
Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

Automated ergonomic risk monitoring using body-mounted sensors and
machine learning

Nipun D. Natha, Theodora Chasparib, Amir H. Behzadana,⁎

a Department of Construction Science, Texas A&M University, 3137 TAMU, College Station, TX 77843, USA
bDepartment of Computer Science, Texas A&M University, 3112 TAMU, College Station, TX 77843, USA

A R T I C L E I N F O

Keywords:
Construction health
Wearable sensors
Ergonomics
Overexertion
Human activity recognition
Machine learning

A B S T R A C T

Workers in various industries are often subject to challenging physical motions that may lead to work-related
musculoskeletal disorders (WMSDs). To prevent WMSDs, health and safety organizations have established rules
and guidelines that regulate duration and frequency of labor-intensive activities. In this paper, a methodology is
introduced to unobtrusively evaluate the ergonomic risk levels caused by overexertion. This is achieved by
collecting time-stamped motion data from body-mounted smartphones (i.e., accelerometer, linear accel-
erometer, and gyroscope signals), automatically detecting workers’ activities through a classification framework,
and estimating activity duration and frequency information. This study also investigates various data acquisition
and processing settings (e.g., smartphone’s position, calibration, window size, and feature types) through a
leave-one-subject-out cross-validation framework. Results indicate that signals collected from arm-mounted
smartphone device, when calibrated, can yield accuracy up to 90.2% in the considered 3-class classification task.
Further post-processing the output of activity classification yields very accurate estimation of the corresponding
ergonomic risk levels. This work contributes to the body of knowledge by expanding the current state in
workplace health assessment by designing and testing ubiquitous wearable technology to improve the timeliness
and quality of ergonomic-related data collection and analysis.

1. Introduction

With advancements in mobile technology, modern smartphones are
now equipped with a host of sensors which can capture location and
motion-related data of a person within the environment. These devices
have the potential to facilitate everyday life in various ways by giving
users contextual information about their activities, interests, and sur-
roundings without being obtrusive and interruptive. In addition, com-
pared to other classes of data-capturing devices, smartphones are more
ubiquitous (thus more affordable) and intuitive to use, can be con-
trolled and operated remotely (using the cloud technology), and require
a relatively lower maintenance and operating costs. The value of using
smartphones in domains such as healthcare, wellbeing, and behavioral
analysis has been investigated over the past few years. For example,
smartphones are being used for monitoring patients and elderly people
[1–3]. In addition to health monitoring, smartphones can also be used
in managing and promoting human well-being [4,5]. Also, smartphone
technology can be integrated with behavioral health care [6]. For in-
stance, Timmons et al. [7] used audio and global positioning system
(GPS) data from smartphones to unobtrusively and remotely monitor

the behavior of young couples. Furthermore, smartphone’s built-in in-
ertial measurement unit (IMU) can be utilized to prevent work-related
injuries, for example, fall from a height [8], shoulder injury [9], and
upper-limb injury [10]. Particularly, recent studies have explored the
potentiality of smartphone sensor in preventing musculoskeletal dis-
orders (MSDs) associated with awkward posture [11,12].

MSDs are major health issues that affect a large number of in-
dividuals across many occupations and industries (e.g., from office
space work to manufacture and construction), leading to long-term
disability and economic loss [13]. MSDs refer to a group of disorders or
injuries resulting from the stress in a person’s inner body parts (e.g.,
muscles, nerves, tendons, joints, cartilages, and spinal discs) while the
person moves [14,15]. Examples of MSDs include Carpal Tunnel Syn-
drome (CTS), Tendonitis, and Bursitis [16,17]. MSDs caused particu-
larly due to the activities in a workplace are referred to as work-related
musculoskeletal disorders (WMSDs). In 2009 alone, direct workers’
compensation costs due to WMSDs were amounted to be more than $50
billion in the U.S. [18]. Moreover, workers exposed to major WMSDs
may face permanent disability that can prevent them from carrying out
their professional tasks and, in severe cases, regular everyday tasks
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[15]. In 2015, workers employed by the private sector in the U.S. re-
quired a median of 12 days to recover from WMSDs before they could
return to work [19].

The construction industry is considered as one of the most ergono-
mically hazardous occupations [20]. Compared to other industries,
construction activities are more physical and labor-intensive. Moreover,
with increasing complexity and scope of construction projects, workers
(especially those with limited skills and training) often find themselves
performing tasks that are beyond their natural physical limits [21]. This
sustained physical labor over a long period of time can trigger WMSDs
which in turn adversely affect the project budget, schedule, and pro-
ductivity. In 2015, the WMSD-related incident rate (number of illnesses
and injuries per 10,000 equivalent full-time workers) was 34.6 [19].
WMSDs are the major source of concern in other industries as well.
Among all goods-producing sectors, workers in the manufacturing,
agriculture, forestry, fishing, and hunting sectors, and among all the
service-providing sectors, workers in the transportation, warehousing,
healthcare and social assistance sectors are reported to be more exposed
to WMSDs [20]. Nursing assistants, laborers, and freight, stock and
material movers experienced the highest number of WMSD cases in
2013 [20].

To prevent WMSDs, various health and safety organizations have
established rules and guidelines to identify the risks associated with
performing certain tasks. Such efforts aim at the ergonomic design of
project tasks, tools, and workplace to match physical jobs with workers’
natural body capacities. As an example, the prevention through design
(PtD) initiative, introduced by the National Institute for Occupational
Safety and Health (NIOSH), aims at limiting and ultimately preventing
occupational injuries, illnesses, and fatalities that can be achieved by
eliminating the potential risks to workers at the source as early as
possible in a project life cycle [22]. Since a proper PtD practice requires
prior identification of the risk factors, it is necessary to collect adequate
spatiotemporal work-related data. The collected data, if properly ana-
lyzed and interpreted, can be used to promote workers’ safety and
health by improving the quality of job training and eliminating po-
tential ergonomic risks in the workplace.

Field practices of data collection are traditionally based on self-re-
porting, manual observation, or the use of sophisticated sensor net-
works. Such practices, however, are time-consuming, naturally ob-
trusive, and require technical knowledge that may not be available
among construction practitioners. Therefore, the objective of this re-
search is to design and test a methodology where an unobtrusive and
automated data processing framework is used to calculate ergonomic
risks associated with occupational tasks, in particular, those comprising
the use of excessive force (overexertion). In the designed methodology,
mobile technology (smartphones) is used to collect multi-modal time-
motion data from the workers while they perform different activities.
Next, machine learning will be used to recognize workers’ activities,
and then, activity duration and frequency information will be extracted.
The output of this step will be subsequently used to identify the ergo-
nomic risk levels for each worker. Calculated risk levels can be used to
identify major sources of ergonomic risks which can help workers and
decision-makers (e.g., project managers, safety officers, super-
intendents) to take proper actions to preemptively limit and ultimately
eliminate such risks by redesigning high-risk activities and/or work-
spaces.

2. Literature review

With 33% of all cases, the U.S. Bureau of Labor Statistics [19] ranks
overexertion first in the leading events or exposures that cause WMSDs.
By definition, overexertion is the event category that includes injuries
related to exerting an excessive force beyond the body’s capacity. Ac-
tivities that require force can be categorized into two groups: lifting/
lowering/carrying (category-1), and pushing/pulling (category-2) [23].
A risk factor is defined as a condition present in the workplace that is

directly responsible for health hazards [17]. For example, applying
excessive force to lift a heavy object can be considered as a risk factor
for overexertion. However, the mere presence of a risk factor is not
sufficient to evaluate the risk associated with a task, rather the risk also
depends on the extent of the risk factor [17]. Determining if an ex-
posure or a risk factor will result in WMSDs depends on intensity,
duration, and frequency, or a combination of these factors [24]. In-
tensity, duration, and frequency refer to how much, how long, and how
often, respectively, one is exposed to a risk factor. Generally, risk level
rises with the increase of these factors. For instance, if a worker for-
cefully (i.e., intensity factor) and repetitively (i.e., frequency factor)
pushes a heavy object for a long period of time (i.e., duration factor),
the worker is exposed to WMSDs (e.g., back pain). These are regulated
by the Occupational Safety and Health Administration (OSHA), which
has provided a set of empirical rules assessing the risk of activities
according to their type, duration, and frequency.

Towards this goal, three different approaches have been practiced in
general: (1) self-assessment, (2) observational, and (3) direct mea-
surement [25]. In self-assessment, workers are asked to provide risk-
related data. Though this approach has low initial cost and is
straightforward, researchers have stated that workers’ self-assessments
on exposure levels are often imprecise, unreliable, and biased [26]. The
observation-based approach involves real-time assessment or analysis
of the recorded video. But it is mostly impractical in nature due to the
substantial cost, time, and technical knowledge required for post-ana-
lysis of large amounts of non-heterogeneous data [24].

Unlike the previous two approaches, direct measurement uses tools
to collect workers’ posture- and motion-related data. Examples of this
approach include but are not limited to using off-the-shelf micro-
electro-mechanical sensors (MEMS), e.g., IMUs, and vision-based sen-
sors. Vision-based sensors such as Red-Green-Blue (RGB) camera and
Kinect suffer in extreme lighting conditions and optical occlusions [27].
For this reason, wearable sensors such as IMUs have gained more po-
pularity for being inexpensive, easy to install and maintain, and re-
quiring minimum training for data collection and human activity re-
cognition (HAR) [28]. Moreover, previous studies have shown that
when compared to the depth-based sensors (e.g., Kinect), IMUs are
superior for detecting movements of body parts because they are more
sensitive than Kinect (i.e., capable of capturing subtle movements),
more robust (i.e., capable of providing stable data), and have higher
sampling rate (e.g., > 50Hz, while the maximum frequency for Kinect
is 30 Hz) [27]. While previous studies in this area have revealed some of
the shortcomings of the direct measurement approach including high
initial investment cost, maintenance cost, and technical knowledge to
interpret data, compared to other approaches, this method by far yields
the most valid assessment of risk factors [24,29].

In order to overcome the implementation challenges of direct-
measurement approach, the authors used smartphones as a data col-
lection device. Recent work has explored the merit of built-in smart-
phone IMU sensors to collect input data for machine learning algo-
rithms to identify field activities and to estimate activity durations
[30–33]. We have to note that compared to traditional physical activity
recognition (e.g., walking, running, and sitting) [34–38], the activities
performed in construction sites are much more complex in nature (e.g.,
loading, unloading, lifting, lowering, carrying, pushing, and pulling).
Previous efforts in identifying construction activities include the use of
single-sensor (i.e., accelerometer) data to identify masonry work
[39,40]. Particularly, Ryu et al. [40] have used data from wrist-worn
accelerometer sensors to classify more subtle mason’s actions (e.g.,
spreading mortar, laying bricks, adjusting bricks, and removing excess
mortar). While past work has mainly focused on activity recognition,
the literature is rather limited and fragmented about the prospect of
identifying ergonomic risks, particularly those associated with over-
exertion, from the outcome of multi-sensor HAR. Therefore, the ap-
plicability and robustness of existing methods are to a large extent
unexplored in overexertion-related ergonomic risk assessment. Given
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the depth and breadth of knowledge and building upon the findings of
previous work, the authors extended the previously developed metho-
dology to automatically evaluate the ergonomic risk levels of various
construction activities. Moreover, since placement variations of elec-
tronic sensors can result in significantly different acceleration signals
and, thus, impacting the final performance of HAR [41], the optimum
position for placing the sensors need to be investigated. With this ob-
jective, the authors also identify the optimal data acquisition and data
processing settings (e.g., smartphone’s position, window size, and fea-
ture set) that yield reliable estimation of ergonomic assessment. The
novelty of this research lies in identifying ergonomic risk levels due to
overexertion using raw time-motion multi-sensor data captured by
body-mounted smartphones. Findings of this research will have sig-
nificant practical implications in the construction domain since devel-
oped methods can be used to design unobtrusive and inexpensive real-
world systems for automatic estimation and generation of real-time
warnings to construction workers regarding potential overexertion and
ergonomic risks merely through the use of a smartphone device.

3. Overall framework and problem formulation

The main building blocks of the designed framework are shown in
Fig. 1. These include optimization of data acquisition and data pro-
cessing settings, human activity recognition (HAR), estimation of ac-
tivity durations and frequencies, and assessment of overexertion and
ergonomic risks. The first step of this process involves identifying the
optimal data-acquisition setting (i.e., the optimal position to place a
smartphone on workers’ body) and data-processing settings (e.g., the
optimal window size for data segmentation, and the best feature set)
that would yield highly accurate classification result. This starts with
collecting time-stamped data using smartphone sensors (worn by
workers), followed by pre-processing the collected data and converting
them into a set of distinctive features using different combinations of
settings. Next, for each combination, a classifier model is built and
performance of the model in terms of weighted accuracy, precision,
recall, and F1 score, and Spearman’s rank correlation is recorded. As an
example, the equation for calculating weighted recall is given in Eq. (1),
where m is the number of classes, Recalli is the recall for class i (i=1, 2,
…, m), and Samplesi is the number of samples in class i (i=1, 2, …, m).
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The setting that generates the best performing classifier model is
considered as the optimal setting. Next, HAR takes as an input the
decisions from the best performing setting, performs smoothing to re-
move outliers, and estimates activity duration and frequency informa-
tion. Details of the activity recognition process can be found in the
previous study by Akhavian et al. [30]. Finally, estimated durations and
frequencies are used to determine the ergonomic risk levels associated
with each activity performed by the workers.

4. Experiment design and data collection

To test the designed methodology, a field experiment is carried out.
The experiment is designed based on the following criteria:

(1) Activities performed in the experiments resemble real-world activ-
ities.

(2) Activities have potential to cause ergonomic harms (i.e., activities
are repetitive in nature and require excessive force).

(3) Activities involve two categories of events associated with over-
exertion. Examples include lift/lower/carry (category-1), and push/
pull (category-2). From an ergonomics perspective, these two ca-
tegories are regulated by two different sets of rules that limit the
duration and frequency of the activities (as summarized in Table 3)
with potential of leading to WMSDs [42].

(4) Subjects involved in the experiments are allowed to perform their
assigned tasks at their own pace.

The experiment resembles a warehouse operation which includes
uncertainty in the workflow. The goal of this experiment is to transport
an item (i.e., a box) from a loading area to an inspection area, inspect
the item and if the item is accepted, to move it through the system to a
designated unloading area. As shown in Fig. 2, the cyclic operation
starts with a worker loading a box onto a cart and then pushing it to the
inspection area. Next, an inspector lifts the box and inspects it. During
the inspection, the worker waits in the inspection area. After the in-
spection, the inspector either accepts the box or rejects it. Upon ac-
ceptance, the worker lowers the box onto the cart, pushes it to the
unloading area, unloads the box and then pulls the cart back to the
loading area. If the box is rejected, the worker pulls the cart back to the
loading area. In both cases, the worker moves back to the loading area
and the cycle starts over. This operation is performed for 15 cycles for
two workers, referred as worker W1 and worker W2, respectively. To
collect data, two smartphones (e.g., Google Nexus 5X and Google Nexus
6) are mounted on each of the performer's body (one on the upper arm
and another on the waist). Data are collected from the accelerometer,
linear accelerometer, and gyroscope sensors. The activities are manu-
ally annotated based on inspecting the recorded video and marking the
starting and ending of each activity (category 1: lift/lower/carry, ca-
tegory 2: push/pull, category 0: any other no-risk activity). The total
duration of the data is approximately 40min.

5. Methodology

In this section, the process starting from data collection and process
optimization to ergonomic risk assessment is demonstrated in detail.

5.1. Optimization of data acquisition and data processing settings

Previous studies suggested that arm and waist are relatively better
positions to attach smartphone for HAR [30,43]. To assess previous
findings within the context of this work, two smartphones are mounted
on each worker’s body, one on the upper arm and another on the waist.
The objective is to investigate which position would yield better clas-
sification results. The classifier models built using data acquired from
the arm- and waist-mounted smartphone are referred to as Arm and
Waist models, respectively.

The orientation of the smartphones (with relative to the body)
might be different for different subjects. In fact, when smartphones are
attached to different subjects, or to the same subject but at different
times, it is impossible to guarantee that the orientations will be the
same every time. Therefore, there is a possibility that sensor signals
might be different (which would make the classification less accurate)
even if the subjects physically move their body parts in a similar
manner (Fig. 3(a)). A potential solution to this issue is to ensure that
sensor signals could not be significantly different due to the variance in

Fig. 1. Schematic framework for the assessment
of ergonomic risk associated with overexertion.
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the orientation of the smartphone. Therefore, it is assumed that all
sensor readings for activity ‘wait’ (when workers stand still) would be
zero regardless of the orientation of the smartphone. In order to im-
plement this assumption, before starting each session of activity re-
cognition, workers are asked to wait (i.e., standing in a still position) for
a certain period of time to establish a benchmark signal reading. The
average of sensor signals, recorded in that period, is deducted from the
raw sensor signals (Fig. 3(b)) collected throughout the actual experi-
ment. The process is referred to as calibration in this work. Similarly, the
classifier models built with and without calibration are referred to as
Calibrated and Not Calibrated models, respectively.

In the conducted experiment, data are collected using smartphone’s
built-in accelerometer, linear accelerometer, and gyroscope sensors. To
extract statistical features such as the interquartile range (IQR), it is
important to have continuous and uniform time series data.
Smartphone sensors, however, occasionally freeze and stop recording
data, and upon recovering, record data at a higher sampling rate to
compensate [30]. Therefore, raw sensor data usually form non-uniform
time series containing high-frequency data points in some time inter-
vals (which are redundant) and low-frequency data points in some
others (i.e., missing data). Similar to the previous study [44], in order to
have a continuous and orderly data stream, raw sensor data is re-
sampled into a 180 Hz of uniform time series data using linear inter-
polation. The sampling rate of the raw sensor data (before resampling)
is given in Table 1.

Next, to obtain more motion-related features, jerk (the difference
between two consecutive data points, e.g., = − −Jerk a aa t t 1) and mag-
nitude of the tri-axial data (e.g., = + +a a a ax y z

2 2 2 ) are calculated
[45]. Afterwards, the sensor data is segmented into a series of fixed-
length time-windows with 50% overlap. Past research in HAR has
achieved promising results by choosing window sizes between 1 and 3 s
[30,31,34]. Also, previous studies have found that the accuracy of
classification generally decreases with an increase in window size [32].
Therefore, in this study, in order to find the optimum window size,
three different sizes, namely 1 s (180 data points), 2 s (360 data points),
and 3 s (540 data points) are examined. The classifier models built with
data segmented into 1-, 2-, and 3-second windows are referred to as 1-
Second, 2-Second, and 3-Second models, respectively. The resulting
number of samples for each time-segmentation, as well as their dis-
tribution into the three activity categories, can be found in Table 2.

Next, key statistical features from each sensor stream including the
mean, minimum, maximum, standard deviation, IQR, skewness, kur-
tosis, mean absolute deviation, and the 4th-order autoregressive coef-
ficients are computed over the corresponding window. This results in a
12-dimensional feature vector per sensor, or 288 features in total (as
shown in Fig. 4). Previous studies have indicated the good dis-
criminatory ability of such features for human activity recognition tasks
[34,35]. In order to identify the most effective features (a.k.a. dis-
tinctive features), ReliefF [46] ranks the original 288 features in order
of their effectiveness (a.k.a. weight). Assume, a feature is denoted as fr
where r is the rank of the feature determined by the ReliefF algorithm.
Thus, the feature space can be written as f f f f{ , , , .., }1 2 3 288 where f1 is the
best feature and f288 is the worst feature. A subset of this feature space,
Fn, refers to the set of first n features, i.e., f f f{ , , .., }n1 2 . For each subset,
from F11 (containing first 11 features) to F288 (containing all 288 fea-
tures), a classifier model is built using the training dataset and cross-
validation results are recorded. The initial value of n was set at 11 (i.e.,
first 11 features) because it was empirically found that using fewer
features would result in a relatively less accurate model. Among all the
classifier models built, the one that yields the best F1 score is referred to
as the Best Features model. For example, as illustrated in Fig. 4, the Best
Features model uses the feature subset =F f f f f{ , , , .., }i i1 2 3 . On the other
hand, the classifier model built with all features (i.e., F288) is referred to
as All Features model.

In all experiments, we use support vector machine (SVM) im-
plemented in MATLAB® to classify each window to one of the three
activity categories (category 1: lift/lower/carry, category 2: push/pull,
category 0: any other no-risk activity). During this multiclass classifi-
cation task, for each pair of classes we construct one binary SVM
classifier with the polynomial cubic kernel, and make the final decision
using majority voting (commonly referred to as “one-vs-one” setting).
Also, a leave-one-subject-out cross-validation setup is used, according
to which the feature selection process and the training of the classifier
are performed in the training set of each fold, and results are computed
on the corresponding test set. The final reported results are averaged
across all folds.

The goal of the optimization process is to investigate all possible
combinations of the aforementioned settings (illustrated in Fig. 5),
build and examine classifier model for each case, and identify the best
combination of settings for which classifier model produces the highest

Fig. 2. The cycle of activities in the experiment.
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F1 score. Next, applying this optimal setting, classifier model is built for
activity recognition.

5.2. Activity recognition

The activities involved in the process fall into two categories of
events that associate with risks due to overexertion, namely lift/lower/
carry (category 1), and push/pull (category 2). Any other activity that
does not associate with such risks is assigned to the “none” category
(category 0). Similar to Section 5.1, in this step, we also use SVM (with
the polynomial cubic kernel and “one-vs-one” setting) to classify each
window to one of these three activity categories. Experiments are per-
formed through a leave-one-subject-out cross-validation procedure.
According to this procedure and given that we have two subjects, data
from worker W1 are used for training and data from worker W2 are
used for testing during the first fold, while the reverse occurs during the
second fold. Median filtering is performed on the predicted labels in
order to remove outliers. Because of the unbalanced number of samples
from each class, the activity recognition performance is evaluated using
weighted precision, recall, and F1 score measures (e.g., Eq. (1)).
Spearman’s rank correlation was computed between the actual and
predicted time series of 0, 1, 2 values (each corresponding to one ca-
tegory).

5.3. Duration and frequency estimation

One instance of an activity category is defined as a group of con-
secutive windows which are classified as a similar category of activities
(0, 1, or 2). The duration of each instance is calculated by counting the
number of windows in that group and multiplying the result by half of
the window size (since windows are 50% overlapped). The total dura-
tion of a category is determined by summing up durations of all in-
stances of that category. Additionally, the frequency of a category, in-
dicating how many times a category of activity is performed [17], is
determined by counting all the instances of that category.

5.4. Ergonomic risk assessment

OSHA reports that ergonomic risk levels (low, moderate, and high)
can be estimated through the frequency and duration of lifting/carrying/
lowering, pushing/pulling according to Table 3 [42]. In this Table, risk
level refers to the likelihood of WMSD-related injury to occur. These
threshold values can be used to check ergonomic risk levels to achieve
compliance with the ergonomics requirements for musculoskeletal injury
in the OSHA regulations (i.e., once workers are exposed to a risk factor,
the employer must assess the risk level) [42]. Moreover, this Table is a
useful tool for selecting appropriate risk control measures. For example,
if a field observation determines that an activity exposes a worker to high
risk, the requirements for lower risk categories can be checked and ap-
plied to resolve that particular situation. Furthermore, for each category,
the calculated risk level can be compared before and after ergonomics
improvements to better quantify the risk reduction.

For calculating the ergonomic risk levels, durations estimated in the
previous step are expressed as percentages of work shift where a shift is
the total duration of the experiment. Also, estimated frequencies are
expressed as frequency per minute of the shift. Next, based on Table 3,
corresponding risk levels are calculated.

6. Results and discussions

This section reports on the results of activity recognition, duration
and frequency estimation, and ergonomic risk assessment. Furthermore,
the effect of the various data acquisition and processing settings (e.g.,
smartphone’s position, calibration, window size, and feature set) on the
considered performance metrics is examined. Of note, all experiments
are performed using a leave-one-subject-out cross-validation.

6.1. Optimal data acquisition and data processing settings

Performance metrics of classifiers with different settings for para-
meters are summarized in Table 4 and illustrated in Fig. 6. It can be

Fig. 3. Accelerometer-X readings with (a) and without (b) calibration when the
workers were waiting.

Table 1
Sampling rate of the raw sensor data collected from the smartphones.

Worker Smartphone’s Position Sampling Rate (Hz)

W1 Arm 190
Waist 35

W2 Arm 70
Waist 180

Table 2
Number of samples per activity category for different window sizes.

Window size Class 0 Class 1 Class 2 Total

1 s 1064 1056 2829 4949
2 s 532 527 1414 2473
3 s 355 354 938 1647
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seen that the classifier model built from the data captured with arm-
mounted smartphone, calibrated sensor readings, 2-second windows,
and best features performed best in terms of all performance metrics.
Even without the use of feature selection, adding all the features col-
lected from the arm as an input to the classifier still yields good per-
formance.

6.1.1. Selection of smartphone’s position
For the smartphone’s position, Fig. 6 shows that the Arm models

performed significantly better than the Waist models. The comparison
of accuracies along with improvement in accuracy and relative reduc-
tion in error are summarized in Table 5. The overall accuracy of Arm
models is 19.4% higher than that of Waist models, resulting in 49.2%
reduction in error. The equation for calculating the relative reduction in
error for model A, compared to model B, is given in Eq. (2), where
ErrorA and ErrorB refer to the classification error of the model A and B,
respectively, and AccuracyA and AccuracyB refer to the accuracies of the
model A and B, respectively.

=
−

=
− − −

−

=
−

−

Relative Reduction in Error Error Error
Error

Accuracy Accuracy
Accuracy

Accuracy Accuracy
Accuracy

(1 ) (1 )
1

1

B A

B

B A

B

A B

B (2)

Confusion matrices for the Arm and Waist models (both built from
calibrated sensor readings, 2-second windows, and best features) are
shown in Table 6. The table shows that for arm-mounted smartphone,
all categories are classified with high accuracy, i.e., 92.7%, 82.7% and
92.1% accuracy for category-0, -1 and -2, respectively. In contrary, for
waist-mounted smartphone, classification accuracies are lower for all
categories. Particularly, the category-1 activity (lift/lower/carry) is
confused with category-2 activity (push/pull) 68.9% times (363 in-
stances) and category-2 activity is confused with category-1 activity

13.2% times (187 instances). It suggests that the waist movements (and
patterns in the sensor signals) are very similar when workers perform
these two categories of activity which, ultimately, results in higher
confusion rates between these two categories. However, category-1 has
a lower number of training samples compared to that of category-2
(Table 2) and, therefore, the classifier has a higher tendency to mis-
classify category-1 as category-2. On the other hand, confusion rates
between these two categories of activity are relatively low for the arm-
mounted smartphone (Table 6). Therefore, it can be inferred that arm
movements are fairly distinguishable while the subject is performing
category-1 and -2 activities, which justifies the better classification
accuracy yielded from that smartphone.

6.1.2. Calibration of sensor readings
Fig. 6 shows that, in general, Calibrated models performed better

than Not Calibrated models.
Table 7 shows that the overall accuracy of Calibrated models is 8.9%

higher than that of Not Calibrated models, resulting in 26.1% reduction
in error. In particular, calibration improved the accuracy of Arm, 2-
Second, and Best Features model by 11.3% and, thus, reduces the error
by 53.7%.

Examples of confusion matrices for a Calibrated and a Not Calibrated
model with all other parameters fixed (i.e., Arm, 2-Second, and Best

Fig. 4. Feature extraction and feature selection process.

Fig. 5. Optimization process involves investigating different combination of smartphone position, calibration, window size, and feature subsets.

Table 3
Risk levels of category 1 (lift/carry/lower) and 2 (push/pull) activities.

Category Parameter Low Risk Moderate Risk High Risk

1 Frequency per minute < 1 1–5 >5
Duration/shift < 25% 25–50% >50%

2 Frequency per minute < 1/480 1/480–10 >10
Duration/shift < 25% 25–50% >50%
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Features) are shown in Table 8. The table shows that calibration im-
proved the accuracies of classifying all categories and reduces the
confusion rates in most cases. Particularly, the accuracy of classifying
category-2 activity (push/pull) is improved by 17.6% (from 74.5% to
92.1%). Also, the rate of confusing category-1 activity (lift/lower/
carry) with category-2 activity (push/pull) is reduced by 18.0% (from
24.6% to 6.6%). It indicates that calibration minimizes the intra-class

variability and maximizes the inter-class variability and, thus, improves
the overall performance of classifier models.

6.1.3. Selection of window size
A general trend of improvement in the performance with the in-

crease in the window size can be seen in Fig. 6. Similarly, Fig. 7 also
illustrates that for 6 out of the 9 cases, accuracies were improved for the

Table 4
Performance metrics of classifiers with different settings for parameters.

Metric Window Size (sec) Calibration Arm Waist

All Features Best Features All Features Best Features

Accuracy/Recall (%) 1 Not calibrated 69.9 70.2 44.8 68.8
Calibrated 78.3 88.0 63.8 60.7

2 Not calibrated 77.7 79.0 44.6 63.0
Calibrated 85.0 90.3 60.2 68.0

3 Not calibrated 82.1 85.7 52.0 71.7
Calibrated 86.0 89.1 69.5 72.9

Precision (%) 1 Not calibrated 79.8 79.7 61.7 66.4
Calibrated 83.0 88.0 64.7 67.4

2 Not calibrated 85.5 87.1 69.8 57.6
Calibrated 87.8 90.5 64.1 67.4

3 Not calibrated 86.0 87.8 74.5 72.5
Calibrated 86.9 89.3 70.9 72.3

F1 (%) 1 Not calibrated 70.2 70.6 45.4 65.7
Calibrated 78.9 87.9 61.2 61.5

2 Not calibrated 78.0 79.7 45.9 57.3
Calibrated 85.1 90.2 58.9 66.1

3 Not calibrated 82.9 86.3 55.3 69.9
Calibrated 86.2 89.1 68.3 71.3

Spearman
Correlation

1 Not calibrated 0.69 0.69 0.65 0.35
Calibrated 0.84 0.75 0.51 0.54

2 Not calibrated 0.80 0.77 0.39 0.39
Calibrated 0.85 0.82 0.61 0.52

3 Not calibrated 0.81 0.77 0.61 0.52
Calibrated 0.84 0.80 0.68 0.66

Fig. 6. Performance of classifiers with different settings for parameters in terms of (a) accuracy/recall, (b) precision, (c) F1 Score, and (d) Spearman’s rank cor-
relation.
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2-Secondmodels compared to the 1-Secondmodels and for 8 out of the 9
cases, accuracies were improved for the 3-Second models compared to
the 2-Second models. One possible reason is that for smaller window
size, inter-class variability is less and, therefore, classifier models fail to
distinguish between the classes. In other words, while the workers
perform category-0 (wait), -1 (lift/lower/carry), and -2 (push/pull)
activities, sensor signal (or movement) patterns in smaller segments of
time are similar to each other (Fig. 8(a)). In contrast, for larger seg-
ments, distinguishable patterns in the sensor signals (or movement)
emerge (Fig. 8(b)). Although this observation might be true for general
cases, for the particular experiment conducted in this research, the 2-
Second model (with Arm, Calibrated, and Best Features) performed better
than other models and, therefore, 2-second has been selected as the
optimal window size.

6.1.4. Selection of feature subset
Not all features are useful for classification since not all features are

distinctive. In fact, for better and effective classification, only relevant
and important features should be used [47]. Therefore, in the optimi-
zation process, various subsets of features are investigated to find the
best feature subset. Fig. 9 demonstrates the F1 scores of Arm, Calibrated,
and 2-Second classifier models with various feature subsets. It can be
seen that using all 288 features did not result in the best performance
(F1 score of 85.1%). Rather, the best model (F1 score of 90.2%) uses
only 28 features (i.e., the first 28 features ranked by ReliefF algorithm).
Using the best feature subset instead of all features improves the F1
score by 5.1%. This supports the argument that indistinctive features
increase the confusion which, ultimately results in the less accurate
classification of activities.

In Table 9, the list of best features for worker W1 andW2 is given. It
has been found that the statistical features skewness, kurtosis, and
autoregressive coefficients are the least effective features. Also, the
features extracted from accelerometer and gyroscope sensors are more
effective than the features extracted from linear accelerometer. More-
over, 21 out of the 28 features are found to be effective for both workers
which are highlighted in italic text in Table 9.

While previous studies have found promising results using a single
accelerometer sensor [34–38], in this research, two additional sensors,
namely gyroscope and linear accelerometer are used to increase the
accuracy of results. The value of these sensors to the overall data
analysis can be understood from Fig. 10. This Figure illustrates that the
maximum F1 scores using accelerometer, linear accelerometer, and
gyroscope sensors individually are 87.8%, 68.9%, and 87.3%, respec-
tively. Thus, it can be inferred that features extracted from accel-
erometer and gyroscope data contribute the most to the classification
accuracy. The presence of features from these two sensors in the best
feature subset (see Table 9) also supports this conclusion. Considering
the results shown in Fig. 10, when all three sensors are used, the F1
score is improved even more (i.e., 90.2%) and surpasses the F1 scores
achieved using any single sensor. Therefore, it can be stated that using
both gyroscope and linear accelerometer sensors in addition to theTa
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Table 6
Confusion matrices for Arm and Waist models with Calibrated, 2-Second, and
Best Features.

Model Actual Class Predicted Class

0 1 2

Arm 0 92.7% 0.6% 6.8%
1 1.5% 82.7% 15.7%
2 1.3% 6.6% 92.1%

Waist 0 63.7% 19.0% 17.3%
1 4.0% 27.1% 68.9%
2 1.9% 13.2% 84.9%
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accelerometer sensor positively influences the outcome of activity
classification.

6.2. Activity recognition

Having found optimal settings for data acquisition and data

processing, the classifier model is built and trained using sensor data
captured by the arm-mounted smartphone. Data is collected and pro-
cessed into a uniform time series data. Raw sensor signals are calibrated
and segmented into 2-second windows with 50% overlap. Features listed
in Table 9 are then extracted and fed into the SVM algorithm to build a

Table 7
Improvement in accuracy and relative reduction in error for the Calibrated models compared to the Not Calibrated models.

All Features Best Features Overall

1 Second 2 Seconds 3 Seconds 1 Second 2 Seconds 3 Seconds

Arm Waist Arm Waist Arm Waist Arm Waist Arm Waist Arm Waist

Not calibrated (%) 69.9 44.8 77.7 44.6 82.1 52.0 70.2 68.8 79.0 63.0 85.7 71.7 65.9
Calibrated (%) 78.3 63.8 85.0 60.2 86.0 69.5 88.0 60.7 90.3 68.0 89.1 72.9 74.8
Improvement (%) 8.4 19.1 7.2 15.6 3.9 17.5 17.8 −8.1 11.3 5.1 3.3 1.2 8.9
Relative reduction in error (%) 27.8 34.5 32.5 28.1 21.8 36.5 59.7 −26.0 53.7 13.6 23.4 4.1 26.1

Table 8
Confusion matrices for Calibrated and Not Calibratedmodels with Arm, 2-Second,
and Best Features.

Model Actual Class Predicted Class

0 1 2

Calibrated 0 (no risk) 92.7% 0.6% 6.8%
1 (lift/lower/carry) 1.5% 82.7% 15.7%
2 (push/pull) 1.3% 6.6% 92.1%

Not calibrated 0 (no risk) 91.0% 6.8% 2.3%
1 (lift/lower/carry) 1.5% 78.7% 19.7%
2 (push/pull) 0.8% 24.6% 74.5%

Fig. 7. Improvement in accuracy and relative reduction in error for the (a) 2-
Second models compared to the 1-Second models and (b) 3-Second models
compared to the 2-Second models. Fig. 8. Patterns in the sensor signals for worker W1 for (a) 1-second and (b) 3-

second windows.
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classifier model. The model is then applied to the features extracted from
the data of another worker to predict class labels (i.e., activities).

6.2.1. Outlier removal
An outlier is defined as an instance having a statistically small

number of windows surrounded by a statistically large number of in-
stances of another class. The threshold values for the duration of out-
liers can be selected by observing activity instances in the training
dataset. Here, the threshold window size for the outlier is selected as 2
consecutive windows (or 3 s, given the 50% overlap between adjacent
2-second windows). A 3rd and 5th order median filter is applied con-
secutively to the predicted labels to remove the outliers. Fig. 11 illus-
trates a segment of actual activity labels for worker W2 along with
predicted labels before and after outlier removal. It shows that most of
the outliers are removed after applying the medial filtering.

Performance metrics of classifier model before and after removing
outliers are shown in Table 10. As shown in Table 10, after removing
the outliers, all performance metrics (i.e., accuracy, precision, recall,
F1, and Spearman’s correlation) are improved by at least 1.82% (i.e.,
relative reduction in error by at least 18.67%).

6.2.2. Confusion matrices
Confusion matrices for W1 and W2 are shown in Table 11. The table

shows that all activities are recognized with> 80% accuracy,

particularly, category-0 and -2 forW1, and category-1 and -2 forW2 are
recognized with>90% accuracy. Also, the tendency of classifiers to
misclassify category-1 as category-2 is noticeable for both workers.

6.3. Duration and frequency estimation

Actual and estimated duration and frequency of each category of
activity for worker W1 and W2 are listed in Table 12 which shows that
all estimated durations differ by<11% from the actual durations. Also,
all estimated frequencies are within± 3 of actual values.

6.4. Ergonomic risk level assessment

Next, corresponding ergonomic risk levels for each worker are cal-
culated based on Table 3. Calculations of risk levels are summarized in
Table 13 which shows that all extracted risk levels are identical to the
actual risk levels.

Fig. 12 illustrates the actual and estimated duration per shift in
percentage and the corresponding ergonomic risk levels. It can be seen
that the difference between actual and estimated duration per shift is
negligible compared to the difference between duration per shift for
two adjacent risk levels. For example, all duration per shift differs
by< 2% (Table 13). However, from low to moderate level of risk and
from moderate to high level of risk, values for duration per shift differ
by 25% (Table 3). Therefore, all the actual and the corresponding es-
timated risk falls into the same level of risk. A similar argument is also
valid for the risks related to frequency per minute.

7. Summary and conclusions

In this paper, a methodology for the smart monitoring of con-
struction activities for the purpose of ergonomic risk assessment was
presented. The designed approach used wearable IMUs (built-in
smartphone sensors) for time motion data collection. An experiment
was carried out to test the robustness and reliability of the metho-
dology. The primary contribution of this research is the development of
a framework for automatically identifying instances, durations, and

Fig. 9. F1 scores of Arm, Calibrated, and 2-Second classifier models with various
feature subsets.

Table 9
Best features for worker W1 and W2 (Features marked in italic are selected for both workers).

Rank W1 W2

1 Accelerometer_X_Minimum Gyroscope_Magnitude_Maximum
2 Accelerometer_X_Mean Accelerometer_X_Mean
3 Gyroscope_Z_Minimum Gyroscope_Magnitude_StandardDeviation
4 Gyroscope_Magnitude_StandardDeviation Gyroscope_Z_Minimum
5 Gyroscope_Magnitude_Maximum Accelerometer_X_Maximum
6 Gyroscope_Y_Minimum Gyroscope_X_Maximum
7 Accelerometer_Y_Mean Accelerometer_Y_Minimum
8 Gyroscope_Magnitude_Mean Gyroscope_Z_Maximum
9 Accelerometer_Z_StandardDeviation Accelerometer_Magnitude_Mean
10 Gyroscope_X_Minimum Gyroscope_Y_Maximum
11 Accelerometer_X_StandardDeviation Accelerometer_Z_Mean
12 Gyroscope_Magnitude_IQR Accelerometer_Z_Minimum
13 Gyroscope_Magnitude_MeanAbsoluteDeviation Accelerometer_X_Minimum
14 Gyroscope_Magnitude_Minimum Gyroscope_Y_Minimum
15 Accelerometer_Magnitude_StandardDeviation Accelerometer_X_StandardDeviation
16 Accelerometer_X_Maximum Gyroscope_Magnitude_IQR
17 Gyroscope_Y_StandardDeviation Gyroscope_Z_StandardDeviation
18 Accelerometer_Z_Maximum Gyroscope_X_Minimum
19 Gyroscope_Y_Maximum Gyroscope_Magnitude_Mean
20 Accelerometer_Magnitude_Mean Accelerometer_Z_IQR
21 Gyroscope_Z_Maximum Accelerometer_X_MeanAbsoluteDeviation
22 Gyroscope_Y_IQR Accelerometer_Magnitude_StandardDeviation
23 Gyroscope_Y_Mean Gyroscope_X_Mean
24 Gyroscope_Z_StandardDeviation Gyroscope_Magnitude_MeanAbsoluteDeviation
25 Accelerometer_Magnitude_Maximum Accelerometer_X_Jerk_Mean
26 LinearAccelerometer_Z_StandardDeviation Accelerometer_Z_Maximum
27 Accelerometer_X_Jerk_Mean Accelerometer_Magnitude_IQR
28 Accelerometer_Y_Minimum Accelerometer_Z_StandardDeviation
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frequencies of certain classes of human activities such as push/pull and
lift/lower/carry in a work shift, and estimating corresponding levels of
overexertion and ergonomic risks. It must be noted that while these
activities are common across many occupations, they are inherently
more complex compared to activities traditionally examined in human
activity recognition studies (e.g., walking, sitting). A rigorous in-
vestigation of the optimal data collection settings and experimental
parameters (i.e., smartphone’s position, calibration, window size, and
feature set) for reliably classifying human activities of interest was also
performed. It was found that the arm-mounted smartphone provided
more distinguishable patterns of signal than the waist-mounted device,
which was verified by observing lower classifier’s confusion between
similar activities. Moreover, calibrating the sensor signals (i.e., sub-
tracting sensor’s benchmark readings when the subject is idle from all
other sensor readings in non-idle times) improves classification results.
Also, segmenting data into 2-second windows generates better classi-
fication results. Finally, it was found that using the best feature subset
instead of all features increases the classification accuracy.

In the experiment conducted in this research, activities were video
recorded and used as ground truth to evaluate the performance of the
designed technique. It was found that estimated (predicted) ergonomics
risk levels were identical to those observed (ground truth). Therefore,
the designed approach has a great potential to replace manual ob-
servations that are time-consuming, interruptive, subjective, and re-
quire physical presence on the location. Moreover, it eliminates the
necessity of implementing sophisticated sensor network which requires
a significant amount of time and technical knowledge to set up, operate,
and maintain. Furthermore, this research illustrated a detailed in-
vestigation on optimizing various settings to prepare datasets for cross-
subject classification. The findings could be valuable for real-world
implementations where it is not possible to collect adequate training
samples from all subjects, rather training on one subject and testing on
other subject(s) is more feasible. Moreover, the proposed approach
contributes to the PtD practice by identifying the major sources of

ergonomic risks that need to be eliminated. For example, in the ex-
periment described in this paper, workers were found to be at high risk
due to the long duration of category-2 (push/pull) activities. Therefore,
the authority (superintendent, project manager, or safety inspector) can
be alerted to prevent this risk by redesigning the workplace, task, tool,
or environment so that the duration of these activities decreases
to< 50% of the work shift (see OSHA threshold values in Table 3).
Clearly, the manner by which such changes are implemented is ex-
pected to be different from one project to the next, as the nature of each
project and the types of activities performed are distinct.

While this work demonstrated an integrated approach to using
wearable technology (i.e., smartphone’s built-in sensors) and machine

Fig. 10. F1 scores of classification (for arm-mounted phone, calibrated data, 2-second window size combination) with various feature subsets from accelerometer,
linear accelerometer, gyroscope, and all three sensors.

Fig. 11. Actual labels, predicted labels before outlier removal, and predicted labels after outlier removal for worker W2.

Table 10
Performance metrics of classifier model before and after removing outlier.

Outlier Accuracy Precision Recall F1 Spearman’s
Correlation

Not Removed 90.25% 90.29% 90.25% 90.27% 85.39%
Removed 92.07% 92.14% 92.07% 92.10% 88.34%
Improvement 1.82% 1.85% 1.82% 1.83% 2.95%

Table 11
Confusion matrices for W1 and W2.

Worker Actual Class Predicted Class

0 1 2

W1 0 (no risk) 99.6% 0.4% 0.0%
1 (lift/lower/carry) 1.1% 82.2% 16.7%
2 (push/pull) 2.4% 4.3% 93.3%

W2 0 (no risk) 88.0% 3.3% 8.6%
1 (lift/lower/carry) 0.0% 91.6% 8.4%
2 (push/pull) 0.0% 5.9% 94.1%
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learning for ergonomic-related data collection and analysis in an ex-
perimental setting, findings can be generalized and inform similar ef-
forts in various occupations including construction, manufacturing,
healthcare, transportation, and agriculture. Future work in this research
will focus on investigating ways to capture the intensity factor (in ad-
dition to duration and frequency information) from field activities.
Intensity can be a major cause of WMSDs resulting from activities such
as lifting, carrying, throwing, pushing, and pulling. However, existing
literature on this topic all point to a key limitation in sensing technol-
ogies that hinders the ability to obtain weight information (directly or
indirectly) from IMU sensors mounted on people (and not objects). By
mounting sensors on objects, the cost of the developed system will
significantly rise, not to mention the inevitable challenges resulting
from the fact that individual sensors need to be installed, calibrated,
synced, and maintained one by one for each object. A more feasible
approach would be to centralize the sensing process by relying on
worker-mounted sensors that can significantly bring down the compu-
tation time and complexity, especially when dealing with hetero-
geneous data from multiple sensors. Having said that, the authors plan
to investigate whether a mathematical correlation exists between signal
patterns obtained from smartphone sensors (e.g., accelerometer, gyro-
scope, and linear accelerometer data), and the weight of objects han-
dled. Together, duration, frequency, and intensity information will
enable a more comprehensive and meaningful analysis of ergonomic
hazards associated with overexertion. Also, as part of the future work,
authors will explore the fusion of decisions that results from multiple
windows as well as to dynamically change the window size based on the

data of interest [48,49]. Moreover, while parameter optimization was
performed on a relatively small number of participants in the experi-
ments conducted in this research, a more robust optimization can be
performed by collecting training samples from people of different ages,
heights, genders, experience levels, and other characteristics. Finally,
similar techniques can be used to automatically assess WMSDs, quantify
their severity, and ultimately track the progress of corresponding
treatments. To this end, the authors plan to explore the feasibility of
such unobtrusive ambulatory systems and automated frameworks in
clinically-relevant WMSDs applications. It is also worth mentioning that
with the proliferation of wearable technology, the authors expect a
paradigm shift in physically-demanding industries such as construction
and manufacturing, where ergonomic risks and bodily injuries can be
more precisely predicted by augmenting data from bodily motions (si-
milar to this study) with (for instance) physiological data such as blood
volume pulse (BVP), electrodermal activity (sweat), electrocardiogram
(ECG), respiration, electroencephalogram (EEG) signals [50,51].
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