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The strength of simulated indirect interaction modules in a real food web

Nerta Gjata, Marco Scotti, Ferenc Jordán *

The Microsoft Research – University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, 38068 Rovereto (TN), Italy

A R T I C L E I N F O

Article history:

Received 6 April 2011

Received in revised form 21 November 2011

Accepted 18 January 2012

Available online 16 February 2012

Keywords:

Food web

Network module

Stochastic simulation

Indirect effects

Interaction strength

A B S T R A C T

There is an increasing body of literature on the topological analysis of modules (motifs, building blocks) in

different networks. Most of these results are of descriptive, comparative and statistical nature, while

dynamical simulations of their behaviour are missing. We present a stochastic food web simulation and

study the relative strength of different simple food web modules. We found that (1) the effects of prey

groups on predators are significantly stronger than other effects, (2) indirect loops have strong effects

only on mean population sizes, not on their variabilty, and (3) some short indirect interactions are not

stronger than some longer ones. We believe that these findings may contribute to systems-based

conservation practice in the future.
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1. Introduction

Network modules (or motifs) are increasingly studied in various
systems ranging from food webs to gene regulation networks. The
key questions are (1) how to define modules, (2) how frequent they
are, (3) how strong their functional effects are and (4) how do they
differ among different biological (and non-biological) systems?
The last, comparative problem is already quite heavily studied
(Milo et al., 2002), even if we still do not really know the answers to
the previous, more basic questions. Studying network modules can
be a key to better understanding complex biological networks, e.g.,
food webs (Fig. 1).

In ecological research, network modules have already been
richly analysed, both experimentally (Menge, 1995) and theoreti-
cally (Brose et al., 2005; Mullon et al., 2009). In this paper, by
‘‘network modules’’ we refer to a particular set of small food web
subgraphs shown in Fig. 2: these are richly described experimen-
tally and seem to have solid ecological relevance. Although the
nomenclature differed, the interest in indirect effects (especially
interaction chain effects, Wootton, 1994) is very old (Elton, 1927)
and experimentally inspired (Ohgushi, 2005). Moreover, indirect
effects between two groups can be stronger than a direct
interaction (Patten, 1982; Higashi and Patten, 1989; Palomares
et al., 1995), giving a strong justification for studying small
network modules as the building blocks of food webs. In a broader
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sense, studies on dense subgraphs also belong to this problematics
(Melián and Bascompte, 2004).

One of the key problems of food web research is over-
emphasizing structural (topological) properties. It is the same in
studying modules: counting them, determining their frequency
distribution and checking whether it is significantly non-random,
although excellent first steps, do not help enough to better
understand their functioning. Dynamical approaches are basically
lacking (but see Melián et al., 2005). It is a major task, thus, to study
the behaviour of modules in suitable dynamical modelling
frameworks. However, these modelling approaches should proba-
bly be motivated by experimental findings (relative strength and
frequency distribution; see Menge, 1995; Abrams et al., 1996).

Here we dynamically simulate a food web and compare the
relative strength of some kinds of modules. Computing module
strength is based on sensitivity analysis in a stochastic simulation
model. Our results may contribute to better understand the
behaviour of indirect interaction modules.

2. Data

We study the Prince William Sound food web (Okey and Pauly,
1999; Okey, 2004; Okey and Wright, 2004; Fig. 1). It is composed of
51 trophic components but we only analyze the subgraph of the 48
living ones (S = 48), containing L = 355 trophic links (directed
connectance, C = L/S2 = 0.154), including 12 cannibalistic ones. The
reason is that living-living interactions refer to ingestion/
assimilative events, with a different dynamics in comparison to
transfers involving non-living nodes (Whipple, 1998). Here we
focus more on community dynamics than ecosystems nutrient
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Fig. 1. The food web of the Prince William Sound ecosystem (data from Okey, 2004). The size of the pictures is proportional to the community importance of trophic groups

based on our stochastic dynamical simulations (global effects of local perturbations). Drawn by COSBILAB Graph (Valentini and Jordán, 2010). Direction of links is not shown,

for simplicity.
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dynamics (however it is clear that the two are intimately linked
and this is a simplification). Although non-living groups are clearly
important for the original, EwE modelling framework (Christensen
and Walters, 2004), we excluded egestive transfers for performing
stochastic simulations (e.g., flows from biotic compartments to
non-living nodes or flows between non-living compartments). The
list of the living trophic components is given in Table 1.

3. Methods

3.1. Structure

For simplicity, we focus only on trophic interactions and the
indirect interaction modules they compose (e.g., ‘‘trophic cascade’’
containing only ‘‘predation’’ links; Abrams et al., 1996). This also
means that we cannot study indirect interaction modules contain-
ing non-trophic effects (e.g., no ‘‘apparent predation’’ containing
‘‘enhancement of recruitment’’ link; Abrams et al., 1996).

We were interested in comparing modules of different size and
indirect interaction pathways of different length (see also Jordán
et al., 2003). We have quantified cannibalistic loops (one group,
one step), longer feedback loops (several groups, n steps), prey–
predator interaction (2 groups, one step), predator–prey interac-
tion (2 groups, one step), mutual consumption (2 groups, 2 steps),
trophic cascade (3 groups, 2 steps) and keystone predation (4
groups, 3 steps). These effects are schematically presented in Fig. 2.
We note that keystone predation is defined here in a somewhat
unconventional way: since we have no data on non-trophic effects,
we consider exploitative (indirect) instead of direct competition in
the module. We have constructed an algorithm for finding all
possible modules in the network.

The S � S matrix of the 48 groups contains 2304 cells, including
the main diagonal. Effects of group i on group j were categorized
according to the above categories and we found 12 cannibalisms,
36 longer feedback loops (all non-cannibalistic groups influence
itself through pathways of at least 2 steps), 4 mutual consumptions
(two pairs), 343 prey–predator and 343 predator–prey interactions
as well as 396 trophic cascades and 588 keystone predation
interactions (see Fig. 3).

Clearly, several types of direct and indirect effects may act in
parallel between a particular pair of group i and j, so no
classification can be perfect. In order to minimalize these overlaps,
we have not examined two very frequent and well-known
interaction modules, exploitative and apparent competition. Doing
so, we have found only very few (<10) ij effects that are mixtures of
the above interactions. When categorizing, we have always given
priority to the shorter interaction type. For example, if i consumes j

and k, and also j consumes k, we have considered this relationship
as a predator–prey interaction (from i to k), however there exists
also a trophic cascade from i to k (through j). Without additional
information or experimental evidence, this may be an intuitively
correct simplification.



Fig. 2. The food web modules analyzed: cannibalism (a), indirect self-loop (b), mutual consumption (c), predator–prey (d), prey–predator (e), trophic cascade (f) and keystone

predation (g). Dotted arrows show indirect effects: for example, A ! B (A eats B) and B ! Z (B eats Z) are direct, while the effect of A on Z is indirect in module (f). Color code is

the same as in Fig. 3.

Fig. 3. The interaction profile of the Prince William Sound food web. Colors showing the interactions from species in the ith row to species in the jth column (cannibalism in

dark blue, indirect self-loop in yellow, mutual consumption in greenish, predator–prey in red, prey–predator in pink, trophic cascade in light green, keystone predation in

light blue, none of these in white). Color code is the same as in Fig. 2.
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Table 1
The 48 living components of the Prince William Sound food web (Okey, 2004).

1 Transient orca

2 Salmon sharks

3 Resident orca

4 Sleeper sharks

5 Halibut

6 Pinnipeds

7 Porpoise

8 Lingcod

9 Adult arrowtooth

10 Adult salmon

11 Pacific cod

12 Sablefish

13 Juvenile arrowtooth

14 Spiny dogfish

15 Avian predators

16 Octopods

17 Seabirds

18 Deep demersals

19 Pollock 1+

20 Rockfish

21 Baleen whales

22 Salmon fry 0-12

23 Nearshore demersals

24 Squid

25 Eulachon

26 Sea otters

27 Deep epibenthos

28 Capelin

29 Adult herring

30 Pollock 0

31 Invertebrate-eating birds

32 Sandlance

33 Shallow large epibenthos

34 Juvenile herring

35 Jellies

36 Deep small infauna

37 Nearshore omniorous zooplankton

38 Omnivorous zooplankton

39 Shallow small infauna

40 Meiofauna

41 Deep large infauna

42 Shallow small epibenthos

43 Shallow large infauna

44 Nearshore herbivorous zooplankton

45 Herbivorous zooplankton

46 Nearshore phytoplankton

47 Offshore phytoplankton

48 Macroalgae
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3.2. Dynamics

3.2.1. Simulation model

Having identified the type of interactions between group i and j, it
is of interest how strong is their effect on each other (aij and aji). We
have used a stochastic simulation model written in BlenX, a process
algebra-based language (Dematté et al., 2007, 2008). This makes it
possible to simulate parameter-rich models of parallel ecological
processes in a truly stochastic way, using the Gillespie algorithm
(Gillespie, 1977). During the last years, the number of applications
based on individual-based stochastic dynamics for the study of food
web models is increasing (Powell and Boland, 2009; Okuyama, 2009;
Livi et al., 2011). Trophic flows and compartment biomasses have
been translated to interaction rates and number of individuals,
respectively. For the trophic compartments, the average individual
body weight values of the dominant species were determined (based
on literature data and www.fishbase.org) and dividing the biomass
of the compartment by average body weight provided some
approximation of the number of individuals.

In order to be able to perform sensitivity analysis, the original
model (parameterized by real data) was set to quasi-balance by an
evolutionary algorithm searching for quasi-equilibrium parameter
combinations. We used an evolutionary approach based on Particle
Swarm Optimization (PSO, Kennedy and Eberhart, 1995; Forlin,
2010). By using this evolved parameter set, simulation outcomes
are much more consistent than before and ready for meaningful
sensitivity analysis.

3.2.2. Sensitivity analysis

The balanced model was run R = 20 times and the population
size for each compartment was recorded after time t = 40,000
(equivalent to roughly 30 years). We have calculated mean and
variation (in a stochastic modelling framework, the latter provides
novel information, compared to deterministic models). This first
step was to characterize the undisturbed scenario (providing
reference values of population size for each group). Then, the
number of individuals was halved for each compartment, one by
one, and for each case 20 simulations were run. After time t,
population sizes were recorded and the mean and standard
deviation were calculated. In this second step, we quantified the
community-wide effects of local perturbations.

The dynamical effect of group i on group j is measured for both
the mean and the variation, similarly. For calculating the effect of
group i on the mean population size of group j, we first define the
reference value of group j as

A j ¼
PR

k¼1 ak; jðtÞ
R

(1)

where R simulations are run and population size is recorded at
time t (ak,j(t)). The normalized value of group j after disturbing
group i is

Ai j ¼
PR

k¼1 ai jðtÞ
R

(2)

with aij(t) standing for the populations size of group j at time t, once
the group i is disturbed. The relative response of group j to
disturbing group i is

RRi j ¼
jA j � Ai jj

A j
(3)

The normalized relative response, defined as

NRRi j ¼
RR

PS
i¼1 RRi j

(4)

gives the relative contribution of group i to influencing group j, and
this measure is comparable among different pairs of groups, across
the whole food web (of S groups).

The effects on variability are calculated similarly, but using the
standard deviation instead of the mean in (1) and (2). Finally, we
obtain the NRRij (M) and NRRij (V) measurements. We believe that
this response measure is suitable for our purposes, however there
are many alternative ways how to calculate community impor-
tance and the response of individual groups to disturbance (see
Hurlbert, 1997).

3.3. Statistical analysis

We performed Kruskal–Wallis test in order to determine
whether different interaction types are of different strength. We
had eight categories: the seven above mentioned effects plus the
rest of i and j pairs with none of these effects between them (since
group sizes differed we could not use the otherwise useful
Goodman–Kruskal lambda or Kendall tau statistics).

Then, we compared the groups, one by one, against all of the
other interactions (since interaction strength data are clearly not
independent values in a network simulation, we could not use the
F-test).

http://www.fishbase.org/
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4. Results

The Kruskal–Wallis rank sum test says that, for the mean
values, there is significant difference between the eight groups
(x2 = 15.484; df = 7; p = 0.030). For the variation, there is quite
strong but just non-significant difference between the groups
(x2 = 12.496; df = 7; p = 0.085).

Based on the further statistics, for the mean, prey–predator
interactions and indirect feedbacks are significantly stronger than
other interactions (cannibalistic x2 = 0.839; df = 1; p = 0.360,
indirect self loop x2 = 5.853; df = 1; p = 0.016, mutual
x2 = 0.367; df = 1; p = 0.545, predator–prey x2 = 0.000; df = 1;
p = 0.999, prey–predator x2 = 5.876; df = 1; p = 0.015, trophic
cascade x2 = 1.358; df = 1; p = 0.244, keystone predation
x2 = 3.178; df = 1; p = 0.075, neutral x2 = 0.000; df = 1;
p = 0.997). For the variation, only prey–predator interactions are
significantly stronger than other interactions (cannibalistic
x2 = 0.000; df = 1; p = 0.997, indirect self loop x2 = 1.350; df = 1;
p = 0.245, mutual x2 = 3.519; df = 1; p = 0.061, predator–prey
x2 = 0.761; df = 1; p = 0.383, prey–predator x2 = 6.400; df = 1;
p = 0.011, trophic cascade x2 = 1.772; df = 1; p = 0.183, keystone
predation x2 = 0.035; df = 1; p = 0.851, neutral x2 = 0.038; df = 1;
p = 0.845).

5. Conclusions

Better understanding the behaviour (e.g., strength) of food web
modules may contribute to unveiling the functionality of complex
ecological networks and clarifying the structure to function
relationship, an old problem in community ecology (Jordán
et al., 2008).

In our simulation study, the effects of prey on predators was
significantly stronger than other interactions. A possible conclu-
sion drawn from this result could be that bottom-up mechanisms
are stronger in this system than top-down ones. We note here that
this kind of finding is clearly sensitive to the details of the actual
model. For instance, if the resolution of the food web is different
(e.g., phytoplankton aggregated into more, smaller groups),
systems dynamics will surely change, beyond topology. All
conclusions are valid only for the presented network and its
presented dynamical model. The above finding applies for both the
mean population size and its variability, however the effects of
indirect loops are significantly stronger only on the mean, and not
on standard deviation. This raises the issue that stochastic models,
explicitly studying variability, might usefully complement deter-
ministic approaches focusing on the mean. Variability is a key
component of biological systems as a proxy for adaptability (being
relevant to management in case of higher levels of fluctuations)
and its significance is being recognized in conservation science
(Feest et al., 2010; see also Livi et al., 2011).

In concert with earlier field results (Palomares et al., 1995), we
found that indirect effects are not necessarily weaker than direct
ones: the effects of predators on their prey are not statistically
weaker than the trophic cascades they exert on groups feeding at
lower levels in the trophic chain.

The relevance of all results we provided is a function of the
relevance of the model we built. Beyond choosing an appropriate
model structure (e.g., mechanistic rules, topology), parametriza-
tion of the model is also critical, even if we start from available,
realistic field data. The results of sensitivity analysis may strongly
depend on parameter estimation techniques, for example. Future
studies should also involve more food webs, considering also
interaction sign (positive vs. negative effects) and extending the
analysis towards other interaction types (e.g., comparing exploit-
ative to apparent competition). Despite all limitations, the
importance of our contribution is that it seems to be the first
dynamical analysis of the strength of interaction modules in
complex models with real parameters.
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Dematté, L., et al., 2008. The Beta Workbench: a computational tool to study the
dynamics of biological systems. Briefings in Bioinformatics 9, 437–449.

Elton, C., 1927. Animal Ecology. The University of Chicago Press.
Feest, A., et al., 2010. Biodiversity quality: a paradigm for biodiversity. Ecological

Indicators 10, 1077–1082.
Forlin, M., 2010. Knowledge discovery for stochastic models of biological systems.

PhD Thesis. University of Trento.
Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions.

Journal of Physical Chemistry 81, 2340–2361.
Higashi, M., Patten, B.C., 1989. Dominance of indirect causality in ecosystems.

American Naturalist 133, 288–302.
Hurlbert, S.H., 1997. Functional importance vs keystoneness: reformulating some

questions in theoretical biocenology. Australian Journal of Ecology 22, 369–382.
Jordán, F., et al., 2003. Quantifying the importance of species and their interactions

in a host-parasitoid community. Community Ecology 4, 79–88.
Jordán, F., et al., 2008. Identifying important species: a comparison of structural and

functional indices. Ecological Modelling 216, 75–80.
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proceedings of IEEE

International Conference on Neural Networks IV 1942–1948.
Livi, C.M., et al., 2011. Identifying key species in ecosystems with stochastic

sensitivity analysis. Ecological Modelling 222, 2542–2551.
Melián, C.J., Bascompte, J., 2004. Food web cohesion. Ecology 85, 352–358.
Melián, C.J., et al., 2005. Spatial structure and dynamics in marine food webs. In:

Belgrano, A., et al. (Eds.), Aquatic Food Webs. Oxford University Press.
Menge, B.A., 1995. Indirect effects in marine rocky intertidal interaction webs:

patterns and importance. Ecological Monographs 65, 21–74.
Milo, S., et al., 2002. Network motifs: simple building blocks of complex networks.

Science 298, 824–827.
Mullon, C., et al., 2009. NEATS: a network economics approach to trophic systems.

Ecological Modelling 220, 3033–3045.
Ohgushi, T., 2005. Indirect interaction webs: herbivore-induced effects through

trait change in plants. Annual Review of Ecology and Systematics 36, 81–105.
In: Okey, T.A., Pauly, D. (Eds.), 1999. Fisheries Centre Research Report, vol. 7(4).

University of British Columbia.
Okey, T.A., 2004. Shifted community states in four marine ecosystems: some

potential mechanisms. PhD thesis. University of British Columbia, Vancouver.
Okey, T.A., Wright, B.A., 2004. Toward ecosystem-based extraction policies for

Prince William Sound, Alaska: integrating conflicting objectives and rebuilding
pinnipeds. Bulletin of Marine Science 74, 727–747.

Okuyama, T., 2009. Local interactions between predators and prey call into question
commonly used functional responses. Ecological Modelling 220, 1182–1188.

Palomares, F., et al., 1995. Positive effects on game species of top predators by
controlling smaller predator populations: an example with lynx, mongooses,
and rabbits. Conservation Biology 9, 295–305.

Patten, B.C., 1982. On the quantitative dominance of indirect effects in ecosystems.
In: Lauenroth, W.K., Skogerboe, G.V., Flug, M. (Eds.), Analysis of Ecological
Systems: State-of-the-Art in Ecological Modelling. Elsevier, Amsterdam, pp.
27–37.

Powell, C.R., Boland, R.P., 2009. The effects of stochastic population dynamics on
food web structure. Journal of Theoretical Biology 257, 170–180.

Valentini, R., Jordán, F., 2010. CoSBiLab Graph: the network analysis module of
CoSBiLab. Environmental Modelling and Software 25, 886–888.

Whipple, S.J., 1998. Path-based network unfolding: a solution for the problem of
mixed trophic and non-trophic processes in trophic dynamic analysis. Journal of
Theoretical Biology 190, 263–276.

Wootton, J.T., 1994. The nature and consequences of indirect effects in ecological
communities. Annual Review of Ecology and Systematics 25, 443–466.


	The strength of simulated indirect interaction modules in a real food web
	Introduction
	Data
	Methods
	Structure
	Dynamics
	Simulation model
	Sensitivity analysis

	Statistical analysis

	Results
	Conclusions
	Acknowledgements
	References


