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The Resurrection of Digital Triplet: A Cognitive Pillar of Human-Machine 
Integration at the Dawn of Industry 5.0. 
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Abstract:

The integration of AI technology with digital transformation has profoundly shaped the evolution 
towards digital triplet architecture, grounded in human-centric methodologies. By infusing human 
intellectual activities into both physical and cyberspace, innovative links between humans and 
machines are established. Despite limitations in transitioning from tangible human presence to the 
digital realm in cyberspace, extensive efforts are underway to harness emotional, visual, and oral 
responses, thereby enhancing the reasoning and predictive capabilities of digital twins. These 
advancements aim to elevate real-time human interactions with physical and virtual systems by 
integrating intelligent AI algorithms and cognitive computing systems into digital twins. This paper 
meticulously analyses recent trends in digital twins, tracing their evolution from traditional concepts 
and applications to a nuanced digital triplet hierarchy that incorporates human intuition, knowledge, 
and creativity within cyberspace. we delve into the hierarchical framework of the digital triplet, 
resonating with maturity, domination, and volition levels, enhances cognitive and perceptual 
capabilities in cyberspace. The study provides a systematic overview of the development of ultra-
realistic digital models, incorporating real-time data-driven artefacts that integrate intelligent 
activities with multidomain, multiphysics, and multiscale simulations. The research scope is focused 
on augmenting the perceptive and heuristic capabilities of the digital triplet framework by utilizing 
AI in data analytics, retrieving heterogeneous data from virtual entities using semantic artificial 
intelligence technologies, and amalgamating AI and machine learning with human insight and 
perceptual knowledge. The proposed digital triplet hierarchy aims to enhance cyberspace's capacity 
for learning, cognitive skills, and knowledge transfer. It can be a guideline for the researcher to 
promote cognitive augmentation of the human brain through brain-machine/computer interface, 
virtual, augmented, and extended reality, fostering a symbiotic relationship between humans and 
machines in the industrial metaverse and industry 5.0. The paper discusses future directions for 
research and the challenges involved in developing intelligent digital twins towards the digital triplet 
paradigm, aiming to embody intelligent activities and cognitive capabilities within the framework of 
human-machine symbiosis.

I. Introduction:

In recent decades, tremendous advancements have occurred across various technological domains, 
such as the Industrial Internet of Things (IoT), Cloud computing, sophisticated sensors and actuators, 
and Artificial Intelligence (AI)[1][2]. These innovations have fundamentally altered the digital 
evolution of a multitude of systems, assets, and processes in diverse industries[1]. These progressions 
have transformed industrial operations, profoundly enhancing their efficiency, productivity, and 
overall performance.
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Digital technologies, known as the key components of the fourth industrial revolution or I 4.0, enable 
the simple conjunction of concatenated smart technologies within the new generation of industrial 
systems [3]–[7]. Smart technologies, such as the Internet of Things (IoT), digital twins (DTs), big 
data analytics (BDA), and cloud computing (CC), play a crucial role in flourishing the cyber-physical 
systems (CPS), which form the core and foundation of Industry 4.0 [8][9][7][10]. CPS is a 
multidimensional and complex system that aggregates the physical world with 3C cyber components, 
which encompass control, computing, and communication. The second stage, after 2000, of 
manufacturing evolution, known as "smart manufacturing," was fulfilled by leveraging networking 
and enabled by improved digital models to adapt to dynamic environments[7][4][11]. 

The next stage in smart manufacturing, known as Intelligent manufacturing, will emerge after 2020. 
This advanced manufacturing process will incorporate artificial intelligence, big data, and IIoT to 
amalgamate the knowledge and creativity of human factors with machine learning (ML) for better 
integrations of humans, physical world and cyberspace [11][12][13]. This advanced manufacturing 
process is increasingly trending in the literature, referring to intelligent activities with human cyber-
physical systems in the context of Industry 4.0 [7][12][14]. Recently, research and industrial 
communities have been arousing more attention to smart networking and intelligent digitalization to 
upgrade society and industry with deep integration of cyber-physical systems, advanced cyber 
technologies, machine learning, and artificial intelligence [12][13][15].

These technologies facilitate the smooth integration and coordination of physical, virtual, cyber, and 
network entities, leading to rapid advancements in modeling virtual replicas of the corresponding 
physical entities. In this context, intelligent monitoring of assets has played a crucial role in the 
evolution of the digital twin concept [16][17]. Digital twins, serving as enablers of Industry 4.0, 
contribute significantly to the ongoing advancement of smart systems in conjunction with other 
intelligent and smart technologies [13]. The combination of digital twins with these advanced 
technologies enhances the capabilities of industrial systems, paving the way for improved efficiency, 
productivity, and innovation [5][7][18][19].

 Digital twin inevitably embraces the generation of a digital imitating and mirroring of physical 
entities. It can adapt to conversions in the real environment or operations while affording the best 
possible outcome. It improves data flow and collaboration between the virtual counterpart and their 
physical twin by means of digital transmission protocols or the Internet of Things (IoT) [20]. Despite 
the fact that research communities and industrial sectors have introduced several definitions to 
describe the concept of DT- incidentally, up to date, there is no clear vision of DT definition to be 
elucidated with the viable digital transformation and critical flourishing from the fourth industrial 
revolution I 4.0 towards the fifth industrial revolution I 5.0 [19][21][22][23][24].   

The majority of Industry 4.0 research has focused on employing digital twins for smart automation 
and adaptable manufacturing, utilizing them as digital simulators to generate computable virtual 
abstractions of Cyber-Physical Systems (CPS). This approach emphasizes the simulation aspect, 
rather than viewing Digital Twins as multifaceted interfaces capable of providing realistic digital 
depiction of processes, systems, and even operators or assets with viable fidelity [25]–[27]. DT 
imparts real-time information to engineers and assists operators in helping them transfer their 
knowledge and creativity with digital transformation for critical transformation in the context of 
Industry 4.0 from traditional digital manufacturing to smart and intelligent manufacturing [7], [28], 
[29].
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Consequently, in the context of Industry 5.0, Digital Twins (DT) play a pivotal role as prominent bi-
directional dynamic mappings that transform physical systems and associated processes into virtual 
environments within the realm of h-CPI (human cyber-physical integration), which serves as the 
cornerstone of smart manufacturing. This contribution underscores the significance of artificial 
intelligence and machine learning, acting as crucial precursors and catalysts for intelligent 
manufacturing. This transformative process is poised to shatter barriers across all levels of the Product 
Life Cycle (PLC)[30], enabling real-time monitoring, control, and management of physical entities. 
It empowers the generation of intelligent and autonomous decisions, positively influencing every 
aspect of the manufacturing process. Therefore, the evolution from the flourishing Industry 4.0 era 
towards Industry 5.0 necessitates a synergistic and dynamic integration of humans and machines, 
marked by complexity and agility, as highlighted in references [7], [12], [25], [28][31][32][33]. 

Concretely, in the integration of industry 4.0 reference architecture with the S/I5RA framework of 
Industry 5.0 and Society 5.0, digital transformation (DX) with data-based technologies such as ML, 
5G, and industrial Internet of things (IIoT) can be dedicated to improving the intelligent activity in 
the CPS and enhancing the collaboration of the CPS with humans and at all levels in which the 
industry 5.0 and the Operator 4.0 paradigms elucidate the human-machine symbiosis framework for 
pairing human and machines to optimize process efficiency[27][34], enhance the problem-solving 
literacy and intensively affording imperative support for all activities in the smart factory[35], 
including planning, design, operation, maintenance, continuous improvement and management 
[15][32], [36]–[42]. Therefore, to realize this integration, recognizing human consciousness as a 
valuable and insightful source of information, the digital twin paradigms integrating cognitive skills 
and intelligent activities were developed in several research in both academia and industry.  In this 
context, two paradigms have surged in major countries and developed by academic and industry 
researchers towards describing the integration of human knowledge and creativity with intelligent 
digitalization: cognitive digital twin CDT and digital triplet 
D3[43][44][45][46][47][48][49][50][51][52][53][54]. 

The Digital Triplet D3, an advanced iteration of digital twin technology, incorporates Artificial 
Intelligence (AI) and Machine Learning (ML) based on human knowledge and awareness. D3 
introduces an additional intelligent activity layer that represents the analysis, decision-making, and 
enhanced execution carried out through human understanding of technological advancements. This 
paradigm allows digital twins to develop perceptual abilities, enabling them to anticipate the current 
and future states of their physical and digital counterparts.

Since 2018, the Digital Triplet architecture has been actively integrated into digital systems by various 
research centers, conference communities, and mechatronic training centers in countries such as 
Japan, Netherlands, South Africa, Germany, Kenya, and Italy. This implementation stems from a 
development cycle wherein deploying the Digital Triplet concept results in a sophisticated hierarchy 
of complex digital twins. This is achieved by integrating holistic knowledge interoperability into a 
virtual environment within the human cyber-physical system (h-CPI). This integration embraces the 
aggregation of machine learning with human insight and perceptual knowledge in the realm of 
intelligent activity within cyberspace[44][50][54][55]. 

Whereas, the Cognitive Digital Twin (CDT) represents the perspicacious imitating and insightful 
evolution of digital twins, aligning with a sophisticated computable virtual abstraction of systems 
[51][52][56][57]. It excels in integrating and retrieving diverse data from virtual entities using 
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semantic artificial intelligence technologies such as meta-heuristic algorithms, knowledge graph, 
semantic web, ontology, reinforcement learning, knowledge discovery, and deep learning 
[29][58][59][60][61][62][63][64]. These technologies empower the cognitive capabilities of 
interconnected digital models, transforming the cognitive entity into a dynamic phenomenon that 
encompasses stochastic dynamical virtual models, knowledge graph models, and historical data. This 
intricate approach enhances the system's management capability complexity, providing robust 
support for decision-making throughout the system's entire lifecycle[59][65][66][67].

Pursuant to the rationales and motivations outlined in the introduction, this paper anticipates to 
significantly influence the definition of digital twins within the paradigm of intelligent manufacturing 
systems. The evolution from digital twins to digital triplet architecture, rooted in human-centric 
approaches, signifies a transformative digital shift in both intelligent manufacturing and human cyber-
physical systems. Derived from numerous examples of research initiatives and applications from 
various sectors and perspectives, this paper is contrived at deducing and clarifying significance of the 
digital triplet architecture in the emergence of Industry 5.0. It also explores the contribution of 
intelligent digital twin concepts to the digital triplet paradigm, symbolizing intelligent activities and 
cognitive capabilities within the framework of human-machine symbiosis. Considering these points, 
this article addresses the following research questions:

1. What are the definitions of Digital twins DT, Cognitive digital twins CDT, and Digital 
triplets D3 that have been published in the literature? 

2. What cardinal respects should be resonated with cognitive/intelligent digital twin for the 
critical transition from traditional digital twin to digital triplet?

3. What are the application domains in which human-machine integration has been enhanced 
and developed by the digital twin?

4. What is the better concept for digital transformation in the context of Industry 5.0?

We define from the above the profound impact of integrating AI technology with digital 
transformation on defining digital twins within intelligent systems. This evolution towards digital 
triplet architecture, rooted in human-centric approaches, represents a transformative shift in both 
intelligent and human cyber-physical systems. By infusing human intellectual activities into physical 
and cyberspace, innovative connections between humans and machines are forged. However, the shift 
from tangible human presence to the digital realm in cyberspace has been limited thus far. Extensive 
efforts are being made to harness emotional, visual, and oral responses, enhancing the reasoning and 
predictive capabilities of digital twins. These advancements aim to enrich real-time human 
interactions with both physical and virtual systems by incorporating intelligent machine-learning 
algorithms and cognitive computing systems into digital twins. Drawing on diverse research 
initiatives and applications across various sectors, this paper elucidates the significance of the digital 
triplet architecture in the emergence of Industry 5.0. It examines the contribution of intelligent digital 
twin concepts to the digital triplet paradigm, embodying intelligent activities and cognitive 
capabilities within the framework of human-machine symbiosis. This endeavour strives to achieve a 
system inspired by brain intelligence within the digital triplet paradigm.

The main contributions of this paper can be summarized as follows:

 We deliberated the identification of key co-occurring keywords such as "Digital triplet" or 
"Intelligent digital twin," "Artificial intelligence and Digital twin," "Cognitive digital twin," 
and "Digital twin and human-machine symbiosis/integration," as well as "Digital twin and 
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Industry 5.0," and definition of the most frequent research topics related to Industry 5.0 and 
digital twins.

 We delved into the distinctions between digital twins and simulations, exploring the historical 
background and evolution of the digital twin concept.

 We traced the transition from the traditional model of digital twin to the advanced stages of 
the cognitive digital twin.

 We discussed the integration of activities with current and previous digital triplet paradigms.
 We clearly defined the concept of digital triplet.
 We elaborated on a framework with hierarchical levels ("Maturity, Domination, Volition") of 

the digital triplet, aiming for Industry 5.0.
 We determined the enabling technology of digital triplets within the framework of human-

machine symbiosis and brain-like intelligence-inspired systems.
 We discussed limitations and current research gaps in developing digital twins toward the 

digital triplet paradigm.

The portions of this paper are elucidated as follows: a bibliometric analysis of the literature in Section 
II, an introduction to the digital twin concept and an exploration of distinctions between digital twins 
and simulations in Section III. Section IV delves into the migration to the advanced stages of the 
cognitive digital twin, while Section V defines the contribution of intelligent activities within the 
digital triplet and clarifies the hierarchical levels ("Maturity, Domination, Volition") of the digital 
triplet striving for Industry 5.0. Section VI classifies and analyses enabling technologies of Intelligent 
digital twins based on application domains from the literature. Section VII explores the quest for a 
digital triplet hierarchy based on application domains within human-machine integration and the 
context of Industry 5.0. Lastly, Section VIII addresses limitations and knowledge gaps in developing 
the digital triplet hierarchy, followed by the concluding remarks in Section IX.

II. Research strategies and methods:

In order to compile this review, we conducted extensive searches using major scientific search 
engines, databases, and digital libraries, including Scopus, Web of Science, Google Scholar, and the 
IEEE Xplore databases. The purpose was to locate significant scientific research publications related 
to digital triplets and Industry 5.0 enabling technology based on digital twins. We adhered to the 
"PRISMA" (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) principles for 
conducting this review, ensuring a rigorous and systematic approach to their review process. The 
search encompassed articles published between 2018 and March 2023, focusing on keywords and 
terms associated with digital triplets, the digital twin concept, and Industry 5.0. These keywords 
included, among others, phrases such as "Digital triplet" or "Intelligent digital twin," "Artificial 
intelligence and Digital twin," "Cognitive digital twin," and "Digital twin and human-machine 
symbiosis/integration," as well as "Digital twin and Industry 5.0." The search strategy was designed 
to include press releases and articles from scientific journals or conference proceedings, ensuring a 
comprehensive understanding of successful case studies the development of intelligent digital twin 
and digital triplet paradigm. Notably, report and conference abstracts were excluded from the search, 
emphasizing a focus on in-depth, peer-reviewed academic content. In Table 1. We provided specific 
details regarding the search terms used and the corresponding number of search results, demonstrating 
transparency in their methodology. Additionally, the authors independently conducted the search, 
further enhancing the credibility of the review process.

Table 1. Search terms and corresponding number of selected data
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Keyword 
combinations: IEEE Web of Science Google Scholar Scopus

Digital Twin and 
Digital Triplet 4 9 98 20

Cognitive Digital 
Twin 75 191 283 137

Digital Twin and 
Industry 5.0 

including Digital 
twin and human-

machine 
symbiosis/integration

30 61 1830 81

The search process involved several steps, as outlined in Figure 1. Initially, duplicates were removed 
using Mendeley reference management software, leaving a total of 2211 unique papers. Subsequently, 
each paper underwent two general screening steps: first with its title and then with its abstract, to 
determine the relevance of the research outcomes. After these screening steps, 186 papers were 
identified as relevant. The authors independently classified these 186 papers based on their level of 
relevance. In cases where there was ambiguity regarding the classification of a specific paper, at least 
two authors engaged in discussions to resolve the ambiguity and assign an appropriate classification. 
This rigorous classification process ensured the accuracy and integrity of the selected papers for the 
review.
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Figure 1. The PRISMA-based flowchart diagram of the selection process for describing the 
conducted scoping review of the retrieved resources.

For retrieving peer-reviewed articles, bibliometric analysis was utilised with relevant input data 
obtained from the comprehensive databases Scopus and Web of Science. The literature search was 
conducted online in March 2023 using the following search query: "Digital & Twin & Industry 5.0" 
from the Scopus database. The study's publication year range was limited to 2018-2023 to concentrate 
on outcomes related to Industry 5.0. This decision was based on the fact that the initial efforts to 
implement Industry 5.0 as an extension of Society 5.0 were initiated in 2015, primarily by the 
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Japanese Government. Furthermore, the first online discussions and publications on Industry 5.0 were 
introduced in 2018 [68]. A preliminary inquiry conducted on Scopus pertaining to the themes of 
digital twins and Industry 5.0 compiled a cumulative count of 54 scholarly articles. The title-ABS-
key is "Digital & Twin & Industry 5.0" and the preponderance of the records pertains to the fields of 
computer science, engineering, mathematics, and manufacturing. The aforementioned publications 
consist of 25 articles published in academic journals, 3 papers that underwent a review process, 18 
papers presented at academic conferences, and 8 reviews of conference proceedings. Subsequently, 
CSV files will be accomplished through the conversion of the database in order to facilitate the 
visualisation and analysis of bibliometric data using the VOS viewer software. Concretely, 
VOSviewer facilitates the extraction of keyword maps by utilising shared networks, thereby enabling 
the construction of maps with a vast number of keywords. 

A co-occurrence map comprising 189 keywords was compiled by prioritising the top 109 most 
frequently used keywords with the greatest co-occurrence in the database pertaining to the concepts 
of "Industry 5.0," and "Digital Twin". Figure 2 indicates the outcomes through the interpretation of 
the keyword cluster map. The top 109 items were categorised into nine clusters based on their 
frequency of occurrence in classified hot nodes. The red cluster encompasses a total of thirty-five 
distinct items, namely digital twin, society 5.0, human cyber physical system, blockchain technology, 
explainable artificial intelligence, virtual data set, extended reality, human cantered manufacturing, 
human machine interaction, human robot interaction, metaverse, personalization industry 5.0, 
industrial internet of thing, semantic reasoning simulation, virtual commissioning, cobots, crane, 
dielectrics, virtual reality, digitization of the industries, deep learning, data models, computational 
modelling, deep learning, machine learning, smart manufacturing, manufacturing, management, 
optimisation, a system of things, simulation, IoT and architecture. The red cluster illustrates the digital 
twin concept as the highest frequency of occurrence with a large node.  The assemblage of the 
keywords related to industry 5.0 denoted as the "yellow cluster" encompasses a total of twenty-two 
distinct concepts, namely Industry 5.0, industrial metaverse, human digital twin, human intelligence, 
consensus protocol, cyber physical system, industrial internet of things, machine learning, cognitive, 
smart manufacturing, operator 5.0, security, food security, smart contract, privacy, human cyber 
physical system, extended reality, human centric manufacturing, human in the loop, CPS, IIoT, and 
sustainability. The industry 5.0 concept is prominently represented by the yellow cluster, which is 
characterised by a large node and the highest frequency of occurrence. The green cluster encompasses 
distinct keywords indicates the related items to industry 4.0 context and the blue cluster replicates 
perpetual large size node related to digital twin, those clusters including as an illustration, among 
other keywords: industry 4.0, virtualization, industry 5.0, flexible assembly, 5g, agent based 
simulation, confidential information, deterministic, digital human modelling, digital technology, 
digitization of the industries, discrete event simulation, disruptive technologies, ergonomics 5.0, 
explainable artificial intelligence, extended reality, human centric manufacturing, human in the loop, 
digital twin, big data analysis, building information model, cloud storage, control system, cyber 
physical system, edge cloud computing, human centred, knowledge graph, node-red, ontology, 
semantic, smart society, information, knowledge, and learning.  In addition, the moderate 
cooccurrence of the portion keywords is illustrated in the residual of five clusters “purple, orange, 
light blue, pink and brown clusters”- apropos of which, but not limited to, 6 g mobile communication, 
cyber physical human cantered system, edge computing, artificial intelligence, mist computing, 
human factors, knowledge and skills of the engineer, blockchains industries, augmented reality, 
robotics, deep reinforcement learning, human-robot interaction, MqTT, path planning, process 
control, cognitive systems, green manufacturing, supply chain, brownfield industry 4.0, operator 4.0, 
human digital twin, retrofitting, wearable devices, and intelligent space.
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Figure 2. The co-occurring keywords of the cluster map in the field of digital twins and industry 
5.0. Based on node size, the "Digital Twin," "Industry 5.0," and "Industry 4.0" keywords are 

depicted as significant search terms. The curvatures that are associated with the nodes are obtained 
through co-occurrences within the same cluster, whereby the proportion of corresponding co-

occurrences escalates as the distance between two nodes decreases. The vast bulge in node size, is 
the most listed frequency item.

Moreover, to elucidate the essential components of coincident analysis pertaining to the overlay 
visualisation of the digital triplet concept. The VOS viewer software is used to generate a map based 
on the reviewed network data from the Scopus database, the title-ABS-key is "Digital & triplet". Any 
kind of network data can be used by this programme to generate maps, visualisations, and 
explorations. Moreover, the programme is employed to determine the interconnections of pivotal 
elements as proxies for the significance of systematic research. Overlay visualisation, as depicted in 
Figure 3, was elected as a more effective method of investigating the relationships between the time 
scale elements and the selected vital items. In regard to the map, 34 key items encountered the 
threshold-apropos which, included digital triplet, deep learning, digital twin, artificial intelligence 
and learning systems, semantics, knowledge graph, neural networks, convolution neural network, e-
learning, deep neural network, large dataset, classification, computer vision, image analysis, and 
embeddings, were classified as the vital key items with the highest incidence at average publications 
above the year 2020, indicating a new hotspot as digital triplet in the digital twin based artificial 
intelligence field. The distance between items indicates the strength of the relationship between them; 
the shorter the distance, the stronger the connection among them. A huge circle represents the item 
that appears in most publications on the map. Nevertheless, vital items were colour-coded based on 
the year of publication, with red circles indicating key items found in the most recent publications 
above the year 2020 and green circles with the items that appear in publications between the period 
of 2010-2015, indicating computer simulation as the most concepts refer to the digital twin.
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Figure 3: Overlay visualisation as a coincident analysis of the pivotal items pertaining to the digital 
triplet concept. VOSViewer programme created the map from the Scopus database. The size of the 
circle was decided by the frequency of each vital item. According to the colour scale, the colours of 

the circles reflected the critical item's score since publication.

In addition, to exemplify the wide range of research topics pertaining to the digital triplet paradigm. 
The breadth of the research topics pertaining to the digital triplet concept is depicted in Figure 4 and 
derived from the CSV file generated by a total of 168 academic articles limited to the field of 
computer science and engineering indexed in the Scopus database pertaining to the themes of “digital 
triplet” since 2017 and up to March 2023. The recurrent pattern that is currently under investigation 
by scholars was unveiled through node size visualising. The authors’ keywords served as a co-
occurring cluster map. The recurrent pattern that is currently under investigation by scholars was 
unveiled through node size visualising. The vast bulge in node size observed in the co-occurrence 
analysis was primarily composed of frequently occurring keywords centred around terms related to 
digital storage, digital triplet, deep learning, learning systems, digital twin, and digital communication 
systems. Those nodes comprised 73 items that were categorised into 7 clusters. The most frequent 
co-occurrence keywords minted the following clusters: the green cluster with the hotspot of digital 
storage included: classification, codes cross-modal retrieval, deep neural network, deep neural 
networks, hash function, image classification, image retrieval, metric learning, multi-case 
classification, semantics, teaching, and triplet. The purple cluster of the digital triplet is the most 
frequent keyword that consists of the immediate items: cyber-physical system, cyber-physical, digital 
twin, e-learning, engineering process, industry 4, industry 5, artificial intelligence, neural network, 
intelligent activity, knowledge, kaizen, learning factory, and production system. And the light blue 
cluster includes deep learning, computationally efficient, computer vision, learning systems, object 
detection object recognition, speech recognition, and transfer learning. The residual clusters comprise 
concomitant keywords related to embedding capacity, entropy, feature extraction, brain-computer 
interface, wave late transforms, neuromorphic engineering, computer simulation, neurons, brain-
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machine interface, decision making, detection, discrimination, digital communication systems, digital 
elevation model, face recognition, internet of things, knowledge graph, and large dataset.

Figure 4. Co-occurrence cluster map, the co-occurring keywords related to “Digital triplet".

III. The evolution of the digital twin definition:

A. The digital twin concept

In responding to the initial query, we will delve into the distinctions between the digital twin and 
simulation. Additionally, we will explore the historical background and evolution of the digital twin 
concept, tracing its transformation from the traditional model to the advanced stages of the cognitive 
digital twin and digital triplet paradigms.

The notion of the digital twin was initially introduced within research communities in 2002, with a 
draft version of the technology roadmap proposed by NASA in 2010 [69], However, the research 
community has actively pursued the development of a virtual representation of physical assets for 
manufacturing activities throughout the entire product life cycle since as early as 1989. During this 
time, a research team at Osaka University made significant strides in this field by devising a proposal 
for virtual representations of physical assets.  This proposal covered a wide range of aspects, including 
process modelling, time information modelling, responses to control commands, and the 
interconnection of physical systems. It entailed integrating product models and factory models within 
a real-time virtual manufacturing system, utilizing the Intelligent CAD framework and time 
information modelling, both implemented in both computer systems and the physical world [70].

In a related development, the concept of Mirror Worlds preceded the digital twin idea in 1991. 
Introduced by David Gelernter, Mirror Worlds represented a replicated model of reality based on 
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information transmitted from the actual world. It aimed to provide a lucid and humanistic 
understanding of software models interacting with reality[71].

Consecutively, a comparable concept, known as the “Mirrored Spaces Model” (MSM), was 
introduced at the University of Michigan. Coined by Michael Grieves in 2002, this concept involved 
creating software models that imitate reality based on data input from the physical world. Grieves 
presented a model comprising three components: physical space, digital space, and a network and 
interaction mechanism for exchanging data and knowledge among physical assets and their digital 
counterparts. This framework was named the 'Mirrored Spaces Model'. It featured multiple virtual 
spaces corresponding to a single physical space, allowing for the exploration of various layout options 
[72].

In 2003, Kary Främling and colleagues introduced an agent-based architecture to address the 
inadequacies in information transmission during the production process. This innovative architecture 
involved associating a virtual agent with each product item, thereby enhancing efficiency in “Product 
Lifecycle Management” (PLM) [73]. Eventually, in 2006, Grieves made modifications to the 
conceptual framework previously known as the “Mirrored Spaces Model”, now termed the 
“Information Mirroring Model”. This revised model placed significant emphasis on the bidirectional 
transmission mechanism. It not only enabled bidirectional communication but also facilitated the 
creation of multiple virtual spaces within a single physical space, thereby enhancing the system's 
capabilities [74].

In the initial phases of the Digital Technology (DT) era, practical applications of digital twins were 
restricted due to technological limitations. These constraints encompassed factors such as limited or 
absent internet connectivity for devices, underdeveloped machine algorithms, insufficient data 
storage and management capacities, and low computing power. However, after 2010, NASA 
formulated a precise definition for the digital twin concept. They described it as a virtual copy or 
model of a physical entity, referred to as a physical twin, mimicking the state of its real counterpart 
through real-time data interaction [69]. This marked a significant milestone in the evolution of digital 
twin technology.

This concept represents an evolution of its ancestral paradigm, which traces back to the Apollo 
program, where two identical space vehicles were constructed to mirror each other between space 
and Earth. This historical context laid the foundation for the digital twin concept. It was articulated 
as "an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that 
utilizes the best available physical models, sensor updates, fleet history, etc., to replicate the life of 
its flying twin." Following this conceptualization, the paradigm gained traction, especially in the 
realm of the US Air Force. They adopted Digital Twin technology for designing, maintaining, and 
predicting the performance of their aircraft. The proposed framework involved leveraging Digital 
Twin technology to recreate the physical and mechanical attributes of the aircraft, with the goal of 
predicting potential fatigue or structural issues. This proactive approach ultimately aimed to extend 
the aircraft's remaining useful life [75].

Furthermore to ensure comprehensive control over aircraft throughout its entire operational life [76], 
a digital twin, described as an "ultra-high fidelity model of individual aircraft," was developed by E. 
Tuegel and colleagues. This digital twin model was not only instrumental for aircraft control but also 
held potential for future applications, including real-time monitoring of aeronautical vehicles and 
fostering sustainable space exploration initiatives.
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Originally, the digital twin framework was proposed to anticipate the product life cycle, without 
necessarily encompassing the entire manufacturing process. However, based on literature findings, it 
is evident that before 2017, the digital twin concept primarily found application in product design. 
Since then, its scope has significantly expanded to cover the entire manufacturing life cycle. This 
expansion involves creating digital twins not only for products but also for manufacturing processes, 
system performance, and services [77]. Despite variations in definitions and descriptions, as 
highlighted in Table 2, the fundamental elements of the digital twin concept remain consistent across 
diverse industries and applications. While definitions may differ, the core concepts of digital twins 
are comparable, providing a foundational framework regardless of the specific industry or context.

Table 2, the digital twin concept across various industries and applications

No year reference definition
1 2015 [78] “Digital counterpart of a physical product”

2 2015 [79]
“Multi-physical computational and ultra-realistic models 
associated with each unique aircraft and combined with known 
flight histories”

3 2016 [80] “Digital representation of a real object”

4 2016 [81] “The simulation of the physical object to predict its future 
behaviour”

5 2016 [82] “Virtual representation of a real product in the Cyber-Physical 
Systems context”

6 2017 [83]
“A set of virtual information constructs that fully describes a 
potential or actual physical manufactured product from the 
micro atomic level to the macro geometrical level”

7 2017 [84]
“A digital copy of a real factory, machine and worker that is 
created and can be independently expanded automatically 
updated as well as being globally available in real-time”

8 2017 [85]

“The digital representation of a unique asset (product, machine, 
service, product service system or another intangible asset), that 
compromises its properties, condition and behaviour using 
models, information and data”

9 2017 [86]
“A comprehensive physical and functional description of a 
component, product or system, which includes all information 
of the current and subsequent lifecycle phases”

10 2018 [87]

“An integrated multi-physics, multiscale, probabilistic 
simulation of a system enabled by digital threads, utilising the 
best available models, sensor information, and input data to 
predict activities and performance over the life of its 
corresponding physical twin”

11 2018 [88]
“digital model of a product or production system that contains a 
comprehensive physical and functional description of a 
component or system throughout the lifecycle”

12 2018 [89]
“A real mapping in the product life cycle of all constituents 
using physical data, virtual data and interaction data among 
them”

13 2018 [90]
“digital model of a real object containing lifecycle that 
dynamically synchronized data in real-time, in order to gain 
knowledge that can be transferred to the real object”
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14 2018 [91]
“Virtual model in the virtual world that can dynamically 
simulate its physical counterpart’s characteristics, behaviour, 
life, and performance in a timely fashion”

15 2018 [92]
“A virtual reflection describes the exhaustive physical and 
functional properties of the product among the whole life cycle 
for data streaming of product information”

16 2019 [93] “A realistic model on a current state of the process and 
interactions with its structure and elements”

17 2019 [94]
“a virtual instance of a physical system that is continually 
updated with the latter’s performance, maintenance, and health 
status data throughout the physical system’s life cycle”

18 2019 [95]
“A set of mathematical models characterizing in real-time the 
different states of the equipment, processes, and business 
framework in production conditions”

19 2019 [96] “An integrated simulation of a complex product/system through 
physical models and sensor updates”

20 2019 [97]
“a virtual object or a set of virtual things defined in the digital 
virtual space, which has a relationship with real things in the 
physical space”

21 2019 [98]
“paradigm with online measurements that are dynamically 
assimilated into the simulation world for guiding the real world 
adaptively in reverse”

In fact, since 2016, the concept of the digital twin has evolved into a strategy for establishing a 
collaborative, flexible, and integrated manufacturing environment. This achievement is made 
possible through a closed-loop, bidirectional communication platform that facilitates the 
simultaneous evolution of assets in three pivotal domains: within the physical realm, between the 
physical and virtual realms, and between historical and real-time data sources[80] [81][82]. All 
entities within the manufacturing system must be interconnected, monitored, and controlled utilizing 
state-of-the-art automation technology, information technologies, network infrastructures, and 
software, collectively known as integrated physical assets. This interconnected framework forms the 
basis for the modern approach to manufacturing and underscores the importance of seamless 
integration across various technological domains.

A significant obstacle and challenge in achieving the objectives of smart manufacturing has been the 
seamless integration of the virtual realm with the actual operational space. The digital twin framework 
serves as a vital solution, providing the essential connectivity to effortlessly link data streams within 
a manufacturing chain. This bridging of the gap between the virtual space and the physical realm in 
real-time reshapes the dynamics of demand and supply, enabling the automation of tedious tasks 
related to information transfer within a system and governing how this information is perceived and 
transmitted. Assets in the digital twin framework include work-in-progress and active resources such 
as machinery, robots, workers, vehicles, intelligent devices, manufacturing equipment, sensors, and 
communication gateways. However, what sets digital twins apart during their development is their 
reliance on real-time data to accurately replicate system performance. This enables predictive, 
dominant, and intelligent activities. In contrast, computer models and simulations are primarily used 
to understand general trends and generate broad predictions. These models are rarely utilized to 
precisely represent the current state of a system in real time. The reason for this limitation lies in the 
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absence of instant data, rendering these models or simulations inert. They cannot adapt or generate 
new predictions unless novel data is supplied to them.

Merely having real-time data is not sufficient for digital twins to function effectively. It is crucial that 
the data is automatically integrated into the digital twin, and the transition from physical to digital 
and vice versa is bidirectional. However, as highlighted in studies by Liu et al. and W. Kritzinger et 
al. [99][100], there are instances where academic papers refer to digital models or shadows as digital 
twins. These references often focus on the investigation and/or characterization of the 'Digital Model' 
or 'Digital Shadow', despite the authors' claims that these constructs were digital twin technologies. 
To address this issue, the key distinctions between digital twins and simulations are explained in the 
following section.

B. Digital twin and simulation:

To gain a thorough understanding and comprehensive comprehension of the digital twin concept, it 
is imperative to clarify the relationship between digital twins and simulations within the broader 
context of digital transformation. Resolving the ongoing debates and establishing a clear 
understanding is essential. By defining and exploring the various viewpoints that exist, we can 
eliminate ambiguities in the debates and achieve a more comprehensive comprehension of the topic.

The profound transformation induced by digitalization in the industrial landscape is provoked by 
extensive data collection and analysis. This transformation operates within a paradigm that intricately 
intertwines and eminently integrates digital space, physical space, and cyberspace[23][25][101]. At 
the heart of this transformation lies the digital twin, which essentially serves as a digital representation 
of real-time components, processes, systems, and even interconnected systems. It achieves this by 
harnessing and updating a continuous stream of real-time data acquired from Internet of Things (IoT) 
enabled devices in the physical space. This influx of data enables the digital twin to imitate and 
simulate the potential, current, and future interactions between the physical counterpart and its digital 
representation. This high-level information must be integrated with remarkable fidelity into digital 
replicas within virtual environments. The seamless synchronization of real-time data between the 
digital space and physical realm should be achieved [25][102][103]. This synchronization forms the 
backbone of the digital twin, facilitating bidirectional and multiplexing data modulations between the 
tangible and its virtual counterpart. These interactions are vital, enhancing the simultaneous 
applicability of dynamic operations and ensuring sufficient synchronization of twins’ interactions. 
This synchronization is contingent upon the aggregation of holistic real-time data through 
Cybertronics interfaces[65][68][69][103]. In contrast, simulation serves as a static functionality and 
sedentary interface within a systemic approach, replicating potential real-world scenarios through 
"what-if scenarios" rather than replicating the current state and present circumstances[66][69] [104]. 
The digital twin, on the contrary, demystifies not just what is happening, but also what might happen. 
It extends beyond design limits and boundary conditions, elaborating on the entire design and 
encompassing continuous macro activities and enhancing the simultaneous applicability of dynamical 
operations and sufficient synchronization of twins’ interaction contingent upon adjacent aggregation 
of holistic real-time data. These activities include monitoring, execution, modification, adaptation, 
optimization, and domination the entire lifecycle of the system, process, and product in real-time. The 
digital twin, therefore, offers a comprehensive and dynamic understanding of the ongoing processes, 
providing insights that stretch beyond the scope of traditional simulation methodologies.
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Prior to 2016, the research community regarded simulation as a fundamental enabling function of 
digital twins. This approach involved developing digital models that relied on mathematical equations 
and terminology to create reliable purely data-driven models. However, the essence of the digital twin 
lies in its virtual counterpart, which serves as the core. This virtual counterpart must encompass 
integrated Multiphysics, multidomain, multiscale simulations, creating an ultra-realistic digital model 
of the physical system and meta-model with high-accuracy data-driven elements rather than relying 
solely on physics-based models[105][106][107]. Expanding the interoperability of this virtual 
counterpart involves continuous efforts to minimize harm or deterioration. This includes generating, 
managing, and utilizing metadata, real-time data, and information obtained from reliable sources 
across the system’s entire lifecycle. Through this approach, a digital surrogate model can be 
developed, which integrates seamlessly with the physical space, forming a comprehensive digital 
twin [106]. Even though the functionality and applicability of the digital twin are elaborately 
dedicated and derived from the previous clues, we can enumerate the wide margins that discriminate 
the digital twin against simulation:

 Ultra-Realistic Digital Model: Digital twins must encompass highly realistic digital models 
capable of imitating and emulating the physical world. These models should evolve with 
reliable fidelity, optimizing the interaction of data-driven digital artifacts by integrating 
multiphysics, multidomain, and multiscale simulations.

 Dynamic Data Synchronization: Synchronization between the digital twin and its physical 
counterpart, including components, subsystems, and systems of systems, will thrive with 
highly dynamic holistic data acquisition, optimisation, interpretation, preservation, and bi-
directional data transmission. This encompasses real-time data, metadata, historical data, 
probabilistic data, and virtual sensor data. The digital twin should retain a high response rate 
and low latency of data transmission, integrating digital interfaces and data repositories in 
cyberspace. In this iterative retrieving of real time data, digital threads, acting as a shield for 
digital twin computation and network capability, must be streamlined to cope with AI and IoT 
in big data analytics and to enhance the maturity of digital twins.

 Integration with Cyberspace: With DT's unique framework and holistic functionality, it 
should not be limited to embedded software systems for simulation and monitoring. They 
should be seamlessly integrated with cyberspace, exceeding AI expectations. This integration 
contributes to the convergence of human insights and productivity within digital societies, 
fostering intelligent industry and smart cities in a metaverse environment[108][109]. 
Incorporating artificial intelligence into data analytics, specifically digital threads, and 
leveraging advanced machine learning techniques and cognitive computing capabilities in the 
development of intelligent digital twins [110]are especially pertinent to achieving cognitive 
abilities and a dominant framework[111][112].

 Leveraging Human Insights: Digital twins should go beyond imitating their physical 
counterparts. They should leverage awareness and knowledge from humans for adaptation 
and influencing heuristics strengths, allowing them to transcend boundaries and sustain in 
different cyberspace domains[113][110].

 Integration of Virtual and Augmented Reality: Utilizing virtual reality and augmented 
reality technologies as a link between the physical, digital, and cyberspace realms, alongside 
AI, facilitates the convergence of human insights, knowledge, and productivity into the digital 
counterpart[114]. This integration erases the distinction between the digital twin and its 
physical realm, leading to seamless integration[110]. The symbiosis between digital twins, 
humans, and the intelligent activity world gives rise to a cyber-superorganism species referred 
to as a digital triplet[109][46][115]. This concept blurs the lines among physical, digital, and 
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cyber worlds, forming a community of Cyberbiont through the industrial metaverse, 
specifically in Industry 5.0[108].

IV. Cognitive digital twin:

The Cognitive Digital Twin (CDT) epitomizes an amplified and elevated iteration of the Digital 
Twin (DT). With three essential constituents, the digital twin seamlessly reconciles the virtual 
and physical domains; the tangible world encompassing systems, subsystems, and components; 
the digital or virtual representation, also known as shadows; and the intricate interconnections 
that seamlessly bridge the virtual and physical domains.

Contrarily, CDT typically encompasses a multitude of DT models that encompass integrated 
semantics and topology definitions. In the realm of industrial systems, it is imperative for the 
CDT to incorporate digital representations of the diverse subsystems and components. It is 
noteworthy that each of these entities assumes a distinct status throughout the system’s entire 
lifecycle. As evidenced in the literature, several researchers have investigated the viability of 
enhancing the cognitive abilities of digital twins using semantic technologies. In 2013, the Kitami 
Institute of Technology's research group [61] pioneered the integration of human and machine 
cognition. Their approach aimed to enhance the heuristic capabilities of an internet-based 
semantic model of the manufacturing process for representing newly acquired knowledge. The 
model improved the machine's comprehensibility of the concept maps related to the system's 
knowledge[61]. Following that, Ahmed El Adl presented the inaugural notion of "Cognitive 
Digital Twins" during a prominent industry symposium in 2016 [116], In his discourse, he delved 
into the cognitive progression of Internet of Things (IoT) technologies and put forth the concept 
of Cognitive Digital Twins, elucidating their distinctive attributes and classifications [51], [58]. 
El Adl provided a precise definition of Cognitive Digital Twins as "a comprehensive digital 
counterpart, enhancement, and astute companion to its physical counterpart, encompassing all 
subsystems across its lifecycle and evolutionary stages." Subsequently, in 2017, during the 
cognitive computing and artificial intelligence workshop held at IBM [58], a related term, denoted 
as CDT, emerged with distinct envisioned functionalities. These Cognitive Digital Twins leverage 
real-time data from Internet of Things (IoT) sensors and other pertinent sources to facilitate 
heuristic, logical analysis, automated adaptation, and reasoning thereby enhancing decision-
making processes. Furthermore, Banerjee et al. conducted a thorough investigation into the 
capabilities of knowledge graph technology in supporting the flourishing of Digital Twins (DT) 
within the contrivance of intricate systems[51]. Their study aimed to extract and infer knowledge 
from comprehensive data within production systems, demonstrating the potential of knowledge 
graphs as a valuable tool in this context. Moreover, during the year 2018, the amalgamation of 
knowledge graph and semantic modelling methodologies was employed to retrieve 
comprehensive data from intricate systems and augment the capabilities of digital twins to 
amalgamate exhaustive information[45], Kharlamov et al., the scholars behind this research, 
introduced a conceptual paradigm for an enriched digital twin that heavily relies on semantic 
modelling and ontologies. This framework facilitated the capture of the distinctive attributes and 
circumstances associated with a particular system, as well as its interconnectedness with other 
subsystems within a multifaceted domain. On the contrary, Boschert et al. embarked on a research 
endeavour that delved into a groundbreaking notion of digital twins attuned to capitalizing on 
knowledge graphs as a fundamental technology [58]. This innovative paradigm referred to as the 
next-generation digital twin (nextDT), posited that individual digital twin models in isolation lack 
the capacity to encompass all the requisite activities throughout the entirety of the lifecycle. 
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During the early stages of a fleet's operations, this hybrid paradigm combines physics-based 
models with sensor data to optimize performance. As the fleet matures and gathers a substantial 
block of data, data-centric approaches become increasingly significant, and take on a heightened 
level of importance in enhancing decision-making and improving overall efficiency. Hence, the 
research strongly endorsed the integration of these models to efficiently tackle a diverse array of 
business goals, while harnessing the potential of knowledge graphs as a core technology to 
establish connections among simulated models and descriptive models by retrieving diverse data 
blocks. In the subsequent year, the authors [117]put forth a visionary perspective on the future of 
Digital Twin technology and delved into the economic aspects of the Digital Twin and explored 
whether it could evolve into a dynamic mechatronics ecosystem. The forthcoming iteration of the 
Digital Twin is envisioned to heavily rely on semantic technologies, such as ontologies, to 
establish seamless connectivity among diverse sources of information with flexible utilization of 
semantic technologies to empower a network of digital components by harmonious integration 
between the physical and virtual realms necessitated the effective synchronization of measured 
data, even when confronting with massive and intricate datasets, with their corresponding virtual 
representations. 

researchers embarked on an exploration of the notion of collaborative symbiosis between humans 
and machines, with a particular focus on a cognitive digital counterpart. In their study, fernández 
et al [36]. delved into the practical application of the cognitive digital twin as an Associative 
Cognitive Digital Twin (AC-DT). This framework sought to facilitate a seamless and harmonious 
convergence between the augmentation of human capabilities and the capabilities of machines, 
progressively enhancing intellectual capacity and awareness. The primary objective was to devise 
a cognitive architecture tailored to Symbiotic Autonomous Systems, leveraging a graph data 
model supporting artificial consciousness manifestation. This model played a pivotal role in 
developing a higher-level cognitive framework that catered specifically to critical safety systems, 
ensuring the precise execution of machine operations and process workflows. Additionally, there 
were dedicated investigations aimed at evaluating human safety aspects, with a particular 
emphasis on integrating human cognition and behaviour into the environment of the Associative 
Cognitive Digital Twin. The cognitive digital twin (CDT) was characterized as a digital 
collaborative-based AI, possessing the heuristic capacity to acquire knowledge, dynamically 
adjust, and seamlessly assimilate diverse information sources to accomplish specific 
objectives[36].

By 2020[118], the capacity of digital twins to enhance decision-making in IoT system 
development was accomplished by Lu, Zheng et al. They availed the concept of Cognitive Twins, 
which referred to a Knowledge Graph (KG) oriented framework based on digital twins. This 
framework incorporated augmented ontology and semantic tendency to evaluate IoT systems and 
comprehend the evolution of virtual models, thereby enhancing the interconnectedness among 
these models. The Cognitive Twins (CT) approach was supported by Knowledge Graph 
frameworks, utilizing contemporary software and platforms to facilitate the integration of CT 
model components. The authors proposed CT as a solution to address the challenge faced by 
digital twins in identifying interrelationships across different domains. In the CT framework, each 
virtual model was assigned a timestamp at various stages of its lifecycle, distinguishing it from 
traditional digital twins.

 To enhance the intelligent capabilities of a manufacturing system and enable autonomous 
decision-making, Ali et al.[119], employed a framework comprising three tiers: access, analytic, 
and cognitive tier. The architecture aimed to transform conventional digital twins into intelligent 
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agents capable of accessing, analysing, comprehending, and responding to their current state. The 
primary objective was empowering manufacturing resources to possess cognitive functions, such 
as critical thinking, knowledge acquisition, and understanding dynamic industrial environments. 
This was achieved through the integration of human cognition[119], AI technologies, and 
Semantic Web techniques. The cognitive tier, facilitated by domain expertise, edge computing 
and global knowledge bases [118], played a pivotal role in enabling advanced cognitive 
functionalities. The cognitive digital twin (CDT) also established intricate communication 
networks to seamlessly integrate multiple digital twins, enabling autonomous decision-making 
processes.

 Furthermore, Al Faruque et al.[120] inaugurates the concept of cognitive digital twins, which 
canvasses a significant advancement in the realm of digital twins. The authors propose Cognitive 
Digital Twins (CDTs) as an innovative approach for manufacturing systems, capitalizing on 
cutting-edge advancements in cognitive science, artificial intelligence, and machine learning[110]. 
This paradigm avails digital twins to embody key aspects of human cognition, including attention, 
perception, and memory. By assimilating these cognitive capabilities, CDTs possess the ability to 
selectively concentrate on pertinent information, provoke meaningful depictions of data, fetch 
knowledge and encode data [119]. This evolutionary stride in digital twin technology sets the 
stage for heightened abilities in decision-making and problem-solving within manufacturing 
systems, propelling us closer to the realization of Industry 4.0 goals. According to the literature, 
the Cognitive Digital Twin (CDT) is described as an enhanced digital replica that encompasses 
advanced cognitive capabilities. This evolution of the current Digital Twin (DT) concept aims to 
provide a more intelligent, comprehensive, and holistic representation of complex systems 
throughout their entire lifecycle. Semantic technologies, such as ontology and knowledge graphs, 
play a crucial role in empowering DTs with augmented cognitive abilities. These cognitive 
capabilities include perception, which involves continuously evolving representations of data 
related to the physical twin and its surrounding environment. Attention, another cognitive 
function, allows for selective focus on specific tasks, goals, or sensory information, either through 
intentional actions or in response to environmental cues and conditions. Memory is yet another 
cognitive function that encompasses the processes of encoding, storing, maintaining, and 
retrieving information. The reasoning is the cognitive process of deriving outcomes that align 
with a given starting point or set of conditions, while problem-solving involves identifying 
solutions for specific challenges or achieving desired objectives. Lastly, learning is the 
transformative process of converting the experiences of the physical twin into tacit knowledge, 
which can be applied to future encounters and situations.

V. Digital triplet:

Digital twins embody a significant development in anticipating future system interactions and 
elucidating observed real-time performance of the operation. During the initial flourishing of the 
digital twin paradigm, the research community was delicate to duplicate a straightforward 
elucidation of the digital twin in contrast to the modelling and simulation. However, in the pursuit 
of a rejuvenated paradigm that encompasses heuristic abilities for advanced knowledge extraction 
and maturation, researchers and scientists have undertaken extraordinary endeavours to delineate 
novel concepts and paradigms of the digital twin. These endeavours aim to fulfil the demands for 
intelligent and cognitive capabilities, as well as the convergence of the intelligent world, digital 
world, and human interaction, forming what is referred to as the digital triplet.
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Although the notion of the digital triplet remains nascent in the literature and lacks a lucid 
explication, the initial proposition of the 'digital triplet' paradigm emerged from a Japanese 
research team at the University of Tokyo, aiming to bolster intelligent activities with digital 
engineering operations. The pioneering work of Umeda et al. [35] [45][46], introduced the term 
"digital triplet" or D3, referring to this concept. Recently, the digital triplet framework for 
integrating decision-making and incorporating the intelligent activity world of skilled engineers 
with the generalized production system consulting process model (GCPM) was proposed in the 
article [121], in which the iterative framework facilitated a holistic comprehension of knowledge 
transfer and tools utilised in the entire process of energy-saving system improvements. For 
augmenting human’s cognitive, perceptual capabilities during interactions between humans and 
robots, R. Niiyama and colleagues introduced the digital triplet framework. This framework 
facilitates the remote control of humanoid robots through Cybernetic avatars (CAs)[122][123], 
encompassing both robotic and three-dimensional (3D) graphic avatars. These avatars, along with 
a suite of technologies, augment individuals' physical, cognitive, and perceptual capabilities. 
Notably, In the realm of digital twins, inflatable cybernetic avatar (CA) featuring a humanoid 
upper body and having the potential to serve as a bridge connecting the virtual cyber world with 
the tangible real world and function as the tangible representation of a virtual agent in the real 
world[122]. Furthermore, to enhance the integration of individuals into cyberspace and effectively 
process, structure, and acquire human knowledge, a new generation of digital twins, evolving 
from the initial digital triplet concept, was introduced by N. Uchihira et al.[124] This innovative 
approach aims to enrich the behavioural and vital information related to human knowledge, with 
a specific emphasis on their interactions within physical environments. This goal is achieved by 
organizing "Gen-Ba knowledge", which encompasses not only explicit but tacit and latent 
knowledge[125], seamlessly blending the realm of human intellectual activities into both physical 
and cyberspace dimensions. The researchers employed an intelligent "voice messaging system 
(SVM)" to capture this "Gen ba knowledge" and digitally developed a human interface 
incorporating human data, including vital and behavioural aspects, within cyberspace[124][126].

The digital triplet serves as a unifying framework that seamlessly integrates smart technologies 
with intelligent activities world within both the cyber and physical domains. It empowers 
engineers to streamline and enhance streamlined engineering procedures through digitization that 
encompasses both virtual and tangible realms. Furthermore, Dutch researchers at the University 
of Twente have put forth a logical interpretation of the digital system reference in the context of 
production environments, conceptualizing it as a digital triplet[43][44]. This portrayal elucidates 
the pivotal role and responsibility of the digital twin paradigm in facilitating predictive modelling, 
adaptive decision-making, and leveraging machine learning techniques to dedicate digital 
transformation. The intention behind these depictions is to demonstrate the significance of the 
digital twin paradigm’s capacity to consolidate digital transformation. The three interconnected 
components correspond to the interactive paradigm that constitutes digital systems: the digital 
twin, encompassing an amalgamation of data, information, models, methods, tools, and 
techniques, serves as a faithful replication of the system. The digital prototype embodies the 
envisaged and desired state of the emulated system, while the digital master corresponds to the 
anticipated state of the system's validity, integrity and adaptation through the application of 
machine learning in imitating endeavours [43][44]. This entails leveraging advanced algorithms 
and data-driven approaches to continually refine and optimize the system's performance, making 
informed decisions based on accumulated knowledge and feedback. Furthermore, the vital 
procedure of retrieving data from the offline testing environment to the online production facility 
involves redefining interfaces and standardizing the exchange of data, information, and 
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knowledge between physical and digital systems. This ensures a smooth transition of knowledge 
acquired offline to real-world applications in a verifiable manner. To bridge the knowledge gap 
during digital system training and ensure the reliability of data transfer for real-time intelligent 
decision-making, E. Wescoat and colleagues [127] introduced the Surrogate Digital Triplet 
framework. This framework incorporates a third system, known as the surrogate triplet, 
facilitating data transfer between the laboratory (offline) and production (online) environments. 
It refines the D3 paradigm proposed by Umeda et al., evolving into the Surrogate Digital Triplet 
with three distinct systems. The prementioned approach supports the training of digital and 
decision-making systems by assimilating additional data and knowledge from offline 
environments, similar to physical equipment. This augmentation enhances model confidence and 
accuracy by effectively addressing data and knowledge gaps. Moreover, the imperative need for 
automating and controlling embedded systems in real-time, without direct or indirect human 
intervene, is crucial, particularly in ensuring the safety of working environments, especially 
during the critical pandemic periods. This digitalised model is especially vital in tasks such as 
disinfecting laboratories and classrooms within university context. D. Niyonkuru and G. Wainer 
[128]introduced a versatile platform that enables models to be utilized for simulation (in virtual 
time), visualization, or real-time execution, all rooted in the digital triplet concept, functioning as 
a discrete-event formal model tailored to the specific system. The digital triplet model draws upon 
information from digital twin models to evaluate students' comportment through releasing CO2 
in classrooms. Additionally, it integrated digitalised automation studies of the entire system with 
a formal model for real-time embedded controllers[128]. 

In addition, in the context of enhancing the cognitive capabilities of digital models and emulating 
human interactions with a product effectively and support human-centred product development.  
Digital triplet based cognitive modelling entails enabling mental planning of spatial 
transformative actions linked to object interactions. This new paradigm seeks to enhance spatial 
cognition by providing digital models with the ability to recognize objects in three-dimensional 
space and strategically plan interactions with these objects. In In this context, cognitive processes 
must incorporate perceptual dependencies to emulate human interactions with a product 
effectively and support human-centred product development[129][130]. The authors of research 
paper [129] developed a comprehensive cognitive digital twin to integrate digital product systems 
and human digital twins. This cognitive digital twin comprises three key components: a digital 
twin of the physical systems in real-time, a digital shadow for data retrieval, and a cognitive digital 
twin of human behaviour with reasoning and predictive capabilities for human interactions with 
both physical and virtual systems in real time.

The intelligent activities world and the master component of the digital system represent the 
elevated stages within the digital twin paradigm. These aspects signify the progression towards 
more sophisticated and intelligent capabilities. The digital triplet concept, originally conceived, 
is a manifestation of this evolutionary advancement, showcasing the implication of intelligence 
in the realm of digital systems. It emphasizes the integration of intelligent technologies and 
processes to enhance system performance and decision-making. Consequently, it promotes the 
convergence of the tangible, virtual, and cognitive realms, as well as human cognition, to propel 
visionary investigations into diverse research approaches for harnessing the intelligent and 
ingenious capabilities of this digital transformation. In our previous research conducted in 2023 
[50]. We delineated the definition of the digital triplet concept as an executable system 
encompassing a versatile and multifaceted digital interface, these interfaces undergo iterative 
revitalization to facilitate virtual deployment by ensuring the seamless real-time transmission of 
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two-dimensional data, effectively integrating the realms of physical, digital, and cyberspace 
through appropriate digital twin to elevate the full potential of D3, and allowing for the 
anticipation of scalability, autonomy, innovation, optimization, and predictive analytics, to 
accomplishing the cognitive and perceptive potency with the comprehensive data aggregation by 
synergistically leveraging human cognitive capability, knowledge and creativity, artificial 
intelligence, and advanced machine-learning techniques[50].

The authors expounded upon the prospective progression of digital systems in exerting heightened 
command over artificial intelligence (AI) and furnishing valuable semantic insights for discerning 
the Digital Triplet, D3. The proposed levels, as delineated by us[50], can be succinctly 
encapsulated as follows :

• Volition: “the perceptive level” [50], this entails harnessing the human experience and ingenuity, 
coupled with the application of artificial intelligence and machine learning through the 
comprehensive aggregation of data to obviate the necessity for direct intervention in intricate 
decision-making and analytical tasks, synergistically harness the cognitive capability, and to 
attain complete autonomous validation and optimization of the process. It integrates human 
expertise and AI technologies to enhance its problem-solving and decision-making abilities. In 
which, the perceptive level learns from historical data, patterns, and experiences to improve its 
performance and provide valuable insights to establish a strong basis of cognitive capabilities and 
knowledge-based systems. The twin not only dominates its domain but also exhibits a sense of 
purpose and intentionality and assigns initiative to drive progress and demonstrates self-
awareness, autonomy, and the ability to align its actions towards achieving its objectives.

Domination [50]: This level signifies a seamless integration where the physical system is 
regulated and governed based on predictions derived from its virtual counterpart and real-time 
sensor inputs. This concatenated approach allows for fine-tuning and control of the physical 
system. It gains a deeper understanding of the system that imitates and becomes capable of 
autonomously controlling and optimizing various aspects. 

Maturity: The iterative stage pertains to the real-time scrutiny and observation of the tangible 
actions demonstrated by the physical system, facilitated by the deployment of cutting-edge 
sensors. The data acquired from these sensors is subsequently utilized to emulate and imitate the 
system, ensuring a synchronized representation of its interaction in real-time. The 
interrelationship between domination and volition level lies in the progression from perception 
capabilities at the maturity level to cognitive abilities at the domination level and finally to a 
higher level of autonomy and intentionality at the volition level.

• Sedentary: This duplicating level involves a meticulous replication process that encompasses 
the spark of consciousness of tasks in physical space. It entails visualizing and emulating their 
corresponding physical counterparts' virtual attributes and characteristics.

The term "perceptive" pertains to the digital twin's capacity to observe and comprehend the 
interactions within its surrounding environment. It encompasses the capability to anticipate future 
interactions by employing a broader range of cognitive abilities. This includes a heightened level 
of heuristics and reasoning, accompanied by an enhanced perception of maturity level. These 
abilities enable the digital twin to actively process information, draw conclusions, and make well-
informed decisions based on its cognitive capacities. In the context of achieving domination and 
volition levels, the term "perceptive" serves as an alternative concept to describe the digital twin's 
capabilities at this level. It encapsulates the discernment and interconnectedness among 
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perception, cognition, and maturity, thereby encompassing the notions of domination and volition 
as a strict combination of intelligent activity [50]. The intelligent activity world encompasses the 
cognitive aptitude to seamlessly assimilate a diverse array of information and actively acquire 
knowledge to support the collaborative nature of digital-based artificial intelligence. This 
facilitates the functioning of the digital realm, where information is stored, processed, and 
communicated. The digital space primarily pertains to the revival and organization of data and 
information, encompassing digital files, databases, software systems, networks, and various other 
digital resources. The digital space is centred around the storage, transmission, and processing of 
digital data and content. Whereas a higher level of discernment and interconnectedness of 
intelligent activities world and digital realm serves as cyberspace to seamlessly augment the high 
level of intelligent communication, collaboration, and interaction among humans, digital space 
and physical space through an interconnected network of computer systems and the internet, 
facilitating digital communication and interaction. Cyberspace is a smart virtual environment that 
enables communication, collaboration, and interaction. Cyberspace encompasses the online world 
where human integrates into intelligent activities, and actively participate in smart virtual 
environments known as the metaverse.

VI. Enabling technologies to enhance the intelligent activity and heuristic level 
of digital twin

In this section, we aim to address the second research question. In Table 3, we classified the 
enabling technologies of the highlighted digital twin according to the application domain and the 
definition proposed in 68 papers.

Definition Keywo
rds

Refere
nce Application Enabler

“Approach for the management of 
the product models and data of all 
virtual and physical product 
instances along the entire product 
lifecycle, according to the 
requirements of Smart Product 
reconfiguration processes”.

Virtual
produc
t twins

[131]

Product lifecycle 
management 
(PLM)/ Cloud-
based Smart 
Product 
reconfiguration

Internet of 
everything 
IoX/Cloud

“3D acquisition with high-
performance processing tools that 
facilitate rapid generation of
digital models for large 
production plants and factories 
for optimizing and improving 
human operator effectiveness, 
safety and ergonomics”

digital 
simulat
ion

[132]

Simulation for 
production 
planning
A data-driven 
approach for 
mimicking 
human 
interaction

Machine learning, 
Multilayer 
Perceptron
(MLP) / CAD

“a coupling of the production
system with its digital equivalent 
as a base for an optimization with 
a minimized delay between the 
time of data acquisition and
the creation of the Digital Twin”.

Real-
life 
model/
digital 
twin

[19]

data acquisition 
with Multimodal 
/ Cyber-Physical 
Production 
System (CPPS)/ 
System 
Optimizing CPS

Cloud-solution/IoT
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“Emerging technology to achieve 
physical–virtual convergence”

Digital 
mirror 
model

[133]

Prognostics and 
health 
management 
(PHM)

Machine Learning/ 
Extreme Learning 
Machine (ELM)

“Evolved models with high 
fidelity, continuous interactions 
between physical and virtual
spaces and fused data converging 
those two spaces”

Digital 
twin 
shop-
floor 
(DTS)/ 
physic
al-
virtual 
conver
gence

[134] Smart 
Manufacturing

Virtual Reality 
(VR)/Big Data 
Fusion/ Jupiter 
Tessellation/ 
Augmented Reality 
(AR)

“Merging and effective method 
for real-
time interaction and further 
convergence between physical
space and information space”

Cyber 
and 
physic
al
conver
gence

[18] Product lifecycle 
management 
(PLM)

IoT/ Big Data 
Fusion

“Ultra-high fidelity simulation 
characterised by
their ability to accurately simulate 
events on different scales
of space and time, based
on not only expert knowledge, but 
also collecting data from all 
deployed systems
of their type and thus aggregate 
the experience gained in the
field”

Cognit
ive 
System
/digital 
twin 
model

[81]

Complex smart 
cyber-physical 
systems/Planning
and prediction 
architectural 
framework

Expert 
systems/Machine 
learning

“Integrated multi-physics, multi-
scale, probabilistic simulation of 
an as-built system, enabled
by Digital Thread, that uses the 
best available models, sensor 
information, and input data to 
mirror and
predict activities/performance 
over the life of its corresponding 
physical twin”

Digital 
System 
Model/
Digital 
Thread

[135]

Analytical 
framework for 
aircraft’s life 
cycle/Service life 
extraction/Real-
time modelling 
airframe of the 
multidomain 
system

Integrated
Computational 
Structural 
Engineering 
(ICSE)/Computatio
nal fluid dynamics 
(CFD)

“virtual substitutes of real world 
objects consisting
of virtual representations and 
communication capabilities 
making
up smart objects acting as 
intelligent nodes inside the 
internet of
things and services”

Experi
mentab
le 
Digital 
Twin/
Virtual 
Testbe
d

[136][
137]

Soft Robotics/ 
holis-
tic development 
cycle for control 
engineering/safe 
working 
environment for 
man-machine 
interaction

Versatile Simulation 
Databas (VSD)/The 
microkernel 
architecture

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjs-eSsppf9AhX4RPEDHV1bA_0QFnoECAwQAQ&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F331872661_Big_Data_Fusion_and_Emerging_Technologies&usg=AOvVaw3wq8GeUE_bzFf0xCGdF4ou
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjs-eSsppf9AhX4RPEDHV1bA_0QFnoECAwQAQ&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F331872661_Big_Data_Fusion_and_Emerging_Technologies&usg=AOvVaw3wq8GeUE_bzFf0xCGdF4ou
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjs-eSsppf9AhX4RPEDHV1bA_0QFnoECAwQAQ&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F331872661_Big_Data_Fusion_and_Emerging_Technologies&usg=AOvVaw3wq8GeUE_bzFf0xCGdF4ou
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjs-eSsppf9AhX4RPEDHV1bA_0QFnoECAwQAQ&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F331872661_Big_Data_Fusion_and_Emerging_Technologies&usg=AOvVaw3wq8GeUE_bzFf0xCGdF4ou
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjs-eSsppf9AhX4RPEDHV1bA_0QFnoECAwQAQ&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F331872661_Big_Data_Fusion_and_Emerging_Technologies&usg=AOvVaw3wq8GeUE_bzFf0xCGdF4ou
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-

Flexibl
e 
digital 
twin

[138]

Smart Factory 
design including 
(Conceptual 
design, elaborate 
design
and finalized 
design)/ Product 
Lifecycle 
Management
(PLM)

IoT, Big data

-

Digital 
twin/ 
Inform
ation 
modeli
ng

[139]

Intelligent 
manufacturing/ 
Hierarchical 
configuration of 
CPPS based on 
DT

Cloud Computing/ 
IIoT/AI/Big Data

“embedded framework for cross-
system, discipline, and 
application development on a 
system level to gain insight into 
the complex system by having a 
bidirectional online data stream 
and interaction between human, 
digital counterpart, and Real Twin 
(RT)”

Digital 
Twin/ 
Virtual 
Testbe
d/ 
Interac
ting 
DT

[140]

human-robot 
cooperation/ 
intelligent fusion 
of human and 
machine 
capabilities / 
Human 
information 
processing HIP 
(perception, 
cognition, and 
action)

Machine 
learning/Virtual 
Reality (VR), 
Augmented Reality 
(AR), Mixed Reality 
(MR)

-

Digital 
counte
rpart/ 
digital 
human 
modell
ing

[141][
142]

Lean automation/ 
human-robot 
hybrid assembly 
system / Human 
ergonomic 
analysis/ Virtual 
Commissioning

/AI/ human-
machine interface 
(HMI)

“One of the pillars of smart 
manufacturing where by the 
physical and virtual worlds can by 
synced and mimic each others’ 
behaviour”

Digital 
Twin/ 
Conne
cted 
Digital 
Twin

[143]

Prognostics 
control/Real time 
monitoring in 
serial or parallel 
manipulator

IoT/M2M 
communication/ 
Message Queuing 
Telemetry Transport 
MQTT/ Open 
Platform 
Communications 
(OPC)

-

Digital 
twin/ 
digital 
human 
model

[144]

Human-centred 
design of 
manufacturing 
process/ human 
and robotic arm 
collaboration/ 
Ergonomics 
Assessment

Virtual Reality 
(VR), Augmented 
Reality (AR)/ M2M 
communication
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“Practically viable
industrial solution, which can 
start driving control and 
management systems of 
enterprises in the nearest future”

Digital 
Twin/
Digital 
twin 
control
ler/Dig
ital 
clone

[145]

Human-robot 
integration/synch
ronised control 
between virtual 
and real space.

Virtual Reality 
(VR), Augmented 
Reality (AR), Mixed 
Reality (MR)

- Digital 
twin [146]

Soft-robotic 
gripper system/ 
human–machine 
interfaces 
(HMIs)/ real-time 
object 
recognition and 
prediction

Machine learning, 
Support vector 
machines (SVMs)/ 
patterned-electrode 
tactile sensor

-

Digital 
Twin/
Digital 
modell
ing

[147]

Human-robot 
collaboration/Rea
l-time 
synchronisation 
of virtual space 
and physical 
space

BIM Building 
information 
modelling/ IoT / 
Message Queuing 
Telemetry Transport 
MQTT

- Digital 
twin [148]

Human-robot 
interaction/traject
ory optimization

IoT/Virtual 
reality/Human-
computer 
interaction

-

Digital 
Twin/ 
Virtual 
Testbe
d

[149]

lean 
automation/real-
time monitoring/ 
Human-robot 
collaboration and 
interaction

Point cloud/ BIM 
Building 
information 
modelling/ 
IoT/Virtual 
reality/virtual 
commissioning

-

Digital 
Twin/v
irtual 
system

[150]

in-house virtual 
logistics
systems/ real-
time information, 
automation, and 
collaborative 
environment

IoT

“a dynamic, virtual representation 
of a corresponding physical 
system, that can be used for 
testing and verifying the control 
system in a simulated virtual 
environment to achieve rapid set-
up and optimization prior to 
physical commissioning”

Digital 
twin/ 
Emulat
or

[151]
Mechatronics 
system 
configurations 
and validations

Virtual 
Commissioning 
(VC)

- Digital 
twin/ [152] Design and 

control of 
IoT/AI
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DT 
smart 
models

Human-Robot 
Collaborative 
(HRC) system/ 
Human-robot 
interaction

-

Digital 
twin/ 
knowle
dge-
based 
DT

[153]

Ontological 
human intention 
prediction in 
Human-robot 
collaboration / 
human-robot 
interaction

IoT/AI/ML-
CNN/Virtual 
Reality/ Semantic 
information

-

Digital 
twin/ 
Cyber 
Model/
Cognit
ion 
model

[154]

Soft Robotics/
GPS-denied 
environments/cy
ber-physical 
measurement 
system 
(CPMS)/Remote 
monitoring

IoT/ Embedded 
system

- Digital 
twin

[155]

Human-machine 
interactions/Soft 
robotics/ Online 
Virtual Shop 
Application

Artificial 
intelligence of 
things (AIoT) 
technology/IoT/Ma
chine 
learning/flexible 
sensor/smart tactile 
sensor/cloud big 
data/5G

“a virtual portrayal, is used to 
design, simulate, and optimize the 
complexity of the assembly 
system”

Intellig
ent 
Digital 
Twin

[156]

Lean 
manufacturing/s
mart assembly/ 
Human-robot 
collaboration/Hu
man machine 
interaction

Deep 
learning/convolutio
nal neural network 
(CNN)/parallel 
processing

“a virtual counterpart of a 
physical human-robot assembly 
system, is built as a ‘front-runner’ 
for validation and control 
throughout its design, build and 
operation”

Digital 
Twin [157]

Human-robot 
collaboration 
(HRC) 
can/Flexible 
automation for 
complex 
assembly 
tasks/Human-
machine 
interaction

IoT/CAD, For 
Future development 
AI/Smart 
glasses/VR/ Big 
Data analytics

- Digital 
Twin

[158]

Biomanufacturin
g industry/ 
Human Machine 
Interface (HMI)/ 
Human factors in 

IoT/Machine 
learning/ Model 
predictive control 
(MPC)
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optimization 
cycle

- Digital 
twin

[159]
intelligent 
detection robot/ 
Sustainable 
product design

Data 
Fusion/Machine 
learning

- Digital 
Twin

[160] Surgical robotics 
training Haptic devices

-

Digital 
Twin 
model/ 
Digital 
Twin 
state

[161]

Human-robot 
collaboration 
(HRC)/ Human-
robot interaction

Virtual 
reality/Mixed 
Reality

“a digital replica of a living or 
non-living entity, whose virtual 
representation reflects all the 
relevant dynamics, 
characteristics, critical 
components and important 
properties of the original entity 
throughout its life cycle”

Human
-
Centric 
Industr
ial 
Digital 
Twins

[162][
163]

HMI solutions for 
human-centric 
industry 5.0/ 6G-
empowered 
Human-machine 
integration

Bio Electromagnetic 
Compatibility/Brain
–Computer
Interface/Virtual 
reality/mixed 
reality/Smart tactile 
sensor

- Digital 
twin

[164]

Human-in-the-
loop decision-
making system/ 
Human-Robot 
Collaboration 
(HRC)

IoT/Big data 
analytics/ML

-

human 
body 
Digital 
twin

[165]
Metaverse 
extended reality/ 
human–robot 
interaction (HRI).

Artificial 
intelligence of 
things (AIoT) 
technology /Bio 
Electromagnetic 
Compatibility/Brain
–Computer
Interface/Virtual 
reality/mixed 
reality/Smart tactile 
sensor

- Digital 
twin [166]

Cyber-physical 
integration/Huma
n-Robot 
Collaboration 
(HRC)/Human-
robot interaction

Mixed 
Reality/Machine 
learning/IoT/ 3D 
point Cloud

-

Robot 
digital 
twin/h
uman 
digital 
twin

[167]

Human Machine 
integration/Huma
n robot 
interaction/ Real-
time 

AI/Deep Learning/ 
imitation learning/ 
virtual reality 
modeling 
language/IoT
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teleoperation 
controls

- Digital 
human

[168]

Smart City / 
Smart class 
room/Real time 
activity 
monitoring/real 
time identity 
recognition.

Artificial 
intelligence of 
things (AIoT) 
technology /Deep 
Learning/ Smart 
tactile sensor

-

Digital 
twin/O
perator 
Digital 
Twin

[169]
Human–robot 
interaction/ 
human-robot 
Collaboration

IoT/wearable 
device/Digital 
Threads 
(MQTT,OPC)

-

Digital 
twin/D
ynamic 
digital 
twin

[170]
Mobile 
manipulator/ 
Human–robot 
interaction/

IoT/Machin 
learning

“realistic digital model for 
product designing, simulating, 
and troubleshooting, which 
should be obtained by accurately 
collect point could data in the 
complex environment affected by 
light, sound, and electromagnetic 
fields”

Digital 
twin [171]

Intelligent 
manufacture, 
Intelligent 
medical care

Point cloud/smart 
tactile sensor

“a digital representation of a 
physical system that is augmented 
with certain cognitive capabilities 
and support to execute 
autonomous activities; comprises 
a set of semantically interlinked 
digital models related to different 
lifecycle phases of the physi- cal 
system including its subsystems 
and components; and evolves 
continuously with the physical 
system across the entire 
lifecycle”.

Cognit
ive 
Digital 
Twin 
(CDT)

ISO 
42010 
standar
d to 
suppor
t CDT 
Develo
pment

[51][65
]

Complex
system 
development and 
management/Pre
dictive analytics 
and decision 
making

Machine 
learning/Big Data/ 
Ontology 
engineering/ 
Knowledge 
graph/Semantic 
modelling

“a digital expert or co-pilot, 
which can learn and evolve, and 
that integrates different sources of 
information for the considered 
purpose”

Associ
ative 
Cognit
ive 
Digital 
Twin

[36]

Human machine 
integration/ 
Symbiotic 
Autonomous 
Systems (SAS) 
/hybrid human-
machine 
cognitive systems

Industrial Internet of 
Things 
IIoT/Machine 
learning

“a visionary paradigm evolves 
with the real system along the 

Next 
Genera [172]

Planning, 
operation, 

Semantic 
technologies/ Big 
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whole life cycle and integrates the 
currently available and commonly 
required data and knowledge in 
which relevant digital artefacts 
including design and engineering 
data, operational data and 
behavioural descriptions will be 
semantically linked and 
synchronized by a set of well-
aligned, descriptive and 
executable models of component, 
product, system or process”.

tion of 
Digital 
Twin

monitoring and 
maintenance of 
mechatronic
and cyber-
physical systems 
long the whole 
life cycle

Data/ Ontology 
engineering/ 
Knowledge graph

“Advanced cognitive capabilities 
to the DT artefact that enable 
supporting decisions, with the end 
goal to enable DTs to react to 
inner or outer stimuli. It can be 
deployed at different hierarchical 
levels of the production process, 
i.e., at sensor-, machine-, 
process-, employee- or even 
factory-level, aggregated to allow 
both horizontal and vertical 
interplay”.

Enhan
ced
Cognit
ive 
Twin 
(ECT)/ 
Cognit
ive 
(Digita
l) Twin

[173]

Cognitive 
Factory/ 
Intelligent 
decision-
making/ 
detection, 
prediction and 
real-time 
monitoring in a 
fuzzy and 
complex 
environment

Knowledge Graphs 
(KGs)/ Machine 
learning/Big Data/ 
Semantic 
modelling/Cognitiv
e computing

“Digital Twins with augmented 
semantic capabilities for 
identifying the dynamics of 
virtual model evolution, 
promoting the understanding of 
interrelationships between virtual 
models and enhancing the 
decision-making based on DT”

Cognit
ive 
twins

[174]

Decision-
Makings of 
Internet of Things 
Systems/ 
Complexity 
management

Knowledge Graphs 
(KGs)/ Semantic 
modelling

“an extension of Hybrid Twin HT 
incorporating cognitive features 
that enable sensing complex and 
unpredicted behaviour and reason 
about dynamic strategies for 
process optimization, leading to a 
system that continuously evolve 
its own digital structure as well as 
its behaviour”

Cognit
ive 
Digital 
Twin/
Hybrid 
Twin

[175][
176]

Intelligent 
factories/ 
Operational 
optimization, 
condition 
monitoring and 
real-time 
monitoring

Knowledge Graphs 
(KGs)/Big Data/ 
Semantic 
Modelling/ Machine 
learning

“the digital twin which is 
endowed with the critical 
elements of cognition, e.g., 
attention (selective focusing), 
perception (forming useful 
representations of data), memory 
(encoding and retrieval of 
information and knowledge), etc; 

Cognit
ive 
Digital 
Twin

[120]

Cyber-
Physical 
Manufacturing 
Systems

cognitive 
science/machine 
learning/artificial 
intelligence
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will allow enterprises to 
creatively, effectively, and 
efficiently exploit implicit 
knowledge drawn from the 
experience of existing 
manufacturing systems and 
enable the transfer of higher 
performance decisions and 
control and improve the 
performance across the enterprise 
(at scale)”.

“An extension of existing
digital twins with additional 
capabilities of commu-
nication, analytics, and 
intelligence in three layers:
i) access, ii) analytics and iii) 
cognition, which will convert 
traditional digital twins into smart 
and intelligent agents that can 
access, analyse, understand, and 
react to their current status”

Cognit
ive 
Digital 
Twin

[119] Smart 
manufacturing

Cloud-Big Data 
analytics/Knowledg
e Graph/ 
AI/Semantic Web 
technologies

“A digital replica of a person’s 
cognitive process in relation to 
information processing, which 
includes a VR platform to collect 
information preference data 
during training, contains the 
modelling and optimization 
algorithm of digital modelling of 
human cognition and has an 
adaptive user interface design 
based on real-time cognitive load 
measures”.

Cognit
ive 
digital 
twin

[67]

Intelligent 
information 
systems of smart 
cities/Testing the 
human- cantered 
cognitive 
activities 
pertaining to the 
complex tasks of 
industrial facility 
shutdown 
maintenance/ 
Mitigating the 
cognitive load of 
the complex tasks 
at work.

cognitive load 
theory/ 
Neuroimaging/Virtu
al reality VR

-

Cognit
ive 
digital 
twin/ 
predict
ive 
operat
or’s 
digital 
twin

[177]

Drone 
control/Predictiv
e decision-
making system/ 
Robot operating 
system

Brain-Computer 
Interface (or 
BCI)/Machine 
learning

“a complex system that Enhan
ced 

[178] Smart 
Cities/multisourc

Artificial 
intelligence, brain–
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interacts not only with its real 
entities but also with its sur-
roundings and other DTS”

Digital 
twin/ 
cogniti
ve DT

e heterogenous 
systems/Cognitiv
e computing

computer interface, 
deep learning,

-

Cognit
ive 
digital 
twin

[66]

Maintenance 
management 
/Prediction of 
remaining useful 
life (RUL) / 
Product Life 
cycle 
Management 
(PLM)

Artificial 
intelligence 
(AI)/Edge 
computing /cloud 
computing/ 
Semantic Modelling

-

Digital 
twin, 
cogniti
ve twin

[179]

Modular 
production 
system 
optimisation/ 
Decision 
making/failure 
detection

knowledge graph 
(KG)/ Semantic 
technologies / 
Ontology 
engineering

“Holistic Digital Twin approach 
is comprehensive modelling and 
simulation capacity embracing 
the full manufacturing process 
including external network 
dependencies and integrating 
models of human behaviour and 
capacities for security testing in 
order to enable new services for 
the optimization and resilience of 
Factories of the Future”

Holisti
c 
Digital 
Twin/
Cognat
ive 
modell
ing/ 
Cyber-
Range 
(CR)/ 
Human 
Digital 
Twin

[59]

CyberFactory/ 
Aerospace 
Manufacturing/ 
process 
optimization/ 
anomaly 
detection/ 
security testing

AI Artificial 
intelligence/Big 
Data/Cybersecurity/
IoT

-
cogniti
ve 
digital 
twins

[180]

Cognitive Cyber-
Physical 
Manufacturing 
Systems 
‘Design/optimiza
tion/monitoring’

Knowledge Graphs 
(KGs)/ Machine 
learning/ Graph 
Convolutional 
Neural Network 
(SGCNN)/ Big Data

-
Graph 
digital 
twin

[181]

Stability 
prediction of 
complex 
industrial 
systems/Internet 
of energy/ stable 
operation/

Graph con- volution 
network (GCN)
knowledge graph 
(KG)/ Semantic 
technologies / 
Ontology 
engineering

- Digital 
Twin

[182]
Integration of 
physical space,
cyberspace and 
human 

Intelligent psycho-
physiological 
analysis/Fuzzy 
Comprehensive 
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factors/Product 
performance 
evaluation/Noise 
and Vibration 
detection based 
on customer’s 
cognition 
reflection/ 
detection
Knowledge 
Based-Decision-
making

Evaluation/Machine 
learning (SVM 
classifie)

Digital 
twin

[183][
184]

Real-Time 
monitoring/contr
ol program 
simulation 
testing/ 
synchronous 
mapping 
simulation/ 
remote control

Multi-source 
heterogeneous 
virtual and real data 
fusion/ Data 
interaction based on 
OPC UA

“DT is not just a digital model or 
an offline simulation of a physical 
object. Nor does a DT correspond 
to a digital shadow, depicting a 
PT’s real-time states and changes 
that can just be manually 
modified. The changes in a DT 
automatically mirror and affect 
the status of its PT: the data flows 
bi-directionally and in real time 
between twins in digital and 
physical worlds, possibly without 
any human intervention through 
the DT-driven control of an 
actuated PT”.

Digital 
Twin/ 
Phygit
al 
Twin/ 
physic
al-
digital 
twinni
ng

[184]

Human-system 
interactions/ 
Human-robot 
interaction/Huma
n-centered design

Holographic 
Interface/Augmente
d reality/ IoT

-

Visual 
digital 
twin/ 
Cognit
ive 
digital 
twin

[185] Decision-making 
system/Drone 
Control

Brain-computer 
interfaces/Machine 
Learning

Based on the previous classification, advanced technologies such as artificial intelligence, cognitive 
computing, semantic technologies, augmented reality, brain-computer interface (BCI), and the 
Industrial Internet of Things (IIoT) play a crucial role in the development of intelligent industrial 
systems. These cutting-edge technologies are essential components for achieving intelligent industrial 
systems. In this regards, digital triplet is an extension of the DT, incorporating advanced levels of 
perceptive, volition and intelligence. Therefore, all the enabling technologies necessary for digital 
twins are equally vital for evolving the cognitive capabilities and perceptual abilities of the digital 
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triplet. These technologies serve as the foundation upon which the digital triplet's advanced cognitive 
and perceptive functions are built, enabling a higher level of understanding and interaction within 
complex systems and environments in industrial metaverse.

A. The Industrial Internet of Things (IIoT):

The Industrial Internet of Things (IIoT) encompasses the infrastructure that facilitates the 
gathering and transmission of data Through interconnected devices and sensors. This data is 
subsequently employed for monitoring and regulating industrial operations, with the aim of 
enhancing productivity, efficiency, and overall performance. In the integration of the digital space 
with the physical space into comprehensive IoT systems, establishing bi-directional 
communication with operational technology (OT) from the Industrial Internet of Things (IIoT) 
framework is crucial. This tailored approach ensures secure communication across the entire IIoT 
system (Edge-fog-Cloud) and fosters interoperability with other IP-based messaging methods like 
OPC-UA to MQTT [186][187][188][189]. Achieving full integration of industrial IoT involves 
employing emerging technologies such as edge/fog computing, 5G, machine learning, and 
wireless sensor networks (WSN)[190]. This approach guarantees flexibility, scalability, and 
dependable computation, storage, and network capabilities, thereby enabling a wide array of 
intelligent activities. These activities culminate in the development of artificial intelligence of 
things (AIoT) applications[165][168], specifically enhancing the digital maturity of digital twins, 
which imitate the real physical assets in cyberspace [111][109][191]. 

The structure of IIoT enables interoperability for perceiving the physical world and transmitting 
the data of the digital twin in real-time, reliably, and efficiently through the wired or wireless 
network among the intelligent activity world, digital, and physical world. With tri tier structure 
of IIoT, the edge computing layer pertains to the computation of data at the periphery of a network, 
in proximity to the origin of the data in the physical world, in which the emulation of real-world 
behavior in real-time with minimal latency will be accomplished. Edge computing has the 
capability to perform real-time filtering, specification, and processing of data obtained from the 
physical world on edge devices. The immediacy of data processing enables retrieving the data to 
be utilized in real-time for prompting maturity in digital twins when the digital counterpart of the 
real system will leverage this data for training and testing cognitive capabilities. With this ability 
to transmit data with low latency, collaborative processing of data between cloud computing and 
edge computing layers will enhance data processing efficiency, minimizing cloud data load, and 
reducing data transmission delay. In which, retrieving data from the terminals of IIoT serves as 
input for the data at maturity levels of digital triplets. 

Furthermore, the integration of diverse data sources and types, as well as the expanded storage 
needs of data generated from edge devices, necessitates efficient computing capacities within the 
realm of combined data IoT, cognitive computing, artificial intelligence, and machine 
learning[192]. To achieve this, a connection between physical systems and the social world must 
be established, leading to the development of an intelligent physical-cyber-social 
system[193][194][195][196]. This requires a new paradigm within the cognitive internet of things, 
relying on edge intelligence and cognitive computing to create intelligent algorithms for sensing 
and analysing IoT big data in real time. This paradigm is essential to meet the 4C requirements: 
flexible communication to enhance interoperability among various networks and connected 
devices, scalable computing capable of handling diverse computation-intensive tasks to augment 
human communication with interconnected computational infrastructures, prompt decentralized 
control to support and enhance intelligent services and human-machine interaction, and a 
cognitive engine to achieve machine intelligence within the IoT connected world.  In various 
research articles, the fusion of cognitive computing technology with data generated from Internet 
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of Things (IoT) devices has led to the proposition of a cognitive internet of things (CIoT) 
framework. This framework emphasizes the vital role of edge intelligence, focusing on two key 
infrastructures: collaborative sensing and cognitive services. These infrastructures are essential 
for enhancing the cognitive abilities of IoT. It becomes evident that the network paradigm plays 
a crucial role in advancing cognitive computing across diverse scenarios, including intelligent 
transportation, Intelligent industry, and environmentally conscious living. Consequently, the 
CIoT system must continually integrate new capabilities in areas like deep learning and cognitive 
sensing to enhance its human-like intelligence features[193][194][197]. This swift advancement 
of the Industrial Internet of Things (IIoT) and associated technologies such as cognitive 
computing, big data, cloud, and edge computing has served as a primary impetus for critical 
transformation from Industry 4.0 to Industry 5.0 and intelligent manufacturing, which in turn 
forms the basis of human/ Cyber-Physical Systems (H-CPS) and intelligent Digital Twins 
(DT)[198][199][34][46].

B. Cognitive computing:

Cognitive computing focuses on refining processing techniques, challenging the notion that only vast 
datasets can be effectively processed. Similar to the human brain, limited memory doesn't impede 
image cognition. Cognitive computing develops algorithms rooted in cognitive science theories, 
allowing machines to possess brain-like cognitive intelligence[200]. Brain-like computing seeks to 
enable computers to comprehend the world from a human perspective, a crucial aspect of 
understanding human needs. The integration of digital twins into cognitive computing enhances 
machine decision-making, particularly in handling intricate reasoning and emotion prediction[185]. 
Coupled with IoT, the cognitive digital twin analyzes data from connected sensors, assisting human 
decisions and providing valuable insights. This amalgamate will lie in the realization of a human-
centered cognitive cycle, encompassing human integration, machine, and cyberspace.  This approach 
was introduced in article [200] as a human-centric cognitive computing approach, integrating cloud 
computing for intelligent computing. The study delved deeply into cognitive computing, proposing a 
comprehensive architecture with remarkable accuracy for this field. This identified three pivotal 
technologies within cognitive computing systems: the Internet of Things for networking, 
reinforcement learning and deep learning for data analysis, and cloud computing for augmenting the 
human interaction with cyberspace data [200]. In this context, digital twin computing surpasses 
traditional communication technologies by utilizing precise digital data that mirrors real-world 
entities. It facilitates rapid and in-depth communication, enabling large-scale, high-precision 
predictions and simulations, hastening the advent of intelligent societies in cyberspace. The 
integration of cognitive computing amplifies the capabilities of digital twins, employing advanced 
methods like natural language processing and machine learning[201]. Cognitive Digital Twins enable 
the design of future machines beyond human intuition, considering not only what is being created but 
also the intended recipients, marking a significant advancement in intelligent design and 
understanding of user needs[202][203]. Cognitive Digital Twin (DT) technology empowers us to 
design and enhance future machines in ways that surpass human intuition. It elevates traditional 
engineering skills by enhancing the cognitive capabilities of digital replicas through cognitive 
computing systems. In a significant advancement, The authors of the paper [202] improved the 
accuracy and safety of collaborative robot control systems using cognitive computing 
technology[202]. Their approach involved integrating a cognitive computing system model based on 
deep belief networks into the control system. The authors meticulously compared and analysed the 
system's performance using simulation tasks with a seven degree of freedom collaborative robot in 
MATLAB software. By conducting a meticulous analysis of variables like the repetition count in the 
training set, the quantity of hidden neurons, and the number of network layers, researchers evaluated 
how these factors influenced algorithm performance. The comparison encompassed the cognitive 
computing system model combining linear perceptron and deep belief network, (MLP) and the deep 
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belief network [202]. The analysis revealed that the DBNLP model outperformed both multilayer 
perceptron and DBN algorithms significantly. Its application to collaborative robots substantially 
enhanced their accuracy and safety. This breakthrough serves as an experimental foundation, laying 
the groundwork for improving the performance of future collaborative robots.  

Cognitive computing will elevate the maturity of the digital triplet by harnessing the expansive 
processing capabilities of cognitive data, encompassing attention, memory, logic, reasoning, and 
processing. This integration impacts the heuristic functions of machine learning and neural networks, 
incorporating a comprehensive scale of data. The fusion of data from virtual networks into cyberspace 
enhances data analysis at a deep algorithmic level of machine intelligence, breaking the reliance on 
traditional data dependencies. This advancement facilitates a profound ability of human cognition, 
enabling the provision of exceptionally intelligent cognitive and reasoning capabilities analogous to 
those of the human brain[200][204]. 

C. Artificial Intelligence:

The process of enabling computers to perform tasks that typically require human intelligence, such 
as perceiving, reasoning, and decision-making, is known as "artificial intelligence" (AI). This 
involves the use of algorithms and other machine-learning techniques. AI, encompassing significant 
technologies like semantic technology, reasoning, machine learning, and knowledge representation 
according to[36][205][206], acts as a catalyst for enhancing the cognitive and perceptive abilities of 
Digital Twins. These sources emphasize the vital role of AI in facilitating and advancing the digital 
transformation of engineering processes. By harnessing AI technologies, Digital Engineering can 
make strides in areas such as data analysis, pattern recognition, intelligent decision-making, and 
knowledge management[207][208]. AI empowers engineers to handle vast datasets, automate tasks, 
gain insights, and enhance the overall efficiency and effectiveness of engineering practices within the 
realm of digital transformation. In this context, the flow of information, transfer of knowledge, and 
interaction between humans and various lifecycle stages of processes, systems, and machines are 
streamlined by AI-enabled tools capable of extracting information and developing 
ontologies[208][209][210]. By utilizing AI-based machine learning, cognitive abilities are harnessed 
to generate nearly optimal plans. Insights are drawn from the Q-learning algorithm to understand the 
prerequisites and consequences of various services within a virtual dynamic setting. In a specific 
approach detailed in the paper [211], which integrated Q-learning and digital twins, essential 
prerequisites for effective process planning were delineated. These prerequisites encompassed 
scalability, optimality, and the capability for parallel production. To enable the deployment of 
multiple digital twins within this dynamic environment, the authors utilized the specification of asset 
administration shells. In this virtual environment designed for reinforcement learning, intelligent 
digital twins were meticulously crafted, forming a virtual representation of a milling factory. These 
digital twins utilized meta-information and real-time data concerning the overall process, the product, 
the factory, and the available resources. Moreover, integrating digital twins with machine learning 
represents a pivotal technology, providing valuable insights into the integration of these devices and 
humans within metaverse environments. This interdisciplinary approach, spanning from aerospace to 
smart healthcare, is garnering significant attention from researchers. Specifically, the recognition of 
human behavior and emotions using digital twins is a focal point in these studies [212][213]. The 
authors from [214] endeavoured to compare diverse algorithms to create a comprehensive digital twin 
for human health and well-being in real-world and metaverse that incorporate Machine Learning 
(ML) algorithms and various psychological signals. D. Ramos et. [185] enhanced and examined 
human emotional responses concerning drone control. They introduced a cognitive digital twin using 
brain-computer interfaces, proficient in real-time classification-based ML of emotional states at both 
visual expression and cognitive levels. This system provides a dependable and secure approach for 
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validating drone commands using the mind. The digital replica evaluates if the operator is in a suitable 
emotional state for drone control, ensuring safe and efficient operation.

Leveraging AI-based machine learning to analyze data from digital twins enables predictive 
maintenance, real-time monitoring, and performance optimization. Artificial intelligence enhances 
the precision and speed of services by augmenting the vast amount of data obtained from digital twins. 
Machine learning algorithms are employed to automatically choose the best algorithm for a given 
task. In this regard, to enhance the rapid prediction and decision-making abilities of digital twins, A 
research team introduced an innovative approach to augment the utilization of sequential 
experimental designs rooted in statistical models and efficient designs to bolster the learning 
capacities of the traditional simulation in digital twin system. This involves constructing a response 
surface and layers using machine learning models. Specifically, they develop a response surface 
through machine learning techniques. This novel method of constructing the digital triplet efficiently 
portrays the digital twin's understanding of the physical system [215]. The reliability of this approach 
was demonstrated through the application of an ML-based Gaussian process regression model, 
enabling swift predictions and decision-making. However, the integration of machine learning and 
artificial intelligence to enhance predictive abilities and achieve a deeper level of understanding of 
digital twins has been explored and implemented in various research studies[216][50]. The utilisation 
of artificial intelligence for algorithm selection results in enhanced accuracy in data analysis and 
fusion [217]. In general, the utilisation of artificial intelligence within the context of digital twin 
technology has the potential to mitigate certain obstacles encountered to develop the intelligent level 
of DT and achieve perceptive and reasoning ability of digital triplet paradigm[114] [218][219], with 
the potential to enhance the efficiency and dependability of the system, while simultaneously 
mitigating expenses and augmenting safety measures within the industrial metaverse environment. 

D. Semantic technologies

The interconnection between the cognitive abilities of the digital twin and semantic technology is 
rooted in their complementary roles, which contribute to enhancing data representation, 
understanding, and utilization. Semantic technology, encompassing ontology and knowledge graphs, 
offers a structured framework that organizes and presents data in a meaningful manner. It enables the 
digital twin to capture and model intricate relationships, contextual information, and semantic 
nuances associated with the physical system it represents[57]. By integrating semantic technology 
into intelligent digital twins, they gain the ability to access, analyze, and interpret data in an intelligent 
and contextually aware manner. In the realm of cognitive automation, integrating processes at a 
semantic level enhances signal analysis and feature extraction through machine learning. This 
integration fosters seamless interoperability among ML-driven cyber systems and human interaction. 
Controllers and other field terminals have the ability to interpret these signals, propelling cognitive 
automation towards the realization of fully autonomous industrial systems[220][66][221][222]. The 
inclusion of semantic technology enriches the knowledge base of the digital twin by adding a semantic 
layer that imparts semantic meaning to the data, thereby facilitating more sophisticated analysis and 
reasoning[64]. This integration also enables effective data integration, interoperability, and 
knowledge sharing among different instances of digital twins and across heterogeneous systems. 
When considering data and information representation and processing, semantic technologies refer 
to the application of semantic web standards and technologies. Examples of these technologies 
include ontologies and knowledge graphs, which can be leveraged to endow digital twins with 
enhanced cognitive capabilities. To surmount the constraint of the potential efficacy of conventional 
digital twins that can augment their capabilities to engage in human communication through the 
utilization of a natural language, The authors of the paper [223] integrate artificial intelligence neural 
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networks with symbolic reasoning to enhance the understanding of intricate digital replica structures 
and facilitate interactions with three-dimensional digital replicas using natural language. The authors 
implement the proposed mechanism to the aircraft maintenance paradigm of the digital twin of the 
Boeing 737, whereby a compilation of aircraft manuals, three-dimensional models, and user inquiries 
was subjected to training and testing as a practical neuro-symbolic dataset. The perceptible, tangible 
and comprehensible interaction capabilities of the proposed digital twin-based artificial intelligence 
neuro-symbolic system have been demonstrated to possess a heightened level of heuristic capabilities 
for comprehending novel user appeals and contexts, as well as executing tasks with a notable degree 
of accuracy and a minimal occurrence of maintenance procedure failures.

Ontology serves as a formal representation of information, defining concepts and their relationships, 
while knowledge graphs adopt a graph-based approach to represent knowledge through nodes and 
edges. Both ontologies and knowledge graphs serve as forms of knowledge representation. The 
combination of the digital twin and semantic technology enables more comprehensive and insightful 
analysis, prediction, and optimization of the physical system. It supports advanced functionalities 
such as context-aware decision-making, anomaly detection, and knowledge-driven automation. In 
summary, the interconnection between intelligent digital twins and semantic technology empowers 
digital twins with enhanced data representation, understanding, and decision-making capabilities, 
enabling them to fully unleash their potential in improving performance, efficiency, and decision-
making across various domains.

E. Ontology engineering:

Ontology, a branch of philosophy, explores the nature of existence and the relationships between 
entities [66][224]. It facilitates the integration of diverse knowledge sources and data from various 
domains or systems. By capturing relevant domain knowledge and aligning it with the digital twin, 
ontology engineering enables a comprehensive understanding of the industrial system. It aids in 
consolidating and harmonizing information from different sources, resulting in a more holistic view 
of the system.

In the context of cognitive systems, the ontology of digitalized engineering processes entails the 
formalization of the inherent ontological aspects of physical entities in a manner that aligns with 
human intuitive understanding. This allows for automated reasoning and inference capabilities, 
enabling the digital twin to derive new knowledge and insights from existing information. By 
establishing logical rules and axioms, ontology engineering empowers the digital twin to perform 
intelligent reasoning and deduce new relationships or properties. This inference capability enhances 
the digital twin's maturity level by supporting advanced analytics, prediction, and decision-making. 
Essentially, ontology enables the digital twin to understand physical entities in a manner like human 
comprehension[60][64][225][226].

Integrating diverse knowledge poses a significant challenge when evolving CDT (Cognitive Digital 
Twin) models for intricate systems. Ontology promotes interoperability and integration among 
various components of the industrial system. By establishing shared understanding and standardizing 
terms, ontologies facilitate seamless communication and data exchange between subsystems and 
entities. This interoperability enhances the digital twin's maturity level by promoting the integration 
of data from diverse sources and facilitating a comprehensive system analysis[227].

To mitigate integration difficulties, a hierarchical methodology can be employed to consolidate 
application ontologies into a shared top-level ontology comprising a collection of comprehensive 
vocabularies. This approach ensures that different ontologies can work together, effectively share 
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knowledge, and guarantee interoperability. It supports the development of perceptive and cognitive 
capabilities in the digital twin, empowering it to comprehend all aspects of real-world phenomena, 
such as the behaviour, performance, or characteristics of a physical system or process.

F. Knowledge graph:

A knowledge graph functions as a structured representation of information, capturing details and the 
connections among entities in a specific domain. It adopts a graph-like data model, featuring nodes 
(representing entities) and edges (representing relationships) that link these nodes. This knowledge 
graph serves as the foundation for the cognitive and heuristic abilities of the digital twin, allowing it 
to understand, analyze, and make informed decisions. It includes explicit knowledge, clearly defined 
and represented, as well as implicit knowledge, deduced or inferred from the relationships and 
patterns within the graph[228][229]. Within a knowledge graph, each node typically corresponds to 
a distinct entity, concept, or object, while the edges denote the connections or associations between 
them. These connections encompass various types of relationships, such as hierarchical, semantic, 
causal, or other significant connections based on the domain of knowledge.

Designed to efficiently store and organize extensive and heterogeneous data blocks and knowledge, 
knowledge graphs streamline the process of querying and navigating through data. They allow the 
depiction of complex and interrelated information, enabling effective retrieval, analysis, and 
inference. Leveraging the capabilities of knowledge graphs, the cognitive digital twin can tap into a 
wide array of information from various origins, including sensor data, historical archives, domain-
specific databases, and external knowledge bases. This equips the digital twin with an improved 
understanding of the system, enabling it to make predictions, perform advanced analytics, and 
facilitate decision-making processes. To enhance the precision of decision-making in intricate 
manufacturing systems, it's imperative to amalgamate virtual and physical spaces, integrating 
simulated models from diverse domains. This integration allows for human-system interaction and 
enhances the interoperability of multi-domain models, overcoming obstacles through real-time 
dynamic data assimilation updates. In this context, Xia Wang and colleagues [230]proposed a multi-
domain model integration architecture based on Knowledge Graph (KG) for the digital twin of a 
welding workshop. This architecture includes elements like Semantic Integration, Models of 
Ontology, and Data connection and network. The fusion of this digital twin for welding system is 
facilitated through KG, comprising three principal human-computer interaction modules: knowledge 
management and transfer, integrating operator with machine for personalized services; inference 
retrieval, involving real-time data update and verification, input data and output data integration; and 
simulation optimization, incorporating algorithm development for process control and optimization. 

Moreover, knowledge graphs can integrate information from various sources, such as databases, 
documents, web pages, and external knowledge bases. This integration provides a comprehensive and 
interconnected perspective of the knowledge domain. In the realm of cognitive processes, AI-based 
knowledge graphs enhance perceptual dependencies to simulate human interactions within meta-class 
models and facilitate human interaction in home environments using digital twins. The authors of the 
paper [231] utilized an AI-based knowledge graph to analyse the behaviour of elderly individuals. 
This analysis was conducted by simulating interactions within a home environment using digital twins 
and the knowledge graph. In which, embedding intelligence based deep learning was employed to 
process streaming sensory data, offering insights into human interactions within meta class model of 
the surrounding physical space. Furthermore, the drive to enhance patient safety and optimize value-
based care has spurred the creation of a groundbreaking digital triplet framework[232][233]. This 
innovative framework seamlessly blends clinical and biomedical expertise, essentially imitating the 
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cognitive processes of physicians. It consists of nine intricately connected knowledge graphs, 
empowered by artificial intelligence and evidence-based data, covering the full spectrum of medical 
information, from symptoms to treatment options. The methodology involved the meticulous 
construction of a comprehensive knowledge graph, deployed within the Cloud AIoT AP. This 
achievement was made possible through the semantic integration of biomedical ontologies and the 
Neo4j property graph database [232].

Additionally, it facilitates the integration of ontologies, enabling a unified representation of domain 
knowledge and fostering interoperability among different components and subsystems of the digital 
twin. The structured framework of the knowledge graph facilitates the organization and connection 
of relevant information, promoting a comprehensive and interconnected knowledge base for the 
cognitive digital twin to operate effectively. Consequently, it plays a crucial role in enhancing 
information retrieval, knowledge discovery, and the development of intelligent systems capable of 
comprehending and reasoning with intricate data and relationships.

G. Brain Computer interface:

BCI (Brain-Computer Interface) stands as a pivotal technology that merges computer science and 
neuroscience within the broader realms of psychology and biomedical engineering. It integrates 
human cognitive processes with machine intelligence. By seamlessly merging the human brain with 
machines, it transcends current modes of interaction between humans and machines, expanding the 
boundaries of human intelligence and interactions within physical spaces. This fusion liberates 
humans from the limitations posed by both physical entities and digital constraints. BCI technologies 
offer the potential for diverse and innovative applications within the Metaverse. These applications 
include monitoring human cognitive states, engaging interactions and controlling digital avatars in 
cyber space[234][235][236]. 

Brain-Computer Interface (BCI) harnesses EEG signals generated by human perception and intention. 
Coping with extensive disordered data, especially in the context of irregular EEG recordings, 
introduces uncertainty into humans' understanding of objective realities. This uncertainty profoundly 
influences the concepts developed within the human brain and, consequently, affects cognitive 
abilities related to decision-making about external phenomena and cognitive workload for optimizing 
human performance[235][67].  In the realm of digital transformation, and to delve into the extensive 
dissemination of digital information. EEG analysis grounded in machine learning and its diverse 
applications. Within the psychological impact of digital transformation, cognitive abilities such as 
memory and planning undergo externalization, resulting in the transfer of human decision-making 
processes to digital functions. In which, integrating Brain-Computer Interface (BCI) technology into 
the human body, replicating human EEG data becomes feasible, thereby guiding decision-making 
processes. Human digital twins, initially a concept rooted in engineering for digitally replicating 
machines, are now extended to individual human beings. This extension involves the creation of a 
digital simulation as a model of a person's functions. This digital twin allows for the monitoring of 
human’s behaviour, facilitating corrections, improvements, or optimizations as 
necessary[237][238][185].

Building upon this premise, researchers have developed the digital twin paradigm for cognitive 
computing-based BCI. This approach involves merging multimodal neural imaging data to simulate 
large-scale brain dynamics accurately [239][240]. It aims to unveil brain functional mechanisms, 
shedding light on how the brain operates and fostering brain-like intelligence. Utilizing EEG signal 
analysis within the digital twin cognitive computing framework facilitates integration between human 
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brain-like intelligence, computational neuroscience technologies, and artificial intelligence 
algorithms. This integration allows for the precise and effective analysis of complex and uncertain 
EEG data. A recent exploration focuses on the potential of creating a potent computing platform 
capable of accurately emulating communication-intensive and memory-access-intensive systems akin 
to brain cognitive functions. Researchers at Fudan University in Shanghai[241], China, delved into 
the realm of the digital twin brain, an advanced computing platform adept at simulating human-brain-
scaled spiking neuronal networks with complex biological architectures and vast scale of 
heterogeneous variables. Unlike traditional simulations, this approach involves a statistical inference 
of large-scale neuronal networks using authentic brain data. This groundbreaking technology enables 
interactions with real-world environments, proving invaluable for cognitive and medical tasks, brain-
machine interface experiments, and the study of human neurobehavioral mechanisms. Furthermore, 
the DTB facilitates digital twin experiments related to brain intelligence, pioneering a methodology 
for reverse engineering that enhances our understanding of systems analogous to brain-inspired 
intelligence. Notably, this innovative approach incorporates data assimilation, allowing for the 
investigation of brain cognitive functions through reverse engineering methods. The DTB efficiently 
integrates these complexities, highlighting its emphasis on communication and memory-intensive 
processes rather than computational intensity[241]. In this regard, the author of the paper [178] 
introduced an advanced digital twin (DT) cognitive computing platform tailored for optimizing EEG 
interface technology and signal classification. This innovative platform was specifically developed 
to improve the accuracy of the classification algorithm used for feature extraction, employing transfer 
learning based on tangent space selection (TL-TSS)[178]. However, the swift progress in brain-like 
intelligence and neuromorphic computing has encountered challenges due to our limited grasp of 
brain mechanisms and computational techniques. Current brain-like models often yield imprecise 
results. In response to these challenges, Y. Li et al. [242] proposed “DTBVis”, a visual analytics 
system meticulously designed for DTB comparison tasks. “DTBVis” enables experts to delve into 
the DTB and the human brain at varying levels and granularities. This innovative system incorporates 
automatic similarity recommendations and high-dimensional exploration, assisting experts in 
comprehending the similarities and disparities between DTB and the human brain, and empowers 
experts to refine their models and enhance functionality effectively. To address this issue, Lu et 
al.[243] introduced the digital twin brain (DTB), an artificial brain mirroring the scale and 
functionality of a human brain. This model simulates extensive neuronal networks and replicates 
various cognitive abilities akin to the human brain. Understanding the DTB's functionality 
necessitates comparing it to the human brain, a task of paramount importance. However, the 
visualization aspect of DTB remains inadequately explored. This intricacy, coupled with diverse 
types of comparison tasks, demands a specialized approach.

Through the strategic integration of cognitive computing with semi-supervised learning, this 
approach notably enhanced the recognition and analysis of EEG data. The advancements in this area 
create exciting opportunities for a wide range of applications in predictive cognitive computing. By 
combining EEG signals with analysed data from various sources in both physical and digital human 
spaces, intelligent prediction-based digital twins enhance the translation of these signals into 
manageable external commands. This innovative approach overcomes the limitations of traditional 
communication technology, enabling effortless control over external physical entities and enriching 
cyberspace with a reflected reality of objects, people, and digital entities[244][245][246]. This 
advancement signifies a pivotal shift in the digital twin framework within manufacturing and product 
design stages. It moves beyond the constraints of the traditional digital twin, which primarily centres 
on structural analysis derived from digital modelling. Instead, it strives towards a multisource digital 
twin paradigm that incorporates high-level interactions among humans, machines, and the digital 
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environment [67]. Moreover, this innovative approach encompasses emotional responses and 
cognitive abilities, bridging the gap between data-driven analyses and human experiences. For 
instance, Feng et al. [247] introduced an intelligent psycho-physiological analysis method driven by 
digital twin technology to assess the performance and design of high-speed elevators. This approach 
systematically integrates human factors into the evaluation process, establishing links between EEG 
data and performance levels. The method combines various human factors, including 
electroencephalogram (EEG) data, physical data, and emotional feedback such as psychological 
requirements, as well as subjective and objective assessment indicators. This integration enables a 
novel machine learning-based EEG analysis. The study explores the feasibility and effectiveness of 
different implicit psychological states, incorporating EEG data into fuzzy comprehensive evaluation 
(FCE) and machine learning techniques for intelligent psycho-physiological analysis. 

VII. Digital triplet for enhancing human-machine integration:

To respond to research questions three and four, we will discuss the application domain based on 
human-machine integration and industry 5.0 context.

Digital Twin in Industry 5.0:

Industry 4.0 represents the era characterized by automation and digitalization, while Industry 5.0 
focuses on the collaboration between human intelligence and cognitive computing, fostering a 
harmonious partnership between humans and machines. This new vision of Industry 5.0 emerges 
from the integration of digital and automation technologies with humans within the industrial 
landscape. As an era of augmentation, Industry 5.0 aims to support human tasks within intelligent 
manufacturing systems by harnessing intelligent activities that bolster the resilience of human 
knowledge and facilitate the integration of humans with machines in cyberspace[248][249]. The 
fusion of Industry 4.0 into Industry 5.0 paradigms has been strengthened through the amalgamation 
of augmented reality (AR), virtual reality (VR), and extended reality (XR) technologies with wearable 
sensors[113][67]. This integration, especially in incorporating operators into the human-metaverse 
interface, plays a crucial and central role in Industry 5.0[250][251]. in this regards, intelligent digital 
twins within the context of the internet of digital twins (IoDT) and the intersection of Industry 4.0 
and Industry 5.0 paradigms was developed to serves as a reference model for the training factory in 
Industry 4.0, the proposed model aligns with Industry 4.0 standards and integrates enriching elements 
from Industry 5.0 objectives. It demonstrates how IDTs can be realized, possessing the characteristics 
of multi-agent systems (MAS) [252][250][253]. The authors of the paper [254] emphasized 
bidirectional communication between actual systems and their digital counterparts. This 
communication is intended for pilot courses and the creation of educational materials. They 
developed demonstration applications enabling the control of both real and virtual systems through 
seamless two-way communication within the realm of digital twins. These digital twins are designed 
for Industry 4.0 education and the development of educational resources. In one instance[255], the 
utilization of digital twin technology in manufacturing is explored. The paper discusses employing 
“AVEVA” software to construct a virtual representation of an actual system in production line. It 
underscores the critical nature of precise information about the controlled system. Furthermore, a 
methodology for creating cost-effective augmented reality (AR) software is presented in the article 
[256], this method involves data creation, integration, cross-platform development, and digital asset 
incorporation, and the Unity game engine is employed to integrate simulations into AR software, 
producing educational digital content [256]. Additionally, the integration of digital twin technology 
and virtual reality (VR) in Industry 4.0 settings proves effective in training operators, particularly 
elder workers who find it challenging to adapt to new industrial paradigms [257].
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Digital twins, powered by smart technology, capitalizing on the advancements in digitization and 
automation technology witnessed in the Industry 4.0 era. Leveraging the Industrial Internet of Things, 
humans now have a heightened perception of Cyber-Physical Production Systems (CPPS) through an 
array of sensing devices and technologies. The wealth of data generated by these devices enables the 
emulation of the system and amplifies the cognitive capabilities required to process, comprehend, and 
analyse the virtual representation of the system. Whereas to evoke the intelligent integration of 
humans with machines in cyberspace, The paradigm of the digital triplet emphasizes the harmonious 
integration and collaboration among humans, machines, and AI. Its primary objective is to establish 
seamless interaction and synergy between these entities, thereby enhancing productivity, decision-
making, and problem-solving capabilities. However, achieving a superorganism space of this nature 
requires significant technological advancements and the development of sophisticated interfaces and 
communication channels. To drive the evolution of this space, substantial progress is needed in 
enhancing the cognitive abilities of both humans and machines. This entails advancing AI 
capabilities, including machine learning, semantic-based AI technologies, and advanced reasoning. 
Additionally, it involves augmenting human cognition through the utilization of brain-computer 
interfaces (BCIs) and cognitive enhancements. BCIs play a crucial role in establishing a direct 
communication link between the human brain and machines, enabling the transfer of commands, 
intentions, or thoughts without relying on traditional input or output interfaces. By focusing on 
refining BCI techniques and improving signal detection and classification algorithms, new avenues 
for seamless integration between humans and machines can be explored. This integration holds the 
potential to enhance the accuracy and reliability of brain-machine communication. When BCIs are 
integrated with digital twin technology, it further enhances the integration between humans and 
machines, enabling more natural, adaptive, and immersive interactions. This integration opens up 
possibilities for intuitive control, real-time feedback, and personalized experiences, ultimately 
leading to improved system performance, user satisfaction, and safety.

By incorporating BCIs into the Digital Triplet paradigm, numerous advantages can be attained:

1. Enhanced Interaction: BCIs offer a more intuitive and direct means of human-machine 
interaction, circumventing conventional input devices like keyboards or joysticks. This 
facilitates a seamless and natural control over the digital twin, allowing users to manipulate 
and influence the virtual representation through their thoughts or intentions.

2. Real-time Feedback: BCIs have the capability to provide users with real-time feedback by 
monitoring their brain activity and analyzing cognitive states, attention levels, or emotional 
responses. This feedback can be utilized to adapt and optimize the behavior of the digital twin, 
ensuring it aligns with the user's intentions and preferences.

3. Adaptive Systems: BCIs enable Digital Triplet systems to dynamically adjust their behavior 
based on the user's cognitive states or physiological responses. For instance, if a user displays 
signs of fatigue or distraction, the digital twin can autonomously modify its operations or 
provide additional support to maintain system performance and user safety.

4. Training and Skill Development: BCIs integrated with digital twins serve as powerful tools 
for training and skill enhancement. Users can engage in practice and improve their abilities 
using advanced immersive interfaces, such as augmented reality (AR) and virtual reality (VR), 
while receiving real-time feedback from the digital twin system. This is particularly valuable 
in complex and high-risk domains like surgery, aviation, or hazardous industrial operations.

Overall, the integration of BCIs into the Digital Triplet framework unlocks significant potential for 
enriched interaction, real-time feedback, adaptability, and skill development, enhancing the overall 
performance and user experience. Promoting effective human-machine integration, engineers strive 
to create Knowledge-based systems that incorporate human expertise, domain knowledge, and 
artificial intelligence into the digital triplet. These systems facilitate the seamless transfer of 
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knowledge and experience from human operators to machines. By capturing and formalizing human 
knowledge, they enable machines to emulate human-like cognitive abilities and augment their 
decision-making and problem-solving capabilities. The development of advanced immersive 
interfaces, such as augmented reality (AR) and virtual reality (VR), plays a crucial role in enhancing 
human-machine integration within the digital triplet. These interfaces offer intuitive visualizations, 
real-time overlay of information, and immersive experiences, thereby enabling humans to interact 
with digital twins and machines in a more effective and intuitive manner.

VIII. Discussion, Limitation, and Knowledge Gap:

In addressing the knowledge gap concerning human integration in the real world's cyberspace, the 
future digital twin paradigm needs to advance beyond indirect human intervention in the physical 
world. It should amplify human interaction through a cognitive digital twin. Currently, the transition 
from tangible human presence to the digital realm in cyberspace has been limited. However, efforts 
are underway to leverage emotional, visual, and oral responses to develop the reasoning and 
predictive capabilities of digital twins. These advancements should aim to enhance real-time human 
interactions with both physical and virtual systems by leveraging the power of embedding 
intelligence-based machine learning algorithms and cognitive computing systems at the perceptive 
level of digital triplet[122], [124], [129], [130], [231]. Furthermore, the progression in the domination 
level of digital twin technology at a perceptive level must guarantee the shift from immediate 
unidirectional interaction, where humans act as mere monitors, towards a bidirectional integration in 
both digital and physical spaces. Researchers should focus on this transformation, not just by utilizing 
wearable and portable devices to enhance brain-based control in Cyber-Physical Systems (CPS), but 
also by developing cognitive-based machine learning algorithms for extensive knowledge 
systemizing, data assimilation, and classification in the maturity level of the digital triplet [51], [67], 
[177], [238], [244], [245], [258], [259].

Integrating humans into intelligent applications presents both challenges and opportunities. The 
challenges arise from the necessity to redefine traditional roles in societies and industries, involving 
humans directly in the digital realm and encapsulating human information within cyberspace. Unlike 
merely replacing or enhancing iterative tasks, the integration of the space of human intellectual 
activities into physical and cyberspace creates innovative connections between humans and machines.

This integration must involve not only sensor data collected by IoT but also the data of human 
interaction with physical space, merging the physical and digital dimensions. Human knowledge, 
cognitive abilities, and emotional data must be seamlessly integrated within the digital maturity of 
the intelligent digital twin. This integration results in outputs of intelligent activities that amalgamate 
the digital triplet in cyberspace[124], [193], [197]. To optimize this interaction, accurately 
representing humans within the digital space necessitates in-depth research and profound experiments 
for merging AI-based cognitive computing with internal data, including knowledge, heuristics, and 
cognitive abilities to achieve a brain intelligence-inspired system within the volition level of the 
digital triplet.  The subsequent vital step involves developing an interoperable digital twin for humans, 
machines, and surrounding spaces, enabling the complete realization of this potential[204], [242], 
[260]. The research challenges explore the possibility of creating a brain intelligence-inspired system 
at the level of an intelligent digital triplet. This system would provoke future research to allow humans 
to transfer their knowledge and creativity directly to machines through human-machine 
telepathy[261][262], facilitated by a digital twin brain system[242]. Achieving this level of 
integration poses a significant challenge in practically integrating human minds and senses into the 
metaverse environment alongside other intelligent systems. Overcoming this challenge would bridge 
knowledge gaps, enabling seamless communication, understanding, and emulation of human 
intelligence in the cyberspace, utilizing both digital and physical spaces.
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The limitation of utilising cognitive computing in the digital triplet is the current shortfall in achieving 
a human-like intelligence system, Current advancements face challenges such as

1. Preliminary Nature of AI Systems: Current industrial AI systems are in their early stages, 
representing preliminary applications. Integrating machine learning and artificial intelligence 
to enhance predictive abilities and deepen the understanding of digital twins is crucial. This 
involves transferring digital twins from traditional simulations to achieve a perceptive digital 
triplet level, integrating virtual and physical spaces, and enhancing multi-domain model 
interoperability[230]. Overcoming challenges, especially related to continuous access to 
significant datasets, is essential for sustained discovery of explicit, tacit, and latent knowledge 
to improve machine intelligence[124]. Rising human expectations regarding machine 
capabilities pose a significant challenge in overcoming data limitations for future AI 
development.

2. Limited Focus on Human-Centered Intrinsic Information: Applications utilizing neural 
networks and deep learning in sectors like Smart City, Smart Healthcare, Smart Home, and 
Smart Transportation often lack a focus on human-centered intrinsic information, such as 
emotions and mentality. Researchers need to refine existing methods and develop a 
comprehensive digital twin incorporating AI-based Machine Learning algorithms. This 
includes integrating psychological and human interactions with physical space signals and 
sensor data collected by IoT[67]. It is crucial to gain valuable insights into the integration of 
these devices and humans within metaverse environments, specifically focusing on 
recognizing human behavior and emotions.

3. Dependency on Continuous Big Data Provisioning: The challenge in advancing machine 
intelligence lies in the continuous access to substantial datasets. As human expectations of 
machine capabilities increase, overcoming data limitations becomes crucial for future AI 
development. Constructing an intelligent sensing system for AIoT or advanced CIoT that 
mimics human cognitive mechanisms is essential[191][155][193]. This system would 
efficiently connect diverse data types across time and space by learning, predicting, 
memorizing and reasoning, addressing the need for sustainable knowledge discovery in 
enhancing machine intelligence.

4. leverage the abilities of intelligent digital twins and achieve human-like intelligence 
system-based human-machine integration: The challenges in achieving human-like 
intelligence in intelligent digital twins necessitate focused research and development. Efforts 
should concentrate on understanding human-centric intrinsic information, enhancing AI 
sophistication, and ensuring access to diverse datasets. Interdisciplinary collaboration 
involving experts in cognitive computing, artificial intelligence, data science, and industrial 
engineering is crucial. Integrating digital twins seamlessly with human capabilities and 
improving their cognitive abilities, especially spatial cognition, is vital. Future research should 
explore spatial computing and digital contact tracing technologies to refine the maturity level 
of digital triplets, addressing knowledge gaps in human-machine integration[130], [197], 
[263], [264].

5. Enhancing the domination level of the digital triplet: Researchers must focus on enhancing 
the digital triplet's capabilities. This involves utilizing wearable devices for brain-based 
control in Cyber-Physical Systems (CPS) and developing cognitive-based machine learning 
algorithms with extensive neural networks. The aim should attract attention to develop a 
powerful computing platform that accurately replicates communication-intensive and 
memory-access-intensive systems resembling brain cognitive functions. Additionally, 
attention should be directed towards developing digital twin-based model predictive control 
(MPC) to dominate entire systems, processes, and human interactions beyond the capabilities 
of conventional feedback controllers[177][245][244].
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6. BCI-enabled volition level: In the realm of BCI-enabled digital triplets, there is a need for 
extensive research to develop a platform with complex neural networks that mimic diverse 
cognitive abilities of the human brain. This digital platform should integrate data from 
machines and the human brain. To achieve effective communication in BCI-enabled human 
integration in the cyber world, researchers should delve into the semantic meaning of brain 
signals, especially focusing on the semantic reasoning of EEG signals[234], [265], [266]. This 
understanding is crucial for designing efficient semantic communication frameworks, 
ensuring meaningful transmission of information between humans or communities within 
digital space and cyberspace of the industrial metaverse[108].

7. BCI-enabled maturity level: In the BCI-enabled maturity level of digital triplets, a key 
challenge is real-time synchronization and communication between humans and their digital 
counterparts, especially human avatars. This challenge comprises two primary 
communication perspectives:

 Additional focus on further research is needed to guarantee strong and dependable 
connections for users equipped with BCI and VR/AR wearable devices. Achieving 
this requires low latency and error-free transmission of brain signals over network 
systems[67].

 Communication between human avatars and other avatars or digital twins in 
cyberspace should focus on real-time interactions within the Metaverse environment. 
Digital avatars must offer valuable suggestions to humans based on analyzed brain 
signals, thereby enhancing the integration of human presence within physical and 
digital spaces[185].

IX. Conclusion:

This paper delved into an extensive and systematic analysis of the recent trends and flourishing of 
digital twins from traditional concept and application to a perceptive digital triplet that utilises the 
intelligent activities world to resonate the maturity, domination, and volition level of digital twins 
and augment cognitive and perceptive capabilities by leveraging human intuition, knowledge and 
ingenuity and immersing our brain in the cyberspace. From the findings, the digital twin is evolved 
over the last decade into ultra-realistic digital models with real-time data-driven digital artefacts that 
integrate the intelligent activities world with multiphysics, multidomain, and multiscale simulations. 
The intelligent activities world has flourished its perceptive and heuristics capabilities by utilising AI 
in data analytics for retrieving heterogeneous data from virtual entities with semantic artificial 
intelligence technologies: meta-heuristic algorithms, Ontology, semantic web, knowledge discovery, 
knowledge graph, and distilling knowledge and awareness by aggregating AI and machine learning 
with human’s insight and perceptual knowledge. In which intelligent activities world will elevate 
cyberspace to have its capacities for learning, cognitive skills, and knowledge transfer, and will 
promote the cognitive augmentation of the human brain through the machine by leveraging the 
enabling technologies in brain-machine/computer interface, augmented and extended reality for a 
better symbiosis between a human and a machine towards the industrial metaverse, industry 5.0. 
Despite that, the digital triplet concept doesn’t seduce researchers to be the substitutional paradigm 
of the digital twin that encompasses the capabilities of perceptive and cognitive skills and augmented 
human (human brain, computer, and cyberspace) functionality of human-machine integration. And 
derived from the following keynotes of this extensive review and the results published in the works 
of literature, the digital triplet paradigm can be elucidated and considered the inevitable implication 
of amalgamation of human knowledge into the intelligent activities world with the digital twin: 
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 Most researchers have assimilated cognitive capabilities into the perceptive level of the digital 
twin as a combination of human knowledge and intelligent activities world into cyberspace.

 It is really triplet in its organisational knowledge transfer, it promotes the synergistic 
intersection of collective intelligence framework of tri constituents among human and 
intelligent activities world as a space of expertise/awareness, knowledge/information/data as 
a data-driven model, and the digital model composed of software and hardware.

 In the context of intelligent manufacturing in Industry 5.0, the contribution of the digital twin 
to the flourishing of the industry 4.0 era towards industry 5.0 will reflect the role of artificial 
intelligence and machine learning to amalgamate the knowledge and creativity of human 
factors for better integrations of humans, physical world and cyberspace towards Human, 
Cyber, and Physical system HCPs. 

 Digital triplet with its framework encompasses the tri-layer of physical space, digital space, 
and cyberspace. In which the intelligent activity world in cyberspace will combine the 
interoperability among digital twins in digital space and physical assets in the physical space

 It is a triplet at its hierarchal level with maturity, domination, and volition levels. 
 The digital triplet paradigm will entail the contribution of the three prominent enablers 

(cognitive computing based semantic AI and machine learning, brain-computer/machine 
interface, and augmented/extended reality) of the intelligent activities world. 

In the end, the contribution and framework of this review will evoke the researchers to have elevated 
implications of future research related to developing the digital triplet for sustaining the symbiosis 
between digital twins, humans, and the intelligent activity world and fading the separation among the 
physical, digital, and cyberspace as an assemblage of cyber-biont community through the industrial 
metaverse, industry 5.0.
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