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One evidenced based approach for exploring future agricultural land use change scenarios is Land Use
Allocation (LUA). This approach can be used to support medium to long term strategic planning.
Specifically, land managers can consider a number of diverse environmental social, economic and
physical factors, and explore land use allocation scenarios before choosing to produce one or more
commodities in a given region. One of the most successful ways to implement a LUA approach is through
the integration of geoprocessing with Multi-Criteria Decision Making methods (MCDM). Leveraging this
spatial MCDM modeling approach with the Service Oriented Architecture (SOA) paradigm, we have
developed a Spatial Model Steering (SMS) framework that enables users to explore the decision space
and thus increase their awareness of the influence of key variables. In this framework a user can visually
steer the LUA model key factors, explore and compare “what if” future land use scenarios by changing
these factors and visualizing a range of potential LUA outcomes. In doing so, we believe that users can
develop increased confidence in their understanding of the key factors governing the underlying models
and ultimately obtain greater awareness of the uncertainty in the outcomes.

� 2012 Elsevier Ltd. All rights reserved.
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Developers: Cooperative Research Centre for Spatial Information
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1. Introduction

Today’s global environmental issues of complex and interrelated
phenomena such as population growth, water shortage and climate
change, demand our serious attention. The impacts of such changes
on global food security and agriculture are likely to be substantial
(Brown and Funk, 2008). Furthermore, agricultural adaptation to
such challenges will likely include a re-allocation of land use, food
production changes, re-engineering of agricultural infrastructure,
such as irrigation, and crop type adjustment (Lobell et al., 2008).
Only by exploring the implications of integrating global agricultural
systems, energy systems and carbon price schemes, can a compre-
hensive understanding of the profound implications of climate
change for agriculture and global food security be achieved. This is
particularly relevant to Australia, since it is projected to be one the
countries most affected, especially in the agricultural sector, by
these global changes (Cline, 2007; Gunasekera et al., 2008). One
evidenced based approach for exploring future agricultural land
use change scenarios is Land Use Allocation (LUA) (Chen et al.,
2010; Santé-Riveira, 2008). LUA can be broadly defined as the
medium to long-term strategic planning process by which land
managers consider diverse environmental, social, economic and
physical factors, before choosing to produce one or more
commodities in a given region. This process is often one of the first
ering, an exploratory approach to uncertainty awareness in land use
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steps taken by these stakeholders to understand and assess both
their land’s current andmedium term suitability and its cumulative
long-term effects. These processes thus may contribute to an
overall assessment of the regional impact on biodiversity, land
productivity due to soil quality, as well as land and water
management. In addition to regional planners and policy makers
themselves, industry groups, land managers and community
leaders are also keenly interested in land allocation decisions and
their long-term implications. Hence these stakeholders may wish
to model and understand the allocation options and likely
outcomes (Chen et al., 2010), thus facilitating their response to
specific parameters such as climate projections (Sposito, 2010)
market prices (Benke et al., 2011) and carbon emission pricing
schemes (Wise, 2009). Among the technologies to assist in such
landscape analysis for understanding and assisting land use allo-
cation, geographical information systems (GIS) have been particu-
larly valuable for undertaking spatial analysis, including
geoprocessing of multiple spatial data layers (Fiorese and Guariso,
2010; McNeill, 2006; Ménard, 2007; Uy, 2008).

However, LUA solutions are often based on applications built
upon frameworks (such as GIS) and are tailor-made for a particular
purpose (delimited area, crop type, etc.). They provide limited
scope for supporting collaboration through linkage of expert
models and a wider sharing of modeling results (Kassahun et al.,
2010; Li, 2007; Sànchez-Marrè et al., 2008). To address this issue,
current scientific research is actively developing “e-science”
frameworks (De Roure et al., 2003; Riedel, 2009; Simmhan, 2005).
These frameworks share resources and enhance distributed simu-
lation, analysis and visualization. Many of these e-science infra-
structures use one or more distributed software paradigm in order
to support collaborative research (Hutanu, 2006). In particular,
many organizations leverage distributed computer technologies
based on the Service Oriented Architecture (SOA) paradigm
(Alameh, 2003; Granell et al., 2010; Riedel, 2008). SOA is based on
loosely coupled modules that offer services through standard
communication protocols, while maintaining a layered architecture
that organizes and orchestrates functionality among the modules.
This approach supports a natural evolution of modular compo-
nents, which in turn supports distributed governance and
responsibilities, of utmost importance in a collaborative framework
(Riedel, 2008; Salter, 2009).

Nonetheless, in order to benefit from SOA in supporting envi-
ronmental assessments like LUA, we need to establish their
adaptability through Environmental Integrated Modeling Frame-
works, (EIMFs) (Denzer, 2005; Kassahun et al., 2010; Rizzoli et al.,
2008). An essential aspect of these EIMFs is the need to take into
account that there are inherent limitations to our ability to predict
future environmental conditions. This is due to the fact that all
complex models are imperfect and maintain a degree of uncer-
tainty, especially when projecting a future outcome. As we look
further into the future the degree of uncertainty increases (Granell
et al., 2010). One useful taxonomy for analyzing this uncertainty is
the following (Refsgaard et al., 2007):

� Bounded uncertainty: an uncertain event is composed of indi-
vidual outcomes that are “known” or its range and possible
values can be assessed quantitatively.

� Unbounded uncertainty: some components of uncertain events
cannot be quantified in any undisputed way, but they still can
be qualified in terms of plausibility or convincingness of the
evidence.

The bounded uncertainty is often referred as “statistical uncer-
tainty” (Walker, 2003) and is the type of uncertainty traditionally
addressed when assessing complex environmental models (Pahl-
Please cite this article in press as: Nino-Ruiz, M., et al., Spatial model ste
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Wostl, 2007; Refsgaard et al., 2007). This research focuses on
a subset of unbounded, implicit uncertainty understood as an
awareness of uncertainty generated by exposure to the full range of
plausible outcomes, namely stakeholders’ awareness of key factors,
involvement and self-perceived confidence when taking decisions
under an EIMF. Moreover, when a loose-coupling architecture
based on frameworks like EIMF is enabled, it allows for better
comprehension of the roles of input variables at different levels and
hence the many sources of uncertainty (Brugnach et al., 2008;
Mysiak et al., 2005). On the one hand, this is deemed relevant
because statistical uncertainty was the main focus of uncertainty
assessment in the case study of Pelizaro et al. (2010), thus this
research will complement and build upon that study. On the other
hand, and even more important, because this implicit, unbounded
uncertainty assessment is often left out or not properly taken into
account when assessing the overall performance of EIMF’s (Pahl-
Wostl, 2007; Refsgaard et al., 2007). Equally important, this also
encourages the evolution of EIMFs by facilitating the integration,
reuse and sharing of model resources (Rizzoli et al., 2008). By
understanding land allocation as a complex process, by accounting
the uncertainty of factors in the model, and framing the allocation
criteria within the constraints presented by the climate change
forecasts, a good quality outcome can be obtained.

Furthermore, to consider the impacts of all alternatives derived
within this multidimensional decision space, and especially to
obtain expert driven, alternative scenarios, a Multi-Criteria Deci-
sion Making method (MCDM) combined with a GIS framework
provides a useful strategy to cope with this challenge (Chen et al.,
2010; Jankowski, 1995; Wang et al., 2010). One of the most used
methodologies for combining MCDM with land use process is the
Analytic Hierarchy Process (AHP) (Saaty and Vargas, 2001). AHP
combines biophysical data using expert opinion in order to arrive at
a single land suitability index. This initially involves development of
a hierarchy of factors affected the suitability of land for different
purposes. Experts are then asked to assess the relative importance
to suitability of different factors at the same level of the hierarchy.
The relative importance assessments are combinedmathematically
to produce a weight, which is applied to each normalised factor
rating to generate an overall suitability index. A LUA process can
then use these suitability assessments, in a variety of MCDM ways,
to propose land allocations.

With all of these elements in mind, our objective was to gain
insight into a complex environmental assessment process by
implementing a Spatial Model Steering (SMS) approach. With SMS
a user can visually steer key factors in the LUA model, then explore
and compare “what if” scenarios by changing these factors and
visualizing the corresponding outcomes. The SOA based spatial
MCDM/AHP approach to LUA provided an ideal test environment
and we sought to create a framework, which supported SMS and
gave users flexibility in exploration of the decision space and
confidence in their assessments. We suggest that this provides
greater awareness of both factor influence and uncertainty than is
possible through conventional approaches in which a process must
be re-run in order to explore different assumptions, test plausible
ranges of coefficients or find outcomes which meet objectives. This
paper focuses on the framework development. A comparison
between an SMS approach and a more conventional map based
communication of LUA results in the context of climate change will
be the subject of another paper.

However, the testing process was built into the framework and
that is also reported here. At key moments in the steering process
the users were presented with an online mini survey to assess their
level of confidence in the scenarios and the uncertainties which
emerged from the analysis. At all times, user interactions are logged
for further analysis, of both the overall session performance and the
ering, an exploratory approach to uncertainty awareness in land use
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factor and uncertainty awareness of the user. This data can be used
to assess the overall performance of the tool.

2. Background

Approaches based on complex adaptive systems have made
substantial contributions to the analysis of climate change impact,
and have been widely used in the exploration of predicted change
in land and natural resource management (Hossain, 2006; Kumar
et al., 2006; Lee, 2008; Ménard, 2007).

Frameworks that used web services as the communication
protocol to control environmental simulations have been imple-
mented successfully (Goodall et al., 2008; Pullen, 2005; Wainer,
2008). These frameworks provided simulations with real-time
capabilities, as well as flexibility and extensibility. The same
services technology has been widely applied in designing distrib-
uted virtual environments for geospatial data (Huang, 2003). The
Commonwealth Scientific and Industrial Organization’s (CSIRO)
Solid Earth and Environment Grid also aims to address the issue of
resources availability through the Open Geospatial Consortium
(OGC) Web Services architecture (OGC 2006), thus facilitating the
management of Australia’s natural and mineral resources. The
Earth system grid (Williams, 2009), not only enables grid sharing of
analysis and climate modeling, but also real time distributed
visualization of simulation output (Yang et al., 2008).

In addition, the scientific community has identified a need to
address the lack of accessibility and interoperability of environ-
mental models (Filippi and Bisgambiglia, 2004; Granell et al., 2010;
Papajorgji et al., 2004). This challenge requires frameworks that
emphasize reusability and modularity in their components,
enhancing integration and connectivity. A reusable framework of
this kind to integrate distributed services for collaboration has been
proposed by (Tiejian et al., 2007). In this framework a web services
“bus protocol” integrated self-made and third party collaborative
tools, following a mash-up approach to meet specific framework
needs, including security and management. Further examples of
this trend, in the area of geospatial SOA, include environmental
applications that address the challenges of data accessibility,
service interoperability and reusability in varied contexts (Friis-
Christensen et al., 2007; Granell et al., 2010; Kassahun et al.,
2010; Michaelis and Ames, 2009). Similar approaches have been
successful in implementing simulation or model steering for
constant feedback throughout the process (Griffon et al., 2010; Li,
2007; Riedel, 2008; Stevens et al., 2007).

In regard to MCDM methods, successful GIS approaches have
been used extensively in the past (Chen et al., 2010; Wang et al.,
2010). A similar LUA/MCDM/AHP approach has been applied
successfully in many instances where conflicting interests and
demands must be met, like purchase of development rights
programs (Duke and Aull-Hyde, 2002), Australian stakeholder
preferences in regional forest agreements (Ananda and Herath,
2003) and wetland management by community leaders (Herath,
2004). In this research’s region of interest (regional Victoria,
Australia) a framework that combines this MCDM modeling,
biophysical data and expert knowledge was implemented in
McNeill (2006). In that research a land use impact model was used
to analyze soil erosion impact, taking into account the relationships
between landscape biophysical attributes and land management
practices. Thework included a sensitivity analysis that explored the
relationships between model results and stakeholders under-
standing of uncertainty (Chen et al., 2010). Particularly relevant to
this research is the Spatial Decision Support System (SDSS) pre-
sented in (Chen et al., 2010). In this SDSS a geo-referenced visual-
ization of uncertainty is available to stakeholders. By representing
uncertainties in a spatial dimension, they provided a deeper
Please cite this article in press as: Nino-Ruiz, M., et al., Spatial model ste
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understanding of the model variability, at the same time making it
an integral part of the decision making process. Even more
important, they analysed the risk inherent to decision making by
ranking and comparing multiple scenarios, thus quantifying how
robust a certain decision was against other possible outcomes. This
Steering Framework builds upon that line of research.

In summary, it is important for stakeholders in land manage-
ment, particularly those persons involved in broad scale regional
planning activities, to anticipate and plan for environmental
changes. Anticipating likely future conditions depends on integra-
tion of future projections of global warming, market constraints
and land allocation models. Such interlinking models, and the
uncertainty associated with them, lead into a complex and cogni-
tively demanding decision making process of land use manage-
ment. This is due not only to the many input variables being
assessed, but also to the inherent uncertainty associated with being
able to model future scenarios and the complexities in the decision
making process in itself. For all these reasons, the following
research question arises: can we help stakeholders (people who
have a vested interest in the outcome of land use management in
the future, e.g. regional planners, farmers, policy makers, etc.) to
better understand the underlying models and their dependence
upon key factors? It is essential that these stakeholders can assess
the significance of relevant key factors and how they impact the
model outcomes, as well as the range and distribution of uncer-
tainty in these outcomes. The contribution this researchmakes is in
the development of an SMS exploratory framework by developing
a SOA enabled steering framework that controls a LUA model and
presents the outcomes in real time. This framework architecture
enables stakeholders to change model inputs interactively in order
to reassess specific, on-the-spot interests and scenarios. At the
same time, our framework tracks the behavior of users and includes
tests of their responses to support a detailed evaluation of the
success of the framework. The results of this testing are the subject
of a future paper.

3. LUA model case study

3.1. Environmental model summary description

As a source of variable inputs we took as a starting point the
model described by Pelizaro et al. (2010), where the best combi-
nation of cropping systems for the South West region of Victoria
was analysed. This particular model was chosen for the following
reasons:

� It shared the same approach of combining biophysical data on
a regional level, the future climate projection by Special Report
on Emissions Scenarios (SRES) and a comprehensive analysis of
uncertainty.

� The LUA model algorithm was implemented as a stand-alone
application (Visual Basic programming language), but its
main algorithm could be broken down into subcomponents,
ready to be exported into a web-based framework.

� The published data was complete and readily available from
the partner organization, Department of Primary Industries,
Victoria.

The main components of the Pelizaro et al. (2010) model that
were migrated to this software were:

� Amulti-criteria evaluation process, where biophysical datawas
combined with experts’ judgment that has been quantified
using the Analytical Hierarchy Process (AHP). The AHP gener-
ated factor weights are applied to the spatial biophysical data
ering, an exploratory approach to uncertainty awareness in land use
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to produce maps which reflect a particular location’s produc-
tivity under the given climate change scenario. Fig. 1 shows an
example of the output of Land Suitability for Ryegrass/sub-
clover land suitability in 2050, Intergovernmental Panel on
Climate Change (IPCC) Special Emission scenarios (SRES)
scenario A2 (an heterogeneous world, with economical
development focused on diverse regions, this scenario is
associated with medium level global warming) (Pelizaro et al.,
2010).

� An ESRI� ArcGIS stand-alone component that maps relative
suitabilities for different crops (color coded from �1 restricted
to 100% suitable). In the Pelizaro et al. study, results were
validated by a panel of experts. When inconsistencies were
found in this validation, the AHP was reweighted iteratively
until every panel member was satisfied. With this fined-tuned
AHP, land use suitability was estimated for every crop under
future climate conditions according to the IPCC SRES. The
model of choice was CSIRO MK 3.5 (Gordon, 2002).

� An uncertainty analysis related to the AHP used, which indi-
cates quantitatively a level of confidence in the predictions
obtained. Although an exact definition and taxonomy of
uncertainty is subject to intense debate (Refsgaard et al.,
2007), the Pelizaro et al. model has used the stochastic and
epistemic taxonomy on uncertainty (Walker, 2003). Since
epistemic uncertainty is associated with incomplete knowl-
edge (found in the input data of soil, climate and landscape
readings), that study focused on stochastic uncertainty by
analyzing the aleatory uncertainty arising from the AHP
weight-assignments captured in regional workshops. This
analysis was performed by combining Monte Carlo simula-
tions with a PERT probability distribution, a variant of the
Beta distribution (Benke, 2008; Hahn, 2003; Jablonsky, 2007).
Fig. 1. Example of the output of land suitability for ryegrass/sub-clov

Please cite this article in press as: Nino-Ruiz, M., et al., Spatial model ste
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The final uncertainty assessment was presented as grey scale
maps that linked land allocation and suitability estimates
with corresponding probability distributions, but only for one
crop (Ryegrass). Fig. 2 shows the corresponding uncertainty
analysis for the land suitability outcome shown in Fig. 1
(Pelizaro et al., 2010).

3.2. Case study modifications from the original

The LUA algorithm used in this case study is the same linear
weighted suitability model derived using AHP. In regard to the AHP
creation, calibration and derivation, a detailed AHP hierarchy and
suitability weighting for each crop has been published in (Pelizaro
et al., 2010). It was however necessary to modify these weights in
order to introduce two other factors, Crop Market price and
a Carbon Tax applied to production. It was a requirement that when
the importance of these new factors was set to zero, the LUA
outcomes yielded the same results as the original study. These
factors were not taken into account in the original study, which was
entirely concerned with biophysical variables, but have been
included here. While the biophysical data is unchanging through
time, we wanted to include suitability factors which would be
subject to substantial uncertainty (by virtue of their being applied
to LUA well into the future) in order to test the ability of users to
judge the relative significance of these factors and also to gain
a sense of the overall implicit unbounded uncertainty contained in
the suitability assessments.

To implement these factors in the modified algorithm, the
weights for each biophysical factor were adjusted proportionately
to take into consideration another factor, net market price, which
was determined by the crop market price together with the carbon
tax applied to production. Note that no attempt was made to
er land suitability in 2050, scenario A2 in (Pelizaro et al., 2010).

ering, an exploratory approach to uncertainty awareness in land use
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Fig. 2. Example of the corresponding uncertainty map for Fig. 1. Land suitability for ryegrass (Pelizaro et al., 2010).
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undertake the necessary economic analysis to determine the rela-
tive significance of the net market price. Our main objective was to
develop and test the framework, not to build a fully accurate model.
We therefore chose amodest level of influence (a maximumweight
of 0.06 or 6%) on overall suitability.

The algorithm, with the extra factors included, assigned a land
suitability score to each grid cell in the study area using the
following formula:

Crop LSðx;yÞ ¼ ISoilðx;yÞ þ ITerrain Slopeðx;yÞ þ IRainðx;yÞ þ ICompound Price

where (I) represents each crop influence, and:
ISoilðx;yÞ ¼
�
AHP weightedTopsoil and Subsoil Texture; Usable Soil Depth; Subsoil pH ðx;yÞ

�
� ðWSoilÞ
ITerrain Slopeðx;yÞ ¼
�
Slopeðx;yÞ

�
�
�
Wslope

�

IRainðx;yÞ ¼ Rainðx;yÞ �
�

SRain
mRain SRES

�
� ðWRainÞ

ICompound Price ¼
�
SCtax
m

�
� ðWCTaxÞ �

�
SMarket Price
m

�
� ðWPriceÞ
Ctax Market Price

Here,

� S[parameter] represents the new global parameter value
submitted through steering by the user.
Please cite this article in press as: Nino-Ruiz, M., et al., Spatial model ste
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� mCtax equals the projected Carbon Tax (initially AUD23.00/
tonne of CO2) for Australia which came in effect on July 1, 2012

� mRain SRES represents the mean SRES projected rainfall for this
region, and

� mMarket Price is the reference value for that crop current market
price.

Also note that some values, for instance ICompound Price,
are constant throughout the coverage, and others
ðISoilðx;yÞ þ ITerrain Slopeðx;yÞ Þ, are not steerable and thus can be pre-
computed for each (x,y) before the steering phase.

Three parameterswere implemented tobe steerable in real time:
1. Rainfall, taking as a base point the same values as the original
case study (SRES 2050 MK 3.5)

2. Commodities’ prices, taking as a base point for each commodity
its approximate average current market value in AUD.

3. Carbon emission pricing, in the form of a Carbon Tax as
described in Wise (2009), with a base point of AUD23.

In regard to climate change projections of Rainfall, three SRES
projections, which encompass the spectrum of possible scenarios,
were chosen. In this study these are referred to as “Low level global
warming” (B1), “mid level global warming” (A2) and “high level
global warming” (A1FI). Data sets for south west Victoria were
obtained from CSIRO MK 3.5 Climate change model (Gordon et al.,
2010) for the year 2050.
ering, an exploratory approach to uncertainty awareness in land use
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Fig. 3. Architecture implementation for Land Use Allocation and SOA enabled Spatial Model Steering.

1 http://geoserver.org.
2 http://www.springsource.org/.
3 http://postgis.refractions.net/.
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In regard to the crop types included, the rationale was to have
a representative of the three common types of land use in this
region that was also present in the original study of (Pelizaro et al.,
2010): one type of pasture (Ryegrass e Lolium spp), one type of
cereal crop (Oats e Avena sativa) and one type of timber crop (Blue
Gum e Eucalyptus globulus).

Finally, the Carbon Tax is applied to the commodities’ prices to
create a final compound price.

4. Steering framework architecture

4.1. Introduction

This framework provides an infrastructure to explore land use
suitability and allocation and evaluate the type of uncertainty dis-
cussed in the previous section. Dynamic steering of a model’s
outcomes, as opposed to the traditional model paradigm
(setup/ run/ analyze results/ repeat process), brings many
advantages for supporting expert based modeling paradigms such
asMCDM. Instead of analyzing results in a separate post-processing
step, stakeholders can modify and react quickly to unexpected
deviations of the model, or changes in the environment, thus
providing a deeper understanding of the model behavior (Huang,
2003; Kresimir, 2008). Even more importantly, visualization
steering allows real (or near-real) time iteration towards the
outcome that the stakeholders want to achieve, in the process
finding out which parameter values are the most suitable for
a particular purpose (Riedel, 2008). One of the advantages of this
steering approach is a more transparent model e outcome rela-
tionship. In the alternative approach of “black box” development,
a handful of scientists may configure a givenmodel in a certainway
to present a given outcome, which might reflect strongly what they
consider an accurate outcome. With SMS, a stakeholder with
different, or even conflicting interests, can seewhich changes to the
parameters will yield an outcome that is closer to his interests, thus
fostering collaborative work and discussions of how different and
even conflicting interests can be resolved and included in the
modeling process.

4.2. Description

Migration and reuse of legacy components found in the case
study model were implemented in the Java Enterprise Edition
platform (version 1.6). The JEE container of choice was RedHat�
Jboss 4.2. Each layer in the architecture was instantiated as follows
(see Fig. 3):
Please cite this article in press as: Nino-Ruiz, M., et al., Spatial model ste
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4.2.1. Communication services
Data is transferred from relevant layers through wrappers/

interfaces that are implemented by standard contracts on each
module (Standard Web Services protocols). To implement this we
used the JAX-WS and Google� API’s for web development for our
view layer web services needs. In the JEE container, we deployed
a web archive version of Geoserver,1 which implements OGC Web
Feature Services (OGC 2005) and OGC Web Map Services to handle
ourmapping requests (OGC 2006). To implement web services with
JAX-WS, we leverage the Java Spring Framework capabilities
(version 3.0).2 This framework only requires the use of@WebService
and @WebMethod annotations to expose the functionality as a web
service, thus abstracting the need of specifying the xml configu-
ration of SOAP and WSLD, which the framework does
automatically.

4.2.2. View layer
This layer is composed of modules that offer the end visuali-

zation (mapping) outcome. These services are third party soft-
ware that can range from the common Internet browser to more
sophisticated readers of web 2.0 content. We implemented it
using Google� Maps v.2.0 and Earth 1.8 API, XHTML and Java-
Script. We decided to switch from kml to png format as the WMS
format of choice for performance in the refreshment rate on the
screen.

4.2.3. Data layer
Data sources can be composited to feed spatial and non-spatial

information requirements that the orchestration layer needs to
fulfill its cycle, thus abstracting the need for a particular data
source. For instance, it retains biophysical, geospatial and climate
change data required by the LUA process. Hibernate and PostGIS/
PostgreSQL3 were adopted for the data layer service to enable
advanced logging capabilities.

4.2.4. Management/orchestration layer
This architecture depends on workflows that link and sequence

services according to modeling and visualization requirements.
These automated services further delegate specialized functions
such as modeling, management, security and similar features. This
layer includes:
ering, an exploratory approach to uncertainty awareness in land use
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Fig. 4. Example of an online questionnaire, where the question will appear at the bottom of the screen, and the online glossary available, which will pop up an explanation of
certain keywords.
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� Workflow manager: responsible for managing a sequence of
operations/processes to achieve a general framework goal (like
redirecting new parameters to feed the steering manager,
according to each user’s session). It orchestrates the interaction
of both human and machine actors that may intervene in
a given process. Since most complex environmental models
need to preserve state information, thus conflicting with web
services guidelines of being stateless services, this manager
also addresses model transaction integrity by using the Data
layer for preserving state information. The strategy behind this
controller was to have an entity in charge of handling multiple,
concurrent access to the framework without affecting the
special requests for the computing intensive steering process.
In this manner, common tasks like authentication and web
page flow would be addressed and configured separately from
the steering process.

� Steering manager: responsible for coordinating between data
feed/exchange and operations of the model instance running
on the framework’s execution platform, ensuring all asyn-
chronous and time/resource intensive model requirements
are met independent of the other services requests. This
module also queues requests to it from the Workflow
manager or other layers/services, thus avoiding incongruent
or invalid data being delivered and/or analysed. It was
deemed important to separate this manager from the
previous one, because it takes care of the core functionality,
steering, in order to have specialized modules to handle the
demanding steering process. Equally important, envisioning
a higher demand of computing resources for this processes,
having this module divided from the common Workflow
Controller allows a flexible scaling to other servers that can
Fig. 5. Workflow diagram wi
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implement more Steeringmanagers without having to change
the whole architecture.

� Process evaluator: responsible for managing and processing
online surveys results and requests for “scenario screenshots”
to be taken and retained in the data layer. These snapshots can
be useful later, not only to enable any user to restore previously
complex sessions, but also for comparing and ranking possible
outcomes from the parameter space determined by the model.
This module is the one responsible for showing and capturing
the survey information shown in Fig. 4a.

� Process tracker: implements advanced logging capabilities to
record user interaction, gather direct user’s feedback for any
particular sub-process. Depending on the development life-
cycle, some or all of this raw data is sent in a structured fashion
to the data layer. Like an airplane’s black box, later it can be
useful to assess the overall tool’s performance. We imple-
mented this using slf4j and log4javascript with Ajax on the
Spring 3.0 framework.

4.3. Workflow description

A description of a typical flow of information through this
architecture would be as follows: a potential stakeholder is invited
to perform an LUA analysis under certain conditions, for instance:

“Your region of study is the region between Port Fairy, Koroit
and Warnambool. Which crops would you recommend to
farmers to maximize their net returns on land use?”

The user can visually steer the LUA model variables (e.g. chose
IPCC SRES A1FI: Emphasis on fossil fuels, for the year 2050), then
explore “what if” options such as decreasing the rainfall or
th key steps description.

ering, an exploratory approach to uncertainty awareness in land use
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thinking the carbon tax may be high at the time. During his/her
whole session, the user will be visualizing the corresponding
changes after a minimal delay, depending on technology
constraints.4

At key moments in the steering process the user will be pre-
sented with online mini surveys to assess his level of confidence in
the scenarios analysed and the outcome considered most relevant
(see Fig. 4a). At all times, the user’s interaction will be logged for
future comparison and analysis, on both the overall session
performance and uncertainty awareness of the user. This data can
be analysed jointly between developers and stakeholders when
assessing the overall performance of the tool, thus getting useful
insight into the areas which the framework should address further.
To support the process during the interaction with the framework,
there is an online glossary available to users where most keywords
have pop up explanation (see Fig. 4b).

4.4. Steering framework in action

As seen in Fig. 5, when the user logs in, theWorkFlow Controller
creates its corresponding sessionSandBox, which is the “canvas”
where the user can perform LUA processes. On creation the
Workflow Controller populates this instance with the LUA global
variables that are fixed during the steering session (e.g. Sub soil Ph,
drainage, etc. see Pelizaro et al. (2010) for full description of the
algorithm factors) [see step 0].

When the user requests a LUA [step 1], the browser performs an
Ajax call (XmlHttpRequest) that is acknowledged by the Workflow
Controller, which delegates the Steering session to the logic expert,
the Steering Controller [2]. This one receives the steering parame-
ters (Carbon Tax, SRES scenario, Market Price) sent by the user, and
creates a Web Service call to the LUA Analysis service, which could
be located physically in another server machine, where the algo-
rithm resolution actually takes place [3]. Here a stateless LUA
Analyser queues [4] and then processes all the LUA requests
received (there might be other users requesting different LUA
outcomes simultaneously) [5]. When the outcome is ready, this
module notifies the Steering Controller when the corresponding
outcome has been processed [6], along with its location on the
Geoserver instance. The Steering Controller then informs the view
layer that it can perform the asynchronous call on the Web Map
Service end of Geoserver [7]. The Google Map or Earth API,
depending of which layer the user is viewing, will refresh the map
with the updated outcome [8]. When the user wants to end his
interaction, the Workflow manager can also save its state, and
during all this time it has coordinated with the process evaluator
and process Tracker to gather all the relevant data from the
interaction.

In this implementation the decoupling of the analysis compo-
nent from the others modules allowed setting up a dedicated
machine to perform this very resource intensive task. By the same
token, if user traffic were to become intensive as well, the same
physical decoupling could be achieved with almost no re-
engineering cost, again because such SOA implementation is
readily available and easily configurable in corporate level frame-
works such as Spring 3.0.

5. Discussion

Any environmentally complex decision involves risk com-
pounded by uncertainty in model inputs and model parameters.
4 Loading times are dependent on the platform of deployment, Internet speed,
CPU and GPU characteristics of the client, etc.
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A comprehensive analysis of uncertainty can provide an indica-
tion of the error margin or confidence in any decision process,
thus an insight into the risk associated with it. The main aim of
this exploratory architecture is to provide users with an envi-
ronment in which the roles of different elements in the
decision environment can be understood and the range
of uncertainty in long-term outcomes can be assimilated
through perceptions of the variations in outcomes. This can be
advanced through a participatory environment where different
scenarios and extreme patterns can be analysed (Brugnach et al.,
2008).

This implementation enables scientists, stakeholders and
modelers alike to follow a comprehensive yet easy-to-use proce-
dure to canvass the behavior of some sources of uncertainty, not
only in the parameter space, but also in the geographic dimension.
Uncertainty assessment is usually carried out using more analyt-
ical procedures only at the end of the modeling process, and even
then the “statistical uncertainty” is the one that is given the
highest priority (Refsgaard et al., 2007). By exploring model
outcomes through the unbounded implicit and insightful combi-
nation of steering key input parameters, comparing them and
answering carefully placed mini surveys, most stakeholders
without substantial background in uncertainty theory, can
nevertheless provide near immediate feedback on their confi-
dence and uncertainty awareness to modelers and project
managers. Consequently, each step in the development/learning
lifecycle can be completed with greater confidence. This effect is
complemented by the advanced logging framework that tracks
user interaction, giving a behind the scenes insight as to this
particular SMS implementation, or any DSS as a whole. Analysis of
these logs by the modelers can enhance communication of the key
factors that affect the users confidence in the model and their
uncertainty awareness.

Furthermore, the embedded Process Evaluator provides
a check point to avoid the risk of reading too much into the
outputs and/or predictions of the models (Jakeman et al., 2006).
With the tracking interaction stored and available for future data
mining, it provides a stable ground for a longer-term view of the
potential of a certain model, including how flexibly it can
respond to changing management requirements, as well as
increasing the transparency of the overall process to all stake-
holders (Oxley, 2007).

On the other hand, spatial model steering brings forward many
advantages. Instead of analyzing results in a separate post-
processing step, stakeholders can modify and react quickly to
unexpected deviations of the model and changes in the environ-
ment, thus providing a deeper understanding of the system
behavior (Kresimir, 2008). Moreover, it provides a supporting
framework for visual analytics in exploring the decision space in
near-real time. It is also extensible, by adhering to service contracts
that are defined collectively by regulatory organization such as OGC
and IEEE, thus bringing web based simulation steering to a wider
community (Huang, 2003).

In regards to lessons learnt during this EIMF development, we
found that full compliance with certain “de facto” practices in the
SOA environment had a considerable impact on the performance of
the framework when deployed on our available platforms, specif-
ically, in the real time rendering of the model output. We came to
these findings through the assimilation of common practices and
standards of the software industry in regards to automated testing
coverage of code produced. This practice enhances quality assur-
ance of code, as well as it reusability and flexibility (Fiorese and
Guariso, 2010,Buehler, 2003, p. 202; Stockwell, 1999, p. 203). To
implement this testing coverage we used the following
technologies:
ering, an exploratory approach to uncertainty awareness in land use
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� Pylot 2.6 Open source web performance tool5 (For systemwide
Testing).

� SeleniumHQ Web Application Testing System6 (For View layer
Testing).

� TestNG API7 (For Unit and Integration testing of Java software
components).

These tests suggested that, for our particular platform, the
rendering of maps would be more responsive if they were
requested from Geoserver with a png format (optimized media file
for the Internet), rather than the standard kml format for geospatial
features.

The focus here has been on the architecture for SMS and sub-
systems for evaluation rather than the evaluation itself. An exten-
sive analysis with stakeholders of how this steering framework can
enhance model understanding is being carried out, and its results
will be published in a separate paper. Finally, the current state of
this approach enables interaction with the first level of input
variables such as rainfall, but not the underlying AHP decision tree
as well as the Monte Carlo uncertainty analysis.

6. Concluding remarks

We share the vision with the modeling community of a distrib-
uted modeling approach in which geospatial enabled environ-
mental modules can be reused and combined at will, where data
and models can be shared as virtual resources among peers,
employing web services and/or grid technology to achieve tangible
environmental goals. We believe that this development makes
a modest contribution to this vision. By integrating the variables as
previously explained, the system enables users to gain a deeper
understanding of the model and key variables being used and
implicitly an insight into the range of plausible outcomes and hence
uncertainty. For instance, which factors are more relevant than
others, as well as the uncertainty inherent in the LUA model. In this
light, this framework illustrates the technical implementation
necessary for managing environmental resources with a broad
perspective, one that takes into account all, and often conflicting,
interests in different spatial and temporal scales. With this in mind,
a planned line of work includes support for visual collaborative
sessions inside the framework, where peers can exchange scenarios
outcomes and their conclusions drawn from the increased factor
and uncertainty awareness.

Additionally, this framework attempts to mirror the following
perception: systems dealing with complex environmental concerns
should not be dependant on a specific software or economic/
scientific paradigm (Pahl-Wostl, 2007; Rivington, 2007; Warren,
2008). Moreover, when a loose-coupling architecture like the one
proposed here is enabled, it permits a better uncertainty analysis,
where a holistic notion of the system can be obtained (Warren,
2008). This perception also offers the possibility of looking at
options arising from different decisions taken when the wider
community is involved. Of course, it is a difficult task for a single
product to support many tools, because many tools imply many
data models. There is no magical all-pervasive platform that
supports all use cases efficiently (Jakeman et al., 2006), but if the
framework is flexible and cohesive enough, its modularity will
support its necessary evolution in time.

If the power of Information Communication and Technology
(ICT) is harnessed in conjunction with a proper understanding of
5 http://www.pylot.org/.
6 http://seleniumhq.org/.
7 http://junit.sourceforge.net/.
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the human context within which this approach must evolve,
a useful EIMF can be implemented. These are the first steps to
create highly relevant assessments of complex environmental
impacts, providing communities and institutions with the flexi-
bility to assemble new individual modules and modeling para-
digms, further fostering the exploration of potential environmental
solutions and leveraging the human decision making process to
envision and achieve a sustainable future.

References

Alameh, N., 2003. Chaining geographic information web services. IEEE Internet
Computing 7 (5), 22.

Ananda, J., Herath, G., 2003. The use of Analytic Hierarchy Process to incorporate
stakeholder preferences into regional forest planning. Forest Policy and
Economics 5 (1), 13e26.

Benke, K., Wyatt, R., Sposito, V., 2011. A discrete simulation approach to spatial
allocation of commodity production for revenue optimisation over a local
region. Journal of Spatial Science 56 (1), 89e101.

Benke, K.K., 2008. Parameter uncertainty, sensitivity analysis and prediction error in
a water-balance hydrological model. Mathematical and Computer Modelling 47
(11, 12), 1134.

Brown, M.E., Funk, C.C., 2008. Food security under climate change. Science 319
(5863), 580e581.

Brugnach, M., Pahl-Wostl, C., Lindenschmidt, K.E., Janssen, J.A.E.B., Filatova, T.,
Mouton, A., Holtz, G., van der Keur, P., Gaber, N., 2008. Chapter four complexity
and uncertainty: rethinking the modelling activity. In: Jakeman, A.J.,
Voinov, A.A., Rizzoli, A.E., Chen, S.H. (Eds.), Developments in Integrated Envi-
ronmental Assessment. Elsevier, pp. 49e68.

Buehler, O., Wegener, J., 2003. Evolutionary functional testing of an automated
parking system. Proceedings of the International Conference on Computer,
Communication and Control Technologies (CCCT’03) and the Ninth Interna-
tional Conference on Information Systems Analysis and Synthesis (ISAS’03),
Florida, USA.

Chen, Y., Yu, J., Khan, S., 2010. Spatial sensitivity analysis of multi-criteria weights in
GIS-based land suitability evaluation. Environmental Modelling & Software 25
(12), 1582e1591.

Cline, W.R., 2007. Global Warming and Agriculture.
De Roure, D., Jennings, N.R., Shadbolt, N.R., 2003. The Semantic Grid: A Future e-

Science Infrastructure. John Wiley & Sons, Ltd.
Denzer, R., 2005. Generic integration of environmental decision support

systems e state-of-the-art. Environmental Modelling & Software 20 (10),
1217e1223.

Duke, J.M., Aull-Hyde, R., 2002. Identifying public preferences for land preser-
vation using the analytic hierarchy process. Ecological Economics 42 (1, 2),
131e145.

Filippi, J.B., Bisgambiglia, P., 2004. JDEVS: an implementation of a DEVS based
formal framework for environmental modelling. Environmental Modelling &
Software 19 (3), 261e274.

Fiorese, G., Guariso, G., 2010. A GIS-based approach to evaluate biomass potential
from energy crops at regional scale. Environmental Modelling & Software 25
(6), 702e711.

Friis-Christensen, A., Ostländer, N., Lutz, M., Bernard, L., 2007. Designing service
architectures for distributed geoprocessing: challenges and future directions.
Transactions in GIS 11 (6), 799e818.

Goodall, J.L., Horsburgh, J.S., Whiteaker, T.L., Maidment, D.R., Zaslavsky, I., 2008.
A first approach to web services for the National Water Information System.
Environmental Modelling & Software 23 (4), 404e411.

Gordon, H., O’Farrell, S., Collier, M., Dix, M., Rotstayn, L., Kowalczyk, E., Hirst, T.,
Watterson, I., 2010. The CSIRO Mk3.5 Climate Model. Centre for Australian
Weather and Climate Research.

Gordon, H.B., 2002. The CSIRO Mk3 climate system model.
Granell, C., Díaz, L., Gould, M., 2010. Service-oriented applications for environ-

mental models: reusable geospatial services. Environmental Modelling &
Software 25 (2), 182e198.

Griffon, S., Auclair, D., Nespoulous, A., 2010. Visualising changes in agricultural
landscapes. In: Brouwer, F., Ittersum, M. (Eds.), Environmental and Agricultural
Modeling. Springer, Netherlands, pp. 133e157.

Gunasekera, D., Tulloh, C., Ford, M., Heyhoe, E., 2008. Climate Change: Opportuni-
ties and Challenges in Australian Agriculture. Citeseer.

Hahn, E.D., 2003. Decision making with uncertain judgments: a stochastic formu-
lation of the analytic hierarchy process. Decision Sciences 34 (3), 443.

Herath, G., 2004. Incorporating community objectives in improved wetland
management: the use of the analytic hierarchy process. Journal of Environ-
mental Management 70 (3), 263e273.

Hossain, H., 2006. Sustainable land resource assessment in regional and urban
systems. Applied GIS 2 (3), 24.

Huang, B., 2003. Web-based dynamic and interactive environmental visualization.
Computers, Environment and Urban Systems 27 (6), 623.

Hutanu, A., 2006. Distributed and collaborative visualization of large data sets
using high-speed networks. Future Generation Computer Systems 22 (8),
1004.
ering, an exploratory approach to uncertainty awareness in land use
/10.1016/j.envsoft.2012.06.009

http://www.pylot.org/
http://seleniumhq.org/
http://junit.sourceforge.net/


M. Nino-Ruiz et al. / Environmental Modelling & Software xxx (2012) 1e11 11
Jablonsky, J., 2007. Measuring the efficiency of production units by AHP models.
Mathematical and Computer Modelling 46 (7, 8), 1091.

Jakeman, A.J., Letcher, R.A., Norton, J.P., 2006. Ten iterative steps in development
and evaluation of environmental models. Environmental Modelling & Software
21 (5), 602e614.

Jankowski, P., 1995. Integrating geographical information systems and multiple
criteria decision-making methods. International Journal of Geographical Infor-
mation Science 9 (3), 251.

Kassahun, A.A., Athanasiadis I.N., Rizzoli, A.E., Krause, A., Scholten, H., Makowski,
M., Beulens, A.J.M., 2010. Towards a service-oriented e-infrastructure for
multidisciplinary environmental research. Firth Biennial Meeting: International
Congress on Environmental Modelling and Software (iEMSs 2010).

Kresimir, M., 2008. Interactive visual steering e rapid visual prototyping of
a common rail injection system. IEEE Transactions on Visualization and
Computer Graphics 14, 1699e1706.

Kumar, S., Peters-Lidard, C., Tian, Y., Houser, P., Geiger, J., Olden, S., Lighty, L.,
Eastman, J., Doty, B., Dirmeyer, P., 2006. Land information system: an interop-
erable framework for high resolution land surface modeling. Environmental
Modelling & Software 21 (10), 1402e1415.

Lee, C.L., 2008. Biophysical and system approaches for simulating land-use change.
Landscape and Urban Planning 86 (2), 187.

Li, M., 2007. Real-time collaborative design with heterogeneous CAD systems based
on neutral modeling commands. Journal of Computing and Information Science
in Engineering 7, 113.

Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P., Naylor, R.L.,
2008. Prioritizing climate change adaptation needs for food security in 2030.
Science 319 (5863), 607e610.

McNeill, J., 2006. Using GIS and a land use impact model to assess risk of soil
erosion in West Gippsland. Applied GIS 2 (3), 19.

Ménard, A., 2007. Simulating the impact of forest management scenarios in an
agricultural landscape of southern Quebec, Canada, using a geographic cellular
automata. Landscape and Urban Planning 79 (3, 4), 253.

Michaelis, C., Ames, D., 2009. Evaluation and implementation of the OGC web
processing service for use in client-side GIS. GeoInformatica 13 (1), 109e120.

Mysiak, J., Giupponi, C., Rosato, P., 2005. Towards the development of a decision
support system for water resource management. Environmental Modelling &
Software 20 (2), 203e214.

Oxley, T., 2007. Space, time and nesting integrated assessment models. Environ-
mental Modelling & Software 22 (12), 1732.

Pahl-Wostl, C., 2007. The implications of complexity for integrated resources
management. Environmental Modelling & Software 22 (5), 561e569.

Papajorgji, P., Beck, H.W., Braga, J.L., 2004. An architecture for developing service-
oriented and component-based environmental models. Ecological Modelling
179 (1), 61e76.

Pelizaro, C., Benke, K., Sposito, V., 2010. A Modelling framework for optimisation of
commodity production by minimising the impact of climate change. Applied
Spatial Analysis and Policy, 1e22.

Pullen, J.M., 2005. Using Web services to integrate heterogeneous simulations in
a grid environment. Future Generation Computer Systems 21 (1), 97.

Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., Vanrolleghem, P.A., 2007. Uncer-
tainty in the environmental modelling process e a framework and guidance.
Environmental Modelling & Software 22 (11), 1543e1556.

Riedel, M., 2008. Extending the collaborative online visualization and steering
framework for computational grids with attribute-based authorization.
Proceedings of the IEEE 104.

Riedel, M., 2009. Research advances by using interoperable e-science infrastruc-
tures. Cluster Computing 12 (4), 357.
Please cite this article in press as: Nino-Ruiz, M., et al., Spatial model ste
allocation, Environmental Modelling & Software (2012), http://dx.doi.org
Rivington, M., 2007. An integrated assessment approach to conduct analyses of
climate change impacts on whole-farm systems. Environmental Modelling &
Software 22 (2), 202.

Rizzoli, A.E., Leavesley, G., Ascough Ii, J.C., Argent, R.M., Athanasiadis, I.N.,
Brilhante, V., Claeys, F.H.A., David, O., Donatelli, M., Gijsbers, P., Havlik, D.,
Kassahun, A., Krause, P., Quinn, N.W.T., Scholten, H., Sojda, R.S., Villa, F., 2008.
Chapter seven integrated modelling frameworks for environmental assessment
anddecision support. In: Jakeman, A.J., Voinov, A.A., Rizzoli, A.E., Chen, S.H. (Eds.),
Developments in Integrated Environmental Assessment. Elsevier, pp. 101e118.

Saaty, T.L., Vargas, L.G., 2001. The sevenpillars of the analytic hierarchyprocess.Models,
Methods, Concepts & Applications of the Analytic Hierarchy Process, 27e46.

Salter, J.D., 2009. The digital workshop: exploring the use of interactive and
immersive visualisation tools in participatory planning. Journal of Environ-
mental Management 90 (6), 2090.

Sànchez-Marrè, M., Gibert, K., Sojda, R.S., Steyer, J.P., Struss, P., Rodríguez-Roda, I.,
Comas, J., Brilhante, V., Roehl, E.A., 2008. Chapter eight intelligent environ-
mental decision support systems. In: Jakeman, A.J., Voinov, A.A., Rizzoli, A.E.,
Chen, S.H. (Eds.), Developments in Integrated Environmental Assessment.
Elsevier, pp. 119e144.

Santé-Riveira, I., 2008. GIS-based planning support system for rural land-use allo-
cation. Computers and Electronics in Agriculture 63 (2), 257.

Simmhan, Y.L., 2005. A survey of data provenance in e-science. SIGMOD Record 34
(3), 31.

Sposito, V., 2010. Adaptation to climate change in regional Australia: a decision
making framework for modelling policy for rural production. Geography
Compass 4 (4), 335.

Stevens, D., Dragicevic, S., Rothley, K., 2007. iCity: a GIS-CA modelling tool for urban
planning and decision making. Environmental Modelling & Software 22 (6),
761e773.

Stockwell, D., 1999. The GARP modelling system: problems and solutions to auto-
mated spatial prediction. International Journal of Geographical Information
Science 13 (2), 143e158. 1365e8816, Taylor & Francis.

Tiejian, L., Jinliang, S., Su, C., Yuzhu, L., Yanxiang, X., Cheng, D., Wei, L., 2007. A
services oriented framework for integrated and customizable collaborative
environment. IEEE International Conference on Information Reuse and Inte-
gration. IRI 2007, pp. 385e393.

Uy, P.D., 2008. Application of land suitability analysis and landscape ecology to
urban greenspace planning in Hanoi, Vietnam. Urban Forestry & Urban
Greening 7 (1), 25.

Wainer, G.A., 2008. Distributed simulation of DEVS and Cell-DEVS models in CDþþ
using web-services. Simulation Modelling Practice and Theory 16 (9), 1266.

Walker, W.E., 2003. Defining uncertainty: a conceptual basis for uncertainty
management in model-based decision support. Integrated Assessment 4 (1), 5.

Wang, J., Chen, J., Ju, W., Li, M., 2010. IA-SDSS: A GIS-based land use decision
support system with consideration of carbon sequestration. Environmental
Modelling & Software 25 (4), 539e553.

Warren, R., 2008. Development and illustrative outputs of the Community Inte-
grated Assessment System (CIAS), a multi-institutional modular integrated
assessment approach for modelling climate change. Environmental Modelling
& Software 23 (5), 592.

Williams, D.N., 2009. The earth system grid: enabling access to multimodel climate
simulation data. Bulletin of the American Meteorological Society 90 (2), 195.

Wise, M., 2009. Implications of limiting CO2 concentrations for land use and energy.
Science 324 (5931), 1183.

Yang, C., Li, W., Xie, J., Zhou, B., 2008. Distributed geospatial information processing:
sharing distributed geospatial resources to support Digital Earth. International
Journal of Digital Earth 1 (3), 259e278.
ering, an exploratory approach to uncertainty awareness in land use
/10.1016/j.envsoft.2012.06.009


	Spatial model steering, an exploratory approach to uncertainty awareness in land use allocation
	1. Introduction
	2. Background
	3. LUA model case study
	3.1. Environmental model summary description
	3.2. Case study modifications from the original

	4. Steering framework architecture
	4.1. Introduction
	4.2. Description
	4.2.1. Communication services
	4.2.2. View layer
	4.2.3. Data layer
	4.2.4. Management/orchestration layer

	4.3. Workflow description
	4.4. Steering framework in action

	5. Discussion
	6. Concluding remarks
	References


