 22 25  

Table 4 
Mean accuracy (%) of 10 compared algorithms. In each column, the best results are shown in boldface.  

Dataset algorithm Number of features   

10 20 30 40 50 60 70 80 90 100  

Kf3 63.75 62.50 63.59 63.91 63.59 63.75 65.63 66.41 66.41 68.91  
Kf5 62.50 63.75 63.75 64.84 66.25 69.53 69.69 69.69 71.09 71.09  
Kf10 70.00 61.88 63.44 61.72 66.56 67.34 65.94 70.00 70.63 72.81  
5xho 63.75 62.50 63.59 63.91 63.59 63.75 65.64 66.41 66.41 68.91 

Colon 10xho 62.50 63.75 63.75 64.84 66.25 69.53 69.69 69.69 71.09 71.09  
20xho 63.75 62.50 63.59 63.91 63.59 63.75 65.63 66.41 66.41 68.91  
50/50 65.16 64.22 63.44 61.72 66.56 67.34 65.94 70.00 70.63 72.81  
20/80 66.09 64.53 63.44 61.72 66.56 67.34 65.94 70.00 70.63 72.81  
80/20 66.09 64.69 63.44 61.72 66.56 67.34 65.94 70.00 70.63 72.81  
MSR 64.39 71.56 75.47 72.03 72.03 71.09 68.75 70.31 71.56 75.47              

Kf3 68.68 72.35 76.32 77.21 78.97 82.35 83.82 89.41 89.41 91.91  
Kf5 67.21 64.71 67.06 66.32 69.12 70.00 73.68 76.03 76.76 79.85  
Kf10 67.21 64.71 67.06 66.32 69.12 70.00 73.68 76.03 76.76 79.85  
5xho 73.09 77.65 81.76 86.03 85.59 83.53 87.50 88.68 87.94 88.24 

Leukemia 10xho 78.82 72.06 80.59 80.88 80.00 83.68 85.29 85.44 87.21 89.41  
20xho 68.68 72.35 76.32 77.21 78.97 82.35 83.82 89.41 89.41 91.91  
50/50 79.41 73.97 80.59 80.88 80.00 83.68 85.29 85.44 87.21 89.41  
20/80 80.71 75.00 80.59 80.88 80.00 83.68 85.29 85.44 87.21 89.41  
80/20 77.06 75.74 80.59 80.88 80.00 83.68 85.29 85.44 87.21 89.41  
MSR 80.15 86.03 90.29 88.24 83.53 83.68 85.15 85.44 87.21 89.41              

Kf3 92.89 93.29 96.34 95.94 96.85 97.18 97.68 97.75 97.68 97.92  
Kf5 92.95 93.15 96.34 95.94 96.85 97.18 97.68 97.75 97.68 97.92  
Kf10 92.89 93.29 96.34 95.94 96.85 97.18 97.68 97.75 97.68 97.92  
5xho 82.48 84.33 89.06 91.17 92.32 93.19 93.66 94.23 95.77 96.41 

Lung 10xho 82.48 84.33 89.06 91.17 92.32 93.19 93.66 94.23 95.77 96.41  
20xho 82.68 87.38 91.31 92.72 94.73 95.57 96.38 96.41 96.71 97.08  
50/50 93.12 93.79 94.09 96.51 96.85 97.18 97.68 97.75 97.68 97.92  
20/80 90.84 93.66 95.20 95.37 96.85 97.18 97.68 97.75 97.68 97.92  
80/20 94.30 93.52 96.34 95.94 96.85 97.18 97.68 97.75 97.68 97.92              

MSR 96.11 93.15 96.34 95.94 96.85 97.18 97.68 97.75 97.68 97.92  
Kf3 64.12 72.35 76.18 77.06 77.35 81.03 85.00 84.85 87.06 88.38  
Kf5 64.12 72.35 76.18 77.06 77.35 81.03 85.00 84.85 87.06 88.38  
Kf10 77.21 76.03 79.71 79.12 80.59 82.79 87.35 89.41 90.44 90.59  
5xho 50.15 65.88 66.03 66.32 66.18 66.47 67.21 70.59 70.88 70.44 

Prostate 10xho 58.82 66.32 71.91 73.09 73.97 75.74 77.21 81.62 81.62 82.21  
20xho 50.15 65.88 66.03 66.32 66.18 66.47 67.21 70.59 70.88 70.44  
50/50 50.15 65.88 66.03 66.32 66.18 66.47 67.21 70.59 70.88 70.44  
20/80 50.44 50.88 50.88 51.32 54.26 65.88 66.03 65.44 65.15 65.44  
80/20 50.44 50.88 50.88 51.32 54.26 65.88 66.03 65.44 65.15 65.44  
MSR 70.59 77.79 89.71 87.06 85.44 86.62 87.50 86.18 88.53 87.50  

1 https://github.com/SVMrelated/mssvmrfe 
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4. 5 times repeated hold out (5xho).  
5. 10 times repeated hold out (10xho).  
6. 20 times repeated hold out (20xho).  
7. 50/50 hold out (50/50) — training and test sets of 50%.  
8. 20/80 hold out (20/80) — training set of 20% and test set of 80%.  
9. 80/20 hold out (80/20) — training set of 80% and test set of 20%. 

We implement all algorithms in MATLAB, and conduct the experi
ments on a laptop with a i7-7700HQ CPU @ 2.80 GHz and 8 GB RAM. 
We present empirical results on four public datasets: 1) Colon Tumor 
[2]; 2) Leukemia [20]; 3) Lung Cancer [21]; and 4) Prostate Cancer [36]. 
These benchmark datasets are downloaded from the website https://leo. 
ugr.es/elvira/DBCRepository/. Colon Tumor includes 62 samples gath
ered from colon-cancer patients. Among them, 40 tumor biopsies are 
from tumors (labelled as ”negative”) and 22 normal (labelled as ”posi
tive”) biopsies are from healthy parts of the colons of the same patients. 
Two thousand out of around 6500 genes were selected based on the 
confidence in the measured expression levels. Leukemia includes 72 
leukemia samples, over 7129 probes from 6817 human genes. Among 72 
leukemia samples, 47 in class Acute Lymphoblastic Leukemia (ALL) and 
25 in class Acute Myeloid Leukemia (AML). Lung Cancer includes 181 
tissue samples of each sample is described by 12533 genes. The 181 

tissue samples include 31 samples of malignant pleural mesothelioma 
(labelled as MPM) and 150 samples of adenocarcinoma (labelled as 
ADCA). Prostate Cancer includes 136 prostate samples with around 
12600 genes. The 136 prostate samples contain 77 prostate tumor 
samples (labelled as ”negative”) and 59 non-tumor samples (labelled as 
”positive”). Table 2 shows the details of the datasets. 

For all compared algorithms combined with a linear SVM, we vary C 
in the range of 

{
2− 9, 2− 8,…,20,…,214,215}. For MSR algorithm, 

parameter K is set as 10, ra, rb and rc are set as 10, 10 and 100, 
respectively. 

5.2. Accuracy 

In the MSR algorithm, we evaluate feature ranking lists generated by 
multiple linear SVM-RFE algorithms and select a feature ranking list of 
the best performance when combined with a linear SVM. Once a best 
parameter C value is selected, we implement a linear SVM-RFE with this 
value, and obtain a feature ranking list. The best parameter values of 
these compared algorithms are reported in Table 3. 

In this section, we compare the generalization performance of these 
feature ranking lists using a linear SVM classifier. The 20-times repeated 
hold-out procedure and the range of the number of selected features in 

Table 5 
Standard deviation of accuracy (%) of 10 compared algorithms.  

Dataset algorithm Number of features   

10 20 30 40 50 60 70 80 90 100  

Kf3 6.83 5.07 6.90 7.41 6.82 6.98 8.36 8.17 8.48 9.85  
Kf5 5.07 6.91 7.20 9.23 8.27 9.45 9.57 9.41 9.88 10.1  
Kf10 9.90 9.81 9.02 8.04 10.2 7.13 6.87 6.52 7.61 8.49  
5xho 6.83 5.07 6.90 7.41 6.82 6.98 8.36 8.17 8.48 9.85 

Colon 10xho 5.07 6.91 7.20 9.23 8.27 9.45 9.57 9.41 9.88 10.1  
20xho 6.83 5.07 6.90 7.41 6.82 6.98 8.36 8.17 8.48 9.85  
50/50 7.94 10.7 9.02 8.04 10.2 7.13 6.87 6.52 7.61 8.49  
20/80 11.07 9.03 9.02 8.04 10.2 7.13 6.87 6.52 7.61 8.49  
80/20 11.07 9.07 9.02 8.00 10.2 7.13 6.87 6.52 7.61 8.49  
MSR 7.68 8.72 9.42 8.92 7.75 9.50 7.85 5.87 6.79 6.82              

Kf3 11.14 12.05 13.65 14.05 14.39 14.84 13.91 8.97 9.51 6.18  
Kf5 10.25 6.18 9.28 8.77 11.27 12.24 13.65 14.13 14.09 14.79  
Kf10 10.25 6.18 9.28 8.77 11.27 12.24 13.65 14.13 14.09 14.79  
5xho 10.64 12.49 11.31 8.74 8.42 6.57 7.13 5.35 5.80 6.18 

Leukemia 10xho 5.61 7.78 5.91 7.90 6.08 6.22 4.37 4.82 4.50 4.20  
20xho 11.14 12.05 13.65 14.05 14.39 14.84 13.91 8.97 9.51 6.18  
50/50 6.18 7.83 5.91 7.90 6.08 6.22 4.37 4.82 4.50 4.20  
20/80 5.60 6.91 5.91 7.90 6.08 6.22 4.37 4.82 4.50 4.20  
80/20 8.57 8.32 5.91 7.90 6.08 6.22 4.37 4.82 4.50 4.20  
MSR 8.69 5.47 4.49 4.87 6.57 5.18 4.62 5.68 4.50 4.20              

Kf3 3.15 2.79 5.14 5.64 5.23 4.94 4.85 4.65 4.59 4.14  
Kf5 2.97 3.97 5.14 5.64 5.23 4.94 4.85 4.65 4.59 4.14  
Kf10 3.15 2.79 5.14 5.64 5.23 4.94 4.85 4.65 4.59 4.14  
5xho 1.27 3.99 8.08 8.50 8.63 8.64 8.66 8.19 7.15 6.66 

Lung 10xho 1.27 3.99 8.08 8.50 8.63 8.64 8.66 8.19 7.15 6.66  
20xho 1.58 6.60 7.89 7.22 6.70 6.86 6.56 6.60 6.39 6.11  
50/50 5.51 4.27 4.82 5.71 5.23 4.94 4.85 4.65 4.59 4.14  
20/80 6.67 4.92 5.12 5.08 5.23 4.94 4.85 4.65 4.59 4.14  
80/20 4.06 4.01 5.14 5.64 5.23 4.94 4.85 4.65 4.59 4.14  
MSR 1.50 3.97 5.14 5.64 5.23 4.94 4.85 4.65 4.59 4.14              

Kf3 8.02 7.83 6.81 5.93 6.48 8.34 7.45 6.56 6.57 5.35  
Kf5 8.02 7.83 6.81 5.93 6.48 8.34 7.45 6.56 6.57 5.35  
Kf10 5.55 5.42 6.39 6.60 7.42 7.59 6.34 5.43 4.46 3.39  
5xho 8.92 9.51 9.18 9.42 9.13 8.56 7.71 8.26 8.74 8.67 

Prostate 10xho 9.35 8.45 8.12 8.55 8.06 7.63 7.13 7.80 7.20 7.48  
20xho 8.92 9.51 9.18 9.42 9.13 8.56 7.71 8.26 8.74 8.67  
50/50 8.92 9.51 9.18 9.42 9.13 8.56 7.71 8.26 8.74 8.67  
20/80 9.31 9.31 9.40 9.42 6.36 9.37 9.13 9.15 9.22 9.25  
80/20 9.31 9.31 9.40 9.42 6.36 9.37 9.13 9.15 9.22 9.25  
MSR 6.04 5.76 5.18 5.35 5.68 6.15 6.18 5.06 6.06 6.10  
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[10, 20, 30,…,100] is used in this experiment for performance evalua
tion. The mean and standard deviation of accuracy of 20-times repeated 
hold-out procedure are reported in Tables 4 and 5. 

For Colon dataset, MSR wins the best performance on 8 nested 
subsets, which contain 20, 30, 40, 50, 60, 80, 90 and 100 features. 
Although Kf10 wins the best performance on a nested subset of 10 fea
tures, it performs badly on other nested subsets. Among 10 nested 
subsets, MSR achieves the best accuracy (75.47%) on subsets of 30 
features and 100 features. For the Leukemia dataset, MSR wins the best 
performance on 4 nested subsets, which contain 20, 30, 40, and 60 
features. Although 20/80 wins the best performance on a nested subset 

of 10 features, it also performs badly on other nested subsets. Although 
20xho wins the best accuracy (91.9%), this accuracy is achieved on the 
subset of 100 features, which is much more than the number of features 
that MSR achieved the best accuracy (90.29%). Generally speaking, the 
optimal subset of features gives the best generalization performance 
with the number of features as small as possible. In this case, 20xho gives 
the best accuracy (91.91%) on a subset with 100 features, and MSR gives 
the best accuracy (90.29%) on a subset with 30 features. If we take all 
factors into consideration, the best algorithm is MSR. The similar con
clusions can be concluded on other datasets. 

To further investigate the relationship between the number of fea
tures and the accuracy, we perform an extensive experiment of these 
algorithms with features numbering in the range of [1]. The results of 
100 points are shown in Fig. 1. 

To meet the requirement of the optimal subset of features, we 
observe the accuracy with features numbering in the range of [1]. In 
Fig. 1, MSR wins the highest accuracy with features in the range of [1] 
on all datasets. For example, MSR achieves the accuracy of 75.47% with 
26 features on Colon dataset. These observations demonstrate that the 
MSR is the best algorithm in terms of the generalization performance. 

Fig. 1. Mean accuracy as well as the number of selected features of 10 compared algorithms on (a) Colon Tumor, (b) Leukemia, (c) Lung Cancer and (d) Prostate 
Cancer datasets. 

Table 6 
Computational time (s) comparison between with alpha seeding and without 
alpha seeding.  

Dataset RFE-O MEA-O RFE-AS MEA-AS 

Colon Tumor 402 85.15 58.6 58.6 
Leukemia 2237 462 711 450 

Lung Cancer 8125 1504 5017 1470 
Prostate Cancer 11776 1156 4884 1085  
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5.3. Computational cost 

In this section, we compare the computational cost of MSR with 
alpha seeding and without alpha seeding. The computational cost of 
MSR mainly involves computational time of the linear SVM-RFE and 
feature ranking list measurement. The computational cost of compared 
algorithms are measured through internal clock statements of MATLAB. 

For notational convenience, we denote the computational time of a 
linear SVM-RFE without alpha seeding and with alpha seeding by RFE-O 
and RFE-AS, respectively. We also denote the computational time of 
feature ranking list measurement without alpha seeding and with alpha 
seeding by MEA-O and MEA-AS, respectively. The experimental results 
of compared algorithms are shown in Table 6. 

As can be seen in Table 6, RFE-AS has clear computational advantage 
over RFE-O. RFE-AS is about 7 times faster than RFE-O on Colon, and 3 
times faster than on Leukemia. However, MEA-AS does not offer much 
improvement in terms of the computational cost. This is because the 
computational cost of feature ranking list measurement when combined 
with a linear SVM classifier involves linear kernel calculation time and 
QP solving time. Alpha seeding only brings QP solving time saving, 
rather than kernel calculation time saving. If the kernel calculation time 

is much larger than the QP solving time, alpha seeding can offer little 
effort on reducing the computational cost of training a set of successive 
SVM classifiers. 

To further study the computational cost saving of alpha seeding on 
the QP solving time, we perform an experiment to compare the 
computational cost of SVM with alpha seeding and without alpha 
seeding. Take linear SVM-RFE for example, we compare the QP solving 
time and the number of iterations of successive SVM classifiers in the 
linear SVM-RFE. Results are shown in Figs. 2 and 3. 

As can be seen in Figs. 2 and 3, both the number of iterations and the 
QP solving time of SVM are greatly reduced by alpha seeding on all 
datasets. On Colon, the total number of iterations of 2000 SVMs without 
alpha seeding is 95798, and the total number of iterations of these SVMs 
with alpha seeding is 2695, which provides 35 times saving. In addition, 
the total computational time without alpha seeding is 17.30s, and the 
total computational time with alpha seeding is 0.64s, which provides 27 
times saving. These results confirm the superiority of the alpha seeding 
in the training of successive SVM classifiers. 

Fig. 2. Iteration times comparison between with alpha seeding and without alpha seeding in the linear SVM-RFE. (a) Colon Tumor; (b) Leukemia; (c) Lung Cancer; 
(d) Prostate Cancer. 
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6. Conclusions 

This study presents a new model selection algorithm for a linear 
SVM-RFE. The algorithm uses an approximation method to evaluate the 
generalization performance of a linear SVM-RFE, and a criterion of 
tuning the penalty parameter C. The computational complexity of the 
proposed algorithm is discussed. Several alpha seeding strategies are 
proposed to reduce the computational complexity of the proposed al
gorithm. The performance of the proposed algorithm is tested against 
several state-of-the-art algorithms on benchmark bioinformatics data
sets. SVM-RFE with the proposed algorithm is effective for early tumor 
detection and cancer discovery as it leads to a more reliable cancer 
diagnosis or prognosis and better clinical treatment. The suggested 
model selection algorithm can be extended to other RFE algorithms, 
such as least square SVM-RFE, random forest RFE (RF-RFE). 
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