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Modern construction projects require sufficient planning and management of resources to become suc-
cessful. Core issues are tasks that deal with maintaining the schedule, such as procuring materials,
guaranteeing the supply chain, controlling the work status, and monitoring safety and quality. Timely
feedback of project status aids project management by providing accurate percentages of task comple-
tions and appropriately allocating resources (workforce, equipment, material) to coordinate the next
work packages. However, current methods for measuring project status or progress, especially on large
infrastructure projects, are mostly based on manual assessments. Recent academic research and commer-
cial development has focused on semi- or fully-automated approaches to collect and process images of
evolving worksites. Preliminary results are promising and show capturing, analyzing, and documenting
construction progress and linking to information models is possible. This article presents first an over-
view to vision-based sensing technology available for temporary resource tracking at infrastructure con-
struction sites. Second, it provides the status quo of research applications by highlighting exemplary case.
Third, a discussion follows on existing advantages and current limitations of vision based sensing and
tracking. Open challenges that need to be addressed in future research efforts conclude this paper.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In a broader sense, temporary construction resources (person-
nel, equipment, and materials) ‘‘aid the construction process by
delivering man- or machine power, and the required material com-
ponents to assemble or build a structure’’ [1]. Temporary struc-
tures (e.g., scaffolding, formwork, shoring systems) can also be
defined as ‘‘any structure that assists the creation of a permanent
part of a construction project’’ [2]. Their impact in construction is
high as they are frequently used on most projects, impact safety,
quality, speed, and profitability of construction, but are also a
major cause of spatial conflicts and many disasters [1]. An indus-
try-led study [3] on leading industry practices for estimating, con-
trolling, and managing indirect construction costs identified
project management, field supervision, material handling and scaf-
folding as the top most challenging and wasteful tasks in construc-
tion of large capital facilities and infrastructure. Subsequently, the
topic deserves attention in research and development, i.e. using
technological methods to advance the field of practice.

Construction sites associated to capital intensive infrastructure
projects involve significant quantities of resources, including
multiple levels of manpower, equipment, and materials. Proper
coordination of these temporary entities positively impacts on-site
productivity, which in turn influences construction safety, costs,
and schedule [4–6]. However, leading industry practices in
estimating, control, and management are based on frequent man-
ual observations and often still rely on text-based, labor-intensive,
time-consuming, inefficient documentation and reporting methods
[2]. As such, the task of measuring the progress of construction site
activities has often been a subjective and intensive manual process
that is prone to error and, in real operations, frequently out-of-date
[13].

Camera- or video-based monitoring technology in combination
with processing algorithms typically provide a non-intrusive, easy,
inexpensive, and rapid mechanism for generating a body of
operational information and knowledge which, when made
publicly available to project stakeholders, enable secure inquiry
into construction operations that is currently not possible [12].
Longer term, vision-based research can serve as a valuable aid to
project management by enabling tighter control and greater
efficiency.

Demonstrating that an active vision system can effectively ana-
lyze and assess work-site progress will assist project managers by
reducing the time spent monitoring and interpreting project status
and performance, thus enabling increased attention to control of
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cost and schedule. By making project management and workforce
more aware of the performance status of their project and their
work environment, potential savings to the industry are envisioned
by researchers and developers. Since benefits in construction often
advance a broader theme of issues, they are likely to impact sched-
ule, cost, safety, and quality at the same time.

Recent research efforts in this area seek to prove the hypothesis
that it is possible to reliably track multiple resources with images
(video, still and/or time-lapse) in order to reproduce the daily
workflow of activities associated to a worksite. The main purpose
behind the research is to understand the temporal and spatial nat-
ure of critical work packages on a worksite. The intent behind such
monitoring and analysis is to automatically provide critical infor-
mation on construction operations for improved decision making
in construction engineering and management [6].

The information obtained from such desired semi- or fully-
automated systems generates knowledge about worksite opera-
tions. In an information-based framework, much effort is spent
acquiring and interpreting information. In a knowledge-based
framework, efforts are allocated to making decisions based on
the interpreted information. If successful, computer-vision based
methods will transform the review of construction operations from
being information-based to knowledge-based, thus saving human
resources and improving decision effectiveness [7]. Given that cur-
rent research seeks to demonstrate and validate reliable localiza-
tion of construction resources (personnel, equipment, and
materials), accompanying concepts reviewed within the scope of
this article consist of two major components: (1) the derivation
of algorithms suited to tracking temporary resources; and (2) the
validation and analysis of the algorithm outputs with regards to
pre-determined activities or work packages.

For the first research component (algorithms), research focuses
on fusion of computer vision, machine learning, and methods
derived for arriving at robust and adaptive tracking algorithms,
which are directly suited for tracking the distinct classes of tem-
porary worksite resources (personnel, heavy or mobile equipment,
and temporary material aids, such as formwork, scaffolding) [8].
Heavy equipment and materials detection and tracking algorithms,
for example, require investigation into classification and detector-
based learning for classifying equipment and identifying bulk
materials on the worksite.

For the second research component (validation and analysis),
research proposes algorithms that are quantitatively compared
against ground truth measurements obtained through alternative
positioning technologies [9,10]. Existing and new photo or video
data of actual construction site operations and work packages are
annotated for validation of the algorithms and of the inferences
produced from said algorithms. A review of existing academic
research approaches verifies that the combination of vision-based
tracking information with operational information modeling can
provide knowledge about the state of operations of temporary
resources on an infrastructure worksite [11].
2. Background

The first goal of this paper is to provide a state-of-the-art syn-
thesis review that lays the foundation for a scalable deployment
of a vision-based sensing and tracking concept for site operations
analysis and validation of temporary entities through field experi-
ments. Fig. 1 shows the core focus within the context of site opera-
tions analysis and feedback. In essence, the project level
information available for supporting progress tracking and
resource utilization tracking, in conjunction with the data pro-
duced by other sensing modules, form the basis for vision-based
sensing and tracking for site operations analysis. Typically, project
level information exists before the start of construction, but is
hardly tracked frequently and without error during the project
execution phase. (Semi-) or automating the observation processes
assisted through sensing technology, however, requires effective
and robust algorithms than can process the data. Once outcome
and processes are assessed, existing knowledge management and
decision making and feedback processes can advance resource
and time allocation, subsequently adding new project level infor-
mation to decision makers.

As several case studies related to resource sensing and tracking
will be explained in much further detail, technology is then inte-
grated in the daily work flow in construction if it comes at accept-
able cost (hardware installation, data storage and processing, and
operation and maintenance). Although vision based sensing of site
operations is applied on several thousand jobsites every day and
the technology generally comes at low cost and yields high benefits
[12,14], the complexity of handling large data sets has prevented
significant progress. Field applications so far have mostly focused
on recording site status and data archiving [14]. Little to no
research has focused on sensing or tracking temporary resources
needed for construction [15].
2.1. Competing sensing techniques and tracking technologies

While a core sensing infrastructure may include a variety of
existing sensors to track temporary resources in construction,
fundamental work in vision-based research concentrates on the
creation of algorithms for video and time-lapse image signals to
perform site operation analysis. Following the concept architecture
(see Fig. 1), updated project level information, i.e., schedule, com-
puter-aided design (CAD) site layout plan, geographical informa-
tion system (GIS), and building information models (BIM) form a
base for progress evaluation. They can be geospatially linked to
sensing data from resource tracking. This can be precisely inter-
preted by relating the spatial source of these data to an as-built
model. These contain rich planning and execution information of
the ongoing activities to be measured. Also, information on con-
struction methods provides the ground for measuring detailed
work hour utilization of a construction activity in addition to the
total work hours consumed, resembling the connection between
as-built model and progress tracking.

Progress and resource utilization tracking constitute two dis-
tinct components of productivity measurement. Specifically, pro-
gress tracking measures quantities installed while resource
utilization tracking measures consumed work hours as well as
the way by which such work hours were spent [4]. Current tech-
niques for site operation analysis, as described by [5], focus on
the monitoring of construction progress and the measurement of
work task productivity, but are heavily based on manual efforts
or are at best partially automated. Recent advances in the con-
struction industry and applied research for sensing and tracking
resources or the built environment have been focusing on the uti-
lization of commercially existing technology, for example: Radio
Frequency Identification (RFID) [15–17] and Ultra Wideband tech-
nology (UWB) [18–20], Global Positioning System (GPS) [21,22],
laser scanning [23–26], range imaging [27,28], unmanned aerial
vehicles [29,30]. Several case studies have demonstrated the suc-
cessful application of these technologies in construction. To name
a few that also contain some vision based sensing or tracking:
defect detection [25,31–33], rapid 3D and 4D CAD modeling
[34–36], progress monitoring [38–42], geo-referencing existing
project level information [37,39,42], simulation [22,43], visualiza-
tion [44,45], real-time resource tracking and data visualization
[46–50], virtual design and augmented reality [45,51], and worker
safety [52] and performance [53–55].



Fig. 1. Concept architecture for vision-based sensing and tracking for site operations analysis.
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The applications of vision based sensing and tracking in con-
struction vary widely based on the data that can be collected and
processed (see Fig. 2). The timescale and value determine the selec-
tion and use of vision based monitoring technology. For example,
site level project management may require only local, but detailed
access to data while off-site employees may demand less frequent,
high level visual overviews of a project’s status. As sensing technol-
ogy becomes readily available, some project stakeholders likely
require pan-tilt-zoom (PTZ) video cameras with small or large
field-of-views (FOV), while others may find infrequent still photos
from terrestrial time-lapse or airborne cameras more useful. As
such, the specific infrastructure construction application sets a
demand that drives the selection of data capturing technology,
for example, type (terrestrial, air- or space borne, photo, video, or
point cloud), frequency (real-time, near real-time, or less frequent)
and size (wide or narrow FOV, few or multiple view angles).
2.2. Vision-based approaches for automated progress monitoring

One of the most economical ways to track progress automati-
cally is by recording video or taking images. This approach is not
new to construction. Diekman et al. [57], for example, used manual
video recording and interpretation to successfully demonstrate
non-value-adding worker and material paths for steel-assembly
at height. Unfortunately, manual efforts that go into accurate
recording and precise interpretation of the collected visual data
Fig. 2. Timescale and value of information provided to project stakeholders.
can be very high, especially over long time periods. Automated
methods would positively benefit this research area; however,
the main challenge in vision-based approaches is precisely the
automated extraction of progress information from extended
time-lapse photographs or (see highlighted box in Fig. 1).

The increased need for and use of advanced sensors on the
construction worksite, coupled with the massive amount of data
collection associated with the sensors, a fortiori demands the use
of automated or, minimally, semi-automated methods [58].
Otherwise it can easily overwhelm companies or individuals.
Fig. 3 illustrates four dimensions of data: volume, velocity, variety,
and value. Volume refers to the size of data, variety to the number
of types of data, velocity to the speed of data gathering or process-
ing, value to an information- or knowledge-based application in an
enterprise. The challenge in large and complex infrastructure con-
struction projects is that the expansion of all four properties is
required, rather than focusing on volume alone. Instead, a true
meaningful approach for project stakeholders exists when value
is integrated through technology into the operation of construction
processes.
Fig. 3. Big data – ‘‘4 Vs’’: Expanding on four fronts at an increasing rate (modified,
after [59]).
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2.3. Computer vision for construction operations analysis

The field of computer vision specifically deals with the collec-
tion, processing, and visualization of data associated with the
three-dimensional world [60]. Depending on the sensor and
intended data, a variety of techniques exist for successfully
processing imagery and video [61–67]. General computer vision
based framework architectures rely on three generic components:
detection, tracking, and assessment. The detection component
seeks to identify objects of interest in the FOV. To date, the princi-
pal methods involve background modeling, target modeling and
matching, and machine learning based methods [62–69]. Once
detected, tracking algorithms can then be applied to obtain an
estimation of the motion of the target in space and time. For small,
relatively consistent targets, non-rigid template-based methods
are ideal. For larger, non-rigid, or variable targets, segmentation-
based on feature-based tracking methods tend to work better
[70–74]. The primary segmentation-based techniques are
Bayesian segmentation, active contours, and graph-cuts [73–76].
In contrast to the non-rigid template-based methods,
segmentation-based methods can provide bounding contours of
the track objects, meaning that pose, intent, or other geometry-
based assessments can be made regarding the track object
[77,78]. Feature-based methods key on small image patches or
regions of the target that have a unique signature relative to the
local image content [79–81], then track these patches over time.

The aforementioned computer vision algorithms play an impor-
tant role in persistent visual sensing systems and related systems.
Current active visual sensor system research details spatial aware-
ness of construction job site conditions [31,40,51], but focuses few
times on accurate monitoring of construction environment dynam-
ics (incl. temporary resources) such as labor, material, temporary
structures, and equipment positions. Model-based 3D scene analy-
sis tools are used to determine the best fit of the existing model
with the imaged work project [39,82].

2.4. Summary

What is lacking from this body of research, however, is long-
term temporal tracking of temporary construction assets for the
analysis of site operations and progress monitoring. While research
in construction has focused on specific subsets of the overall proce-
dure regarding automated or semi-automated operations analysis,
both an architecture for generating more complete analysis of con-
struction site operations through visual sensors, and the selection,
validation, and verification of the appropriate computer vision
algorithms are missing.
3. Criteria for selecting a vision-based monitoring approach at
infrastructure construction sites

The objective of multiple research groups has been to automate
the vision-based detection and tracking of worksite resources (per-
sonnel, equipment, tools, and as-built or bulk materials) and to tie
the collected data to critical information and tasks associated to
the work plan.

3.1. Characteristics of recording technology and site geometry

The characteristics of the recording equipment to be used, e.g.
video, time-lapse and aerial photography, are known, which
includes camera intrinsic and extrinsic parameters. Site character-
istics of typical infrastructure construction operations vary widely.
Many include initial ground clearing or demolition, site prepara-
tion operations, initial foundation work, and so on. Road or bridge
infrastructure projects, for example, are sites with quite open areas
and line-of-sight access. Waste or fresh water are projects that rely
on underground pipelines, and sometimes include even larger
underground storage tunnels or tanks. These are the conditions
where it is typical to have heavy machinery working alongside per-
sonnel, or to see collections of bulk materials on the premises
awaiting integration into an as-built structure.

Due to the limitations of line-of-sight visual sensors, this review
does not cover interior work or other similar construction opera-
tions with massive occlusions arising from the built structure or
dynamics of resources itself. It also does not seek to handle adverse
visual conditions due to poor weather. Dirt, dust, and precipitation
such as rain and snow are known to affect vision based sensors;
however, the construction operations of interest may also typically
halt under such circumstances.

3.2. Motivation to focus on areas with high return on investment

The outlined path for automated real-time vision-based sensing
and tracking of temporary construction resources can be achieved
if research provides algorithms and validation that solve the fol-
lowing issues:

1. Prioritization of high pay-off application scenarios that justify
the investment.

2. Algorithms for robust tracking of personnel (large numbers
with identification preferably by trade).

3. Algorithms for tracking of construction equipment (e.g., heavy
and mobile).

4. Algorithms for tracking temporary structures (e.g., scaffolding,
formwork, shoring systems containers).

5. Algorithms for tracking bulk materials temporarily occupying
site spaces (e.g., prefabricated concrete elements, lumber,
steel).

6. Algorithms for tracking change in site layout (e.g., site access,
temporary roads, laydown areas).

7. Algorithms for automated, preferably real-time analysis for
moving from data, to information, to knowledge.

8. Validation of research approach using alternative sensing tech-
nologies as ground truth.

9. Knowledge dissemination and tracking of successful integration
in project applications elsewhere.

The following section demonstrates already existing and suc-
cessfully working applications of vision based sensing and tracking
specifically of temporary resources in infrastructure construction
environments. They show that research has already started
addressing the aforementioned issues.

3.3. Identification of potential application areas

The list of topics that computer vision-based sensing and track-
ing of temporary construction resources might at some point in
time solve is long. Table 1 lists several temporary resources that
generally are present on construction sites. Few of them are cur-
rently part of research efforts or have successful commercial track-
ing processes in place. So far, vision based sensing and tracking has
been focusing on the following main categories: construction per-
sonnel, large machinery, presence of containers, change in con-
struction site layout and roads, lay down areas, supportive
structures like fencing and guardrails [84,85].

4. Successful case studies in main research focus areas

Plenty applications exist that could benefit from semi- or
fully-automated vision based sensing and tracking methods. The



Table 1
Categories and examples of commonly used temporary construction resources.

Project supervision
and personnel

Individuals, groups of individuals (e.g. project
management: project manager, construction
manager, project engineer, project controls, safety
coordinator, QA/QC manager; field supervision:
general superintendent, general foreman, field
engineer; project administrative: receptionist,
accounting clerk, secretary, clerical staff, data entry
staff, document control; construction and field
testing: surveying /layout, material testing, training,
site photos, commissioning; workforce: trade
workers, specialists)

Temporary facilities
or structures

Security fences; access gates; noise and dust
protection; temporary housing and camps;
temporary office and services: office, material, tool
containers; restroom facilities; health and safety
facility; first aid station; repair facility; existing
vegetation; safety protection equipment (e.g.
guardrails)

Construction
equipment and
tools

Machinery (e.g., lifting: tower, mobile, and crawler
cranes, exterior lifts and platforms; earth moving;
excavators, dozer, scrapers, graders, dump trucks,
drilling, tunnel boring machine; material handling:
concrete pumps; forklifts; etc.); road and site
vehicles (e.g. special purpose trucks; golf carts);
small tools and consumables; tire washing facility

Temporary materials Bulk: concrete, asphalt, steel; formwork;
geotechnical shoring; scaffolding

Infrastructure and
logistics

Access and exist points; construction roads;
temporary public roads; pedestrian walkways; craft
transportation; warehouses; laydown yards (closed
and open); off-site storages; parking facilities;
services and support for people with disabilities;
construction and transportation signs; traffic lights;
electricity, water, and gas; drinking water to trades;
lunch tents; fire extinguishers; communication:
telephone, fax, and internet; waste water; recycling
and garbage

Size and state of
resources

Small, medium, to large; Static, dynamic, or mobile;
close or far away; spread; joint; fully, temporarily, or
partially occluded; cast-in-place, prefabricated, and
precast elements
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following therefore limits the scope to three important ‘temporary’
construction resources: (a) personnel, (b) equipment, and (c) bulk
materials and structures. Each one of them is explained in more
detail by describing some major research benefits and challenges.
4.1. Robust and long-term tracking of personnel and interaction under
spatial–temporal aspects

As discussed earlier, preliminary research efforts have led to
moderate success in tracking personnel on the construction site
using (wide FOV) cameras. Due to the large intended visual foot-
print, they do not provide detailed information regarding suffi-
ciently small track entities such as personnel. The low resolution
of cameras might as well be a benefit as the identity of workers
is protected in some countries [87]. In order to track small targets
in such a large visual FOV, algorithms have to improve upon
existing tracking algorithms. Figs. 4 and 5 depict recent results
on tracking individual workforce under such conditions [84–86].
The camera produced lower resolution images once it is applied
from a far distance. Open problems that still need resolution and
validation include long-term tracking of personnel, both as well-
separated individuals and as multiple interacting personnel [50].

Long term tracking of objects Often requires modification of a
given tracking algorithm. The primary cause is that the appearance
model of an object may not remain consistent over time due to
variable imaging conditions. While the derived algorithm is robust
to moderate variation, it cannot handle large changes in model
appearance. In order to be robust to such variation on a larger time
scale, many existing algorithms are modified to adapt the target
model over time based on the time history of the tracked target’s
appearance [88]. One aspect to carefully consider is that these
models indiscriminately update the model based on information
contained within the track window, which may not be optimal,
and can also lead to loss of track due to incorrect model updates.

Fig. 6 depicts scenes common on large infrastructure projects.
Using a panning camera, early research used track signals gener-
ated from two separate algorithms, the mean-shift and Bayesian
segmentation. Preliminary studies have shown that the Bayesian
algorithm [7] provide a more accurate and smoother tracker signal
than the mean-shift. Furthermore, being a segmentation-based
method, it can adaptively re-sample the track object appearance
model and therefore accommodate any time-varying elements
associated with the appearance model.

Robust tracking of personnel interacting over a long term, e.g.
assembling or disassembling temporary structures like scaffolding
or formwork, can contribute to much needed task- and activity-
level analysis. While a few personnel interacting over short time
periods did not lead to track loss nor confusion, sustained interac-
tion and occlusion of multiple personnel do cause problems.
Especially if the personnel appearance models are similar, which
is highly likely given the use of safety vests. Resolution of the prob-
lem requires either trajectory linking and Bayesian analysis [62] or
a sufficiently robust filtering strategy [90].

An approach could be to adaptively monitor and update the
measurement and prediction uncertainties associated to the
tracked personnel. The concept will be amplified and accomplished
for the case of multiple personnel. The same techniques proposed
for adapting the target information can be used for identifying
measurement uncertainty. In particular, density estimation
techniques can be used to statistically compare the interacting
personnel models to identify track confusion potential. The mea-
surement uncertainty then is a function of the statistical overlap
with neighboring personnel and background content, while the
prediction uncertainty is a measure of the shifting foreground
likelihoods estimated from the background model. The former
influences the detector confidence measure, whereas the latter
influences the tracker confidence measure. Fig. 6 shows prelimi-
nary examples of the author’s work for tracking multiple construc-
tion workers at the same time over an extended period of time.

The assessment or analysis of the visual scene can be performed
by processing the tracked trajectory information, or through gross,
non-specific methodologies, such as optical flow or image differ-
encing. These latter methods identify changes in the visual scene
given a video sequence. Methods for extracting trajectory informa-
tion have been developed and applied to, for example, small
groups, to large crowds [86,89]. Alternatively, a subfield within
computer vision seeks to develop model-based algorithms for
matching existing 3D models with digital photos of an object, or
using multiple photos to reconstitute the 3D structure of the object
[23,27,34,40,50].

4.2. Detection and tracking of equipment in construction of temporary
aids

Machines found on a construction worksite exist at many size
scales relative to humans, from small (i.e., skid steer loaders), to
medium (i.e., excavators), to large (i.e., pile drivers and cranes)
(see also Table 1). Given the distinct dimensions and appearances
of temporary entities, fundamentally different strategies can be
utilized for tracking equipment. Nevertheless, the principal
concepts regarding machine learning and density matching
learned from personnel tracking can also serve to inform equip-
ment tracking algorithms.



Fig. 4. Tracking personnel using wide field-of-view camera surveying construction site.

Fig. 5. PTZ camera tracking: Following a construction worker using mean-shift (magenta) and Bayesian segmentation (blue) [89]. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Tracking of equipment, e.g. cranes that lift temporary material
during assembly or disassembly [91] or excavators and dump
trucks that move earth for temporary shoring (see Figs. 7 and 8)
[50], requires temporal tracking of large objects (relative to the
camera’s FOV). This is most effectively performed by tracking fea-
tures associated to the temporary object and, when possible, by
tracking regions of uniform appearance (i.e., segmentation-based
tracking). Research considers joint feature-based and segmentation
based algorithms for achieving the tracking of construction equip-
ment. While it is currently possible to track a single piece of equip-
ment, a major difficulty is that of occlusions when pieces of
equipment are in close proximity or occlude each other, much as
with personnel. The effect of self-occlusion on the feature tracking
of construction equipment leads typically to feature loss. By main-
taining the track of the segmentation, the correct features can be
reestablished after the self-occlusion ceases. Similar results will
hold when two machines occlude each other temporarily.

The kernel covariance tracker used in a case study that is illus-
trated in Fig. 7 is an improvement on the tracker proposed by [84].
Several improvements are made: (1) reduction of data before track-
ing and (2) introduction of a scale space search with upper limits and
lower limits. The data reduction step saves memory and lowers the
computational cost of tracking. The scale space search allows the
tracker to handle changes in scale. While many research effort
involve manual seeding to begin the tracking [7], to initialize this
tracker, the target’s color and spatial information are learned
through kernel principal component analysis (KPCA) with a
Gaussian kernel. For every frame and each target, a gradient ascent
procedure localizes the target by comparing the foreground image
data with the targets’ learned model. Fig. 7 depicts the tracking
results for a short segment of time. The three targets are outlined
by a bounding box and their trajectories over time are depicted.

The activity status of equipment building temporary structures
follows that of [50], where the machine activity is decomposed into
static, moving, or within a region of interest. Each region of interest
has specific meaning as derived from the probabilistic graph model
of the potential activity states of each machine. An additional
activity check is performed when an excavator and a dump truck
are in close proximity. Then, much like in [92], the movement of
the excavator in the proximity zone of a static dump truck estab-
lishes when an excavator begins filling a dump truck.

Event detection processors generate the statistics to determine
the timespan and state the excavators and dumps are in. It uses the
trajectory information from the tracker and the results from the
activity status estimation to determine the activity. The computed
results are: (a) how many dump trucks entered the scene, (b) how
much time they spent in the FOV for loading, (c) how many bucket
loads filled each dump truck, and (d) and how long the machines
spent idle. Fig. 8 depicts some sample results to the construction
of temporary shoring walls.

Classification of equipment is to reason about the machines
detected and tracked on site. It is necessary to know the equipment



(a) Construction crew performing housekeeping tasks 

(b) Monitoring an unsecured construction gate
(video processed results displayed as a time-lapse) 

Fig. 6. Robust tracking of multiple construction workers over an extended period of time.
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class or type for connection to a work activity. Given the variety of
equipment on construction sites, developing a one-size-fits-all
classifier for identifying the type of equipment detected would
be inefficient and inaccurate. Recent research on classification
metrics and inter- versus intra-class determination provides criti-
cal clues as to how one should proceed [93–95]. Other approaches
focused on vision-based equipment action recognition using sup-
port vector machine classifiers [92].

4.3. Identification and monitoring of bulk or temporary materials
supporting construction

It is common for large infrastructure construction projects to
contain pre-built materials or large volumes of bulk materials, as
well as temporary materials, onsite for installation. The supply
and depletion rate or visible existence of these materials provide
time-stamped evidence regarding the state of construction
activities, their location and occupancy of laydown areas, and
trajectories used. Identifying and tracking temporary resource
existence and/or volume over time will enable awareness of the
completion rate associated to work packages. To successfully track
the changing supply levels of bulk materials requires algorithms
capable of detecting and segmenting these materials in sensed
images. While detection algorithms are needed to identify the
existence of these materials, segmentation algorithms are pro-
posed to maintain track of the time-varying material supply.

Generating and maintaining a database for determination of bulk
or temporary materials for detection and tracking is beyond the
scope of many existing research projects, however, the generation
of an algorithm for rapidly and automatically learning how to
detect a given material from sample images is a feasible endeavor.
The feasibility of such an approach is high by targeting a collection
of progress relevant bulk materials (resources that are associated
to work activities on the critical path) in an image library.
Candidate materials include pre-fabricated rebar cages, concrete
piles, steel girders, formwork, etc.; others can be assessed for via-
bility also. The materials noted above directly relate to work pack-
ages in a Work Breakdown Structure (WBS). Although some
materials previously were tracked using barcodes or RFID technol-
ogy [16,96], visual information where these materials are tem-
porarily stored on site or in a laydown yard would add additional
confidence to task scheduling and reduce risk during the resource
allocation process. More recently, vision based approaches in
research have focused on tracking multiple pieces of equipment
at the same time while tracking quantities of earthwork material
or concrete placing [49,50,91,97]. Similar approaches can be used
for specific temporary objects, for example, scaffolding, shoring
panels, timber lagging walls [98].



Fig. 7. Sample estimated background, sample image, and foreground detection (panel images) and sample kernel covariance tracking results [50]. Note: The viewer might
perceive this photo as an image with low pixel resolution. This is due to the camera sensor parameters and demonstrates that vision data processing from such sensors works
even when having such data quality available.

Fig. 8. Dump truck state estimates for a video segment, sample pie chart, and event statistics table [50].
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Moving from detection to segmentation of materials many
detection algorithms identify approximate regions where the target
object or material is located, but do not pinpoint accurately the asso-
ciated region [99]. At this point, if one desires a more accurate
measurement of the region associated to the detected material, seg-
mentation algorithms will be required, or at least geo-referenced in
other, a priori available project level information (see Fig. 1). Fig. 9
shows preliminary results of tracking temporary material resources
on a bridge and highway construction site using active contours.
Active contours are a segmentation-based tracking algorithm, uti-
lizing gradient-descent to minimize an image-matching energy
functional. They require initialization, either by some detection
method or by a human operator. In a first example, the temporary
construction material to track was selected by hand, while the active
contour algorithm automatically tracked the remaining frames.
4.4. Occupational health and safety (OHS) compliance checking

In a second example using low resolution imagery, see Fig. 10,
preliminary results of tracking temporary safety equipment on
the same highway construction site using active contours and
geospatial referencing are shown. These can be useful aids in com-
pliance checking, tracking, or documentation. In general, moving
from a detection-based strategy to a segmentation-based strategy
is not commonly done as the two methods are considered to be
distinct. Note that 10 safety drums in the far distance of Fig. 10b
were not detected probably due to distance and partial occlusions.
Within the context of temporary safety equipment detection and
tracking, however, once a material is detected, an accurate
estimation of its bonding contour is possible to infer quantity,
geometry, and potentially location.



Fig. 9. Temporary material supply tracking using time-lapse imagery (material: steel shoring piles; imagery taken from [12]).

(a) Spacing between safety drums 

(b) Lane merging 

Fig. 10. Work zone safety traffic control during highway infrastructure construction.
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Utilizing the characteristics of sensing technologies will enable
the collection of productivity and safety data from site activities.
Some can be more easily measured than others. Depending on
the complexity level, the resources determine how critical they
are to the overall project productivity and their connection to
visually salient content. Each selected work site activity can also
be assessed comparing the available project level and work task
information (i.e., who performs, what task, how long, how many
units) with the information that the effective and robust data pro-
cessing algorithms generate. Often, technical limitations exist on
the hardware end. Range cameras, for example, have shown early
impact on safety and health research related to workers and
equipment used in infrastructure construction (see Fig. 11), how-
ever, they have not been adopted widely due to the harsh construc-
tion environments and the technical boundaries of the sensing
equipment [27,99].

4.5. Temporary work space and construction road utilization

Research performed on work space utilization is illustrated in
Fig. 12 [100]. It shows the feasibility of automatically monitoring
construction site activities (here: workers disassembling tempor-
ary structures, e.g. formwork) fusing vision and GPS tracking
technology and generating and visualizing the activity-based



Fig. 11. Field-of-view of 3D range camera (left), working principle (middle), output frame (right) [46,83].

Fig. 12. Work space information modeling of temporary structure (e.g. removing formwork) (following occupancy grid modeling approach developed by [18]).

Fig. 13. Resource trajectory (blue) and states (idle, working, moving) of a
telehandler (fps) on a temporary construction road [91]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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workspace of the workers in Building Information Modeling (BIM).
Such data gathering and information modeling enabled a 4D sim-
ulation of activities in progress, where workspaces at selected time
intervals were visualized and referenced to building elements in
BIM. For example, building elements that were scheduled for con-
struction are shown in blue in Fig. 12. The workspace occupied for
stripping the formwork from one concrete column (in orange
color) is illustrated using pink (50% of the workers’ time spent),
green (75%), and yellow (100%) cubes. The percentage indicates
the spatial–temporal relationship of occupied workspace and time
required for both of the construction workers that completed the
work task.

Several applications are possible, once tracking data of tempor-
ary resources becomes available in addition to already available
geometric data of building elements. For example, the trajectory
and space occupied by equipment could be gathered, analyzed,
and modelled since it largely depends on the procured type and
geometry of the lifting equipment. Fig. 13 shows the analysis once
robust resource location tracking is performed long-term. Statistics
to a loader are presented (idle, moving, working) although a semi-
automated signal processing approach was chosen. Data analysis
can then focus on value-adding information to project decision
making. For example, the two neighboring columns shown in
Fig. 13 limit the space that is available to the work crew stripping
the formwork off the concrete column. Visualization can simplify
communication to other work crews, i.e. keep spaces unobstructed
from other material, equipment, or tools, therefore yielding safer
and more productive activity completion.
5. Open research challenges

The following thoughts highlight a few challenges that are
important to researchers: data collection, validation, and spatial–
temporal analysis.
5.1. Data collection

Many construction sites employ site managers and staff that
rely on software tools to assist in keeping track of personnel,
equipment, and material presence. Recent management tools
combine the use of tracking and analysis technology [101]. Data
management has been commercially available, but most site data
is still entered manually. Little automated site data collection
and analysis is performed when using vision based images.
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Although monitoring cameras have been widely applied, large and
wide construction sites mostly rely on inspections of field manage-
ment or superintendents on both the owner and contractor side. To
collect high quality data a multi-tiered data collection effort can be
approached:

Optimal laboratory environment large scale equipment exists in
few laboratory-like settings. Among them are indoor or outdoor
test grounds of large equipment manufacturers. An alternative
are highly detailed articulated construction models, including con-
struction workers, heavy equipment, and bulk materials can be
articulated to collect still and video images. In particular perform-
ing ground truth measurement in safe and controlled laboratory
environments aids in the validation process to rapidly achieve pro-
gress on algorithm design and testing.

Controlled and complex outdoor environments time-lapse, pan-
tilt-zoom, wide FOV, aerial, and other camera technology is state-
of-the-art equipment for collecting vision data. Significant experi-
ence with cameras is needed to design, measure and test the effec-
tiveness of the proposed algorithms. Initial research plans typically
foresee the use of large construction environments that contain
few resources in the FOV of the camera(s). Robust algorithms are
finally tested in larger construction areas with multiple acting
resources, and scenarios that range from few resources to crowded
scenes.

Construction operations data collaborations with contractors
and construction camera providers grant easier access to very large
image and video data sets of multiple construction projects that
are completed or are under construction. Furthermore, information
to construction as-planned vs. as-built information, including data
to construction schedules, BIM, WBS, resource allocation, weather,
safety records, activity reports, or other data that is generally avail-
able, should be collected. Analysis can then be performed by cross-
referencing the information generated by the algorithms with
existing archival data records.

5.2. Validation of methods

It is important in the designing and testing of algorithms to vali-
date their performance. For instance, the performance of the out-
put of the proposed algorithms vs. its underlying ground truth
Fig. 14. Geospatially referencing trajectory data o
needs to be measured. Given the static position and dynamic
motion of some resources on the construction site, the resources’
positions and trajectories need to be precisely recorded before they
can be compared to the results of the developed algorithms. A
standard practice or near optimal method to validate the effective-
ness of algorithms is measuring location errors. Considering the
distance from camera to target, additional remote sensing technol-
ogy that can be precisely calibrated and aligned to the boundaries
of the observation space can be utilized. Technologies to measure
the ground truth to single and multiple resources have been tested
in experiments of various researchers, for example [8–10,102].
Research is required that expands these efforts to design
novel methods for measuring the ground truth of vision based
algorithms.

Validation of ground truth several proof-of-concept studies
[8–10,102] utilized a Robotic Total Station, UWB, or GPSto track a
single resource (see Fig. 14). Comparison of time-stamped tracking
locations generated to video became possible. Although prelimi-
nary field tests showed promising results of positioning errors less
than 0.5 meters, many research questions remain to be addressed,
for example: (a) what technologies can be utilized for ground truth
measurements to validate vision based algorithms; (b) what are
underlying and standardized experimental characteristics to track
multiple resources with low error rates; and (c) how are data sets
from multiple technologies fused and compared?

Logic applied to other construction data to ensure that the algo-
rithms operate correctly and provide useful data, logic must be
applied. Research typically includes standard tests that are based
on format or picture check (template check to track individual
resources), data type check (match same data points), range check
(within range of values, i.e., quantity), limit and presence check
(upper and lower limits, i.e., number of resources present),
quantity check (missing data), control check (progress monitoring),
consistency check (robustness of algorithm), and others.

5.3. Spatial–temporal operations and trajectory analysis linked to
information models

Exemplary data interfaces between the contractor information
and the information the algorithms produce have been created that
f RTS (ground truth), UWB, and video [102].
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allow automated reporting functions to support decision making of
field construction personnel [100]. Although a fully automated
information system based on vision data is within near reach of
completion, proof-of-concept and feasibility can lead to future
research and development.

Comparison of as-planned vs. as-built information previous
research efforts exist that have shown that progress tracking is fea-
sible based on vision data [40,51]. Resources that are dynamic in
nature and contribute to an as-built structure requires tracking
them over time as they are used and eventually (e.g., material)
become part of the as-built structure.

Automating the record keeping of resource presence and uti-
lization spatial–temporal understanding of resources will be
achieved by tracking how many resources were on site and in
which space personnel or equipment was working in and for
how long. Such automatically generated information significantly
transforms and simplifies many of the current manual work tasks
of superintendents and field engineers. The gained information will
be linked to construction drawings and schedules to visualize the
area of activity. Resource tracking information can be integrated
into building information models (main contributions) to reason
workspace availability and utilization [104].

Understanding the activity level on job site and/or work area for
many project stakeholders having information on the level of job
site or work area activity is important to allocate resources.
Knowing, for example, no, low, medium, or high activity gives valu-
able understanding as to which project tasks are on track and
which are not. Detailed tracking of specific work areas requires
the linkage to existing work task scheduling. Manual (as-planned)
vs. automated (based on vision algorithms) operations analysis is a
goal in many research efforts.

Definition of histories to resource availability and quantities the
output of the algorithms can be used to identify the depletion ratio
of resources. Although it may not be feasible to track very small
sized materials with cameras far away, providing the depletion
ratio will play an essential role to assist construction procurement
when to replenish materials. This is in particular needed for tem-
porary objects and bulk materials. In the long-term, automated
jobsite productivity measurement will be possible knowing when
resources arrive on site, where they are stored, and when they
are installed. A combination of technologies will assist in this task.
Using the entire construction sequence (from as-planned to as-
built) will establish construction histories from which knowledge
can be created. Visual information along with measureable project
engineering and management data will assist in particular young
engineers in understanding and evaluating the construction pro-
cess. Scenarios will be created that give engineers the tools at hand
to judge on situation based events.

Considering worker feedback and rights in the design and use of
algorithms the research environment adapts widely used rules to
gather and analyze data of personnel (called Human Subject
Research). Although the feedback of construction personnel is typi-
cally mixed about the use of vision cameras, the US National Labor
Relations Act (NLRA: 29 U.S.C. §§151-169) in 1935 does not permit
the use of high resolution video surveillance to monitor workers
organizing themselves or workers which intend to join labor unions
or collectively bargain their terms and conditions of employment
[87]. However, due to the low resolution of many commercially-
available camera technology the identification of faces from work-
ers is rather difficult. Among other reasons, the NLRA nor any col-
lective bargaining agreements will likely pose any legal obstacles
for a client to use video cameras. No other federal or state laws were
found that would prohibit or limit the use of camera monitoring in
the US. In fact, several thousand construction cameras operate on a
daily basis. The legislation abroad, in particular in countries of the
EU, is different as more strict regulations apply.
6. Conclusion

This work outlines early results for sensing and tracking of tem-
porary assets on construction sites. Several examples related to
infrastructure construction were presented. A state-of-the-art
literature review presented accomplishments of academic research
and practical industry applications. It demonstrates promising
work towards automated visual recording and processing of tem-
porary construction resources. Since technology advances rapidly,
automatically extracted tracking information from vision based
sensors is likely to soon provide essential project related informa-
tion regarding the spatial–temporal utilization of the worksite for
inferring onsite activities and work packages.

Similarly, as computing hard- and software is becoming more
advanced, research is expected to fill an existing gap regarding
the automated sensing, tracking and interpretation of temporary
construction resources, of which the following specific advances
will be enabled: (a) (semi-)automated sensing and tracking of con-
struction assets, (b) automated tracking of construction workforce,
(c) analysis tools for understanding overall site work flow, (d)
generation of a rich body of ground truth for evaluating the pro-
posed and future algorithms, and (e) data analysis and inter-
pretation of the collected field data (actual and simulated).

To accomplish these identified goals, researchers in this area
need to have an extensive background in construction, remote
sensing, image processing, machine learning, and computer vision.
Future research programs need to derive robust and fast algo-
rithms for long-term asset detection and tracking on construction
sites. In order to verify the accuracy and correctness of the derived
algorithms, the concept of simulated and realistic experiments
comprised of simultaneous measurement of the tracked assets
using other sensing technology to serve as ground truth, has been
introduced.
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