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A B S T R A C T   

Connected systems through computerized networks are at the heart of the Industry of the future. As they merge 
physical entities with cyber spaces, they fall under the paradigm of cyber-physical production systems. Cyber-
security is a key challenge for such systems, as they are subject to daily attempts of intruders to gain unau-
thorized access to their internal resources or to compromise their integrity. The fast increase of new attack 
strategies requires the rapid design and assessment of new defense strategies. It entails a complex, error-prone 
and time-consuming process, including the clear specification of the attack and defense strategies involved, 
and the design and implementation of the simulation model allowing to evaluate the performances of the defense 
strategy. This work intends to make such a process transparent to cybersecurity managers by limiting their 
workload to the sole specification of the characteristics of the system and the logic of the attack and the defense. 
It provides a generic hybrid simulation framework for flexible evaluation of cybersecurity policies, which is 
demonstrated on a SYN flooding application. Therefore, the contribution is twofold: (1) The proposed framework 
offers a high-level environment allowing various experts to collaborate by graphically modeling a given attack 
strategy and the envisioned defense strategy, without engaging in heavy implementation efforts. Then the 
framework’s executable infrastructure, which combines simulation with machine learning to understanding the 
interactions between the attackers & the defender, will allow them assessing the performances of these strategies. 
The proposed framework differs from state-of-the-art cybersecurity simulation environments in its uniqueness to 
combining the expressive power of a universal simulation modeling formalism with the user-friendliness of a 
visual simulation tool. Therefore, it offers at one side, a very high modeling flexibility for easy exploration of 
various cybersecurity strategies, and at the other side, integrated learning capabilities for allowing self-adaptive 
user-based cybersecurity strategy design. (2) The application demonstrating the framework focuses on the most 
encountered and still uncontrolled threats in cybersecurity, i.e. the SYN-Flooding based Denial of Service (DoS) 
attack. The application targeted is not meant to propose yet another SYN flood detection algorithm or to improve 
the state-of-the-art in that domain, but to prove the framework operationality. The experimental results obtained 
showcase the ability of the framework to support learning simulation-based SYN flood defense algorithm design 
and validation.   

1. Introduction 

As computerized networked systems are gaining tremendous 
importance with the advent of the Internet of Things (IoT) and the 
emergence of smart systems (e.g., smart factories, supply chains, grids, 
buildings, cities, etc.) under the paradigm of cyber-physical production 
systems (CPPS, i.e., production systems that tightly integrates various 
physical components with computational components through 

communication networks), cybersecurity is becoming one of the key 
challenges for their administrators, managers and the mass of users and 
objects concerned. The potential impact of cybersecurity weakness in 
CPPS (towards Industry of the future) ranges from economic damage 
and loss of production and competitiveness, through injury and loss of 
life, to catastrophic nation-wide effects. 

Nowadays, cybersecurity managers are under the pressure exerted 
by the massive increase of new attack strategies. Therefore, they need to 
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be more reactive in understanding the scope of a given attack strategy, 
and developing new defense strategies, the performance of which they 
must necessarily evaluate. Due to the complexity of interactions be-
tween the attackers & the defender, such an evaluation requires the use 
of modeling and simulation (M&S). In that perspective, one of the major 
challenges is the seamless communication between network experts 
(who provide the system knowledge) and M&S experts (who provide the 
methodological and technical skills to design and implement the 
required models). In the absence of a user-friendly analysis framework, 
such a communication is not obvious and its poorness may lead to the 
failure of the entire study. Moreover, as machine learning (ML) is widely 
recognized as carrying the promise of improving cybersecurity ap-
proaches, such a framework should take advantage of it. Therefore, a 
third level of expertise enters the scene, which the two previous types of 
expert involved do not necessarily have access to. It is important the 
analysis framework integrates learning capabilities in a way transparent 
to its users, especially when turning the specified attack and defense 
strategies into an executable simulation model. 

Motivated by these needs, this work proposes a generic integrated 
M&S and ML framework, which facilitates the design and validation of 
cybersecurity strategies by making it possible to explore from a high 
level of abstraction, different cybersecurity strategies, using simulation 
as a means of evaluating the objective function, namely the effectiveness 
of a defense strategy against a given attack strategy, and ML as a means 
of guiding the defense algorithm towards optimal efficiency. A SYN 
flood detection application is used to showcase the applicability and 
efficiency of the framework. Therefore, the novelty of this work is not to 
find yet another SYN flood attack detection algorithm, but to offer an 
operational learning simulation framework for adaptive design and 
validation of cybersecurity approaches. 

The remaining of the paper is organized as follows: Section II dis-
cusses related works. Section III presents the framework’s underlying 
principle of hybridizing M&S with ML. Section IV gives details of the 
framework’s structure and components. Section V applies the frame-
work to SYN flooding and shows the experimental results obtained. 
Section VI concludes the paper, and gives perspectives for future work. 

2. Related works 

Due to the double contribution of the paper, the related works are 

divided into two sections: the first one relates to state-of-the-art cyber-
security simulation environments, while the second one relates to SYN 
flood-based DoS defense algorithms. 

2.1. Cybersecurity simulation environments 

Various approaches based on computer networks simulation envi-
ronments have been proposed to assess the validity of cybersecurity 
strategies [1–6]. They all call on an in-depth knowledge of the under-
lying software tools such as OMNeT++ (Objective Modular Network 
Testbed in C++), NS2 (Network Simulator), etc., including technical 
skills in programming with advanced languages such as C++, TCL, and 
the like. A common drawback of these cybersecurity environments is the 
lack of a methodology layer that separate the domain and system 
knowledge from the technicity of designing and implementing the cor-
responding simulation and performance evaluation tool. 

Here, we propose a framework to facilitate cooperation between 
cybersecurity experts and M&S experts through a high-level graphical 
modeling interface, as well as to save implementation efforts through a 
systematic model transformation mechanism. The main advantage of 
such a framework is the reactivity it empowers cybersecurity managers 
with. Anytime a new threat occurs, network experts can quickly adapt 
by analyzing the scope of the threat and exploring the efficiency of 
various defense solutions. 

It is worth it to mention that the proposed framework is not dedi-
cated to any specific cybersecurity threat, as its core metamodel suggests 
a structure where multiple attackers interact with a defender in a 
network such that the characteristics (i.e., attributes and dynamic 
behavior) of all stakeholders (attackers, defender, and the network) are 
user-defined. Moreover, the learning ability of the defender can also be 
user-defined or left to be the built-in default learning mechanism. 

2.2. SYN flood-based DoS defense algorithms 

Defense strategies against Syn-Flood attacks are numerous in the 
literature and focus on various aspects, ranging from optimizing the 
network configuration to improving the infrastructure or the establish-
ment of connections, or adopting a firewall approach. Notable defense 
strategies are Defensive Programming [7], SYN Cache [8], Hop-Count 
Filtering [9], or SYN Cookies [10]. 

Fig. 1. Hybrid simulation approaches.  
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Recent works considering the advent and increasing security risks of 
Cyber Physical Systems (CPS), have used ML to improving SYN Flood 
detection [11–18]. More general threats in CPS not limited to SYN 
Flooding have been addressed with deep learning (DL) approaches [19]. 
The survey in [20] presents the current overall view of cyberattacks 
detection in CPS using DL to fully exploit cyber data. 

The application used here to demonstrate the operationality of our 
framework, focuses on SYN flood (although in this work, we do not 
intend to propose yet another SYN flood detection algorithm). However, 
there are no limitations on the type of cybersecurity threat that can be 
considered. 

3. Hybridized simulation and machine learning approach 

The generic learning simulation framework we propose aims at hy-
bridizing M&S with ML for security hardening in the context of CPPS. 
The envisioned approach is to allow modeling attack and defense stra-
tegies, and then using simulation empowered with ML to study the in-
teractions between the attackers and the defender and to assess the 
performances of various defense strategies given an attack strategy. In 
this section, we present the underlying principle of hybridizing M&S 
with ML. 

3.1. Level of hybridization 

Modern complex systems like CPS require multiple levels of expla-
nation be provided to achieve their various objectives, while keeping a 
holistic understanding of the behavioral pattern of the overall system 
and its interaction with the surrounding environment. As such, a hy-
bridization of approaches that would evidently provide useful knowl-
edge from various angles on how such systems perform at the holistic 
level rather than focusing on specific problems in isolation for specific 
solutions is an appropriate means to address their complexity. In M&S, 
such a hybridization can be envisioned endogenously or exogenously, 
and at different levels of concern. 

As described in Fig. 1, the concepts level, where the universe of 
discourse is set (such as the notions of state, event, concurrency…), calls 
for formalisms and (more generally) methods to capture the required 
concepts for symbolic manipulation. While the M&S community tradi-
tionally distinguishes between discrete and continuous phenomena as 
regard to central time-related concepts, qualitative and quantitative 
computational approaches, such as Operation Research or Artificial In-
telligence methods, rather focus on problem-solving steps and mecha-
nisms. Hybridization comes at this level with the objective-driven need 
to deal with temporal considerations for the system under study while 
trying to find a solution to the problem under study. Such a situation 
happens for example when optimization techniques make use of simu-
lation as a black box-type of evaluation function (exogenous hybridi-
zation), or when the requirement for a fine-grained understanding of the 
system entails both continuous and discrete phenomena be considered 
(endogenous hybridization). 

At the specification level, the real-world system and problem under 
study is expressed as a model, using the universe of concepts adopted, i. 
e., discrete or continuous simulation model (within M&S world) or 
problem-solving algorithm (within the wider computational world). The 
literature has coined various terms to qualify the various possible hy-
bridizations, such as DisM + ContM, or DisM/ContM + Alg (where “+” 
denotes a composition/mixing operation that can vary from loose to 
tight integration). 

At the operations level, engines are built to execute the model 
defined at the immediate upper level. Such engines are often referred to 
in the M&S world as simulators and integrators (for respectively discrete 
and continuous operations), while solvers implement the algorithms 
defined in non-M&S-centered computational approaches. Operational 
hybridization occurs here to support the requirement for multiple 
execution engines, each devoted to aspects that other engines do not 
support. 

3.2. Solution architecture 

The framework introduced here realizes hybridization at the 
formalism level, where the High-Level Language for Systems Specifica-
tion (HiLLS) is used for simulation modeling, and ML algorithms are 
integrated to the simulation metamodel defined. We then realized the 
corresponding operational level hybridization, where the Anylogic 
software is used as the simulator and the Scikit-Learn package is used as 
the solver. 

The hybridization could be envisioned from one of the two possible 
perspectives shown by Fig. 2:  

(1) ML-embedded M&S, where ML is a black box for M&S, i.e., 
simulation agents are empowered with learning capabilities, and 
thus can self-adapt their behavior to the situation during each 
simulation experiment;  

(2) M&S-embedded ML, where M&S is a black box for ML, i.e., the 
learning algorithm is trained with data provided by simulation, 
instead of real-world data. 

The proposed framework combines both approaches in an 

Fig. 2. ML-embedded M&S versus Simulation-embedded ML.  

Fig. 3. Simulation-ML hybridization.  
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interweaving scheme, as shown by Fig. 3, where an endomorphic inte-
gration of ML and M&S is adopted. 

In other words, we first design a simulation metamodel (i.e., a 
generic simulation model, that a user can instantiate to derive a custom 
simulation model for a specific case study) that embeds ML by con-
struction. We secondly build a training scheme, where the simulation 
model (which ML component is disabled) is used to train a chosen ML 
algorithm. The optimized algorithm is then used to enable the ML 
component embedded in the simulation model, and the resulting model 
is simulated in various experiments to assess the performances of the 
trained model versus the ones of the untrained model. 

4. Framework’s structure and components 

In this section, we describe in details each of the two legs of our 
solution, i.e., the M&S (metamodel-based) component and the inte-
grated ML component. 

The framework proposed is based on a metamodel, which is specified 
using the High-level Language for Systems Specification (HiLLS), a 
graphical modeling formalism amenable to both simulation, formal 
analysis, and enactment [21]. Therefore, any model instance resulting 
from this metamodel can be used to: 

(1) evaluate the performances of the model over a period of simu-
lated time,  

(2) perform rigorous logical investigation of the model’s consistency 
through an exhaustive exploration of the fulfillment of certain 
given requirements, and  

(3) execute the model for real-time verification when interactions 
with a real-world environment are involved, including humans in 
the loop. 

4.1. HiLLS modeling 

A dynamic entity is modeled in HiLLS as an HSystem, while a passive 
entity is modeled as an HClass. An HClass is described exactly the same 
way a class is described in object-oriented modeling (i.e., as a three- 
compartments box, where the first compartment shows the name of 
the class, the second compartment shows the declaration of attributes, 
and the third compartment shows the declaration of methods), while an 
HSystem is a four-compartments structure (as shown by Fig. 4) with 
input/output ports (i.e., interface to interact with its environment by 
message exchange), name and parameters in the first compartment (to 
abstract all assumptions on the context in which the model is a repre-
sentation of the system of interest), state variables in the second 
compartment (to catch its attributes), operations in the third compart-
ment (to catch its functional capabilities), and the configuration tran-
sition diagram in the fourth compartment (to capture its timed 
behavior). Fig. 4 shows how all elements of an HSystem are represented. 
Predicate-based schemas are used for the specification of attributes and 
operations. An HSystem can be composed of other HSystems coupled 
together. Therefore, HSystems can be hierarchically be composed to 
form larger HSystems. The composition relationship is represented by 
the object-oriented aggregation relationship (a line with a diamond 
shape at the side of the composed system, and the cardinality indicated 
at the component side to specify the number of such component 
involved in the composition relationship). 

The configuration transition diagram is made up of different types of 
configuration and different types of transition. A configuration can 
either be a finite configuration (which is denoted by a four- 
compartments box, respectively indicating the configuration’s label, 
properties, activities, and duration), or a passive configuration (which is 
similar to a finite configuration except that a vertical stripe is attached to 
its right side as an indication of its infinite duration), or a transient 
configuration (which is similar to a passive configuration except that it is 
shaped as a circle to indicate that its duration is zero in the simulated 

Fig. 4. HiLLS modeling elements.  
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time). A transition can either be an internal transition (a straight-line 
arrow, which indicates the next configuration of the system when the 
duration of the current configuration elapses without any input received 
by the system on any of its ports), or an external transition (a dotted-line 
arrow, which indicates the next configuration of the system when the 
system receives an input on one or many of its ports before the duration 
of the current configuration elapses), or a transient transition (a dot-and- 
straight-line arrow, which indicates the next configuration of the system 
when the system receives an input on one or many of its ports exactly at 
the moment the duration of the current configuration elapses). Some 
transitions can be grouped as a single one, with selection conditions 
associated (a diamond shape is used to visualize the condition and 
associated paths). 

4.2. Framework’s core metamodel 

The simulation metamodel of the proposed framework is shown by 
Fig. 5. The entire simulation domain is composed of the server under 
assessment, multiple clients, and the network linking them (including 
routers, gateways, etc.). The network’s characteristics are aggregated 
into a law of latency (with simple or double parameters), which can be 
tuned for simulation experiments under various scenarios. Clients can be 
normal users or hackers; the behavior of the latter is specified to capture 
the attack strategy under study. The server’s main characteristics are 
captured by its memory, a set of sequential cells which management is 
described in the behavior of the server to capture the defense strategy 
under study. The server also has a learning feature, a detection system 
that embeds the ML algorithm considered. Both the server and the cli-
ents are nodes that exchange messages through the network. The do-
main’s data collector is the component that keeps historical data 
collected during simulation experiments (therefore, it is the one feeding 
the ML algorithms). 

4.3. Framework implementation 

The framework proposed is implemented in the Anylogic M&S 
environment [22]. AnyLogic is a software whose expressive power in 
M&S is now indisputable. It supports multiple modeling abstractions 
(agents, processes, differential equations, and automata). It provides a 
visual notation to automatically generate the Java code for simulation 
execution. The agent-based paradigm is used to embed and glue all these 
heterogeneous abstractions through communication links. The Anylogic 
simulation is enabled with animation features (2D and 3D), and it’s 
possible to incorporate Geographic Information Systems (GIS) [23] as 

Fig. 5. HiLLS-specified simulation metamodel.  

Table I 
Hills to Anylogic transformation rules.  

HiLLS ANYLOGIC 

HSystem Agent without port 
HClass Agent with ports 
Attribute Agent’s variable 
Operation Agent’s function 
Input port Agent’s receiving port 
Output port Agent’s sending port 
Finite configuration Agent’s state with a delayed transition 
Transient configuration Agent’s state with a zero delay 
Passive configuration Agent’s state without delayed transition 
Internal transition Transition with associated delay 
External transition Transition on receipt of message 
Confluent transition Transition with delay and condition 
Composite HSystem Agent population 
HSystems’ interaction Communication link between agents  
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part of the simulation environment. 
We implemented the simulation semantics of the HiLLS-specified 

metamodel of the framework into AnyLogic executables, using trans-
formation rules defined in Table I. 

4.4. Machine learning integration 

The simulation metamodel embeds a learning feature through the 
ML-based detection system. While the simulation model is carried out 
with the Java-written AnyLogic software [24], the learning feature is 
provided by the Python-written Scikit-Learn package that integrates a 
wide range of advanced ML algorithms for medium-scale supervised and 
unsupervised problems [25]. The Java-Python interoperability is ach-
ieved using Pypline, a library of custom extensions for AnyLogic to 
connect and communicate with a local installation of Python, which is 
exportable in the form of jar files. Data generated by the simulation 
model are stored in an Anylogic database, which the ML algorithm uses 
for training and decision-making, as captured by Fig. 6. Additionally, 
other packages like Numpy, Matplotlib, and Pandas are used to perform 
preprocessing, data analysis, and visualization tasks. 

4.5. Learning simulation process 

When the detection system is deactivated, the system behaves 
without any learning capability. When the detection system is activated, 
the learning process requires three steps to be fully operational, as 
shown by Fig. 7, i.e.:  

(1) Data collection: in evaluating the performance of the defense 
strategy against the adopted attack strategy, normal clients and 
hackers allow the generation of benign and malicious traffic for 
data collection. Data recorded include the source address of 
packets, destination address of packets, packet size, and flag and 
timestamp of all packets sent from the agents. 

(2) Data preparation: this is a three-stage step, with data preprocess-
ing as the first step, feature selection as the second one, and data 
splitting as the last one. Preprocessing is an important step, either 
getting a clean dataset from the raw input data or reducing its 

dimensionality by retaining the relevant information. It also 
helps improve efficiency, reduce computation time, and ease the 
data mining process, depending on the behavior of the data. The 
main data preprocessing tasks performed are: data cleaning, 
transformation, normalization and finally the data formatting 
process. For feature selection, functionalities for each packet are 
explored according to the domain knowledge, in order to analyze 
what is relevant to differentiate a normal traffic from an attack. 
There are static features (such as packet size and interval between 
packets), and dynamic features (such as packet ratio and fre-
quency of destination address). Finally, data splitting is used to 
split data into training data set for model fitting, and test data set 
for final model assessment. 

(3) ML algorithms application: learning algorithms used in the pro-
posed framework and capable of differentiating normal traffic 
from attack traffic with great precision include the K-nearest 
neighbors (KNN), random forests (RF), decision trees (DT), and 
vector-supported machines (SVM) [26].  

(4) Model evaluation: after the model is built, its evaluation is called 
for, to see if it contributes to correctly predicting the target in the 
context of new data to come. As future instances have unknown 
target values, we must then generally check the evaluation met-
rics and especially the precision metric of the ML model on data 
for which the target response is already known, and then use this 
evaluation as an indicator of precision predictive of future data. 
ML provides a standards-compliant precision metric for binary 
classification models called Area Under the (Receiver Operating 
Characteristic) Curve (AUC) and returns a decimal value between 
0 and 1. This metric measures the fitness of the model to predict a 
higher score for positive examples compared to negative exam-
ples. AUC values close to 1 indicate an ML model that is very 
accurate. Values close to 0.5 indicate an ML model that is no 
better than guessing at random. Values close to 0 are unusual and 
generally indicate a problem with data. Basically, an AUC value 
close to 0 indicates that the ML model has learned the right 
trends, but uses them to make predictions reversed from reality (i. 
e., 0 is predicted as 1, and vice versa).  

(5) Implementation for real-time detection. 

4.6. Framework instantiation process 

The HiLLS specifications of the behavior of the major components of 
the simulation metamodel are given in Annex A. The flexibility of the 
framework comes from the ease of modification one can bring to any of 
these specifications. More specifically, it is possible to model any given 
attack strategy, any given defense strategy, any given network config-
uration, and any learning algorithm, for the framework to automatically 
assess the resulting performances, thus allowing a large exploration of 

Fig. 6. Integration between simulation and machine learning models.  

Fig. 7. ML integration process.  
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attack and defense strategies, as well as the observation during simu-
lation experiments of the relationship between hackers and the server’s 
defense. The framework application is achieved in the following eight 
steps:  

(1) Instantiation of the metamodel into a specific model with a given 
number of normal clients and hackers.  

(2) HiLLS specification of the network characteristics (latency) and 
behavior. 

(3) HiLLS specification of the attack strategy through the specifica-
tion of the behavior of hackers (either by using the default 
behavior, or by modifying it). 

(4) HiLLS specification of the defense strategy through the specifi-
cation of the characteristics (memory) and the behavior of the 
server (either by using the default characteristics and behavior, or 
by modifying them).  

(5) Anylogic simulation of this model (with deactivated learning), 
and evaluation of the performance of the defense strategy against 
the adopted attack strategy (Data Collector collects the learning 
data).  

(6) Ignition of model learning (model with activated learning on a 
given algorithm), where Data Collector feeds Detection System 
with a dataset extracted from the collected data.  

(7) Test-based validation of learning, where Data Collector compares 
the results of Detection System with the rest of the data collected.  

(8) Anylogic simulation of this model (with activated learning), and 
evaluation of the performance of the defense strategy against the 
adopted attack strategy. 

5. Application to SYN flooding 

In this section, experimental results are presented from the applica-
tion of our framework to SYN Flood management. The application fol-
lows the eight steps previously presented. This section first introduces 
the principles of SYN Flooding, and then shows how the eight steps of 
our framework application process can result in improving a basic de-
fense strategy after exploring the potential of some integrated learning 
capabilities. 

5.1. SYN flooding denial of service 

One of the most common, and yet not completely solved cyberse-
curity issues is known as Denial of Service (DoS). A DoS attack is a type 
of single-source attack on a network structure that prevents a server 
from serving its clients It consists of sending millions of requests to a 
server, from an invalid or usurped IP address (often called robot, 
zombie, bot, etc.) in an attempt to slow it down [27], and even to lead it 
to total inaccessibility. A distributed denial of service (DDoS) attack is a 
DoS attack variant, in which multiple distributed bots are aggregated as 
one (and called a botnet), and are used to cause a DoS. Fig. 8 illustrates 

Fig. 8. DDoS attack in the context of the Industry of the future.  
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the working model of a typical DDoS attack where the botnet is driven 
by a bot Master, in the context of CPPS. The Master bot takes control of 
an army of slave bots (without the knowledge of their owners), usually 
by infecting them with a Trojan or backdoor program, and use them 
simultaneously to attack a target server using the public Internet infra-
structure. Each bot will then engage in a SYN flooding attack, a tech-
nique that exploits the vulnerability of the Transmission Control 
Protocol (TCP) used by Internet [28]. 

This vulnerability is due to the ‘‘Three-way Handshaking” principle 
of the TCP, which when successful takes place in three stages, as illus-
trated by Fig. 9:  

• During the initialization of a TCP connection between a client and a 
server, the client sends a SYN message to the server, which is a vector 
(#seq, ACK flag, SYN flag) where #seq is randomly chosen by the 
client, and ACK flag = 0, and SYN flag = 1. 

• Then, the server allocates memory space for the Transmission Con-
trol Block (TCB) and sends a SYN ACK message, a vector (#rseq, 
#ACK, ACK flag, SYN flag) where #rseq is randomly chosen by the 
server, and #ACK = #seq+1, and ACK flag = 1, and SYN flag = 1.  

• Then, the client sends (#ACK, #rseq + 1, 1, 0). The handshaking 
ensures that both parties are ready to transmit data to each other. 

A bot will ignore the last step and not respond with the ACK message, 
resulting in an accumulation of unnecessarily allocated memory spaces 
by the server, as illustrated by Fig. 10. Such accumulation leads to a 
crash. 

Traditionally, a timer is triggered whenever a SYN message is sent. If 
the SYN ACK response is slow to arrive (> wait time), the connection is 
dropped and the server releases the memory space allocated for the TCB. 
Such a strategy, though necessary to avoid the permanent allocation of 
memory space that will never be used, also generates false positive. 
Indeed, the delay of receiving a SYN ACK response can be due to the 
latency of the network while the client is not a bot. 

Various defense algorithms have been elaborated against this type of 
attack, with different performances obtained depending on the network 
configuration, the server capacity, the frequency of attacks, etc. How-
ever, as discussed in this paper, these strategies are built ad-hoc, and 
there is a lack of methodological and operational framework for 
performance-based design and exploration of defense strategies, given 
an attack strategy [29]. This work proposes such a framework, with the 
possibility for network experts and simulation experts to jointly explore 
the effectiveness of new defense strategies in a landscape of multiple 
attack configurations, including the structure and characteristics of the 
network (such as latency, number of users, etc.), as well as the structure 
and behavior of the botnet (e.g., variable number of hackers, variable 
frequency of hacking attempts, variation of the hacking strategy). Such a 
feature is a very useful decision-support tool for CPPS cybersecurity 
administrators. 

5.2. Framework application 

We consider a metamodel instantiation with 100 clients, and we 
consider 3 different scenarios, each corresponding to a different per-
centage of hackers over the total number of clients, as shown by Table II. 
At this stage, it is also important to identify the structure of the data set 
to be collected. Thus, a correlation matrix (see Fig. C.1 in Annex C) has 
been used to eliminate strongly correlated variables. The only variables 
we retained to discriminate between a normal client and a hacker are 
(Inter-packets, Duration, Count_SYN), where Inter-packets is the fre-
quency of packet emission by the client, Duration is the response time to 
the client’s request, and Count_SYN is the number of SYN requests sent 
by the client. 

5.3. Specification of the network 

We consider a Markovian network’s latency (i.e., which distribution 
follows a Poisson law), with the parameter set to 0.5 seconds. The To 
feed the Data Collector, the hackers for the DoS traffic, and the normal 
clients for the normal traffic (non-DoS) interacted for a certain duration 
in order to constitute a dataset of 36,000 requests. Data is made up of 
two types, data labeled as normal traffic data and data labeled as SYN 
Flood attack data, obtained from the header of packets. 

5.4. Specification of the attack strategy 

The HiLLS specification of the Hacker system is given by Fig. A.3 in 
Annex A. The hacking attempt is tried periodically, where each attempt 
simply consists in sending out a SYN request, while ignoring any mes-
sage received back. 

Fig. 9. Successful handshaking.  

Fig. 10. unsuccessful handshaking.  

Table II 
Scenarios explored.   

% of hackers % of regular users 

Scenario 1 25 75 
Scenario 2 50 50 
Scenario 3 75 25  
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5.5. Specification of the defense strategy 

The HiLLS specification of the Server system is given by Fig. A.3 in 
Annex A2. The defense strategy relies on the awareness of the server. 

Each SYN request received is checked, and ignored if identified as a hack 
or treated otherwise. Each SYN request’s treatment books a slot in the 
memory buffer, as long as it is possible. SYN requests received while the 
buffer is full are ignored. ACK requests free the buffer. An unaware 

Fig. 11. Server occupancy in Scenario1 without ML.  

Fig. 12. Server occupancy in Scenario2 without ML.  
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server has no functionality for checking requests, therefore all SYN re-
quests received are treated equally. 

5.6. Simulation of the unaware model 

The simulation is carried out according to the values in accordance 
with Table II, where PartH and PartN respectively indicate the per-
centage of hackers and regular users in the population. Metrics evalu-
ated are the percentage of server occupancy due to both regular and 
attack requests [30]. Figs. 11, 12 and 13 respectively show for Scenario 
1, 2 and 3, the timely evolution of the server occupancy (red for what is 
due to the attack traffic, and green for the normal traffic). 

5.7. Learning model 

For learning purpose, 70% of the entire data set are used for training, 
and the remaining 30% for testing. The following metrics are used to 
measure the predictive accuracy of the model, as widely adopted [31]:  

• Confusion matrices, which are used to evaluate the performance of 
each classifier. Each classifier makes a binary decision for each SYN 
flood or normal traffic; so, a confusion matrix (2 × 2) is used as 
shown in Table III, where TP is True Positive, TN is True Negative, FP 
is False Positive, and FN is False Negative.  

• Accuracy, which the correct prediction (positive or negative) made 
overall, in a classification problem. As a reminder, the effectiveness 
of the proposed detection module is measured in terms of how 
accurately it identifies how well it classifies the upcoming packet as 

normal or attack. The accuracy of the detection approach is calcu-
lated using Eq. (1).  

• Precision, which is used to measure the proportion of positive data 
instances that a model has classified as positive. The precision metric 
ignores a model’s ability to recognize negative classes. The precision 
of the detection approach is calculated using Eq. (2).  

• Recall, which is a proportion of the pattern of true positives that has 
been identified. As such, a model that gives no FN has a well-being- 
worth callback. Precision and recall are normally inversely propor-
tional to each other. Which means that if one is improved, the other 
is degraded. The recall of the detection approach is calculated using 
Eq. (3).  

• False Positive Rate (FPR, i.e., rate of normal clients wrongly identified 
as hackers), which is minimized by a high precision.  

• False Negative Rate (FNR, i.e., rate of hackers wrongly identified as 
normal clients), which is minimized by a high recall.  

• True Positive Rate (TPR), which measures the classifier’s ability to 
correctly classify test data.  

• Receiver Operating Characteristics (ROC), which curve is a graph of 
FPR versus TPR. 

Accuracy =
TP + TN

TP + FP + FN + TN
(1)  

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)   

5.8. Learning validation 

We set up a reproducible scoring system which allowed us to test a 
series of learning algorithms by evaluating their performance. Since 
detection issues can often be tagged, supervised ML techniques are 

Fig. 13. Server occupancy in Scenario3 without ML.  

Table III 
Confusion matrix value.   

Predicted Result 
Positive Negative  

Actual Result 
Positive TP FN 
Negative FP TN  
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Fig. 14. Server occupancy in Scenario1 with ML.  

Fig. 15. Server occupancy in Scenario2 with ML.  
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therefore recommended for detection activities. Discrete or continuous 
labels can be managed by classification or regression algorithms, 
respectively [32]. We obtained the following results with KNN as the 
best score: DT Accuracy = 0.98133; RF Accuracy = 0.99027; KNN Ac-
curacy = 0.99144; SVM Accuracy = 0.98231. 

The KNN algorithm is known to be the most common classification 
algorithm in cases where there is no prior knowledge of the data dis-
tribution. This has been confirmed here by the ROC curve obtained (see 
Fig. C.2 in Annex C) for the deduction of AUC = 0,99000 (a sufficiently 
high value). 

5.9. Simulation of the aware model 

Figs. 14, 15 and 16 respectively show for Scenario 1, 2 and 3, the 
timely evolution of the server occupancy (red for attack traffic, green for 
normal traffic) with the trained model. 

It is clear that the percentage of server occupancy due to the attack 
traffic (red areas) is significantly reduced in all scenarios, but not null. 
This is because a good proportion of attack packets corresponding to 
true positives has been detected and only false negatives continues to 
flood the server. 

Conclusion 

This work presents a simplified and flexible framework, based on a 
hybrid M&S and ML approach, for the evaluation of attack and defense 
strategies in CPPS. This framework has the advantage of allowing se-
curity experts without simulation knowledge to easily explore and 
validate their defense strategies against various attack strategies. It 
differs from state-of-the-art approaches in its uniqueness to simulta-
neously offering a very high modeling flexibility, and integrated 
learning capabilities for allowing self-adaptive strategy design. 

Although the application in this paper focuses on the SYN-Flooding 

based denial of service attack, there is no limitation on the type of 
cybersecurity threat that can be considered. Also, any simulation plat-
form can be used instead of the Anylogic environment, due to the 
expressive power of the High-Level Language for Systems Specification 
used for simulation modeling (HiLLS). 

Such a framework is a decision support to address key questions like: 
(1) How can one capture the dynamic between the attacker and the 
defender? (2) How can one select security countermeasures that ensure 
self-adaptation to changing attacker strategies? And (3) How can one 
integrate this analysis into a cybersecurity decision support process? 

In this work, we do not intend to propose yet another SYN flood 
detection algorithm. In our future efforts, we plan to use our framework 
to exploring and improving state-of-the-art SYN flood defense strategies 
against various attack strategies under diverse network configurations. 

Authorship contributions 

Category 1 Conception and design of study: M. Koita, O.Y. Maiga, M. 
K. Traore; Acquisition of data: M. Koita, M.K. Traore; Analysis and/or 
interpretation of data: M. Koita, M.K. Traore, Y.M. Diagana; Category 2 
Drafting the manuscript: M. Koita, M.K. Traore, O.Y. Maiga; Revising the 
manuscript critically for important intellectual content: M.K. Traore, Y. 
M. Diagana Category 3 Approval of the version of the manuscript to be 
published: M. Koita, Y.M. Diagana, M.K. Traore, O.Y. Maiga; 

ANNEXES 

ANNEX A: hills specification of the simulation metamodel’s components 

Figs. A1, A2, A3, A4, A5, A6 

Fig. 16. Server occupancy in Scenario3 with ML.  
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Fig. A.2. Server HSystem.  

Fig. A.1. Network HSystem.  
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Fig. A.3. Hacker HSystem.  

Fig. A.4. Client HSystem.  
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ANNEX B: anylogic agents of the simulation metamodel 

Figs. B1, B2, B3, B4 

Fig. A.5. Domain HSystem.  

Fig. A.6. Coupling diagram of the domain’s components.  

Fig. B.1. AnyLogic agent of the Network HSystem.  
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ANNEX C: performance metrics 

Figs. C1, C3 

Fig. B.2. AnyLogic agent of the Server HSystem.  

Fig. B.3. The AnyLogic equivalent of the HSystem Hacker.  

Fig. B.4. AnyLogic agent of the Client HSystem.  

Fig. C.1. Correlation matrix between features.  
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Clermont Ferrand, France in 2015. He published 20+ papers in 
Modeling and Simulation-related international journals and 
conferences. His current research is in methodologies for 
Modeling and Simulation of complex systems.  
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