
Computer Networks 218 (2022) 109381

Available online 22 September 2022
1389-1286/© 2022 Elsevier B.V. All rights reserved.

A generic learning simulation framework to assess security strategies in
cyber-physical production systems

Moussa Koïta a,*, Youssouf M. Diagana a, Oumar Y. Maïga b, Mamadou K. Traore c

a UFR SFA, Laboratoire Mathématiques-Informatique, University Nangui Abrogoua, Côte d’Ivoire
b University of Sciences, Techniques and Technologies of Bamako, Mali
c University of Bordeaux, IMS CNRS UMR 5218, France

A R T I C L E I N F O

Keywords:
Cyber-physical production system
Cybersecurity
Denial of service
Modeling and simulation
High-level language for systems specification
(HiLLS)
Machine learning
Anylogic

A B S T R A C T

Connected systems through computerized networks are at the heart of the Industry of the future. As they merge
physical entities with cyber spaces, they fall under the paradigm of cyber-physical production systems. Cyber-
security is a key challenge for such systems, as they are subject to daily attempts of intruders to gain unau-
thorized access to their internal resources or to compromise their integrity. The fast increase of new attack
strategies requires the rapid design and assessment of new defense strategies. It entails a complex, error-prone
and time-consuming process, including the clear specification of the attack and defense strategies involved,
and the design and implementation of the simulation model allowing to evaluate the performances of the defense
strategy. This work intends to make such a process transparent to cybersecurity managers by limiting their
workload to the sole specification of the characteristics of the system and the logic of the attack and the defense.
It provides a generic hybrid simulation framework for flexible evaluation of cybersecurity policies, which is
demonstrated on a SYN flooding application. Therefore, the contribution is twofold: (1) The proposed framework
offers a high-level environment allowing various experts to collaborate by graphically modeling a given attack
strategy and the envisioned defense strategy, without engaging in heavy implementation efforts. Then the
framework’s executable infrastructure, which combines simulation with machine learning to understanding the
interactions between the attackers & the defender, will allow them assessing the performances of these strategies.
The proposed framework differs from state-of-the-art cybersecurity simulation environments in its uniqueness to
combining the expressive power of a universal simulation modeling formalism with the user-friendliness of a
visual simulation tool. Therefore, it offers at one side, a very high modeling flexibility for easy exploration of
various cybersecurity strategies, and at the other side, integrated learning capabilities for allowing self-adaptive
user-based cybersecurity strategy design. (2) The application demonstrating the framework focuses on the most
encountered and still uncontrolled threats in cybersecurity, i.e. the SYN-Flooding based Denial of Service (DoS)
attack. The application targeted is not meant to propose yet another SYN flood detection algorithm or to improve
the state-of-the-art in that domain, but to prove the framework operationality. The experimental results obtained
showcase the ability of the framework to support learning simulation-based SYN flood defense algorithm design
and validation.

1. Introduction

As computerized networked systems are gaining tremendous
importance with the advent of the Internet of Things (IoT) and the
emergence of smart systems (e.g., smart factories, supply chains, grids,
buildings, cities, etc.) under the paradigm of cyber-physical production
systems (CPPS, i.e., production systems that tightly integrates various
physical components with computational components through

communication networks), cybersecurity is becoming one of the key
challenges for their administrators, managers and the mass of users and
objects concerned. The potential impact of cybersecurity weakness in
CPPS (towards Industry of the future) ranges from economic damage
and loss of production and competitiveness, through injury and loss of
life, to catastrophic nation-wide effects.

Nowadays, cybersecurity managers are under the pressure exerted
by the massive increase of new attack strategies. Therefore, they need to

* Corresponding author.
E-mail address: koita_m70@yahoo.fr (M. Koïta).

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

https://doi.org/10.1016/j.comnet.2022.109381
Received 6 April 2022; Received in revised form 7 August 2022; Accepted 20 September 2022

mailto:koita_m70@yahoo.fr
www.sciencedirect.com/science/journal/13891286
https://www.elsevier.com/locate/comnet
https://doi.org/10.1016/j.comnet.2022.109381
https://doi.org/10.1016/j.comnet.2022.109381
https://doi.org/10.1016/j.comnet.2022.109381
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109381&domain=pdf

Computer Networks 218 (2022) 109381

2

be more reactive in understanding the scope of a given attack strategy,
and developing new defense strategies, the performance of which they
must necessarily evaluate. Due to the complexity of interactions be-
tween the attackers & the defender, such an evaluation requires the use
of modeling and simulation (M&S). In that perspective, one of the major
challenges is the seamless communication between network experts
(who provide the system knowledge) and M&S experts (who provide the
methodological and technical skills to design and implement the
required models). In the absence of a user-friendly analysis framework,
such a communication is not obvious and its poorness may lead to the
failure of the entire study. Moreover, as machine learning (ML) is widely
recognized as carrying the promise of improving cybersecurity ap-
proaches, such a framework should take advantage of it. Therefore, a
third level of expertise enters the scene, which the two previous types of
expert involved do not necessarily have access to. It is important the
analysis framework integrates learning capabilities in a way transparent
to its users, especially when turning the specified attack and defense
strategies into an executable simulation model.

Motivated by these needs, this work proposes a generic integrated
M&S and ML framework, which facilitates the design and validation of
cybersecurity strategies by making it possible to explore from a high
level of abstraction, different cybersecurity strategies, using simulation
as a means of evaluating the objective function, namely the effectiveness
of a defense strategy against a given attack strategy, and ML as a means
of guiding the defense algorithm towards optimal efficiency. A SYN
flood detection application is used to showcase the applicability and
efficiency of the framework. Therefore, the novelty of this work is not to
find yet another SYN flood attack detection algorithm, but to offer an
operational learning simulation framework for adaptive design and
validation of cybersecurity approaches.

The remaining of the paper is organized as follows: Section II dis-
cusses related works. Section III presents the framework’s underlying
principle of hybridizing M&S with ML. Section IV gives details of the
framework’s structure and components. Section V applies the frame-
work to SYN flooding and shows the experimental results obtained.
Section VI concludes the paper, and gives perspectives for future work.

2. Related works

Due to the double contribution of the paper, the related works are

divided into two sections: the first one relates to state-of-the-art cyber-
security simulation environments, while the second one relates to SYN
flood-based DoS defense algorithms.

2.1. Cybersecurity simulation environments

Various approaches based on computer networks simulation envi-
ronments have been proposed to assess the validity of cybersecurity
strategies [1–6]. They all call on an in-depth knowledge of the under-
lying software tools such as OMNeT++ (Objective Modular Network
Testbed in C++), NS2 (Network Simulator), etc., including technical
skills in programming with advanced languages such as C++, TCL, and
the like. A common drawback of these cybersecurity environments is the
lack of a methodology layer that separate the domain and system
knowledge from the technicity of designing and implementing the cor-
responding simulation and performance evaluation tool.

Here, we propose a framework to facilitate cooperation between
cybersecurity experts and M&S experts through a high-level graphical
modeling interface, as well as to save implementation efforts through a
systematic model transformation mechanism. The main advantage of
such a framework is the reactivity it empowers cybersecurity managers
with. Anytime a new threat occurs, network experts can quickly adapt
by analyzing the scope of the threat and exploring the efficiency of
various defense solutions.

It is worth it to mention that the proposed framework is not dedi-
cated to any specific cybersecurity threat, as its core metamodel suggests
a structure where multiple attackers interact with a defender in a
network such that the characteristics (i.e., attributes and dynamic
behavior) of all stakeholders (attackers, defender, and the network) are
user-defined. Moreover, the learning ability of the defender can also be
user-defined or left to be the built-in default learning mechanism.

2.2. SYN flood-based DoS defense algorithms

Defense strategies against Syn-Flood attacks are numerous in the
literature and focus on various aspects, ranging from optimizing the
network configuration to improving the infrastructure or the establish-
ment of connections, or adopting a firewall approach. Notable defense
strategies are Defensive Programming [7], SYN Cache [8], Hop-Count
Filtering [9], or SYN Cookies [10].

Fig. 1. Hybrid simulation approaches.

M. Koïta et al.

Computer Networks 218 (2022) 109381

3

Recent works considering the advent and increasing security risks of
Cyber Physical Systems (CPS), have used ML to improving SYN Flood
detection [11–18]. More general threats in CPS not limited to SYN
Flooding have been addressed with deep learning (DL) approaches [19].
The survey in [20] presents the current overall view of cyberattacks
detection in CPS using DL to fully exploit cyber data.

The application used here to demonstrate the operationality of our
framework, focuses on SYN flood (although in this work, we do not
intend to propose yet another SYN flood detection algorithm). However,
there are no limitations on the type of cybersecurity threat that can be
considered.

3. Hybridized simulation and machine learning approach

The generic learning simulation framework we propose aims at hy-
bridizing M&S with ML for security hardening in the context of CPPS.
The envisioned approach is to allow modeling attack and defense stra-
tegies, and then using simulation empowered with ML to study the in-
teractions between the attackers and the defender and to assess the
performances of various defense strategies given an attack strategy. In
this section, we present the underlying principle of hybridizing M&S
with ML.

3.1. Level of hybridization

Modern complex systems like CPS require multiple levels of expla-
nation be provided to achieve their various objectives, while keeping a
holistic understanding of the behavioral pattern of the overall system
and its interaction with the surrounding environment. As such, a hy-
bridization of approaches that would evidently provide useful knowl-
edge from various angles on how such systems perform at the holistic
level rather than focusing on specific problems in isolation for specific
solutions is an appropriate means to address their complexity. In M&S,
such a hybridization can be envisioned endogenously or exogenously,
and at different levels of concern.

As described in Fig. 1, the concepts level, where the universe of
discourse is set (such as the notions of state, event, concurrency…), calls
for formalisms and (more generally) methods to capture the required
concepts for symbolic manipulation. While the M&S community tradi-
tionally distinguishes between discrete and continuous phenomena as
regard to central time-related concepts, qualitative and quantitative
computational approaches, such as Operation Research or Artificial In-
telligence methods, rather focus on problem-solving steps and mecha-
nisms. Hybridization comes at this level with the objective-driven need
to deal with temporal considerations for the system under study while
trying to find a solution to the problem under study. Such a situation
happens for example when optimization techniques make use of simu-
lation as a black box-type of evaluation function (exogenous hybridi-
zation), or when the requirement for a fine-grained understanding of the
system entails both continuous and discrete phenomena be considered
(endogenous hybridization).

At the specification level, the real-world system and problem under
study is expressed as a model, using the universe of concepts adopted, i.
e., discrete or continuous simulation model (within M&S world) or
problem-solving algorithm (within the wider computational world). The
literature has coined various terms to qualify the various possible hy-
bridizations, such as DisM + ContM, or DisM/ContM + Alg (where “+”
denotes a composition/mixing operation that can vary from loose to
tight integration).

At the operations level, engines are built to execute the model
defined at the immediate upper level. Such engines are often referred to
in the M&S world as simulators and integrators (for respectively discrete
and continuous operations), while solvers implement the algorithms
defined in non-M&S-centered computational approaches. Operational
hybridization occurs here to support the requirement for multiple
execution engines, each devoted to aspects that other engines do not
support.

3.2. Solution architecture

The framework introduced here realizes hybridization at the
formalism level, where the High-Level Language for Systems Specifica-
tion (HiLLS) is used for simulation modeling, and ML algorithms are
integrated to the simulation metamodel defined. We then realized the
corresponding operational level hybridization, where the Anylogic
software is used as the simulator and the Scikit-Learn package is used as
the solver.

The hybridization could be envisioned from one of the two possible
perspectives shown by Fig. 2:

(1) ML-embedded M&S, where ML is a black box for M&S, i.e.,
simulation agents are empowered with learning capabilities, and
thus can self-adapt their behavior to the situation during each
simulation experiment;

(2) M&S-embedded ML, where M&S is a black box for ML, i.e., the
learning algorithm is trained with data provided by simulation,
instead of real-world data.

The proposed framework combines both approaches in an

Fig. 2. ML-embedded M&S versus Simulation-embedded ML.

Fig. 3. Simulation-ML hybridization.

M. Koïta et al.

Computer Networks 218 (2022) 109381

4

interweaving scheme, as shown by Fig. 3, where an endomorphic inte-
gration of ML and M&S is adopted.

In other words, we first design a simulation metamodel (i.e., a
generic simulation model, that a user can instantiate to derive a custom
simulation model for a specific case study) that embeds ML by con-
struction. We secondly build a training scheme, where the simulation
model (which ML component is disabled) is used to train a chosen ML
algorithm. The optimized algorithm is then used to enable the ML
component embedded in the simulation model, and the resulting model
is simulated in various experiments to assess the performances of the
trained model versus the ones of the untrained model.

4. Framework’s structure and components

In this section, we describe in details each of the two legs of our
solution, i.e., the M&S (metamodel-based) component and the inte-
grated ML component.

The framework proposed is based on a metamodel, which is specified
using the High-level Language for Systems Specification (HiLLS), a
graphical modeling formalism amenable to both simulation, formal
analysis, and enactment [21]. Therefore, any model instance resulting
from this metamodel can be used to:

(1) evaluate the performances of the model over a period of simu-
lated time,

(2) perform rigorous logical investigation of the model’s consistency
through an exhaustive exploration of the fulfillment of certain
given requirements, and

(3) execute the model for real-time verification when interactions
with a real-world environment are involved, including humans in
the loop.

4.1. HiLLS modeling

A dynamic entity is modeled in HiLLS as an HSystem, while a passive
entity is modeled as an HClass. An HClass is described exactly the same
way a class is described in object-oriented modeling (i.e., as a three-
compartments box, where the first compartment shows the name of
the class, the second compartment shows the declaration of attributes,
and the third compartment shows the declaration of methods), while an
HSystem is a four-compartments structure (as shown by Fig. 4) with
input/output ports (i.e., interface to interact with its environment by
message exchange), name and parameters in the first compartment (to
abstract all assumptions on the context in which the model is a repre-
sentation of the system of interest), state variables in the second
compartment (to catch its attributes), operations in the third compart-
ment (to catch its functional capabilities), and the configuration tran-
sition diagram in the fourth compartment (to capture its timed
behavior). Fig. 4 shows how all elements of an HSystem are represented.
Predicate-based schemas are used for the specification of attributes and
operations. An HSystem can be composed of other HSystems coupled
together. Therefore, HSystems can be hierarchically be composed to
form larger HSystems. The composition relationship is represented by
the object-oriented aggregation relationship (a line with a diamond
shape at the side of the composed system, and the cardinality indicated
at the component side to specify the number of such component
involved in the composition relationship).

The configuration transition diagram is made up of different types of
configuration and different types of transition. A configuration can
either be a finite configuration (which is denoted by a four-
compartments box, respectively indicating the configuration’s label,
properties, activities, and duration), or a passive configuration (which is
similar to a finite configuration except that a vertical stripe is attached to
its right side as an indication of its infinite duration), or a transient
configuration (which is similar to a passive configuration except that it is
shaped as a circle to indicate that its duration is zero in the simulated

Fig. 4. HiLLS modeling elements.

M. Koïta et al.

Computer Networks 218 (2022) 109381

5

time). A transition can either be an internal transition (a straight-line
arrow, which indicates the next configuration of the system when the
duration of the current configuration elapses without any input received
by the system on any of its ports), or an external transition (a dotted-line
arrow, which indicates the next configuration of the system when the
system receives an input on one or many of its ports before the duration
of the current configuration elapses), or a transient transition (a dot-and-
straight-line arrow, which indicates the next configuration of the system
when the system receives an input on one or many of its ports exactly at
the moment the duration of the current configuration elapses). Some
transitions can be grouped as a single one, with selection conditions
associated (a diamond shape is used to visualize the condition and
associated paths).

4.2. Framework’s core metamodel

The simulation metamodel of the proposed framework is shown by
Fig. 5. The entire simulation domain is composed of the server under
assessment, multiple clients, and the network linking them (including
routers, gateways, etc.). The network’s characteristics are aggregated
into a law of latency (with simple or double parameters), which can be
tuned for simulation experiments under various scenarios. Clients can be
normal users or hackers; the behavior of the latter is specified to capture
the attack strategy under study. The server’s main characteristics are
captured by its memory, a set of sequential cells which management is
described in the behavior of the server to capture the defense strategy
under study. The server also has a learning feature, a detection system
that embeds the ML algorithm considered. Both the server and the cli-
ents are nodes that exchange messages through the network. The do-
main’s data collector is the component that keeps historical data
collected during simulation experiments (therefore, it is the one feeding
the ML algorithms).

4.3. Framework implementation

The framework proposed is implemented in the Anylogic M&S
environment [22]. AnyLogic is a software whose expressive power in
M&S is now indisputable. It supports multiple modeling abstractions
(agents, processes, differential equations, and automata). It provides a
visual notation to automatically generate the Java code for simulation
execution. The agent-based paradigm is used to embed and glue all these
heterogeneous abstractions through communication links. The Anylogic
simulation is enabled with animation features (2D and 3D), and it’s
possible to incorporate Geographic Information Systems (GIS) [23] as

Fig. 5. HiLLS-specified simulation metamodel.

Table I
Hills to Anylogic transformation rules.

HiLLS ANYLOGIC

HSystem Agent without port
HClass Agent with ports
Attribute Agent’s variable
Operation Agent’s function
Input port Agent’s receiving port
Output port Agent’s sending port
Finite configuration Agent’s state with a delayed transition
Transient configuration Agent’s state with a zero delay
Passive configuration Agent’s state without delayed transition
Internal transition Transition with associated delay
External transition Transition on receipt of message
Confluent transition Transition with delay and condition
Composite HSystem Agent population
HSystems’ interaction Communication link between agents

M. Koïta et al.

Computer Networks 218 (2022) 109381

6

part of the simulation environment.
We implemented the simulation semantics of the HiLLS-specified

metamodel of the framework into AnyLogic executables, using trans-
formation rules defined in Table I.

4.4. Machine learning integration

The simulation metamodel embeds a learning feature through the
ML-based detection system. While the simulation model is carried out
with the Java-written AnyLogic software [24], the learning feature is
provided by the Python-written Scikit-Learn package that integrates a
wide range of advanced ML algorithms for medium-scale supervised and
unsupervised problems [25]. The Java-Python interoperability is ach-
ieved using Pypline, a library of custom extensions for AnyLogic to
connect and communicate with a local installation of Python, which is
exportable in the form of jar files. Data generated by the simulation
model are stored in an Anylogic database, which the ML algorithm uses
for training and decision-making, as captured by Fig. 6. Additionally,
other packages like Numpy, Matplotlib, and Pandas are used to perform
preprocessing, data analysis, and visualization tasks.

4.5. Learning simulation process

When the detection system is deactivated, the system behaves
without any learning capability. When the detection system is activated,
the learning process requires three steps to be fully operational, as
shown by Fig. 7, i.e.:

(1) Data collection: in evaluating the performance of the defense
strategy against the adopted attack strategy, normal clients and
hackers allow the generation of benign and malicious traffic for
data collection. Data recorded include the source address of
packets, destination address of packets, packet size, and flag and
timestamp of all packets sent from the agents.

(2) Data preparation: this is a three-stage step, with data preprocess-
ing as the first step, feature selection as the second one, and data
splitting as the last one. Preprocessing is an important step, either
getting a clean dataset from the raw input data or reducing its

dimensionality by retaining the relevant information. It also
helps improve efficiency, reduce computation time, and ease the
data mining process, depending on the behavior of the data. The
main data preprocessing tasks performed are: data cleaning,
transformation, normalization and finally the data formatting
process. For feature selection, functionalities for each packet are
explored according to the domain knowledge, in order to analyze
what is relevant to differentiate a normal traffic from an attack.
There are static features (such as packet size and interval between
packets), and dynamic features (such as packet ratio and fre-
quency of destination address). Finally, data splitting is used to
split data into training data set for model fitting, and test data set
for final model assessment.

(3) ML algorithms application: learning algorithms used in the pro-
posed framework and capable of differentiating normal traffic
from attack traffic with great precision include the K-nearest
neighbors (KNN), random forests (RF), decision trees (DT), and
vector-supported machines (SVM) [26].

(4) Model evaluation: after the model is built, its evaluation is called
for, to see if it contributes to correctly predicting the target in the
context of new data to come. As future instances have unknown
target values, we must then generally check the evaluation met-
rics and especially the precision metric of the ML model on data
for which the target response is already known, and then use this
evaluation as an indicator of precision predictive of future data.
ML provides a standards-compliant precision metric for binary
classification models called Area Under the (Receiver Operating
Characteristic) Curve (AUC) and returns a decimal value between
0 and 1. This metric measures the fitness of the model to predict a
higher score for positive examples compared to negative exam-
ples. AUC values close to 1 indicate an ML model that is very
accurate. Values close to 0.5 indicate an ML model that is no
better than guessing at random. Values close to 0 are unusual and
generally indicate a problem with data. Basically, an AUC value
close to 0 indicates that the ML model has learned the right
trends, but uses them to make predictions reversed from reality (i.
e., 0 is predicted as 1, and vice versa).

(5) Implementation for real-time detection.

4.6. Framework instantiation process

The HiLLS specifications of the behavior of the major components of
the simulation metamodel are given in Annex A. The flexibility of the
framework comes from the ease of modification one can bring to any of
these specifications. More specifically, it is possible to model any given
attack strategy, any given defense strategy, any given network config-
uration, and any learning algorithm, for the framework to automatically
assess the resulting performances, thus allowing a large exploration of

Fig. 6. Integration between simulation and machine learning models.

Fig. 7. ML integration process.

M. Koïta et al.

Computer Networks 218 (2022) 109381

7

attack and defense strategies, as well as the observation during simu-
lation experiments of the relationship between hackers and the server’s
defense. The framework application is achieved in the following eight
steps:

(1) Instantiation of the metamodel into a specific model with a given
number of normal clients and hackers.

(2) HiLLS specification of the network characteristics (latency) and
behavior.

(3) HiLLS specification of the attack strategy through the specifica-
tion of the behavior of hackers (either by using the default
behavior, or by modifying it).

(4) HiLLS specification of the defense strategy through the specifi-
cation of the characteristics (memory) and the behavior of the
server (either by using the default characteristics and behavior, or
by modifying them).

(5) Anylogic simulation of this model (with deactivated learning),
and evaluation of the performance of the defense strategy against
the adopted attack strategy (Data Collector collects the learning
data).

(6) Ignition of model learning (model with activated learning on a
given algorithm), where Data Collector feeds Detection System
with a dataset extracted from the collected data.

(7) Test-based validation of learning, where Data Collector compares
the results of Detection System with the rest of the data collected.

(8) Anylogic simulation of this model (with activated learning), and
evaluation of the performance of the defense strategy against the
adopted attack strategy.

5. Application to SYN flooding

In this section, experimental results are presented from the applica-
tion of our framework to SYN Flood management. The application fol-
lows the eight steps previously presented. This section first introduces
the principles of SYN Flooding, and then shows how the eight steps of
our framework application process can result in improving a basic de-
fense strategy after exploring the potential of some integrated learning
capabilities.

5.1. SYN flooding denial of service

One of the most common, and yet not completely solved cyberse-
curity issues is known as Denial of Service (DoS). A DoS attack is a type
of single-source attack on a network structure that prevents a server
from serving its clients It consists of sending millions of requests to a
server, from an invalid or usurped IP address (often called robot,
zombie, bot, etc.) in an attempt to slow it down [27], and even to lead it
to total inaccessibility. A distributed denial of service (DDoS) attack is a
DoS attack variant, in which multiple distributed bots are aggregated as
one (and called a botnet), and are used to cause a DoS. Fig. 8 illustrates

Fig. 8. DDoS attack in the context of the Industry of the future.

M. Koïta et al.

Computer Networks 218 (2022) 109381

8

the working model of a typical DDoS attack where the botnet is driven
by a bot Master, in the context of CPPS. The Master bot takes control of
an army of slave bots (without the knowledge of their owners), usually
by infecting them with a Trojan or backdoor program, and use them
simultaneously to attack a target server using the public Internet infra-
structure. Each bot will then engage in a SYN flooding attack, a tech-
nique that exploits the vulnerability of the Transmission Control
Protocol (TCP) used by Internet [28].

This vulnerability is due to the ‘‘Three-way Handshaking” principle
of the TCP, which when successful takes place in three stages, as illus-
trated by Fig. 9:

• During the initialization of a TCP connection between a client and a
server, the client sends a SYN message to the server, which is a vector
(#seq, ACK flag, SYN flag) where #seq is randomly chosen by the
client, and ACK flag = 0, and SYN flag = 1.

• Then, the server allocates memory space for the Transmission Con-
trol Block (TCB) and sends a SYN ACK message, a vector (#rseq,
#ACK, ACK flag, SYN flag) where #rseq is randomly chosen by the
server, and #ACK = #seq+1, and ACK flag = 1, and SYN flag = 1.

• Then, the client sends (#ACK, #rseq + 1, 1, 0). The handshaking
ensures that both parties are ready to transmit data to each other.

A bot will ignore the last step and not respond with the ACK message,
resulting in an accumulation of unnecessarily allocated memory spaces
by the server, as illustrated by Fig. 10. Such accumulation leads to a
crash.

Traditionally, a timer is triggered whenever a SYN message is sent. If
the SYN ACK response is slow to arrive (> wait time), the connection is
dropped and the server releases the memory space allocated for the TCB.
Such a strategy, though necessary to avoid the permanent allocation of
memory space that will never be used, also generates false positive.
Indeed, the delay of receiving a SYN ACK response can be due to the
latency of the network while the client is not a bot.

Various defense algorithms have been elaborated against this type of
attack, with different performances obtained depending on the network
configuration, the server capacity, the frequency of attacks, etc. How-
ever, as discussed in this paper, these strategies are built ad-hoc, and
there is a lack of methodological and operational framework for
performance-based design and exploration of defense strategies, given
an attack strategy [29]. This work proposes such a framework, with the
possibility for network experts and simulation experts to jointly explore
the effectiveness of new defense strategies in a landscape of multiple
attack configurations, including the structure and characteristics of the
network (such as latency, number of users, etc.), as well as the structure
and behavior of the botnet (e.g., variable number of hackers, variable
frequency of hacking attempts, variation of the hacking strategy). Such a
feature is a very useful decision-support tool for CPPS cybersecurity
administrators.

5.2. Framework application

We consider a metamodel instantiation with 100 clients, and we
consider 3 different scenarios, each corresponding to a different per-
centage of hackers over the total number of clients, as shown by Table II.
At this stage, it is also important to identify the structure of the data set
to be collected. Thus, a correlation matrix (see Fig. C.1 in Annex C) has
been used to eliminate strongly correlated variables. The only variables
we retained to discriminate between a normal client and a hacker are
(Inter-packets, Duration, Count_SYN), where Inter-packets is the fre-
quency of packet emission by the client, Duration is the response time to
the client’s request, and Count_SYN is the number of SYN requests sent
by the client.

5.3. Specification of the network

We consider a Markovian network’s latency (i.e., which distribution
follows a Poisson law), with the parameter set to 0.5 seconds. The To
feed the Data Collector, the hackers for the DoS traffic, and the normal
clients for the normal traffic (non-DoS) interacted for a certain duration
in order to constitute a dataset of 36,000 requests. Data is made up of
two types, data labeled as normal traffic data and data labeled as SYN
Flood attack data, obtained from the header of packets.

5.4. Specification of the attack strategy

The HiLLS specification of the Hacker system is given by Fig. A.3 in
Annex A. The hacking attempt is tried periodically, where each attempt
simply consists in sending out a SYN request, while ignoring any mes-
sage received back.

Fig. 9. Successful handshaking.

Fig. 10. unsuccessful handshaking.

Table II
Scenarios explored.

% of hackers % of regular users

Scenario 1 25 75
Scenario 2 50 50
Scenario 3 75 25

M. Koïta et al.

Computer Networks 218 (2022) 109381

9

5.5. Specification of the defense strategy

The HiLLS specification of the Server system is given by Fig. A.3 in
Annex A2. The defense strategy relies on the awareness of the server.

Each SYN request received is checked, and ignored if identified as a hack
or treated otherwise. Each SYN request’s treatment books a slot in the
memory buffer, as long as it is possible. SYN requests received while the
buffer is full are ignored. ACK requests free the buffer. An unaware

Fig. 11. Server occupancy in Scenario1 without ML.

Fig. 12. Server occupancy in Scenario2 without ML.

M. Koïta et al.

Computer Networks 218 (2022) 109381

10

server has no functionality for checking requests, therefore all SYN re-
quests received are treated equally.

5.6. Simulation of the unaware model

The simulation is carried out according to the values in accordance
with Table II, where PartH and PartN respectively indicate the per-
centage of hackers and regular users in the population. Metrics evalu-
ated are the percentage of server occupancy due to both regular and
attack requests [30]. Figs. 11, 12 and 13 respectively show for Scenario
1, 2 and 3, the timely evolution of the server occupancy (red for what is
due to the attack traffic, and green for the normal traffic).

5.7. Learning model

For learning purpose, 70% of the entire data set are used for training,
and the remaining 30% for testing. The following metrics are used to
measure the predictive accuracy of the model, as widely adopted [31]:

• Confusion matrices, which are used to evaluate the performance of
each classifier. Each classifier makes a binary decision for each SYN
flood or normal traffic; so, a confusion matrix (2 × 2) is used as
shown in Table III, where TP is True Positive, TN is True Negative, FP
is False Positive, and FN is False Negative.

• Accuracy, which the correct prediction (positive or negative) made
overall, in a classification problem. As a reminder, the effectiveness
of the proposed detection module is measured in terms of how
accurately it identifies how well it classifies the upcoming packet as

normal or attack. The accuracy of the detection approach is calcu-
lated using Eq. (1).

• Precision, which is used to measure the proportion of positive data
instances that a model has classified as positive. The precision metric
ignores a model’s ability to recognize negative classes. The precision
of the detection approach is calculated using Eq. (2).

• Recall, which is a proportion of the pattern of true positives that has
been identified. As such, a model that gives no FN has a well-being-
worth callback. Precision and recall are normally inversely propor-
tional to each other. Which means that if one is improved, the other
is degraded. The recall of the detection approach is calculated using
Eq. (3).

• False Positive Rate (FPR, i.e., rate of normal clients wrongly identified
as hackers), which is minimized by a high precision.

• False Negative Rate (FNR, i.e., rate of hackers wrongly identified as
normal clients), which is minimized by a high recall.

• True Positive Rate (TPR), which measures the classifier’s ability to
correctly classify test data.

• Receiver Operating Characteristics (ROC), which curve is a graph of
FPR versus TPR.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

5.8. Learning validation

We set up a reproducible scoring system which allowed us to test a
series of learning algorithms by evaluating their performance. Since
detection issues can often be tagged, supervised ML techniques are

Fig. 13. Server occupancy in Scenario3 without ML.

Table III
Confusion matrix value.

Predicted Result
Positive Negative

Actual Result
Positive TP FN
Negative FP TN

M. Koïta et al.

Computer Networks 218 (2022) 109381

11

Fig. 14. Server occupancy in Scenario1 with ML.

Fig. 15. Server occupancy in Scenario2 with ML.

M. Koïta et al.

Computer Networks 218 (2022) 109381

12

therefore recommended for detection activities. Discrete or continuous
labels can be managed by classification or regression algorithms,
respectively [32]. We obtained the following results with KNN as the
best score: DT Accuracy = 0.98133; RF Accuracy = 0.99027; KNN Ac-
curacy = 0.99144; SVM Accuracy = 0.98231.

The KNN algorithm is known to be the most common classification
algorithm in cases where there is no prior knowledge of the data dis-
tribution. This has been confirmed here by the ROC curve obtained (see
Fig. C.2 in Annex C) for the deduction of AUC = 0,99000 (a sufficiently
high value).

5.9. Simulation of the aware model

Figs. 14, 15 and 16 respectively show for Scenario 1, 2 and 3, the
timely evolution of the server occupancy (red for attack traffic, green for
normal traffic) with the trained model.

It is clear that the percentage of server occupancy due to the attack
traffic (red areas) is significantly reduced in all scenarios, but not null.
This is because a good proportion of attack packets corresponding to
true positives has been detected and only false negatives continues to
flood the server.

Conclusion

This work presents a simplified and flexible framework, based on a
hybrid M&S and ML approach, for the evaluation of attack and defense
strategies in CPPS. This framework has the advantage of allowing se-
curity experts without simulation knowledge to easily explore and
validate their defense strategies against various attack strategies. It
differs from state-of-the-art approaches in its uniqueness to simulta-
neously offering a very high modeling flexibility, and integrated
learning capabilities for allowing self-adaptive strategy design.

Although the application in this paper focuses on the SYN-Flooding

based denial of service attack, there is no limitation on the type of
cybersecurity threat that can be considered. Also, any simulation plat-
form can be used instead of the Anylogic environment, due to the
expressive power of the High-Level Language for Systems Specification
used for simulation modeling (HiLLS).

Such a framework is a decision support to address key questions like:
(1) How can one capture the dynamic between the attacker and the
defender? (2) How can one select security countermeasures that ensure
self-adaptation to changing attacker strategies? And (3) How can one
integrate this analysis into a cybersecurity decision support process?

In this work, we do not intend to propose yet another SYN flood
detection algorithm. In our future efforts, we plan to use our framework
to exploring and improving state-of-the-art SYN flood defense strategies
against various attack strategies under diverse network configurations.

Authorship contributions

Category 1 Conception and design of study: M. Koita, O.Y. Maiga, M.
K. Traore; Acquisition of data: M. Koita, M.K. Traore; Analysis and/or
interpretation of data: M. Koita, M.K. Traore, Y.M. Diagana; Category 2
Drafting the manuscript: M. Koita, M.K. Traore, O.Y. Maiga; Revising the
manuscript critically for important intellectual content: M.K. Traore, Y.
M. Diagana Category 3 Approval of the version of the manuscript to be
published: M. Koita, Y.M. Diagana, M.K. Traore, O.Y. Maiga;

ANNEXES

ANNEX A: hills specification of the simulation metamodel’s components

Figs. A1, A2, A3, A4, A5, A6

Fig. 16. Server occupancy in Scenario3 with ML.

M. Koïta et al.

Computer Networks 218 (2022) 109381

13

Fig. A.2. Server HSystem.

Fig. A.1. Network HSystem.

M. Koïta et al.

Computer Networks 218 (2022) 109381

14

Fig. A.3. Hacker HSystem.

Fig. A.4. Client HSystem.

M. Koïta et al.

Computer Networks 218 (2022) 109381

15

ANNEX B: anylogic agents of the simulation metamodel

Figs. B1, B2, B3, B4

Fig. A.5. Domain HSystem.

Fig. A.6. Coupling diagram of the domain’s components.

Fig. B.1. AnyLogic agent of the Network HSystem.

M. Koïta et al.

Computer Networks 218 (2022) 109381

16

ANNEX C: performance metrics

Figs. C1, C3

Fig. B.2. AnyLogic agent of the Server HSystem.

Fig. B.3. The AnyLogic equivalent of the HSystem Hacker.

Fig. B.4. AnyLogic agent of the Client HSystem.

Fig. C.1. Correlation matrix between features.

M. Koïta et al.

Computer Networks 218 (2022) 109381

17

Declaration of Competing Interest

1. All authors have participated in:(a) Conception and design, or
analysis and interpretation of the data; (b) Drafting the article or
revising it critically for important intellectual content; and (c) Approval
of the final version. 2. This manuscript has not been submitted to, nor is
under review at, another journal or other publishing venue.3. The au-
thors have no affiliation with any organization with a direct or indirect
financial interest in the subject matter discussed in the manuscript.

Data availability

The data that has been used is confidential.

References

[1] A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment, in:
Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks And Systems & Workshops,
ICSTInstitute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, 2008, p. 60. March. 2008.

[2] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, and S. Kumar, “Improving
simulation for network research.” (1999).

[3] K. Borisenko, I. Kholod, A. Shorov, Modeling framework for developing and testing
network security techniques against DDoS attacks. SEKE, 2015, p. 715. July.

[4] A.S Jauhari, A.I. Kistijantoro, INET Framework modifications in OMNeT++

simulator for MPLS traffic engineering, in: 2014 International Conference of
Advanced Informatics: Concept, Theory and Application (ICAICTA), IEEE, 2014,
pp. 87–92. August.

[5] T. Gamer, M. Scharf, Realistic simulation environments for IP-based networks, in:
Proceedings of the 1st international conference on Simulation tools and techniques
for communications, networks and systems & workshops, 2008, pp. 1–7. March.

[6] L. Sánchez-Casado, R.A. Rodríguez-Gómez, R. Magán-Carrión, G. Maciá-Fernández,
NETA: evaluating the effects of network attacks. MANETs as a case study, in:
International Conference on Security of Information and Communication
Networks, Springer, Berlin, Heidelberg, 2013, pp. 1–10. September.

[7] X. Qie, R. Pang, L, Peterson defensive programming: using an annotation toolkit to
build DoS-resistant software, ACM SIGOPS Oper. Syst. Rev. 36 (SI) (2002) 45–60.

[8] J. Lemon, Resisting SYN flood DoS attacks with a SYN cache, in: BSDCon, 2002,
2002, pp. 89–97. February.

[9] C. Jin, H. Wang, K.G. Shin, Hop-count filtering: an effective defense against
spoofed DDoS traffic, in: Proceedings of the 10th ACM conference on Computer
and communications security, ACM, October 2003, pp. 30–41.

[10] D.M. Divakaran, H.A. Murthy, T.A. Gonsalves, Detection of SYN flooding attacks
using linear prediction analysis, in: 2006 14th IEEE International Conference on
Networks 1, IEEE, 2006, pp. 1–6. September.

[11] K. Shaukat, T.M. Alam, I.A. Hameed, W.A. Khan, N. Abbas, S. Luo, A review on
security challenges in internet of things (IoT), in: 2021 26th International
Conference on Automation and Computing (ICAC), IEEE, 2021, pp. 1–6.

[12] H. Qiao, J. Peng, C. Feng, J.W. Rozenblit, Behavior analysis-based learning
framework for host level intrusion detection, in: 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07), IEEE, 2007, pp. 441–447.

[13] I.C. Lin, C.C. Chang, C.H. Peng, An Anomaly-based IDS framework using centroid-
based classification, Symmetry 14 (1) (2022) 105.

[14] A. Prasad, S. Chandra, VMFCVD: an optimized framework to combat volumetric
DDoS attacks using machine learning, Arab. J. Sci. Eng. (2022) 1–19.

[15] O. Bamasag, A. Alsaeedi, A. Munshi, D. Alghazzawi, S. Alshehri, A. Jamjoom, Real-
time DDoS flood attack monitoring and detection (RT-AMD) model for cloud
computing, PeerJ Comput. Sci. 7 (2022) e814.

[16] M. Najafimehr, S. Zarifzadeh, S. Mostafavi, A hybrid machine learning approach
for detecting unprecedented DDoS attacks, J. Supercomput. 78 (6) (2022)
8106–8136.

[17] L. Hou, J. Zhang, N. Jin, M. Zhu, Y. Li, Digital substation cyber security analysis
with SYN-flood attack as a simulation case, in: 2016 Chinese Control and Decision
Conference (CCDC), IEEE, 2016, pp. 4467–4472.

[18] G. Settanni, F. Skopik, A. Karaj, M. Wurzenberger, R. Fiedler, Protecting cyber
physical production systems using anomaly detection to enable self-adaptation,
2018 IEEE Ind. Cyber-Phys. Syst. (ICPS) (2018) 173–180. IEEE].

[19] K. Shaukat, S. Luo, S. Chen, D. Liu, Cyber threat detection using machine learning
techniques: a performance evaluation perspective, in: 2020 International
Conference on Cyber Warfare and Security (ICCWS), IEEE, 2020, pp. 1–6.

[20] J. Zhang, L. Pan, Q.L. Han, C. Chen, S. Wen, Y. Xiang, Deep learning based attack
detection for cyber-physical system cybersecurity: a survey, IEEE/CAA J. Automat.
Sin. 9 (3) (2021) 377–391.

[21] H.O. Aliyu, O. Maïga, M.K. Traoré, The high-level language for system
specification: a model-driven approach to systems engineering, Int. J. Model.
Simul. Sci. Comput. 7 (01) (2016), 1641003.

[22] B. B. Thiago, These Thiago Barros Brito “agent-based simulation for yard
management in container terminal operations,” 2016.

[23] M. T. García, M. A. Barcelona, M. Ruiz, L. García-Borgoñón, and I. Ramos, “A
discrete-event simulation metamodel for obtaining simulation models from
business process models”. In Information.

[24] A. Borshchev, Multi-method modeling, in: Proceedings of the 2013 Winter
Simulation Conference: Simulation: Making Decisions in a Complex World (WSC
’13, IEEE Press, 2013, pp. 4089–4100.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
E. Duchesnay, Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12
(2011) 2825–2830.

[26] N. Li, H. Kong, Y. Ma, G. Gong, W. Huai, W, Human performance modeling for
manufacturing based on an improved KNN algorithm, Int. J. Adv. Manuf. Technol.
84 (1-4) (2016) 473–483.

[27] K. M. Elleithy, D. Blagovic, W. K. Cheng, and P. Sideleau, “Denial of service attack
techniques: Analysis, implementation and comparison”, (2005).

[28] M. Kumar, A. Panwar, A. Jain, An analysis of tcp syn flooding attack and defense
mechanism, Int. J. Eng. Res. Technol. (lJERT) 1 (5) (2012) 1–6.

[29] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher, R. Thomas, S. Schwab,
Towards user-centric metrics for denial-of-service measurement, in: Proceedings of
the 2007 Workshop on Experimental Computer Science, ACM, 2007, p. 8.
JuneJune.

[30] S. Abbasvand, S.N.S. Hashemi, S. Jamali, Defense against SYN-flooding attacks by
using game theory, Indian J. Sci. Technol. 7 (10) (2014).

[31] G. Kumar, Evaluation metrics for intrusion detection systems-a study, Evaluation 2
(11) (2014) 11–17.

[32] M. Ribeiro, K. Grolinger, M.A. Capretz, Mlaas: Machine learning as a service, in:
2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), IEEE, Dec. 2015, pp. 896–902.

Moussa Koïta is a PhD student in Computer Science at the
Nangui Abrogoua University of Abidjan (Ivory Coast), where
he got his MSc in Computer Science. His current research is on
security of cyber-physical systems.

Fig. C.3. ROC Curve and AUC metric of the learning model.

M. Koïta et al.

http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0001
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0001
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0001
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0001
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0001
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0003
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0003
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0004
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0004
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0004
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0004
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0005
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0005
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0005
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0006
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0006
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0006
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0006
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0007
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0007
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0008
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0008
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0009
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0009
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0009
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0010
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0010
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0010
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0011
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0011
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0011
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0012
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0012
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0012
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0012
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0013
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0013
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0014
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0014
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0015
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0015
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0015
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0016
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0016
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0016
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0017
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0017
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0017
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0018
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0018
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0018
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0019
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0019
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0019
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0020
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0020
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0020
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0021
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0021
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0021
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0024
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0024
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0024
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0025
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0025
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0025
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0026
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0026
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0026
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0028
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0028
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0029
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0029
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0029
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0029
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0030
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0030
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0031
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0031
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0032
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0032
http://refhub.elsevier.com/S1389-1286(22)00415-7/sbref0032

Computer Networks 218 (2022) 109381

18

Youssouf M. Diagana is full Professor at the Nangui Abrogoua
University of Abidjan (Ivory Coast). He got his PhD in Mathe-
matics at the Félix Houphouet Boigny University of Abidjan,
Ivory Coast, in 1994. His current research is in cryptography
for cybersecurity.

Oumar Y. Maïga is Associate Professor at the University of
Sciences, Techniques and Technologies of Bamako, Mali. He
got his PhD in Computer Science at Université Blaise Pascal,
Clermont Ferrand, France in 2015. He published 20+ papers in
Modeling and Simulation-related international journals and
conferences. His current research is in methodologies for
Modeling and Simulation of complex systems.

Mamadou K. Traoré is full Professor at Université de
Bordeaux (France). He got his PhD in Computer Science at
Université Blaise Pascal, Clermont Ferrand, France in 1992. He
published 100+ papers in Modeling and Simulation-related
international journals and conferences and 10+ books and
proceedings. His current research is in hybrid M&S and AI for
production systems engineering. He is an ACM senior member,
a member of SCS, and an ASI fellow.

M. Koïta et al.

	A generic learning simulation framework to assess security strategies in cyber-physical production systems
	1 Introduction
	2 Related works
	2.1 Cybersecurity simulation environments
	2.2 SYN flood-based DoS defense algorithms

	3 Hybridized simulation and machine learning approach
	3.1 Level of hybridization
	3.2 Solution architecture

	4 Framework’s structure and components
	4.1 HiLLS modeling
	4.2 Framework’s core metamodel
	4.3 Framework implementation
	4.4 Machine learning integration
	4.5 Learning simulation process
	4.6 Framework instantiation process

	5 Application to SYN flooding
	5.1 SYN flooding denial of service
	5.2 Framework application
	5.3 Specification of the network
	5.4 Specification of the attack strategy
	5.5 Specification of the defense strategy
	5.6 Simulation of the unaware model
	5.7 Learning model
	5.8 Learning validation
	5.9 Simulation of the aware model

	Conclusion
	Authorship contributions
	ANNEXES
	ANNEX A: hills specification of the simulation metamodel’s components
	ANNEX B: anylogic agents of the simulation metamodel
	ANNEX C: performance metrics

	Declaration of Competing Interest
	Data availability
	References

