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 Abstract 

Recent human effort has been directed at expanding pervasive smart environments. For this, ubiquitous computing 

technology is introduced to provide all users with any service, anytime, anywhere, with any device, and under any 

network. However, high cost, long time consumption, extensive effort, and in some cases irrevocability are the main 

challenges and difficulties for developing ubiquitous systems. Therefore, one solution is to initially simulate, analyze, 

and validate practices prior to deploying sensing and computational devices in the real world. Simulation, as a 

performance evaluation technique, has attracted attentions due to its speed, cost-effectiveness, repeatability, scalability, 

flexibility, and ease of implementation. Moreover, emulation, as a hybrid method, not only offers most simulation 

advantages, but also benefits from tight control of implementation, as well as a certain degree of realistic results. Both 

simulators and emulators are significant tools for enhancing the understanding of ubiquitous sensor networks (USNs) 

through testing and analyzing several scenarios prior to actual sensor placements. In this regard, this paper surveys 130 

simulation and emulation environments and frameworks, which were originally designed and adapted for USN. Of these 

130, the 22 that have been widely used, regularly updated, and well supported by their developers are compared based on 

multifarious criteria. Finally, several studies that had favorably compared the performance of simulators and/or emulators 

are examined. We believe the present research findings will be helpful for students and researchers to pick an appropriate 

simulator/emulator, and for software developers and those who are keen on producing their own environment. 
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Introduction 

Information technology (IT) has been penetrating into our lives to become highly associated and interwoven with 

our daily activities. Computers, as user interfaces, enable individuals to connect to the cyber space and facilitate persons-

to-persons and persons-to-machines interactions. Due to the rapid advancement and development in IT, cyber space has 

begun to resemble the real (physical) space more and more (Figure 1a), because cyber space is becoming a part of our 

real space (e.g., augmented reality applications). The confluence of cyber space and real space has generated a new space 

that has been termed ubiquitous space (Figure 1b). In such a smart space, which is a new generation of IT, computers are 

fragmented and deployed into the environment and computation is made available everywhere and anywhere through 

ubiquitous computing  [1]. The word ubiquitous is defined as “existing or being everywhere at the same time” [2]. The 

term ubiquitous computing (or ubicomp in short) was firstly introduced by Mark Weiser [3, 4], who believed that in the 

near future humans will not interact with a single computer at a time. Instead, they will encounter invisible networked 

computers that are embedded in objects and are deployed in the environment. In other words, ubicomp is seen as a 

technology by which sensors interact and control the environments in an invisible manner without humans intervention 

[5]. All the elements are connected smartly. Computing fades into the background, rather than dominating the 

foreground. Ultimately, this calm technology will make any service accessible for all users, anytime, anywhere, with any 

device, and under any network. Ubicomp technology is becoming pervasive across diverse fields ranging from the 

military to tourism and medicine to sport. 
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Figure 1. Information Technology (IT) spaces: (a) convergence of cyber and real spaces, (b) 

ubiquitous spaces produced by the confluence of cyber and real spaces. 

In computer science, a network is a mixture of communication protocols and link technologies, traffic flows, and 

routing algorithms [6]. Networks can be in wired and wireless forms. Compared with wireless networks, wired networks 

have been used for several years and can transfer data more safely and securely. However, wires are one of the 

challenges of such networks. It is arduous to handle interwoven wires and power cords while preserving the network 

flexibility. Therefore, the developments of wired networks remains challenging due to wiring and rewiring bottlenecks 

[7]. With the rapid development of wireless technology, wireless networks are becoming widespread. Compared with 

traditional wireless networks, wireless sensor networks (WSNs) have more throughputs and productivity [8, 9].  

The development of a ubiquitous system necessitates an infrastructure capable of supporting interrelated processing 

devices. Specifically, this infrastructure must be able to handle tens to thousands of static and mobile devices (known as 

sensor nodes or motes) where communication is performed by means of wireless transmission. Sensor nodes, with 

respect to their capability, are responsible for monitoring and collecting parameters [10], then processing the data locally 

or transmitting the data to one or more routers at ultra-high speed through ubiquitous sensor networks (USNs) [11, 12]. 

These nodes are physically tiny, normally cheap, and operationally low-power devices built around a microcontroller and 

equipped with one or more sensors, memory, radio-frequency transceiver, and a power source [13, 14]. They are 

deployed either stationary or movable but work unobtrusively [15]. 

WSN and USN differ noticeably. In WSN, sensors are spatially distributed and responsible for monitoring 

environmental conditions (e.g., temperature, noise, and motion), then transferring these data to central stations in wireless 

manner. USNs are the convergence of advanced invisible electronic devices, the Internet, and wireless networks, which 

not only inherit WSN features but also impose smartness into the system (e.g., the temperature separately adjusts based 

on individuals’ contexts). Hence, WSN can be considered an infrastructure of ubiquitous computing [16]. Although USN 

has a broader scope, both WSN and USN may have their own meaning in different countries and applications. In this 

paper, these terms convey the same meaning and may be used interchangeably.  

USN is the core of an ubicomp system. To have reliable, secure, and durable USN communications, a large variety 

of protocols is introduced in order to make use of the resources efficiently, routing the sensor packets accurately, and 

preserving the wireless communications effectively [17, 18]. Also, while designing USN communications, the following 

factors should be considered: topology of system (i.e., the arrangement of the various elements (nodes, links, etc.) of 

a computer network), energy consumption effects, scheduling strategies (i.e., work specified by some means is assigned 

to resources that complete the work), fault tolerance (i.e., continue working to a level of satisfaction in the presence of 

faults), data synchronization (i.e., keeping multiple copies of a dataset in coherence with one another), process 

synchronization (i.e., multiple processes are to join up at a certain point, in order to reach an agreement or commit to a 

certain sequence of action), communication range (i.e., the distance by which nodes can transfer data effectively), and 

coordination protocols [19]. Furthermore, given the constraints in sensor networks, such as limited resources (i.e., 

memory, power, quality of service, and processing ability), decentralized communications (i.e., allocation of resources, 

both hardware and software, to each individual node), multi-tasking (i.e., simultaneous execution of multiple 

applications), fault tolerance results [19], re-programmability, and security, the correlation of algorithms and protocols 

for these networks initially needs to be tested and evaluated. Therefore, saving time, cost, and effort requires the 

development of practices to be initially simulated, analyzed, and validated prior to deploying sensing and computational 

devices in the real world.  

In this context, this research aims to introduce and compare the available simulators and emulators environments 

and frameworks for USN applications. The rest of this paper is organized as follows. In Section 2, we discuss the 

performance evaluation techniques related to USN, as well as their corresponding merits and demerits. Section 3 

Cyber 

space 

Ubiquitous space 

Cyber 

space 
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describes and compares the USN operating systems (OSs). Related studies in reviewing USN simulation and emulation 

environments are comprehensively presented in Section 4. In Section 5, an overview and classification of 130 USN 

simulators’ and emulators’ environments and frameworks are provided. Section 6 compares several USN simulators and 

emulators based on multifarious criteria and follows with pros and cons of the selected ones in tabular format. In Section 

7, performance results and conclusions of applying simulators and emulators from previous studies are addressed. 

Potential future works and open issues related to USN simulation and/or emulation are discussed in Section 8. Finally, 

we summarize and conclude with final remarks in Section 9. All the acronyms and abbreviations used in this paper along 

with their definitions are provided in Table 1. 

Table 1 List of acronyms/abbreviations and corresponding definitions. 

Acronym/Abbre

viation 

Definition 

IT Information Technology 

WSN Wireless Sensor Network 

USN Ubiquitous Sensor Network 

OS Operating System 

ABM Agent-based Model 

GUI Graphical User Interface 

GNU GPL Gnu’s Not UNIX General Public 

License 

BSD Berkeley Software Distribution 

CRSN Cognitive Radio Sensor Network 

API Application Programming 

Interface 

IoT Internet of Things 

CS Cyber Space 

RS Real Space 

a Academic 
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r Research 

c Commercial 

G Generic Network Simulator 

C Code Level Simulator 

F Firmware Level Simulator 

A Algorithm Level Simulator 

P Packet Level Simulator  

I Instruction Level Simulator 

USN performance evaluation techniques 

Several techniques have been introduced for performance evaluation of protocols and algorithms in USN, including 

analytical modeling, simulation, emulation, testbed, and real-world experimentation [20]. Analytical models are a set of 

equations that represent the performance of a system. Although analytical models simplify the modeling procedure, they 

cannot accurately represent the inherent complexity of sensor networks [21]. Simulation has been cited as the most 

frequent and effective method for designing and developing network protocols and algorithms [20]. By using simulators 

various scenarios of the real environment can be modeled. Also, they provide the possibility of testing and debugging 

protocols at any stage of design. Emulation, as a hybrid method, is a combination of hardware and software components 

accompanying simulation possibilities for network modeling [10]. Emulators use firmware as well as hardware to 

execute simulations in laboratory conditions. Since emulators can be utilized in real environments, they potentially 

perform precisely in comparison to simulators [7]. Physical testbeds are frameworks for real implementation of protocols 

and algorithms. Testbeds not only allow remote configuration, running, and monitoring experiments but also support 

model, protocol, and algorithm evaluation. They have bridged the gap between simulation and deployment of real 

devices [10]. A comprehensive survey of current testbeds can be found in [22-27]. Real-world experimentation allows 

feasible and actual sensor deployment practices. All the functions are set in the reality and no incorrect or inaccurate 

presumption is made. This is the ultimate stage of the validation of protocols and algorithms [7]. Each of the 

aforementioned techniques has its own pros and cons, which are summarized in Table 2.  

Table 2. Pros and cons of USN performance evaluation techniques. 

Perform

ance 

evaluation 

techniques 

Pros Cons 

Analyti

cal model 

-Low cost 

-Provides quick insight 

-Provides initial evaluation 

-Deduced results are not precise in terms of consumed energy, 

memory, processing power, sheer number, unattended operation, and 

harsh environments of sensor nodes 
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Simulat

or 

-Fast 

-Low cost 

-Ease of implementation 

-Repeatable 

-Supports tight controlling 

-Scalable (supports large number of nodes) 

-Supports dynamic and flexible modeling 

-Supports heterogeneous operating systems and 

programming languages 

-Software may contain oversimplified protocols  

-May not generate accurate result as real implementation 

-Considers high degree of abstraction 

Emulat

or 

-Repeatable 

-Supports tight controlling 

-Provides certain degree of realism 

-Cost per tested node is high 

-Technical scalability bounds 

-Low speed 

-Limited scalability 

-Platform dependence 

Testbed 

-Demonstrate applicability of protocols in real 

environments 

-Allows to validate prototypes 

-Efficient in incrementing potentially long-lived 

experiments 

-Bridges the gap between simulation and deployment of 

real devices 

-Complex 

-Costly 

-Time consuming 

-Limited scalability 

-Difficult to repeat experiments  

-Not replicable for hazardous environments 

Real 

experiment 

-Accurate and reliable results 

-No hypotheses and abstraction of reality 

 

-High cost of software, hardware, and manpower 

-Difficult to repeat experiments 

-Resource constraints  

-Limited scalability 

-Limited tight control 

USN performance evaluation techniques range from purely software-based to solely hardware-based techniques. To 

clarify the nature of these techniques, Figure 2 depicts the contribution of each in terms of the proportion of virtual and 

real spaces which they use. In this regard, analytical models and simulators only perform in virtual space, and no physical 

deployment is implemented in real space. For emulators and testbeds this sounds different. These techniques apportion 

their throughput to cyber and real spaces. In the former, cyber space has a much great portion, while in the latter the 

majority of the implementation is dedicated to real space. Real deployment, as the latest evaluation technique, fully 

concentrates on real space. All the implementation and manipulation in this technique go through physical deployment 

[28]. Considering all the positive and negative aspects of USN performance evaluation techniques, this research aims to 
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investigate simulation and emulation concepts and environments. This will not only enable us to assess the nature, 

ability, and productivity of USN simulators and emulators but also allows evaluating techniques that are performed 

purely in cyber space and those in a mixture of cyber and real spaces.  

 

Figure 2. The proportion of performance evaluation techniques from cyber space (CS) to real 

space (RS). 

The difference between agent-based modeling and ubiquitous computing can be contentious. On the one hand, 

agent-based models (ABMs) have been used diversely to study the complex interaction of entities of the real world [29]. 

Analytical models and simulators are the prominent performance evaluation techniques used by ABMs. In other words, 

ABMs are summarized in algorithms within simulators through virtual space. By achieving a certain degree of 

confidence from agent-based modeling, physical practices may be implemented into real space. ABMs, however, suffer 

from the deficiencies of analytical models and simulators such as over simplification and high level of abstraction, to 

name a few. On the other hand, ubiquitous computing takes place everywhere and is not limited to boundaries. In 

contrast to ABMs, ubiquitous computing is accomplished by real deployment of pervasive computing devices in real 

space. However, agent-based modeling can be a prerequisite step for ubiquitous computing. To clarify these terms, 

Figure 3 demonstrates the stage of ABM and ubiquitous computing by means of performance evaluation techniques. 

 

Figure 3. From agent-based modeling to ubiquitous computing. 

There is a tradeoff between ABM and simulators. By ABM, a set of rules is defined at agent level and their 

interaction is modeled explicitly. Simulators, as experimental tools, typically convey a general meaning and cover 

broader domain. They are more or less dependent on the predefined rules in the software. However, the rules at ABM can 

be imported to simulators in order to determine the behavior of the whole system at a global level. This procedure is 

known as multi-agent simulation [30]. Nevertheless, simulators cannot handle agents and their corresponding rules.    
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The imitation of the real-world’s conditions and processes in the course of time is known as simulation. By 

simulation, the system behavior can be characterized and analyzed, what-if questions can be raised, and systems with 

close similarity to real conditions can be designed. Significant information regarding the feasibility, productivity, and 

efficiency of a system can be assessed by simulation prior to real deployment of actual implementation [31]. Normally, to 

carry out a simulation, a model needs to be developed. Such a model demonstrates the main properties, characteristics, 

and treatment of the desired system/process. The model represents the system itself, whilst the operation of the system in 

the course of time is shown by simulation. However, it is not trivial to derive a trustworthy conclusion from a simulation 

result [32]. Diverse steps exist during a simulation and may vary with respect to the purpose of simulation. These steps 

are not necessarily sequential and can be applied in non-consecutive manner. Nevertheless, evaluating the performance of 

the model requires cyclic revision and thorough evaluation of the functionality of the simulation. Figure 4 outlines the 

simulation process and steps as they are concisely described in [33].   

 

Figure 4. Phases in simulation studying (extending the textual descriptions of [33]). 

Simulation types 

Three types of simulation have been mentioned in computer science literature: Monte Carlo simulation, Trace-

driven simulation, and Discrete-event simulation. Monte Carlo simulation is a static simulation or one without a time 

axis. It is used for modeling probabilistic events whose characteristics do not vary over time. Also, Monte Carlo 

simulation is utilized to appraise non-probabilistic expressions by making use of probabilistic approaches. Trace-driven 

simulation uses a trace as an input in the process of simulation. A trace is defined as a time-ordered history of phenomena 

in a real system. In general, Trace-driven simulation is used in analyzing or tuning resource management algorithms. 

Discrete-event simulation, in contrast to continuous-event simulation, uses a discrete-state model of the system for 

simulation and is used due to the variable system state which is described by the number of jobs at various devices. Time 

in discrete-event simulation can be discrete or continuous [34]. The last two simulation types are widely used in USN due 

to their high performance and scalability (i.e., possible number of static and mobile sensors).  

Simulation execution 

Simulators either run via synchronous or asynchronous modes. Synchronous simulation [35], on the one hand, is the 

simplest simulation method and is a round-based technique: Firstly, the global time increases by one unit via the 

framework. Secondly, the nodes move with respect to their mobility models and the connections are updated according to 

the connectivity model. Finally, this procedure iterates over nodes [36]. Synchronous simulation has positive aspects, 

including ease of implementation, performance predictability, and low overhead [37]. However, it tends to suffer from 

weak load balancing and communication costs due to the synchronization steps between rounds. In brief, synchronous 

simulation is appropriate for simulations with short computational granularities and great round parallelism [38]. On the 

other hand, asynchronous simulation is highly based on events. A number of message and timer events are aligned in 

time intervals which should take place in order. The events are picked and executed via the framework repeatedly [36]. 

Conservative simulation and optimistic simulation are two types of asynchronous simulation. Comparing these two 

simulation modes, synchronous simulation runs slower than asynchronous simulation mainly because synchronous 

simulation meets all the nodes including the ones that are nonfunctional. This condition is not applied for asynchronous 

simulation. In this mode, only the messages and timer events are processed and unnecessary rounds are not implemented. 

Asynchronous simulation mode does not support node movement because the continuity of nodes mobility cannot be 

characterized as events [36]. 
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USN simulation 

In the USN domain, simulation is one of the most prevailing appraisal procedures for the progression of wireless 

network protocols and communication frameworks, and for assessing the available ones in different scenarios [39]. The 

simulators designed for USN purposes are commonly designed to consider the development constraints (e.g., node and 

communication). Based on the nature of constraints, simulation tools are classified into (1) oriented network, and (2) 

oriented node classes [40]. Oriented networks concentrate on the wireless networks behavior and the protocol stack of 

the operation. These simulators are initially designed for network simulation and then extended for USN purposes. 

Examples of this class of simulator are OMNet++, NS-2, and J-Sim. Oriented node, as the second class of simulators, 

concentrates on the functionality of a single node that contains simple communication models. These simulators are 

particular to targeted nodes and their OSs. Furthermore, these simulation tools are able to determine the compatibility of 

a node with an application. Examples of this class of simulator are TOSSIM, ATEMU, and SENS. Two common aspects 

are considered by these two classes: (1) the correctness of the simulation models, and (2) the suitability of a particular 

tool to implement the model. Generally, a USN simulator contains multiple modules, including [41]:  

Node is a device composed of both hardware and software in USN. Nodes components are actuator, sensor, 

processor, transceiver, network protocol, energy resource, and application. 

Event represents substantial functionalities including the time in which an event takes place. 

Medium module enables nodes to transmit signals and informs the nodes regarding affective signals. 

Environment module enables the propagation of physical phenomena, such as humidity, sound, temperature, and 

light to be modeled. 

Transceiver hardware determines the state of each sensor node (i.e., sleep, standby, receive, and transmit) as well as 

nodes power consumption.  

Physical Protocol is known as the lowest layer of a network stack. It enables services such as transceivers state 

alteration and packet transmitting and receiving.  

MAC Protocol resides above the physical protocol. It is normally installed on the node processor software. MAC 

protocol enables services such as alteration of MAC layer state and defining protocol parameters. 

Routing Protocol is located above the MAC protocol. It enables messages to be routed between network hobs.  

Application Layer lies on the top of the network stack. It implements an USN application through connecting with 

lower layers, sensors, and actuators. 

USN simulator categories 

Simulation can be applied at various abstraction levels, from generic simulation, where only the most important 

features are modeled, to highly detailed simulations, where particular aspects are represented. A research contribution 

[42] has categorized the simulators based on the level of abstraction. 

Generic Network Simulators concentrate on network simulation more than node simulation. High level languages 

are used for writing simulation applications, which is far removed from real sensor language. Also, the same 

programming language is used for applications and protocol codes. Most of the network simulators provide simulation of 

network stack, MAC protocol, and radio medium. Generic network simulators are effective for assessing new 

communication protocols. However, they are less operational for interoperability evaluation or exploring software bugs.  

Code Level Simulators make use of similar codes as are utilized in actual sensor network nodes. So, they enable 

network stacks executions which are presented for a particular OS. Code level simulators not only enable the simulation 

of radio medium but also provide sensor simulation. They are effective in the detection of software bugs (e.g., deployable 

code or logical error), but they are not appropriate for hardware ones (e.g., CPU architecture or timing).   
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Firmware Level Simulators consider both sensor node emulation and firmware that run in the actual sensor network. 

Firmware level simulators enable detailed simulation and produce accurate implementation results. Furthermore, they 

facilitate radio medium simulation in addition to microprocessor and radio chip emulation. Because of detail simulation, 

firmware level simulators execution times are higher than those of generic network or code level simulators.  

Another study [38] has classified the simulators into three major categories based on the level of complexity.  

Algorithm Level Simulators consider the logic, data structure, and presentation of algorithms. Algorithm level 

simulators concentrate on graph data structure to represent nodes connections rather than detailed communication 

modeling. They enable large network simulation but with no simple MAC layer protocol. 

Packet Level Simulators execute the physical layer and data link into the network stack. Thus, they provide MAC 

protocols and radio models to be implemented, which are the ones that are feasible for propagation, collision, fading, and 

noise and wave diffraction. 

Instruction Level Simulators, also named emulators, provide CPU execution modeling at the level of instructions. 

Requirements for USN simulation 

Given the multifarious features of USN in decentralized communication, such as multitasking, heterogeneity, 

numerous sensor nodes, and limited resources, the design and development of a simulator is a challenging issue [43]. In 

this context, six key factors for USN simulation tools should be taken into consideration. 

Fidelity focuses on the faithfulness of simulation as well as prediction of system behavior. In this regard, for radio 

channels, physical environment, node system, and accurate models need to be developed.  

Scalability represents the supported number and density of sensor nodes by a USN simulator. As USN applications 

require the deployment of many sensor nodes, higher scalability of a simulator is an advantage.  

Energy aware is a critical feature in USN simulators. Since sensor nodes have restricted resources of energy (i.e., 

battery or solar cells), power consumption and timing information need to be modeled accurately via simulators prior to 

the real deployment of sensor nodes. 

Extensibility enables users to modify the available modules or import new ones to the simulator. A user-friendly 

interface with high modularity aids users to add or alter the functionalities.   

Heterogeneity support enables the integration of a variety of multifarious elements in USN simulation tools. This 

includes modeling of various nodes and their interconnections.   

Graphical User Interface (GUI) facilitates the implementation of the network topology and the composition of 

modules. It can also speed up debugging, tracing, and visualization of the simulation results.  

Simulation criteria assessment  

There are multifarious criteria for assessing a simulator. Key properties such as reusability and availability, 

performance and scalability, support for rich-semantics scripting languages to define experiments and process results, 

and graphical, debugging, and trace support should be present in a good simulator [8]. Also, there are diverse critical 

features for simulators which are categorized into input, processing, output, support, and cost groups [44]. Each category 

comprises several criteria that are outlined and extended in Table 2. Based on the design goals, architecture, and 

applications abstraction level, a combination of these features can be present in a simulator. 

Table 3. Features of simulation software. 

Input features Processing features Output features Environment features Cost features 
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-Interface to other 

software 

-Input data analysis 

capability 

-Portability 

-Syntax 

-Input flexibility 

-Modeling flexibility  

-Modeling 

conciseness  

-Execution speed 

-Model size 

-Material handling 

-Random variant 

generators 

-Reset 

-Independent 

replications 

-Attributes 

-Global variables 

-Programming  

-Conditional routing 

-Rare event 

simulation 

-Standardized reports 

-Customized reports 

-Confidence intervals 

-Business graphics 

-File creation 

-Tracing capability 

-Data base 

maintenance 

-Post processing and 

statistical analysis 

-Ease of use 

-Ease of learning 

-Quality of 

documentation 

-Animation capability 

  Ease of 

development 

  Quality of picture 

  Smoothness of 

movement 

  Portability for 

remote viewing 

  CAD interface 

-On-line help 

-On-line tutorial 

-Customer support 

  Training 

  Technical support 

  Update and 

enhancement 

-Hardware 

requirement 

-Time spent learning 

to use the software  

-Time required for 

building models 

Emulation  

The tools which comprise of software and hardware to perform the simulation are typically known as emulators. In 

an emulator, the actual hardware (e.g., motes), beside simulated components (e.g., links and traffic), aims to provide 

realistic performance for USN applications. The emulator usually has high scalability for simultaneously emulating 

several sensor nodes. Comparing to simulators, emulators are implemented in real sensor nodes and run real application 

codes, which improves their performance precision. Emulators are appropriate for timing interactions among sensor 

nodes as well as for fine tuning network level and sensor algorithms [19]. 

In a research contribution [10], emulators are categorized into physical layer and MAC layer classes. For physical 

layer emulators, a real system is comprised of all the network layers except the physical layer. These emulators rip the 

emitted radio signals via nodes wireless interfaces in order to experience the effects that radio waves may face in reality. 

On the contrary, inverse physical layer emulators act the other way round, i.e., the overhead parts of the network group 

are simulated and packets using real hardware are transmitted. For the MAC layer emulator, a real system is comprised of 

all the network layers except the physical layer and the MAC layer. 

Taxonomy for USN simulation and emulation tools 

Importing node models into network simulators has been an evaluation approach of USN simulators. Two types of 

node model have been introduced as (1) simulators node models, and (2) node emulators. The latter relates to instruction 

level simulators of the nodes microcontrollers, and is comprised of sensors and transceivers extensions as well as diverse 

peripheral models. Node emulators enable modeling of the network and inserting node models into network simulators 

[43]. In this regard, USN evaluation is categorized into the following four classes. 
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Network simulators with node models focus on discrete-event timing, radio medium, network modeling, and more or 

less the sensor node sleep duty cycles.  

Network simulators with node emulators benefit from the merits of both the network simulators and node emulators. 

A detailed network model can be achieved through network simulators. Also, accurate timing information of the tools 

can be gained by the node emulator.  

Node system simulator with network models operates frequently at the system level via hardware description 

languages, such as SystemC. Such languages enable node hardware modeling in diverse abstraction levels with various 

details, such a system level, transaction level, and register transfer level. 

Node emulators with network models can execute the application code directly. The node emulators can be 

classified as (1) instruction set simulators for special microcontrollers, and (2) emulators designed to emulate the 

execution of the application code of an OS.  

Simulation and emulation output 

Simulation and emulation outcomes can be represented as graphs, text files, and animations of a trace file. Graphs 

facilitate comparison among multiple protocols can be accomplished. Graphs can demonstrate the variation in packet 

delivery amount, network delay and throughput, and several other parameters for network performance assessment. The 

output text files can be inputs for other simulators or programs. Ultimately, every event that happens in the simulation 

process can be recorded via a trace file [45].  

USN Operating Systems 

As stated before, USN is comprised of several tiny sensor nodes that communicate through wireless networks. The 

components of sensor nodes hardware such as physical sensor, microprocessor/microcontroller, memory, radio 

transceiver, and battery need to be operated in orderly and controlled manner. This process is conducted via an OS. Thus, 

each sensor node requires an OS for controlling the hardware, providing hardware abstraction to application software, 

and reducing the gap between applications and the underlying hardware [46]. In other words, OS acts as a resource 

manager for allocating resources correctly and effectively without any conflict [47]. For USN purposes, OSs must 

provide basic functionalities, efficient power management mechanisms, field reprogramming mechanisms, and a 

configurable communication stack, as well as the ability to abstract heterogeneous sensing hardware in a uniform fashion 

and operate with limited resources [48].  

[49] presented a classification framework for USN OSs based on their important features, i.e., architecture, 

execution model, reprogramming, scheduling, and power management. In addition, it proposed adequate OSs for various 

classes of USN applications. [50] reviewed the architecture and performance analysis of five USN OSs: TinyOS, Contiki, 

Mantis OS, SOS, and Microsoft .NET Micro. [51] addressed the major challenges in designing OSs and reviewed some 

important features of TinyOS, Contiki, Mantis OS, SOS, Nano-RK, RETOS, and LiteOS OSs. Over the past years, a 

variety of OSs has been introduced to facilitate developing USN applications. A list of the identified ones is presented in 

alphabetical order in Figure 5. Reviewing all of them is beyond the scope of this research, but for further information 

please refer to [49]. Aside from the mentioned OSs, several studies have tried to enhance OSs capabilities in diverse 

dimensions, for instance, improving OS reliability (e.g., t-kernel, Harbor, and Neutron), enabling real-time support (e.g., 

FIT), extending the programming model (e.g., protothreads and TOSThreads), and enabling reprogramming support 

(e.g., Deluge, FlexCup, Stream, and Elon) [52]. 

- AmbiCompVM - Embedded Linux - LiteOS - NanoVM - SenSpire OS 

- AVRX - EMERALDS - μCOS - OSPM - SensorOS 

- Bertha - EYES - MagnetOS - OSSTAR - SmartOS 
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- BTnutOS or NutOS - FreeRTOS - Mantis OS - ParticleVM - Squawk VM 

- Contiki - GenOS - Maté - PeerOS - SOS 

- CORMOS - Jallad - Microsoft .NET 

Micro 

- PicOS - T2 

- CustomOS - kOS - MoteWorks - Pixie OS - TinyOS 

- CVM - KVM - Nano-QPlus - RETOS - YATOS 

- DCOS - LORIEN - NanoRK - SenOS - VMSTAR 

Figure 5. List of sensor network OSs. 

Related works 

Over the last decade or so, a plethora of researches has exploited USN simulators and emulators, demonstrating the 

utility and significance of these tools in USN applications. Consequently, a considerable body of researches has 

specifically and generally overviewed, compared, and evaluated different aspects of the USN simulation and emulation 

environments/frameworks.  

From the specific point of view, [53] investigated the energy-aware suitability of a number of USN simulators, and 

subsequently proposed a novel structure for simulating energy-aware USNs. [54] introduced and assessed the coverage 

and connectivity features of popular USN simulation tools. [55] provided background on a number of different sensor 

web simulation tools along with the advantages and the drawbacks of each. Accordingly, they proposed an evaluation 

methodology in order to assess the capabilities of each simulation tool. Although the significance of such specialized 

investigations is indubitable, the outcomes cannot be extended to all the features of that distinguished tool. In other 

words, USN applications are normally comprised of a set of stages and implementations which a simulator/emulator 

should be able to handle. The strength of a simulator/emulator in specific feature does not guarantee that other features 

perform well too. Therefore, several general aspects of simulators/emulators require to be evaluated in parallel. 

From the general standpoint, the majority of published survey papers have investigated USN simulation and 

emulation environments/frameworks either in quantitative or qualitative manners, and rarely a combination of these two 

can be seen in literature. By the quantitative studies, the majority of researches have reviewed a large number of 

simulators and/or emulators at naive levels by providing short descriptions and general overviews of the tools so far. For 

example, [56] glimpsed 63 simulators, 14 emulators, 19 data visualization tools, 46 testbeds, 26 debugging tools, 10 

code-updating tools, and 8 network monitors in USN. [57] presented the state-of-the-art, main features, and the GUI 

snapshots of the 35 widely used USN simulation and emulation environments. [58] listed 74 USN simulators and 

emulators accompanying their features and properties. Although such studies are treated as overview articles, none of 

them compared and evaluated simulation and/or emulation tools in depth. 

By the qualitative studies, a few research contributions have studied a limited number of simulators and/or 

emulators by providing meticulous details and specific features of those tools. For example, [59] deeply compared the 

NS-2 simulator and the TOSSIM emulator in terms of models, visualization tool, architecture, event scheduler, and 

components. [60] evaluated the interface, accessibility and user support, availability of USNs modules, extensibility, and 

scalability of seven (i.e., NS-2, OMNeT++, GloMoSim, OPNET, SENSE, TOSSIM, GTSNetS) simulation and 

emulation environments. [61] effort was toward examining the antenna setting, radio propagation, noise, medium access 

control, topology, and energy consumption modeling just in four (i.e., Castalia, MiXiM, TOSSIM, WSNet) USN 

simulators and emulators. It is evident from the studies alike the ones abovementioned that particular features of limited 

number of tools have been normally assessed and there is no necessity that two studies evaluate identical features of one 
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simulator/emulator. For example, both [59] and [60]  studied NS-2, albeit with different criteria. [60] and [61] studied 

TOSSIM with almost distinct properties. 

Table 4 presents a chronological overview of both quantitative and qualitative studies over the past decade. This 

summery is conducted by reviewing the publicly available and published documents including journal articles, book 

chapters, conference proceedings, theses, and technical reports. Among the preceding contributions related to the 

evaluation of simulators and emulators for USN, none of them have profoundly focused on all the present 

developed/extended tools so far, very few of them (e.g., [62]) have comprehensively evaluated the prominent tools based 

on various criteria, and no structured classification has been suggested for these tools in the literature. Moreover, to the 

best of our knowledge, there is no research contribution that has studied the performance assessment parameters of 

simulators and emulators in USN scenarios. Furthermore, a few new tools have recently released and some of the well-

known traditional simulators/emulators have been developed since past few years that should be examined. Therefore, 

there is an overriding need to fill these gaps in a new survey article.  

This survey is different from the existing reviews in three salient aspects. Firstly, this survey expands its 

investigation to all of the (founded) USN simulation and emulation environments/frameworks along with their 

derivatives and extensions produced so far. Specifically, this article is not only focusing on the quantitative aspect of 

simulation and emulation environments (i.e., 130 tools) but also is qualitatively assessing the ones which have been 

widely used, regularly updated, and well supported by their developers based on multifarious criteria. It also suggests a 

categorization for these tools on general- and specific-purpose basis. Secondly, this survey provides a general picture on 

the-state-of-the-art evaluation criteria for both simulators and emulators. This consequently determines which prominent 

tool is adequate for what kind of purpose (i.e., academic, research, or commercial). Thirdly, this survey proposes a 

number of performance assessment parameters for simulators and emulators in ubiquitous simulation and emulation 

scenarios. 

Table 4. Contribution of the reviewed literature in USN simulators and emulators. 

Refer

ence 

Y

ear 
Simulators and/or Emulators Description 

[63] 2

005 

NS-2, SENSE, GloMoSim, SENS, SensorSim, ATEMU, OMNeT++, 

Prowler, J-Sim, Shawn, TOSSIM, OPNET, TOSSF 

Properties 

[8] 2

005 

NS-2, OMNeT++, J-Sim, NCTUns2.0, JiST/SWANS, GloMoSim, SSFNeT, 

Ptolemy II, TOSSIM, EmStar/EmSim/EmTOS, SENS, ATEMU, 

Prowler/JProwler, SNAP 

Overview and implementation issues 

[59] 2

005 

NS-2, TOSSIM Models, visualization, architecture, 

components 

[64] 2

006 

SSF, SWANS, J-Sim, NCTUns2.0, NS-2, OMNeT++, Ptolemy, SNAP, 

ATEMU, EmStar, TOSSIM 

Models, type of visualization 

[65] 2

007 

NS-2, J-Sim, SENSE USN application in medicine, overview, 

and comparison 

[55] 2

008 

NS-2, OPNET, OMNeT++, J-Sim, NCTUns, JiST/SWANS, GloMoSim, 

SSFNet, TOSSIM, TOSSF, TYTHON, EmStar/EmSim/EmTOS, ATEMU, 

SENSE, SENS, Prowler/JProwler, ModelNet/Nisnet, SwarmNet/Shawn, Glonemo, 

Avrora 

Evaluation in terms of reusability and 

extensibility, performance and scalability, 

operating system portability, semantics 

scripting languages, realism level of virtual 

environment, graphics, and debug and trace 
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[39] 2

008 

NS-2, GloMoSim, OPNET, SensorSim, J-Sim, SENSE, OMNeT++, Sidh, 

SENS, TOSSIM,  ATEMU 

Overview 

[66] 2

008 

J-Sim, OMNeT++, NS-2, OPNET Comprehensive overview,  features, and 

comparison 

[67] 2

008 

J-Sim, OMNeT++, NS-2, ShoX Overview, installation, implementation 

and documentation, and visualization and 

statistics 

[68] 2

008 

WISENES, SensorSim, sQualNet, NRL simulator, SWAN, SENSIM, 

EYES, J-Sim, VisualSense, Prowler, H-MAS, SENSE, TOSSIM, ATEMU, SENS, 

TOSSF, Em* EmSim, SNAP 

Comparison table 

[69] 2

009 

NS-2, SensorSim, J-Sim, SENS, TOSSIM, ATEMU, Avrora, EmStar, 

COOJA 

Overview and comparison 

[70] 2

009 

NS-2, GloMoSim, J-Sim, OMNeT++, OPNET, QualNet Comparison table 

[71] 2

009 

NS-2, OMNeT++, Prowler, TOSSIM, OPNET Overview and comparison table 

[13] 2

009 

NS-2, Castalia, TOSSIM, COOJA/MSPSim Overview and comparison table 

[33] 2

010 

NS-2, OMNeT++, NesCT, PAWiS, GloMoSim, OPNET, SENSE, Ptolemy 

II, J-Sim, Cell-DEVS, GTNetS, SystemC, NCTUns2.0, JiST/SWANS, SSFNet 

Overview 

[72] 2

010 

GloMoSim/QualNet, OPNET, TOSSIM, OMNeT++ (Mobility Framework, 

MiXiM, Castalia, INET Framework, NesCT), NS-2 (SensorSim), Avrora, J-Sim, 

ATEMU, EmStar, SENS, SENSE, Shawn 

Overview and comparison table 

[20] 2

010 

SensorSim, Nsrlsensorsim, Castalia, VisualSense, Viptos, Sidh, 

Prowler/JProwler, SENS, TOSSIM, ATEMU, Avrora, SENSE, EmStar 

Overview 

[60] 2

011 

NS-2, OMNeT++, GloMoSim, OPNET, SENSE, TOSSIM, GTSNetS Overview, comparison table, and 

performance analysis (CPU time and network 

lifetime) 

[73] 2

011 

NS-2, SensorSim, NRL, OMNeT++, SenSim, Castalia, MixiM, PAWiS, J-

Sim, SENSE 

Overview 

[74] 2

011 

NS-2, OMNeT++ (MiXiM), Worldsens (WSim and WSNet), TOSSIM, 

COOJA, OPNET, J-Sim, , TRMSim-WSN, WSNim 

Comprehensive overview and 

comparison table 
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[75] 2

011 

NS-2, TOSSIM, GloMoSim, UWSim, Avrora, SENS, COOJA, Castalia, 

Shawn, EmStar, SENSE, VisualSense, JProwler 

Overview, comparison table, and 

performance analysis (CPU time and memory 

usage) 

[61] 2

011 

Castalia, MiXiM, TOSSIM, WSNet Focusing on topology, antenna, radio 

propagation, noise, radio, medium access 

control and energy consumption modeling 

[56] 2

011 

Simulators: Network Simulator (NS-2 and NS-3), Mannasim, TOSSIM, 

TOSSF, PowerTOSSIM Z, ATEMU, COOJA, GloMoSim, QualNet, SENSE, 

VisualSense, AlgoSenSim, GTNetS, OMNeT++, Castalia, J-Sim, JiST/SWANS, 

JiST/SWANS++, Avrora, Sidh, Prowler, JProwler, LecsSim, OPNET, SENS, 

EmStar, EmTOS, SenQ, SIDnet-SWANS, SensorSim, Shawn, SSFNet, Atarraya, 

NetTopo, WiseNet, SimGate, SimSync, SNetSim, SensorMaker, TRMSim-WSN, 

PAWiS, OLIMPO, DiSenS, WISDOM, Sinalgo, Sensoria, Capricorn, H-MAS, 

Starsim, Motesim, SNSim, SNIPER-WSNim, SNAP, SimPy, Mule, CaVi, 

Ptolemy, Maple, WISENES, WSNet-Worldsens, WSim, LSU Sensor Simulator, 

WSNGE, TikTak. Emulators: VMNET, ATEMU, EmStar, TOSSIM, 

AvroraZ/Avrora, Freemote, EmPro, NetTopo, OCTAVEX, SENSE, 

UbiSec&Sens, Emuli, MSPSim, MEADOWS 

Short description 

[76] 2

012 

ATEMU, Avrora, Castalia, JProwler, SENSE Short description 

[77] 2

012 

GloMoSim/QualNet, OMNeT++, NS-2, OPNET, J-Sim Overview and comparison 

[32] 2

012 

NS-2, OMNeT++, J-Sim, GloMoSim, SSFNeT, EmStar/EmSim/EmTOS Overview 

[78] 2

012 

SensorSim, TOSSIM, TOSSF, GloMoSim, QualNet, OPNET, EmStar, 

SENS, J-Sim, Dingo, NS-3, Shawn 

Overview and comparison table 

[79] 2

012 

NS-2, GloMoSim, J-Sim, OMNeT++, JiST/SWANS, NS-3, SENS, Prowler, 

TOSSIM, ATEMU, Sidh, OPNET, EmStar 

Properties and limitations 

[80] 2

012 

NS-2, NS-3, PowerTOSSIM, PowerTOSSIM Z, OMNeT++, MATSNL Features and comparison table 

[7] 2

012 

NS-2, TOSSIM, OMNeT++, J-Sim, ATEMU, Avrora, OPNET, Castalia Overview, merits and limitations, and 

comparison table 

[57] 2

012 

ATEMU, Avrora, EmSim, Freemote Emulator, MSPSim, TOSSIM, 

VMNet, WSim, Atarraya, Prowler, Wireless Sensor Network Localization 

Simulator, WSNet, AlgoSenSim, NetTopo, SENSE, Sensor Security Simulator 

(S3), Shawn, SIDnet-SWANS, Sinalgo, TRMSim-WSN, Wireless Sensor Network 

Simulator, WSNimPy, COOJA, J-Sim and Sensor Network Package, SENS, 

WSN-Sim, NS-2, Mannasim, NRL SensorSim, RTNS, OMNeT++, Castalia, 

MiXiM, NesCT, PAWiS, SENSIM (SensorSimulator), Ptolemy II, Viptos, 

VisualSense 

Overview and GUI 
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[81] 2

012 

GloMoSim/QualNet, OPNET, TOSSIM, OMNeT++, MiXiM, Castalia, 

INET Framework, NesCT, NS-2, Avrora, J-Sim, ATEMU, EmStar, SENS, 

SENSE, Shawn, MATLAB/SIMULINK Software 

Overview and comparison table, 

performance analysis of USN in MATLAB 

[82] 2

013 

NS-2, TOSSIM, OMNeT++, J-Sim, ATEMU, Avrora, SENSE, SensorSim Overview 

[83] 2

013 

NS-2, NS-3, OMNeT++, TOSSIM and its derivatives, Avrora, Worldsens, 

WISENES, IDEA1 

Overview 

[84] 2

013 

NS-2, NS-3, TOSSIM, J-Sim, Castalia, QualNet Overview, merits and demerits 

[19] 2

013 

NS-2, J-Sim, OPNET, OMNeT++, GloMoSim, Ptolemy II, JiST/SWANS, 

NCTUns2.0, SSFNet, TrueTime toolbox (MATLAB), TOSSIM, PowerTOSSIM, 

TOSSEF&TYTHON, EmStar/EmSim/EmCee, ATEMU, Avrora, 

Prowler/JProwler, UWSim, Shawn, COOJA/MSPSim 

Comparison table and simulator analysis 

[85] 2

013 

NS-2, NS-3, OMNeT++, J-Sim Overview, architecture, advantages and 

limitations, and comparison table 

[86] 2

013 

NS-3, OPNET, GloMoSim, MiXiM, Castalia, J-Sim, Avrora Overview 

[87] 2

013 

NS-2, TOSSIM, GloMoSim, UWSim, J-Sim, SENS, COOJA, SENSE, 

VisualSense, JProwler, Shawn, Castalia 

Comparison table 

[88] 2

013 

NS-2, TOSSIM, GloMoSim, QualNet, OPNET, J-Sim, OMNeT++ Overview, architecture, merits and  

limitations, and comparison table 

[89] 2

013 

NS-2, NS-3, OMNeT++, Wireshark (Ethereal), OPNET, 

GloMoSim/QualNet, J-Sim, GNS3 

Comparison table 

[90] 2

013 

J-Sim, OMNeT++, NS-2, OPNET Overview, GUI, comparison table of 

simulation features 

[91] 2

014 

NS-2, NS-3, GNS3, Wireshark (Ethereal), OPNET, OMNeT++, 

GloMoSim/QualNet, J-Sim, JiST/SWANS, VisualSense,  Ptolemy II, TOSSIM, 

Castalia, EmStar, ATEMU, SENSE, SENS, JProwler, Avrora, COOJA, Shawn 

Overview, comparison tables, 

advantages and disadvantages 

[92] 2

014 

NS-2, OMNeT++, J-Sim, OPNET, TOSSIM Comprehensive overview, features, 

components, comparison tables, and 

shortcomings 

[93] 2

014 

NS-2, EmStar, GloMoSim, Shawn, UWSim, VisualSense, J-Sim, 

OMNeT++, Aqua-Sim, QualNet 

Underwater USN overview, merits and 

demerits, and comparison table 
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[58] 2

014 

Simulators: Network Simulator (NS-2 and NS-3), Mannasim, TOSSIM, 

TOSSF, PowerTOSSIM Z, ATEMU, COOJA, GloMoSim, QualNet, SENSE, 

VisualSense, AlgoSenSim, GTNetS, OMNeT++, Castalia, J-Sim, JiST/SWANS, 

JiST/SWANS++, Avrora, Sidh, Prowler, JProwler, LecsSim, OPNET, SENS, 

EmStar, EmTOS, SenQ, H-MAS, SensorSim, Shawn, NetTopo, Atarraya, SSFNet, 

WiseNet, SimGate, SimSync, SNetSim, SensorMaker, TRMSim-WSN, PAWiS, 

OLIMPO, DiSenS, WISDOM, Sinalgo, Sensoria, Capricorn, SIDnet-SWANS, 

Starsim, SNSim, SNIPER-WSNim, SNAP, SimPy, Mule, CaVi, Ptolemy, Maple, 

WISENES, WSNet-Worldsens and WSim, LSU Sensor Simulator, WSNGE, 

TikTak, Motesim, Boris, SmartSim, WSNim, EnergySim, MOB-YOSSIM, 

AEON, Sensor Security Simulator (S3), Wireless Sensor Network Localization 

Simulator, Xen WSN Simulator, UWSim, Network in a box (NAB) 

Overview, categorization of USN-

specific simulators 

[94] 2

015 

QualNet, NS-2, NS-3, OPNET modeler, Net Sim, OMNeT++, J-Sim Overview 

[62] 2

015 

NS-2, NS-3, OMNeT++, J-Sim, Mannasim, SensorSim, NRL SensorSim, 

NCTUns, SSFNet, GloMoSim, QualNet, sQualNet, OPNET, SENSE, DRMSim, 

NetSim, UWSim, VisualSense, Viptos, Ptolemy II, SENS, Shawn, SIDnet-

SWANS, SIDH, NetTopo, WSim/Worldsens/WSNet, WSN Localization 

Simulator, Prowler, MATLAB, PiccSIM, LabVIEW  

Overview,  architecture, interface/GUI, 

and comparison table 

[95] 2

016 

NS-2, NS-3, Castalia, MiXiM, PAWiS, WSNet, DANSE, NetTopo, PASES, 

Sense, TOSSIM, Avrora, COOJA/MSPSim, VIPTOS 

Overview,  categorization of  simulators, 

comparative study 

[96] 2

016 

NS-2, NS-3, GloMoSim, OPNET, OMNeT++, TOSSIM, ATEMU, Avrora, 

EmStar, SensorSim, NRL SensorSim, J-Sim, Prowler/JProwler, SENS, SENSE, 

Shawn, SenSim, PAWiS, MSPsim, Castalia, MiXiM, NesCT, SUNSHINE 

Overview, component, structure 

Overview of USN simulators and emulators  

Numerous tools have been developed for simulating and emulating USN. They vary in terms of architecture, 

features and characteristics, modeling methodology, and performance [91]. Utilizing or developing a simulator/emulator 

necessitates becoming familiar with the available tools, evaluating their pros and cons, and choosing the appropriate one 

for the application. This section, therefore, introduces 130 USN simulation and emulation environments and frameworks, 

as well as their derivatives, which were originally designed and adapted for USN. The USN simulators and emulators 

provided in the following are the ones that we found in the literature at the time of this writing. The literature review for 

tool selection was based on the online publications (i.e., original and survey articles, book chapters, conference 

proceedings, thesis, and technical reports) as well as the tool developers’ websites and tutorials. Specifically, these tools 

are divided into simulators and emulators. Then, simulators are classified into general-purpose and specific-purpose 

classes (see Figure 6). General-purpose tools are those that already existed before the emergence the USN concept. The 

functionality of the simulator/emulator was then extended and adapted for USN purpose. In contrast, specific-purpose 

class tools are the new simulating/emulating tools that have been created solely for USN purpose. Of these 130 

simulators and emulators, the 22 that have been widely used, regularly updated, and well supported by their developers 

are compared based on multifarious criteria.  
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Figure 6. Classification of simulation and emulation environments/frameworks. 

USN simulation environments 

This sub-section concisely introduces 41 general-purpose USN simulators and their derivatives as well as 66 

specific-purpose ones. Meanwhile, the corresponding designer/developer, the latest version, and the software link (if any) 

are provided for general- and specific-purpose simulation tools in Tables 5 and 6, respectively. 

General-purpose simulators 

Ptolemy II and its derivatives 

1. Ptolemy II is a set of Java packages which support various models of simulation, including continues time, 

dataflow, and discrete-event. They are an actor-oriented and component-based design of J-Sim (described later as tool no. 

33) [97]. 

2. Viptos (Visual interface between Ptolemy and TinyOS) is a graphical development and simulation environment 

for TinyOS-based (a component-based, event-driven runtime environment) USN. It is built on Ptolemy II and TOSSIM-

an interrupt-level discrete-event simulator for homogeneous TinyOS networks [98, 99]. 

3. VisualSense is a visual model for ubiquitous and sensor network systems. It was built on Ptolemy II, and 

preserves the semantics of discrete event, although explicit wires are not required because of changing the mechanism of 

connecting components [100, 101].  

NS-2 and its derivatives 

4. NS-2 (Network Simulator-2) is a flexible tool which enables the performance of various protocols to be 

investigated in different configurations and topologies. In this environment a network of sensors can be built so that 

protocols and characteristics are available in the real world [102, 103].  

5. Mannasim is a module for NS-2 that aims at USN simulation. It provides a sensing model, several application 

models, several sensor network specific protocols such as LEACH routing protocol, and directed diffusion [104].  

6. NRL Sensorsim is an extension of NS-2 and facilitates sensor network simulation. It provides the opportunity to 

simulate and detect parameters of carbon monoxide concentration, seismic activity, or audible sound. Wireless sensors, 

phenomena sources, and gateways can constitute the network [57, 87, 105].  

7. RTNS (Real Time Network Simulator) software simulates mechanisms of OSs for applications in distributed 

networks. It combines NS-2 environment and Real Time Operating System SIMulator (RTSim) to simulate CPU in real 

time [106-108]. 

USN tools 

Ptolemy II and its derivatives  

NS-2 and its derivatives 

NS-3 and its derivative 

TOSSIM and its derivatives 

Avrora and its derivative 

Other emulators 

 

General-purpose simulator 

Simulator Emulator 

Topology control simulators 

Agent-based simulators 

Ubiquitous computing simulators 

Specific-purpose simulator 
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8. TRAILS (Toolkit for Realism and Adaptively In Large-scale Simulation) is an extension of NS-2. TRAILS adds 

functionalities into NS-2 and optimizes its operation. It facilitates the execution of advanced mobility patterns, obstacle 

presence and disaster scenarios, and failures injection that can dynamically alter over the simulation execution [109]. 

9. PiccSIM (Platform for integrated communications and control design, Simulation, Implementation and Modeling) 

is a simulation platform for (wireless) networked control systems that uses NS-2 and MATLAB/SIMULINK tools. It 

aims to deliver a complete toolset for the design, simulation and implementation of wireless control systems [110]. 

NS-3 and its derivative 

10. NS-3 is a discrete-event network simulator for internet systems targeted primarily for research and educational 

use. Although the NS-2 simulator is popular, the need for performing core refactoring, integration, software and 

documentation maintenance, and simulator extension necessitated a new simulator, NS-3. In general, NS-3 is introduced 

to solve problems present in NS-2. Indeed, NS-3 is not backward compatible with NS-2; it is built to replace NS-2. 

Specifically, the main contributions that NS-3 can offer comparing with NS-2 are as follows. In NS-2, bi-language 

system make debugging complex (C++/Tcl), but for NS-3 only knowledge of C++ is enough (single-language 

architecture is more robust in the long term). NS-3 provides a lower base level of abstraction compared with NS-2, 

allowing it to align better with how real systems are put together. Some limitations found in NS-2 (such as supporting 

multiple types of interfaces on nodes correctly) have been remedied in NS-3. NS-3 provides features not available in NS-

2, such as an implementation code execution environment (allowing users to run real implementation code in the 

simulator). NS-3 has better scalability than NS-2. NS-3 has an emulation mode, which allows for the integration with real 

networks. In contrast, NS-2 is preferred by several users in the community due to the following reasons. Since NS-3 is 

under development, there is very limited number of models and contributed codes in NS-3 in comparison with NS-2; NS-

3 still requires strong community participation to improve it. NS-3 is a new simulator that does not support the NS-2 

APIs. Owing to NS-2’s long history, it has a more diverse set of contributed modules than does NS-3. However, NS-

3 has more detailed models in several popular areas of research (including sophisticated LTE and WiFi models). Picking 

NS-2 or NS-3 relates to the availability of models and the familiarity of users with the tools; however, the tool that is 

being actively developed has the priority (i.e., NS-3) [111, 112].  

11. Symphony is a simulation framework in association with NS-3, by which the entire processes of actual hardware 

and software can be modeled. It allows real code adjustment as well as hardware components performance evaluation on 

applications and protocols in large-scale USN systems [113, 114]. 

OMNeT++ and its derivatives 

12. OMNeT++ (Objective Modular Network Testbed in C++) is a component-based and modular simulation which 

is designed to simulate communication networks and other distributed systems [115, 116]. It attempts to fill the gap 

between open-source software (e.g., NS-2) and expensive commercial alternatives (e.g., OPNET) [117].  

13. SENSIM (SensorSimulator) is a large-scale sensor network simulator for OMNet++ to compute energy 

consumption. It is based on a parallel discrete-event system. It integrates common sensor network protocols, including 

MAC, network, and application as well as an adapted architecture for future protocols [82, 118, 119].  

14. LSU SensorSimulator is a customizable framework for USN simulation. It tests and investigates robustness, 

scaling, networking, and phenomenological issues to find efficient algorithms for distributed sensors [120]. 

15. Castalia is an application- and discrete-level simulator designed on the top of OMNeT++. It is designed to 

evaluate various platforms because it is highly parametric and can simulate a wide range of platforms [121, 122].  

16. SolarCastalia or Solar Energy Harvesting Wireless Sensor Network Simulator is a USN simulator based on 

Castalia which uses solar energy as the energy source. It provides high energy density, high conversion efficiency, and 

periodicity [123].    

17. MiXiM (mixed simulator) is a cross-level OMNeT++ modeling framework created for mobile and fixed 

wireless networks. It consists of basic components including, environment, connectivity, reception and collision, protocol 

library, and experiment. It also supports visualization, monitoring, and debugging in the simulation process [124].  
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18. NesCT is a translator from the NesC (Network embedded system C language) programming language to C++ 

classes for OMNeT++. NesC is an event- and component-driven application simulator. In this way all features of 

OMNeT++ and Mobile Framework (MF) can be used for simulation [125]. 

19. PAWiS (Power Aware Wireless Sensors) simulator was developed to facilitate the design and simulation of 

USN. It is based on the OMNeT++ simulator and the idea of decomposing the node into functional blocks which can be 

hardware or software [126, 127].  

GloMoSim and its derivatives 

20. GloMoSim (Global Mobile system Simulator) is a library for parallel simulation of large-scale ubiquitous 

networks in which each library module simulates a particular wireless protocol in the protocol stack [128, 129].    

21. QualNet is a discrete-event simulator and a commercial extension of GloMoSim for scalable network 

technologies [130]. It has been enhanced over during time by the inclusion of satellite, cellular, and new sensor network 

library [131]. Considering all the QualNet functionalities plus a real-time network emulation interface, EXata is 

introduced which enables live hardware integration in a seamless manner with the simulated virtual network models, and 

live applications to run across the virtual environment [132]. sQualNet is a scalable sensor network simulation 

framework based on QualNet [133]. 

22. SenQ is a scalable simulation and emulation framework for sensor networks based on QualNet. It is efficient and 

flexible for different applications and protocols, and can model battery power and clock drift accurately [134]. 

Worldsens and its derivative 

23. Worldsens is an integrated environment for developing USN applications. It can be used for debugging and 

performance evaluation because of accurate timing. It consists of two simulators: (1) WSim; and (2) WSNet, which may 

perform independently or in conjunction during application execution [135, 136]. 

24. WSNet is an event-driven and large-scale USN simulator [56]. It is designed to simulate the environment with a 

concentration on physical measures and simulates components of the nods and properties of the radio channel [137].  

Other general-purpose simulators 

25. AlgoSenSim is an algorithm-oriented framework that is used to simulate network-specific algorithms like 

localization, distributed routing, and flooding. Its main purpose is to facilitate the implementation and quality analysis of 

new algorithms [138].  

26. NetTopo is an algorithm level, large-scale network simulator which mainly focuses on USN data structure, 

logic, and presentation of the algorithms. It was developed in Java and provides both simulation and visualization 

functions [38, 139].  

27. SENSE (Sensor Network Simulator and Emulator) is a component-oriented general-purpose network and 

application level simulator. It supports an energy model that is compatible with USN. The most important point about 

SENSE is its balanced consideration of modeling methodology and simulation efficiency [140, 141].  

28. JiST/SWANS (Java in Simulation Time) is a discrete-event simulation system that embeds simulation time into 

a virtual machine. It is efficient and transparent within a standard language [142]. SWANS (Scalable Wireless Ad hoc 

Network Simulator) is a scalable wireless network simulator built atop the JiST platform. It was designed because 

existing network simulation tools are insufficient for current research needs, and its performance serves as a validation of 

the virtual machine-based approach to simulator construction [143]. 

29. Sinalgo (Simulator for Network Algorithms) is an algorithm-based simulator that offers a message passing view 

of the network which captures well the view of the network device. It concentrates on the verification and testing of 

network algorithms [144]. 
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30. SimPy is a process-oriented discrete-event simulator. It may be utilized for asynchronous networking or to 

implement multi-agent systems (with both simulated and real communication) [145]. 

31. MSPSim is an extensible simulator for the MSP430 microcontroller at the instruction-level. It is designed to be 

used in a larger sensor network as a component to support cross-level simulation [146, 147]. 

32. COOJA (COntiki Os JAva) is a cross-level simulator and simulates at many levels of the system simultaneously. 
It is interchangeable and extensible to change all the levels of the system, and combines low- and high-level simulation 

of sensor node hardware and behavior in a single simulation [148, 149].  

33. J-Sim (formerly JavaSim) is component-based software architecture: ACA-the autonomous component 

architecture-and a compositional network simulation and emulation environment. Components are the basic entities in 

the ACA which communicate with one another through their ports [150, 151]. G-JSIM is a GUI tool for USN simulations 

under J-Sim platform [152].  

34. NetSim is a network-based environment for modeling and simulating discrete-event applications to simulate 

Cisco Systems networking hardware and software. NetSim has been widely used for network design validation in sensor 

deployment [153, 154]. sNetSim can be utilized for analyzing data packet delivery, probability of discarded packet, and 

other parameters in USN. 

35. OPNET (Optimum Network Performance) Modeler or Riverbed Modeler was the first commercial network 

simulator developed in 1987. It is a discrete-event, object-oriented, and general-purpose network simulator. It is well-

known because of its capability to provide accurate modeling of the radio transmission [7, 155]. The educational version 

of it is called OPNET IT Guru [156].   

36. SSFNeT is a number of Java network models built over the Scalable Simulation Framework (SSF). It is difficult 

to interact with a simulator because of a command-line user interface; it is therefore only suitable for static applications, 

but does provide the capability of parallel simulation [157].  

37. NCTUns (National Chiao Tung University Network Simulator) is an event-driven simulator based on a Linux 

OS. It enables several simulations of various protocols used in both wired and wireless IP networks. NCTUns provides 

high simulation speed when traffic load is light and can be turned into an emulator by slowing down and synchronizing 

the virtual clock with that in real life [158, 159]. The NCTUns 6.0 version supports large-scale microscopic wireless 

vehicular network (WVN) simulation [160].  

38. SystemC is a modeling platform including libraries to support design abstractions for modeling hardware, 

software, and networks with the same language [161, 162].  

39. Wireshark (formerly Etherreal) is a network simulator and analyzer capable of USN modeling and evaluation. It 

is based on the packet analysis as well as applicable for trouble shooting, examining network security, and the 

development of software and communication protocols. It supports over 750 protocols, which may be exceeded due to its 

open-source specification [163, 164].  

40. MATLAB SIMULINK can be used as an USN simulator [165]. The unique feature of this simulation tool is its 

capability to determine the effects of different channel parameters such as signal to noise ratio, attenuation, and 

interference [81, 166]. The authors of a research contribution [167] have developed an interface between MATLAB and 

OPNET to perform much stronger simulation.    

41. LabVIEW is a development environment suitable for visualizing, creating, and coding engineering systems. It 

enables USN simulation. By programming sensor nodes, an individual can customize the node behavior to increase 

acquisition performance, interface directly with sensors, and extend battery life [168].  

Table 5. General descriptions of general-purpose USN simulators. 
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N

o. 

Simulation 

Environment 
Designed By 

La

test 

Version 

Rel

eased 

Date 

Software Link 

1 Ptolemy II 

University of 

California, Berkeley, 

USA 

10

.0.1 

17 

December 

2014 

http://ptolemy.eecs.berkeley.edu/ptolemyII/ 

2 Viptos 

University of 

California, Berkeley, 

USA 

1.

0.2 

9 

February 

2007 

http://ptolemy.berkeley.edu/viptos/ 

3 
VisualSens

e 

University of 

California, Berkeley, 

USA 

8.

0.1 

28 

October 

2010 

http://ptolemy.berkeley.edu/visualsense/ 

4 NS-2 

Lawrence Berkeley 

National 

Laboratory (LBNL), USA 

N

S-2.35 

4 

November 

2011 

http://www.isi.edu/nsnam/ns/ 

5 Mannasim 
Federal University 

of Minas Gerais, Brazil 

N

S-2.29 + 

patch 

2.

29 

16 

August 

2006 

http://www.mannasim.dcc.ufmg.br/ 

6 
NRL 

Sensorsim 

U.S. Naval 

Research Laboratory 

N

S-2.27 

6 

October 

2005 

http://www.nrl.navy.mil/itd/ncs/products/sensorsim 

7 RTNS 

Sant'Anna School 

of Advanced Studies, 

Italy 

1.

0 

25 

August 

2008 

http://rtns.sssup.it/RTNSWebSite/RTNS.html 

8 TRAILS 
University of 

Patras, Greece 

N/

A 

200

8 
N/A 

9 PiccSIM 
Aalto University, 

Finland 

1.

16  

4 

November 

2013 

http://wsn.aalto.fi/en/tools/piccsim/ 

1

0 
NS-3 

University of 

Washington and Georgia 

Institute of Technology, 

USA 

N

S-3.26 

3 

October 

2016 

https://www.nsnam.org/ 

1

1 
Symphony 

Stanford 

University, USA and 

Lulea University of 

Technology, Sweden 

N/

A 

201

5 
https://bitbucket.org/Northshoot/symphony/overview 
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1

2 
OMNeT++ 

Technical 

University of Budapest, 

Hungary 

5.

1 

22 

December 

2016 

https://omnetpp.org/ 

1

3 
SENSIM 

Louisiana State 

University,  USA 

3.

1 

28 

October 

2005 

http://csc.lsu.edu/~iyengar/publications_sensor.html#papers 

1

4 

LSU 

SensorSimulator 

Louisiana State 

University, USA 

N/

A 

200

5 
N/A 

1

5 
Castalia 

National ICT, 

Australia 

3.

2 

30 

March 

2011 

https://castalia.forge.nicta.com.au/index.php/en/ 

1

6 

SolarCasta

lia 

Soongsil 

University, Republic of 

Korea 

N/

A 
N/A N/A 

1

7 
MiXiM 

University of 

Paderborn and Technical 

University of Berlin, 

Germany; Delft 

University of Technology, 

the Netherlands 

2.

3 

8 

March 

2013 

http://mixim.sourceforge.net 

1

8 
NesCT 

University of 

Twente, the Netherlands; 

Yeditepe University, 

Turkey 

O

MNeT 

4.2 

4 

August 

2011 

http://nesct.sourceforge.net/ 

1

9 
PAWiS 

Technical 

University of Vienna, 

Austria 

2.

0 

1 

July 2008 

http://pawis.sourceforge.net/ 

 

2

0 
GloMoSim 

University of 

California, Los Angeles 

(UCLA), USA 

2.

03 

Dec

ember 

2000 

http://pcl.cs.ucla.edu/projects/glomosim/ 

2

1 
QualNet 

Scalable Network 

Technologies (SNT), Inc., 

USA 

7.

2 

14 

May 2014 
http://web.scalable-networks.com/content/QualNet 

2

2 
SenQ 

University of 

California, Los Angeles 

(UCLA), USA 

N/

A 

200

7 
N/A 

2

3 
Worldsens Senslab, France 

N/

A 

200

7 
https://www.iot-lab.info/ 
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2

4 
WSNet INRIA, France 

9.

07 

16 

July 2009 
http://wsnet.gforge.inria.fr/ 

2

5 

AlgoSenSi

m 

University of 

Geneva, Switzerland 

0.

9.2.2 

21 

September 

2006 

http://tcs.unige.ch/doku.php/code/algosensim/overview 

2

6 
NetTopo 

Osaka University, 

Japan; National 

University of Ireland, 

Ireland; National Ilan 

University, Taiwan; Seoul 

National University, 

Republic of Korea; 

Simula Research 

Laboratory, Norway; 

University of Oslo, 

Norway 

1.

3 

1 

August 

2008 

http://sr.deri.ie/nettopo/index.htm 

2

7 
SENSE 

Renseelaer 

Polytechnic Institute, 

USA 

3.

1 

19 

November 

2008 

http://www.ita.cs.rpi.edu/ 

2

8 

JiST/SWA

NS 

Cornell University, 

USA 

1.

0.6 

Mar

ch 2005 
http://jist.ece.cornell.edu/ 

2

9 
Sinalgo 

ETH Zurich, 

Switzerland 

0.

75.3 

8 

April 

2008 

http://disco.ethz.ch/projects/sinalgo/ 

3

0 
SimPy Team SimPy 

3.

0.10 

12 

June 2016 
http://simpy.readthedocs.org/en/latest/ 

3

1 
MSPSim 

Swedish Institute of 

Computer Science, 

Sweden 

0.

9X 

30 

April 

2009 

http://sourceforge.net/projects/mspsim/ 

3

2 
COOJA 

Swedish Institute of 

Computer Science, 

Sweden 

2.

7 

15 

November 

2013 

http://www.contiki-os.org/ 

3

3 
J-Sim 

University of 

Illinois at Urbana-

Champaign, USA 

1.

3 + 

patch4 

5 

July 2006 
https://sites.google.com/site/jsimofficial/ 

3

4 
NetSim 

Tetcos in 

association with Indian 

Institute of Science, India 

8.

3 
N/A http://tetcos.com/netsim_gen.html 

3

5 
OPNET 

Massachusetts 

Institute of 

Technology (MIT), USA 

18

.5.1 

28 

April 

2016 

http://www.riverbed.com/products/performance-management-

control/opnet.html 
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3

6 
SSFNeT 

SSF Research 

Network 

2.

0.0 

15 

January 

2004 

http://www.ssfnet.org/homePage.html 

3

7 
NCTUns 

National Quemoy 

University, Taiwan 

6.

0 

201

0 
http://nsl.cs.nctu.edu.tw/NSL/nctuns.html 

3

8 
SystemC 

University of 

Verona and Polytechnic 

University of Turin, Italy 

2.

3.1 

23 

April 

2014 

https://github.com/systemc/systemc-2.3 

3

9 

Wireshark 

(Ethereal) 
Wireshark Team 

2.

2.3 

14 

December 

2016 

https://www.wireshark.org/ 

4

0 

MATLAB 

SIMULINK 

Mosul University, 

Iraq 

N/

A 

201

1 
http://www.mathworks.com/ 

4

1 
LabVIEW 

National 

Instruments Corporation, 

Germany 

20

15 

201

5 
http://www.ni.com/labview/ 

Specific-purpose simulators 

Topology control simulators 

42. Atarraya is a discrete-event simulation tool to test the implementation of topology control protocols in USN. 

This simulator encompasses structures for designing topology construction and maintenance protocols [169, 170]. 

43. Cell-DEVS (Cell-Discrete-Event systems Specifications) is a discrete-event simulator that is used to model 

systems that can be represented as cell spaces. It is an efficient simulation model to implement topology control 

algorithms for a large-scale USN [171, 172].   

Agent-based simulators 

44. ABMQ (Agent-Based Modeling and Simulation) is a platform based on Qt Application Framework, appropriate 

for modeling and simulation of self-organization in wireless networks, and particularly Mobile Ad Hoc Networks 

(MANETs) [173].  

45. MASON (Multi-Agent Simulator Of Neighborhoods/Networks) is a rapid discrete-event multi-agent simulation 

library written in Java. It is comprised of a model library, and 2D and 3D visualization tools [174-176].  

46. RepastSNS (Recursive Porous Agent Simulation Toolkit Sensor Network Simulation) is an event-based 

simulator developed for testing sensor networks from a multi-agent perspective. This platform is an extension of Repast3 

[177] as it has additional features for sensor network simulation [178, 179]. RepastSNS has two advantages: (1) it 

provides many abstraction level descriptions, and (2) it is easy to insert USN components for simulation [180]. 

47. NetLOGO is a free platform for multi-agent programming and modeling. It provides the opportunity to simulate 

USN projects, e.g., energy efficiency [181] and data dissemination flooding technique [182].  

48. SXCS (SensomaX Companion Simulator) is a hybrid agent-based multi-operational simulator aimed at the 

simulation of multiple concurrent applications in USN. It is designed for emulating Sensomax [183] middleware, which 
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is an agent-based middleware with multiple concurrent application support for dynamic data gathering in large-scale 

USN [184]. 

Ubiquitous computing simulators 

49. UbiWise is a simulator for ubiquitous computing. It focuses on the way that devices compute communications 

through the physical environment. Ubiwise not only simulates the prototype of devices and protocols in the network, but 

also simulates the physical environment [185, 186]. 

50. UbikSim is a simulator for ubiquitous computing that aims to reduce the features of services experiments and 

applications for treatment appertain related to both the physical environment and users. It proposes substantial techniques 

for implementing new sensor configurations, e.g., type of event detection or the required range of coverage [187, 188].  

51. TATUS is a ubiquitous computing simulator that enables researchers to define and test various scenarios. 

Meanwhile, a part of software-under-test may be connected to the simulator in order to develop its own representation of 

the world [189]. 

Underwater simulators 

52. UWSim is a simulator designed for Underwater USN (UUSN). This simulator considers factors that affect USN 

underwater and adapts scenarios with this condition, such as providing low bandwidth, low frequency, high transmission 

power, and limited memory [190, 191]. 

53. SUNSET is an environment for simulation, emulation and also testing (underwater) various communication 

protocols. Its functionality is at MAC and Routing Protocols based on NS-2 and the extension NS-2-Miracle [192]. By 

using SUNSET, different acoustic modems and sensing devices can be implemented [193-195]. 

54. SUNRISE is another UUSN, designed for sensing, monitoring and actuating underwater surroundings. It 

performs over SUNSET platform for designing, implementing, and validating USN protocols [196, 197]. 

55. DESERT (DEsign, Simulate, Emulate and Realize Testbeds for underwater network protocols) is a complete set 

of public C/C++ libraries which support the application and transport layers through the network, data link, and physical 

layers [198, 199].  

56. RECORDS (Remote Control Framework for Underwater Networks) is an open-source environment for 

underwater networks composed of acoustic nodes. MAC, network, transport, and application layers all are supported by 

the RECORDS [200, 201]. 

57. Aqua-Net is a generic architecture for underwater sensor networks. Aqua-Net enables a powerful networking 

solution kit which facilitates UUSN study and application development [202, 203]. 

58. SeaLinx is multi-instance protocol stack architecture for underwater acoustic networking. It is a Linux 

implementation of Aqua-Net and enables users to exploit their hardware more efficiently by allowing applications to run 

simultaneously on a modem while also providing better support for cross-layer communication [204, 205]. 

59. Aqua-Net Mate is a real-time virtual channel modem simulator for Aqua-Net that supports underwater networks 

communication [206]. 

60. Aqua-Lab is an underwater acoustic sensor network lab testbed for UUSN. It is comprised of hardware, 

software, program library, an emulator, and real acoustic communication channels [207, 208]. 

61. Aqua-Sim is another underwater sensor simulator based on NS-2 which can efficiently simulate the acoustic 

signal attenuation and packet collisions within water. It is extensible, flexible, and independent of the wireless packages 

[209, 210]. 

62. Aqua-Tune provides a standardized platform for testing and bridging the gap between modeling, simulation, and 

real world field experience for Underwater Networks [211]. 
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63. Aqua-GloMo is an acoustic-based communication simulator built on GloMoSim simulator. It is designed for 

network layers protocols and physical layer protocols of UUSN [212].  

64. Aquatools is a simulation toolkit targeted for simulating underwater acoustic networks with static and mobile 

nodes. It works in physical layer, MAC layer, routing layer, and energy consumptions schemas [213]. 

65. UANT (Underwater Acoustic Networking plaTform) aims to address the constantly changing underwater 

acoustic channel with re-configurability. It supports the physical and MAC layer of the ISO Model [214, 215].  

66. WOSS (World Ocean Simulation System) is a simulator based on NS-2 for underwater networks which 

incorporates a ray tracing tool for a more realistic modeling of underwater propagation [216, 217]. 

67. AUWCN (Acoustic Underwater Channel and Network) simulator aims to alleviate the inappropriate 

simplifications and to reproduce most effects existing in the physical acoustic underwater channel [218]. 

68. SAMON (Ocean Sampling Mobile Network) is a simulator testbed designed to enable simulation of ocean 

sampling missions involving multiple heterogeneous unmanned underwater vehicles prior to in-water experimentation 

[219]. 

69. UsNeT (Underwater Sensor Network Simulation Tool) is developed for underwater communications. It allows 

real-time process-based simulation and enables three-dimensional deployment [220]. 

Other specific-purpose simulators 

70. Prowler/JProwler (Probabilistic Wireless Sensor Network Simulator) is an event-driven ubiquitous network 

simulator which is designed to simulate MICA motes running TinyOS in addition to generic ubiquitous networks. It is 

used for application testing (deterministic mode), wireless communication channel, and low-level node protocol 

simulations (probabilistic mode). It supports different plug-ins and any number of sensor nodes in a dynamically 

changing environment. JProwler is a java-based prowler [20, 43, 79, 221]. 

71. Wireless Sensor Network Localization Simulator is a simple, scalable, and discrete-event simulation system. It 

engages several mobility models including, Random Waypoint, Modified Random Waypoint, Random Direction, 

Modified Boundless, Manhattan, Freeway, and  RPGM [222]. 

72. Sensor Security Simulator (S3) is a research simulator for evaluating security problems in large-scale sensor 

networks. It supports the analysis of the impact of selected nodes and encryption keys that compromising the network 

operation and security [223]. 

73. Shawn is a discrete-event customizable simulator for USN. It is designed to simulate hundreds of sensors in 

network [224, 225]. It simulates only the caused effects rather than simulating the effects of a phenomenon which 

provides a performance increase [72]. 

74. SIDnet-SWANS (Simulator and Integrated Development Platform for Sensor Networks Applications) is a 

simulation-based environment that aims to observe the behavior of algorithm protocols in conditions like phenomena 

fluctuations or sudden loss of service [56]. It associates with a graphical representation of the network, and supports 

defining various phenomenon such as temperature, humidity, and object movements [226, 227].  

75. TRMSim-WSN (Trust and Reputation Models Simulator for Wireless Sensor Networks) is designed to study 

and compare trust and reputation models over USN and compare the result against other models [228, 229]. 

76. WSNimPy is based on the discrete-event simulator SimPy. It has developed in two versions: (1) WSNimPy 

(trace), and (2) WSNimPy (synthetic). The first uses trace data from the WSN Profiler, and the second uses a synthetic 

radio model to simulate communications [230]. 

77. SENS (Sensor, Environment and Network Simulator) is a sensor network simulator for USN applications that is 

flexible and extensible to change components for applications, network communication, and the physical environment. It 
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supports the development of dependable applications by using diagnostic facilities such as power utilization analysis 

[231, 232]. 

78. IFAS (Interactive Flexible Ad hoc Simulator) is a modern and novel approach of ad-hoc simulators. This 

simulator efficiently accelerates the design and debugging-process of new algorithms by providing unique viewing, 

debugging, tuning, and interactive capabilities [233].  

79. Sidh is an efficient and large-scale USN simulator in which networks with thousands of nodes in real-time can 

be supported. It is component-based and flexible in the face of different environmental conditions, sensors, and 

simulation detail [41].  

80. SenSor is an algorithmic simulator that works at a high abstraction level in USN domain. It supports a graphical 

user interface and several extended classes by the user to run simulations [234]. 

81. Dingo is a fork of the SenSor project. Actually, Dingo is a workbench for prototyping algorithms in USN which 

uses a top-down methodology for design. Since it is not limited to a particular platform, full functionality of a 

programming language is usable. It has a fixed API, a simple GUI, and base classes which are extensible by the user 

[235]. 

82. SNAP (Sensor Network Asynchronous Processor) is an integrated hardware simulation-and-deployment 

platform for USN. It lets parallel network simulation with a particular synchronization protocol that is called Time Based 

Synchronization (TBS).  It can be used to build physical as well as simulation nodes [236, 237].  

83. GTSNetS is an extension of the Georgia Tech Network Simulator (GTNetS) suitable for USN. It is a large-scale 

network simulator capable of handling several hundred thousand nodes. It is flexible and capable of implementing 

diverse protocols, applications, and sensors as well as different energy and accuracy models [238, 239].   

84. IDEA1 (hIerarchical DEsign plAtform for sensor networks exploration) is a component-based simulation 

framework for USN. It is based on SystemC and C++ language. IDEA1 supports transaction-level modeling, and enables 

easy design space exploration availability [83, 240, 241]. 

85. WiseNet is a simulation environment aimed at design, application, and evaluation of secure routing protocols for 

USN. WiseNet enables the systematic development and investigation of security features of secure and intrusion-tolerant 

routing protocols [242].  

86. SimGate is a sensor network simulator which simulates the Intel Stargate device, an element used as a 

processing, storage, and network gateway unit in sensor network. It is capable of capturing components, including 

processor, communications, and peripherals [243].  

87. SimSync is mainly a time synchronization simulator for sensor networks using a Mica2-a testbed to simulate 

execution of time synchronization algorithm. The structure of the program in this simulator is table-driven and it can 

model the clock drift efficiently [244]. 

88. SensorMaker is a USN simulator for scalable and fine-grained instrumentation. It supports several results such 

as position, residual energy, energy distribution map, and routing probabilities for each node. It is flexible and provides 

different kinds of instrumentations [245]. 

89. OLIMPO is a discrete-event simulation tool designed to ease the design, development, and testing of 

communication protocols in a sensor network. It provides users with the capability to change various simulation 

parameters including timers, radio range, and random process [246].  

90. DiSenS (DIstributed SENsor network Simulator) is a scalable distributed simulation system for sensor networks. 

In addition to emulating many sensors, it includes a distributed memory parallel cluster system and extensible radio 

models [247]. S2DB is a debugger for sensor networks based on DiSenS [248]. 
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91. WISDOM (Wsn mIddleware Service moDules simulatiOn platforM) is designed to simulate the system 

architecture and components of middleware in USN. It is capable for adding and testing various middleware algorithms 

[249]. 

92. Sensoria is a large-scale, user-friendly, and component-based simulator that can efficiently adapt to different 

levels of details and accuracy in simulation. Its GUI enables users to implement various scenarios and supports different 

graphical output formats for the results [250].   

93. Capricorn is a large-scale and discrete-event simulator for USN [251]. 

94. H-MAS (Heterogeneous, Mobile, Ad-hoc Sensor network) is mainly designed to provide a convenient platform 

for evaluating MAS configurations in various network layers. It also provides a user-friendly visualization tool for non-

expert users [252].    

95. SnSim is an event-driven software tool that is used to balance data quality and USN lifetime in sensor networks. 

It includes power consumption elements as well as a graphical interface to investigate various aspects of development 

[253].   

96. SNIPER-WSNim is a simulator specifically designed for USN. It aims to analyze the nodes behavior in USN as 

well as studying routing protocols and clustering [254].  

97. CaVi is a simulation environment to model a network as a collection of nodes in a sensor network. It provides a 

uniform interface to simulator Castalia for Mont-Carlo simulation and model checking, as well as tools to evaluate 

statistical information from simulation [255]. 

98. WISENES (WIreless SEnsor NEtwork Simulator) is a packet-level simulator, designed to simulate high-level 

USN protocols. It also provides accurate information about their performance in a real environment [68]. 

99. WSNGE is a scalable and user-friendly simulator with an extensible environment for USN. All functions can be 

run in scripting and visually, and users can view the results in a graphical environment [256].  

100. TikTak is a scalable simulator for USN. The emulation at the protocol-level increases the simulation speed, and 

low-level hardware emulation provides the ability to simulate the program and stack latency. It also, allows testing and 

debugging embedded codes [257].  

101. ShoX (Scalable ad HOC networK Simulator) is an object-oriented USN simulator. The architecture of the 

system is an OSI seven-layer model in which all layers are derived from an abstract super class. The most important 

advantage of this simulator is its comprehensive GUI for configuration, visualization, and statistics demonstration [67, 

258]. 

102. PASENS (Parallel Sensor Network Simulator) is an optimal-synchronous parallel discrete-event simulator that 

was designed to decrease the period of simulation in large-scale USN with large amount of details [16, 259]. 

103. Glonemo (GLObal NEtwork MOdel) is a framework for constructing ad-hoc sensor network models and 

analyzing them globally at different levels of abstraction. This means it models the hardware including a single node, the 

protocol layers, the application code, and the abstract model of the physical environment as sensed via sensors [260, 

261]. 

104. Maestro is a tool for orchestrating simulations in clouds. It enables the entire application to be simulated 

simultaneously using numerous sensors and actuator devices in an USN and the functionality of the whole system to be 

evaluated. Maestro can also be incorporated in parallel multiple serial simulations [262]. 

105. CupCarbon is a multi-agent and discrete USN design and simulation platform. The sensors can be deployed in 

Open Street Maps (OSM) and evaluate the behavior of the network and its cost [263, 264].   

106. TimSim is a time-step-based wireless ad-hoc network simulator. It directly simulates the source code of 

wireless ad-hoc network application and is able to represent the transmitted data at the bit level [265]. 
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107. JSensor provides parallel simulation for USN and distributed systems. It enables synchronous and 

asynchronous simulation of large sensor networks. The kernel of JSensor is based on Sinalgo. The multi-core architecture 

allows hundreds of nodes to be simulated simultaneously [266, 267]. 

Table 6. General description of specific-purpose simulators. 

N

o. 

Simulation 

Environment 
Designed By 

La

test 

Version 

Rel

eased 

Date 

Software Link 

4

2 
Atarraya 

University of 

North, Colombia; 

University of South 

Florida, USA 

1.

3 beta 

Sept

ember 

2009 

http://www.cse.usf.edu/~labrador/Atarraya/ 

4

3 

Cell-

DEVS 

University of 

Ottawa and Carleton 

University, Canada 

N/

A 

200

9 
http://cell-devs.sce.carleton.ca/mediawiki/index.php/Main_Page 

4

4 
ABMQ 

Sharif University of 

Technology, Iran; 

University of Oulu, 

Finland 

N/

A 

201

3 
N/A 

4

5 
MASON 

George Mason 

University, USA 
19 

19 

September 

2015 

http://cs.gmu.edu/~eclab/projects/mason/ 

4

6 
RepastSNS 

University of 

Barcelona, Spain 

N/

A 

201

3 
http://www.iiia.csic.es/~mpujol/RepastSNS/ 

4

7 
NetLOGO 

Northwestern 

University, USA 
6 

Dec

ember 

2016 

http://ccl.northwestern.edu/netlogo/index.shtml 

4

8 
SXCS 

University of 

Bristol, UK 

N/

A 

201

3 
N/A 

4

9 
UbiWise 

HP Laboratories 

Palo Alto, USA 

N/

A 

200

3 
http://home.comcast.net/~johnjbarton/ubicomp/ur/ubiwise/ 

5

0 
UbikSim 

University of 

Murcia, Spain 

2.

0 

201

1 
https://github.com/emilioserra/UbikSim/wiki 

5

1 
TATUS 

University of 

Dublin, Ireland 

N/

A 

200

4 
N/A 
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5

2 
UWSim 

University of Delhi, 

Indian Institute of 

Technology, India; 

Monmouth University, 

USA 

N/

A 

200

8 
http://www.irs.uji.es/uwsim/ 

5

3 
SUNSET 

Sapienza University 

of Roma, Italy 

2.

0 

201

3 

http://reti.dsi.uniroma1.it/UWSN_Group/index.php?page=sunset&sec=tec

h_desc 

5

4 
SUNRISE 

Sapienza University 

of Roma, Italy 

N/

A 
N/A http://fp7-sunrise.eu/ 

5

5 
DESERT 

University of 

Padova, Italy 

2.

1.0 

201

5 
http://nautilus.dei.unipd.it/desert-underwater 

5

6 

RECORD

S 

University of 

Padova, Italy 

N/

A 
N/A http://nautilus.dei.unipd.it/desert-underwater 

5

7 
Aqua-Net 

University of 

Connecticut, USA 

N/

A 

200

9 
http://obinet.engr.uconn.edu/wiki/index.php?title=Aqua-Net&redirect=no 

5

8 
SeaLinx 

University of 

Connecticut, USA 

N/

A 

201

3 

http://www.oceantune.org/index.php/79-ocean-tune/network-solution/71-

sealinx 

5

9 

Aqua-Net 

Mate 

University of 

Connecticut, USA 

N/

A 

201

3 
N/A 

6

0 
Aqua-Lab 

University of 

Connecticut, USA 

N/

A 

200

7 
http://obinet.engr.uconn.edu/wiki/index.php?title=Aqua-Lab&redirect=no 

6

1 
Aqua-Sim 

University of 

Connecticut, USA 

Be

ta 

200

9 
http://obinet.engr.uconn.edu/wiki/index.php?title=Aqua-Sim&redirect=no 

6

2 
Aqua-Tune 

University of 

Connecticut, USA 

N/

A 

200

9 
N/A 

6

3 

Aqua-

GloMo 

University of Delhi, 

India; Monmouth 

University, USA 

N/

A 

201

2 
N/A 

6

4 
Aquatools 

Jacobs University 

Bremen, Germany 

N/

A 

201

0 
N/A 

6

5 
UANT 

University of 

California, Los Angeles 

(UCLA), USA 

N/

A 

200

9 
https://github.com/nesl/uant 
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6

6 
WOSS 

University of 

Padova, Italy 

1.

3.5 

21 

February 

2013 

http://telecom.dei.unipd.it/ns/woss/ 

6

7 
AUWCN 

University of 

Applied Sciences Kiel, 

Germany 

N/

A 

201

2 
N/A 

6

8 
SAMON 

Pennsylvania 

State University, 

USA 

N/

A 

200

1 
N/A 

6

9 
UsNeT 

University of 

Portsmouth, UK 

N/

A 

201

3 
N/A 

7

0 
Prowler 

Vanderbilt 

University, USA 

1.

25 

28 

January 

2004 

http://www.isis.vanderbilt.edu/projects/nest/prowler/ 

7

1 

Wireless 

Sensor Network 

Localization 

Simulator 

Al-Azhar 

University, Egypt 

2.

1 

Jun

e 2013 

http://www.codeproject.com/Articles/606364/Wireless-Sensor-Network-

Localization-Simulator-v 

7

2 

Sensor 

Security 

Simulator (S3) 

Masaryk 

University, Czech 

Republic 

2.

0.0.26 

200

8 
http://www.fi.muni.cz/~xsvenda/s3.html 

7

3 
Shawn 

Braunschweig 

University of Technology, 

Germany 

N/

A 

8 

November 

2006 

https://github.com/itm/shawn/ 

7

4 

SIDnet-

SWANS 

Joint Lab of 

Samsung Advanced 

Institute of Technology & 

The City University of 

New York, plus 

Northwestern University, 

USA 

1.

5.6 

6 

January 

2011 

http://users.eecs.northwestern.edu/~ocg474/SIDnet.html 

7

5 

TRMSim-

WSN 

University of 

Murcia, Spain 

0.

5 

25 

March 

2012 

http://ants.inf.um.es/~felixgm/research/trmsim-wsn/ 

7

6 
WSNimPy 

Colorado School of 

Mines, USA 

1.

0 

3 

July 2010 
N/A 

7

7 
SENS 

University of 

Illinois at Urbana-

Champaign (UIUC) 

3.

1 

31 

January 

2005 

http://osl.cs.illinois.edu/sens/ 
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7

8 
IFAS Haifa University 

N/

A 

200

7 
N/A 

7

9 
Sidh 

University of 

Maryland, USA 

N/

A 

200

5 
N/A 

8

0 
SenSor 

University of 

Wolverhampton, UK 

N/

A 

200

6 
N/A 

8

1 
Dingo 

University of 

Wolverhampton, UK 

N/

A 

200

8 
https://code.google.com/p/dingo-wsn/ 

8

2 
SNAP 

Cornell University, 

USA 

N/

A 

200

3 
http://vlsi.cornell.edu/~rajit/ps/snap.ps.gz 

8

3 
GTSNetS 

Georgia Tech 

University, USA 

N/

A 

10 

October 

2008 

http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/index.html 

8

4 
IDEA1 

University of Lyon, 

France 

2.

0 

5 

January 

2015 

http://idea1inl.free.fr/IDEA1/ 

8

5 
WiseNet Google Project 

r3

29 

Jun

e 2011 
https://code.google.com/p/secWSNim/ 

8

6 
SimGate 

University of 

California, Santa Barbara, 

USA 

N/

A 

200

6 
N/A 

8

7 
SimSync 

Chinese Academy 

of Sciences and Hefei 

University of Technology, 

China 

N/

A 

200

6 
N/A 

8

8 

SensorMak

er 

Seoul National 

University and Soongsil 

University, Republic of 

Korea 

N/

A 

200

8 
N/A 

8

9 
OLIMPO 

University of 

Seville, Spain 

N/

A 

200

4 
N/A 

9

0 
DiSenS 

University of 

California, Santa Barbara, 

USA 

N/

A 

200

7 
N/A 
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9

1 
WISDOM 

Nanyang 

Technological University, 

Singapore 

N/

A 

200

8 
N/A 

9

2 
Sensoria 

The Hashemite 

University, Jordan 

N/

A 

200

7 
N/A 

9

3 
Capricorn 

Wayne State 

University, USA 

N/

A 

200

4 
N/A 

9

4 
H-MAS 

University of Notre 

Dame, USA 

N/

A 

200

3 
N/A 

9

5 
SnSim 

Northeastern 

University, China 

N/

A 

201

0 
N/A 

9

6 

SNIPER-

WSNim 

University of 

Technology, Australia; 

Wroclaw University of 

Technology, Poland 

N/

A 

200

9 
N/A 

9

7 
CaVi 

National ICT 

Australia and Macquarie 

University, Australia; 

Oxford University 

Computing Laboratory, 

UK 

N/

A 

200

8 
N/A 

9

8 
WISENES 

University of 

Tampere, Finland 

N/

A 

200

8 
N/A 

9

9 
WSNGE 

University of 

Geneva, Switzerland; 

University of Patras, 

Greece 

N/

A 

200

9 
N/A 

1

00 
TikTak 

University of 

Rome, Italy 

N/

A 

201

0 
N/A 

1

01 
ShoX T. S. developers 

1.

0 

28 

January 

2008 

http://shox.sourceforge.net/ 

1

02 
PASENS 

Yonsei University, 

Republic of Korea 

0.

90 

2 

August 

2007 

http://user.chol.com/~legnamai/pasens/ 

1

03 
Glonemo 

France Telecom 

R&D and VERIMAG, 

France 

N/

A 

200

6 
http://rml.lri.fr/glonemo/ 
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1

04 
Maestro 

Lulea University of 

Technology, Sweden 

N/

A 

201

4 
N/A 

1

05 

CupCarbo

n 

Lab-STICC, 

Virtualis, IEMN, XLim, 

France and UCD Dublin, 

Ireland and LIMED, 

Algeria 

2.

9.1 

201

6 
http://www.cupcarbon.com/ 

1

06 
TimSim 

Shandong 

University, China 

N/

A 

201

3 
N/A 

1

07 
JSensor 

Federal 

University of Ouro Preto, 

Brazil 

N/

A 

Aug

ust 2014 
http://www.joubertlima.com.br/JSensor/ 

USN emulation environments 

This sub-section introduces 23 emulation tools and their derivatives. For each tool, the corresponding 

designer/developer, the latest version, and the software link (if any) are provided in Table 7.  

TOSSIM and its derivatives 

1. TOSSIM is an efficient and scalable simulator for TinyOS USN. It has a simple operation environment by using a 

probabilistic bit error model, and supports various network interactions which make it expensive. It can also be used to 

discover bugs from network bit-level MAC interactions to queue overflows in ad-hoc routing protocol [268, 269]. The 

GUI of TOSSIM is known as JTOSSIM. Also, mTOSSIM is a simulator that estimates the battery lifetime in USN [270].  

2. PowerTOSSIM z is a plug-in which models power consumption for TOSSIM. The PowerTOSSIM  [271] plug-in 

for power consumption has not been fully imported to new versions of TOSSIM, so PowerTOSSIM z is developed to 

simulate MICAz motes. It offers a non-linear energy model to capture the behavior of modern batteries [272, 273]. 

3. TOSSF (TinyOS Scalable Simulation Framework) can create application types on the fly for use in the 

initialization of the model. It also provides the TinyOS programmer with a set of scripts which adapt the source code to 

run in the simulator. TOSSF was designed to enhance TOSSIM scalability [274].   

4. TYTHON is an extension to TinyOS’s TOSSIM simulator scripted in Python. Given its valuable library of 

scripting, TYTHON empowers users to develop dynamic and reproducible simulation scenarios [275, 276]. 

5. Mule is a hybrid simulator based on TOSSIM. It is mainly designed to test and debug USN through a 

combination of debugging multiple simulated motes on a host with message transmission and sensor data acquisition of 

physical motes [277].  

Avrora and its derivative 

6. Avrora is a scalable cycle-accurate sensor network simulator with precise timing. It is an instruction-level sensor 

network simulator which supports more than 10,000 nodes quickly and can handle 25 nodes in real-time [278, 279]. 

AvroraZ [280] is an extension to Avrora for improving MicaZ support and thereby provides IEEE 802.15.4 compliant 

emulations. 

7. AEON (Accurate Prediction of Power Consumption) is an extension of Avrora that is utilized to quantitatively 

predict the energy consumption and estimation of sensor networks [281].   

Other emulators 
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8. ATEMU is a fine-grained sensor network simulator aimed at bridging the gap between actual sensor network 

deployments and sensor network simulations. The main advantage of ATEMU is its ability to simulate a heterogeneous 

sensor network [282, 283].  

9. EmPro is an Environment/Energy Emulation and Profiling Platform for USN. It is designed to emulate 

environmental conditions, and all inputs to a sensor system including power sources, radio activities, and inputs from 

external sources. In profiling mode, it can capture the behavior of USN [284]. 

10. OCTAVEX ubiquitous sensor framework is intended to assist a wide range of end users, including systems 

integrators, software developers, and original equipment manufacturers in developing and handling USN. This 

framework is a backbone that provides user with the ability to implement an inexpensive end-to-end solution quickly and 

easily [56, 285].  

11. SensEH is software framework that enables developers to manipulate the power and speed of a simulation and 

the reality and accuracy of experiments. It relies on COOJA for emulating the actual code [286]. 

12. HarvWSNet is considered a suitable tool for the simulation of the network protocols and the lifetime of energy 

harvesting (EH) of USN. HarvWSNet is based on WSNet and MATLAB. Users may build multi-node network scenarios 

while imposing a concise description for node energy harvesting, management subsystem, and its time-varying 

environmental parameters [287]. 

13. UbiSec&Sens is an architecture for medium and large-scale USN. It contains a comprehensive toolbox of 

security aware ingredients for sensor network application progression [288]. 

14.  Emuli (Emulated Stimuli) is a method of effectively substituting synthetic data for sensor data on physical 

wireless nodes. It stores the model parameters rather than recording and playing back spot measurements that cause a 

compact data memory footprint [289]. 

15. MEADOWS is a software framework for Modeling, Emulation, and Analysis of Data Of Wireless Sensor 

networks. The framework is capable of answering questions about sensor query processing [290].   

16. Freemote Emulator is a lightweight and visual emulator for USN. It provides a lightweight emulation tool to 

combine motes and predefined code templates, as well as a layered architecture to produce quick running codes for nodes 

[291, 292].  

17. VMNet (Virtual Mote Network) is a sensor network simulator designed to realistically emulate USN at the CPU 

clock cycle level. It reports the performance of application in response time, as well as power consumption and emulates 

peripherals in detail [293, 294].  

18. WSim is a sensor node platform emulator which is designed to run, analyze, and debug applications for sensor 

networks [57]. It provides hardware platform simulation by microcontroller binary codes and simulates its behavior, as 

well as any event that occur in the platform [135, 295].  

19. EmStar is software for developing and deploying USN on Linux. It includes libraries to implement message-

passing IPC primitives to deploy, simulate, emulate, and visualize live systems. Further, it contains services to support 

sensing, networking, and time synchronization [296, 297].  

20. WiEmu is an open-source agent-based simulator and emulator for heterogeneous USN. Using WiEmu enables 

the evaluation of the network architecture, topology, and protocols, even when they running on real testbeds [298, 299]. 

21. WiSeREmulator is an emulation framework for structural health monitoring. It is comprised of two main 

components: a testbed of wireless sensor nodes, and a software emulation environment [300]. 

22. SUNSHINE is a scalable hardware-software emulator for sensor network applications. It provides data 

exchanges and time synchronizations across different simulation domains and simulation accuracy levels [301, 302]. 
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23. CORE (Common Open Research Emulator) is composed of Python modules and GUI for building emulated 

USN networks. These networks may be connected to live networks [303].  

Table 7. General description of USN emulators. 

N

o. 

Emulation 

Environment 
Designed By 

La

test 

Version 

Rel

eased 

Date 

Software Link 

1 TOSSIM 
University of 

California, Berkley, USA 

Ti

nyOS 

2.1.2 

20 

August 

2012 

http://www.tinyos.net 

2 
PowerTOS

SIM z 

Trinity College 

Dublin, Ireland 

4.

0 

26 

November 

2014 

https://www.scss.tcd.ie/disciplines/computer_systems/ccg/software/powert

ossimz/ 

3 TOSSF 
Dartmouth College, 

USA 

N/

A 

200

2 
N/A 

4 TYTHON 
University of 

California, Berkley, USA 

N/

A 

200

5 
http://www.tinyos.net/tinyos-1.x/doc/tython/tython.html 

5 Mule 
Kent State 

University, USA 

N/

A 

200

4 
N/A 

6 Avrora 

University of 

California, Los Angeles 

(UCLA), USA 

1.

7.117 

21 

August 

2013 

http://compilers.cs.ucla.edu/avrora/ 

7 AEON 
University of 

Tubingen, Germany 

N/

A 

200

5 
N/A 

8 ATEMU 
Maryland 

University, USA 

0.

4 

31 

March 

2004 

http://www.cshcn.umd.edu/research/atemu/ 

9 EmPro 
University of 

California, Irvine, USA 

N/

A 

200

6 
N/A 

1

0 

OCTAVE

X 

Octave 

Technology, Inc. 

Be

ta 

200

5 

https://www.millennium.berkeley.edu/pipermail/tinyos-help/2005-

September/012224.html 

1

1 
SensEH 

University of 

Trento, Italy 

N/

A 

201

4 
N/A 
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1

2 

HarvWSN

et 

CEA/Leti research 

institute and University of 

Rennes, France 

N/

A 

201

3 
N/A 

1

3 

UbiSec&S

ens 

Eurescom and NEC 

Europe Ltd., Germany 

N/

A 

200

9 
http://www.ist-ubisecsens.org/ 

1

4 
Emuli 

Kent State 

University, USA 

N/

A 

200

7 
N/A 

1

5 

MEADO

WS 

Hong Kong 

University of Science and 

Technology, China 

N/

A 

200

4 
N/A 

1

6 

Freemote 

Emulator 

University of 

Applied Science of 

Fribourg and University 

of Neuchâtel, Switzerland 

9 

20 

October 

2010 

https://www.assembla.com/wiki/show/freemote 

1

7 
VMNet 

Hong Kong 

University of Science and 

Technology, China 

1.

0.2 

30 

October 

2005 

http://www.cse.ust.hk/vmnet/ 

1

8 
WSim 

INRIA/Compsys 

and INRIA/ARES, France 

N/

A 

4 

January 

2012 

http://wsim.gforge.inria.fr/ 

1

9 
EmStar 

University of 

California, Los Angeles 

(UCLA), USA 

2.

5 

Oct

ober 2005 
http://cens.ucla.edu/projects/2007/Systems/EmStar/ 

2

0 
WiEmu 

Arab Academy for 

Science and Technology, 

Egypt 

N/

A 

18 

Apr 2014 
http://wiemu.sourceforge.net/apidocs/ 

2

1 

WiSeREm

ulator 

University of 

Houston, USA 

N/

A 

201

0 
N/A 

2

2 

SUNSHIN

E 

Virginia 

Polytechnic Institute and 

State University, USA 

N/

A 

201

1 
http://rijndael.ece.vt.edu/sunshine/index.html 

2

3 
CORE 

U.S. Naval 

Research Laboratory, 

USA 

4.

8 

8 

June 2015 
http://www.nrl.navy.mil/itd/ncs/products/core 

USN simulator and emulator features 

This section outlines the features of the most prominent USN simulation and emulation environments and 

frameworks. In this context, 22 of the above 130 tools are selected to be compared in detail: those which have been 
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supported by their developers, are popular, have published results, are usable, and have interesting characteristics and 

features. In this regard, Table 8 presents the features of the selected simulators and emulators, i.e., version type, license 

type, language/scripting used, open source capability, supported platform, and presence of on-line document or tutorial. 

Normally, the software is developed for academic, research, and commercial purposes. Academic and research versions 

of software are free of charge. For commercials, the licenses or affiliated packages are not provided for free for users (the 

underlined letter demonstrates the extensive use of the software in that version). There are two types of licenses: Gnu’s 

Not UNIX General Public License (GNU GPL) which allows end users to use, study, share, and modify the software 

freely, and Berkeley Software Distribution (BSD) license, which imposes minimal restrictions on the redistribution of 

software. A variety of languages and scripts is employed by which the simulators/emulators are designed with, i.e., Java, 

C, C++, and NesC (Network embedded system C language), where each one has its own pros and cons. Open source 

software has the benefits of modifiable source code and free extension of the software. But, open source software may 

not be user-friendly and convenient with GUI. The platforms that simulators/emulators run on vary from Microsoft 

Windows to Linux and Mac OS. On-line documents, manuals and tutorials may help users to install, get started with, and 

overcome any difficulties while using the software. 

Table 8. Specifications of USN simulators and emulators. 

Simulator/Emu

lator  

Vers

ion Type 
License Type 

Language/Scripti

ng 

Open 

Source 
Platform 

On-line 

Document /Tutorial 

Prowler r Free m-file No 
Linux, 

Windows, Mac OS 
Yes 

SENSE r Free (BSD) C++, CompC++ Yes 
Linux, 

Windows 
Yes 

Shawn r Free (BSD) C++ Yes 
Linux, 

Windows, Mac OS 
Yes 

JiST/SWANS r Free Java, Jython No - Yes 

COOJA r Free (BSD) Java Yes Linux Yes 

J-Sim r Free (BSD) Java, Tcl Yes 

Linux, 

Windows, Mac OS, 

Solaris 

Yes 

Ptolemy II r Free Java Yes 
Windows, 

Mac OS 
Yes 

SENS r Free (BSD) C++, NesC Yes Linux No 

NS-2 arc 
Free (Apache License v2, 

BSD,GNU GPL v2) 
C++, OTcl Yes 

Linux, 

Solaris, SunOS, 

Windows, Mac OS  

Yes 

NS-3 ar Free (GNU GPL v2) C++, Python Yes 

Linux, 

Windows, Mac OS, 

Solaris 

Yes 
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OMNeT++ arc Free C++, NED Yes 
Linux, 

Windows, Mac OS  
Yes 

Castalia ar Free (GNU GPL v2) C++ Yes 
Linux, 

Windows 
Yes 

OPNET ac 
Free (Academic) & Non-

free (Commercial) 
C, C++, Java No 

Linux, 

Windows 
Yes 

GloMoSim r Free C, Parsec Yes 
Linux, 

Windows 
No 

QualNet c Non-free C, C++ No 
Linux, 

Windows, Mac OS 
No 

Worldsens ar Free C No - Yes 

ShoX r Free (GNU GPL v2) Java No 
Linux, 

Windows, Mac OS 
No 

Wireshark 

(Ethereal) 
ar Free (GNU GPL) C, C++ Yes 

Unix, 

Windows, Mac OS 
Yes 

TOSSIM r Free (BSD) 
C++, NesC, 

Python 
Yes 

Linux, 

Windows  
Yes 

ATEMU ar Free (BSD) C Yes 
Linux, 

Windows, Solaris 
No 

Avrora r Free (BSD) Java Yes 
Linux, 

Windows, Mac OS 
No 

EmStar r Free C Yes 
Linux, 

Windows 
No 

In addition, for each of the selected simulators and emulators, Table 9 shows whether they are general or specific 

purpose simulator/emulators, support GUI, are object-oriented or component-based, support the level of abstraction, 

including the energy consumption models, and if any derivative or extension is developed. Simulators and emulators are 

either general (adaptive) or specific (new) environments. Some of the simulators and emulators are GUI-driven where the 

user can drag and drop the network components, while others require command line and scripting. Object-oriented based 

simulators and emulators focus on the relationships between classes and facilitate implementation and extensibility, but 

they lack scalability. On the other hand, component-based simulators and emulators focus on interchangeable code 

modules that function independently; thus, they are more extensible and scalable, but may be more difficult to implement 

in a modularized way [39]. The simulation abstraction level is described in section 2.1.4. Alphabetical letters are used to 

briefly address each simulator and emulator abstraction category: generic network simulator, code level simulator, 

firmware level simulator, algorithm level simulator, packet level simulator, and instruction level simulator. Energy 

consumption models consider whether sensor nodes have batteries or produce energy for efficient system design. 
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Simulators and emulators derivatives or extensions are developed to improve the simulators/emulators performance 

and/or overcome any deficiency. 

Table 9. Features of USN simulators and emulators. 

Simulator/Emu

lator 

General/Sp

ecific Purpose 

G

UI 

Object-

oriented/Component-

based 

Simulation 

Level Abstraction 

Energy 

Consumption 

Model 

Derivative/Extension 

Prowler Specific 
Y

es 
N/A FP No JProwler 

SENSE General 
N

o 

Component-

based 
P Yes N/A 

Shawn Specific 
N

o 
N/A C Yes N/A 

JiST/SWANS General 
N

o 
N/A GFP No N/A 

COOJA General 
N

o 
N/A GCF Yes SensEH 

J-Sim General 
Y

es 

Component-

based 
P Yes G-JSim 

Ptolemy II General 
N

o 
N/A F Yes Viptos, VisualSense 

SENS Specific 
N

o 

Component-

based 
GCP Yes N/A 

NS-2 General 
N

o 
Object-oriented GP Yes 

Mannasim, NRL Sensorsim, 

RTNS, SUNSET, Aqua-Sim, WOSS, 

TRAILS, PiccSIM 

NS-3 General 
N

o 
Object-oriented GP Yes Symphony 

OMNeT++ General 
Y

es 

Component-

based 
G Yes 

SENSIM, Castalia, MiXiM, 

NesCT, PAWiS 

Castalia General 
Y

es 
N/A GA Yes SolarCastalia 
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OPNET General 
Y

es 
Object-oriented FP Yes - 

GloMoSim General 
Y

es 
Object-oriented GP Yes Aqua-GloMo, QualNet 

QualNet General 
Y

es 
N/A GAP Yes sQualNet, SenQ 

Worldsens Specific 
Y

es 
N/A P Yes WSim, WSNet 

ShoX Specific 
Y

es 
Object-oriented N/A Yes N/A 

Wireshark 

(Ethereal) 
General 

Y

es 
N/A N/A No N/A 

TOSSIM Specific 
Y

es 

Component-

based 
CAI Yes 

JTOSSIM, mTOSSIM, 

PowerTOSSIM z, TOSSF, TYTHON, 

Mule 

ATEMU Specific 
Y

es 
N/A FI No N/A 

Avrora Specific 
N

o 
N/A I Yes AvroraZ, AEON 

EmStar Specific 
Y

es 

Component-

based 
GFI Yes N/A 

Qualitative information facilitates the comparison of the simulator/emulator and the process of choosing an 

appropriate one among several tools. Such classification has more adherents among students since it enables them to 

compare and assess the tools relatively. In this context, Table 10 gives qualitative details of the selected USN simulation 

and emulation tools for academic, research, and commercial versions. The first criterion, visualization, is related to the 

environment where the user is manipulating his/her practices. Visualization ranges from poor to excellent qualities. 

Flexibility deals with how many frequent runs and configuration changes may be applied to a simulator/emulator. 

Scalability, as explained before, represents the number of nodes which a simulator/emulator may handle. Existing 

protocols in simulators/emulators databases are shown by protocol availability criterion. Radio signals propagate via an 

antenna from a sensor node. The strength of signals is directly related to the distance. Therefore, the formidable presence 

of such modules in USN simulators/emulators is an advantage. The degree of simplicity represents how quickly 

individuals get familiar with tools, while interactivity demonstrates how easily individuals interact and exploit tools. 

Such criteria are considerable for academic and educational purposes where increased simplicity and interactivity makes 

the tool desirable and pleasant [91]. 

Table 10. Qualitative specifications of selected USN simulators and emulators for academic, 

research, and commercial versions. 
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Simulator/Emu

lator 
Visualization Flexibility  Scalability 

Protocol 

availability 

Radio signal 

propagation model 

Simplicity- 

Interaction (for 

academic version) 

Prowler Basic (r) Medium (r) Medium (r) Small (r) Basic (r) N/A 

SENSE Average (r) Medium (r) Medium (r) Medium (r) Average (r) N/A 

Shawn Average (r) Medium (r) High (r) Small (r) Average (r) N/A 

JiST/SWANS Basic (r) Medium (r) Very high (r) Medium (r) Good (r) N/A 

COOJA Good (r) High (r) Medium (r) Small (r) Good (r) N/A 

J-Sim Average (r) Medium (r) Low (r) Medium (r) Average (r) N/A 

Ptolemy II Good (r) Medium (r) Medium (r) Small (r) Good (r) N/A 

SENS Average (r) Medium (r) Medium (r) Small (r) Good (r) N/A 

NS-2 Good (ar) High (r) Medium (rc) Large (rc) Good (rc) Low-Medium  

NS-3 Good (ar) High (r) High (r) Medium (r) Good (r) 
Medium-

Medium 

OMNeT++ Excellent (ar) High (r) Medium (rc) Medium (rc) Good (rc) 
Medium-

Medium 

Castalia Excellent (ar) High (r) Medium (r) Medium (r) Good (r) 
Medium-

Medium 

OPNET Excellent (ar) N/A High (c) Large (c) Excellent (c) High-High 

GloMoSim Good (r) Medium (r) High (r) Medium (r) Average (r) N/A 

QualNet Good (r) N/A High (c) Medium (c) Good (c) N/A 

Wireshark 

(Ethereal) 
Good (r) Medium (r) N/A Large (r) N/A N/A 

TOSSIM Good (r) Medium (r) Medium (r) Small (r) Basic (r) N/A 
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ATEMU Average (ar) Medium (r) Low (r) Small (r) Basic (r) Medium-High 

Avrora Poor (r) High (r) Medium (r) Small (r) Average (r) N/A 

EmStar Good (r) Medium (r) Low (r) Medium (r) Average (r) N/A 

A simulator or emulator is designed or developed to fulfill the needs of a project or application. Therefore, we 

cannot generically and lucidly name a simulator/emulator as the perfect and flawless tool. What is desirable is to identify 

the positive and negative aspect of each and pick the one which best fits the application. In this regard, Table 11 

summarizes several key features and the limitations corresponding to each simulation and emulation tool. 

Table 11. Key features vs. limitations of USN simulators and emulators. 

Simulator/Emu

lator 
Key Features Limitations 

Prowler 

-Rich library of radio modules and protocols 

-Extendable for general platforms 

-Easy prototyping of applications  

-Integration of different optimization algorithms 

-Provide GUI and good visualization capabilities 

-Good extensibility via plug-ins 

-Provides only one TinyOS MAC protocol by default 

-No sensor node energy modeling 

-No 3D space simulations 

-No detailed antenna modeling in the package 

SENSE 

-Balanced between modeling methodology and 

simulation efficiency  

-Memory-efficient, extensible, scalable, and reusable 

-Supports parallel simulation 

-Offers different battery models  

-User-friendly and fast 

-Not accurate evaluation of USN research  

-Lacks a comprehensive set of models, routing protocols 

and a wide variety of configuration templates for USN 

-Absence of GUI 

Shawn 

-Able to simulate large-scale USN  

-Able to select the application preferred behavior  

-Full access to the communication graph 

-Protocols can be modified 

-Easy to determine the effect of channel parameters 

-Absence of GUI 

-MAC module is not extent  

-Lots of programming is required 

-Detailed simulations of issues like radio propagation 

properties or low-layer issues are not well considered 

-Simulation issues or lower layer issues are not 

considered 

-Limited to generate a postscript file 
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JiST/SWANS 

-Supports parallel simulation 

-Enables the analysis of large-scale network behavior 

-Lack of enough protocol models 

-Is a command-line-based simulator 

-Realization of specific application scenarios and the user 

interaction is difficult 

-Only focuses on static application scenarios 

-Absence of GUI 

COOJA 

-Considers both simulated hardware and software  

-Larger-scale behavior protocols and algorithms can be 

observed 

-Not extremely efficient 

-Supports a limited number of simultaneous node types 

-Making extensive and time dependent simulations 

difficult 

-Lack of sensor network protocols and applications 

-Absence of GUI 

J-Sim 

-Simulate real-time processes 

-Simulate radio channels and power consumptions 

-The execution time is much longer  

-Provides support for energy modeling, with the 

exception of radio energy consumption  

-Support mobile wireless networks and sensor networks  

-Good reusability and interchangeability  

-Easy installation on different platforms 

-Specific packages with both battery and power model 

-Provides GUI  

-Lots of memory space  

-Low efficiency of USN simulation  

-The only MAC protocol provided for wireless networks 

is 802.11.  

-Unnecessary run-time overhead in intercommunication 

model 

-Relatively complicated to use 

Ptolemy II 

-Provides Java packages that support different models of 

simulation paradigms 

-Models are constructed in an actor-oriented way, very 

similar to the component-based design 

-Absence of GUI 

-Does not support protocols above wireless medium 

-Only support sound sensors 
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SENS 

-Platform-independent  

-Users can assemble application-specific environments  

-Defines environment as a grid of interchangeable tiles 

-Not accurately simulate a MAC protocol  

-Provides support for sensors, actuators, and physical 

phenomena only for sound 

-Does not support physical phenomena of sensors or 

environmental effects 

-less customizable 

-Absence of GUI 

NS-2 

-Easy to add new protocols  

-A large number of protocols available publicly  

-Extensible features 

-Object-oriented design allows creating and using of 

new protocol  

-Excellent extensibility  

-Cannot simulate problems of the bandwidth or the power  

consumption in USN  

-Supports only two wireless MAC protocols, 802.11, and 

a single-hop TDMA protocol 

-Absence of GUI (employs visualization tool-NAM 

(Network Animator))  

-Limited scalability (in memory usage and simulation run 

time) 

-Requires user scripting knowledge and experience 

NS-3 

-Supports simulation and emulation modes 

-Supports a real-time schedule  

-Ability to support multiple radio interfaces and multiple 

channels 

-Better scalability compared with NS-2 

-A simulation script can be written as a C++ program, 

which is not possible in NS-2 

-Some restrictions on the customization exist 

-Lack of an application model  

-Does not run real hardware code  

-Does not scale well for USN  

-Absence of GUI (employs a package known as PyViz, 

which is a python based real-time visualization package) 

OMNeT++ 

-Provides a powerful GUI 

-Supports MAC protocols and some localized protocols  

-Simulate power consumptions and channel controls  

-Excellent extensibility 

-Fast processing time 

-Lack of available protocols in its library  

-Most of the available models have  been developed by 

independent research groups and do not share a common 

interface 

-Simple energy model 

Castalia 

-Physical process modeling, sensing device bias and 

noise, node clock drift, and several MAC and routing protocols 

implemented  

-Highly tunable MAC protocol and a flexible parametric 

physical process model 

-Is not a sensor specific platform  

-Not useful if one would like to test code compiled for a 

specific sensor node platform 



47 

 

OPNET  

-Free for academic use 

-Uses a hierarchical model to define each characteristic 

of the system  

-Capability of recording a large set of user defined 

results 

-Powerful GUI 

-Supports the use of modeling different sensor-specific 

hardware 

-Contains extensive libraries of accurate models 

-Easily extensible 

-Code is very well documented and ships with a large 

number of built-in protocols 

-Fast processing time 

-Scalability problems  

-Very expensive license 

 

GloMoSim 

-Supports protocols designed purely for wireless 

networks  

-Built using a layered approach  

-Uses standard APIs between different simulation layers 

-Processing time is medium  

-Large scalability 

-Good mobility models specify for wireless simulation  

-Transport layer and IP address support 

-Parallel simulation capability 

-Supports ad-hoc  networking protocols 

-GUI support 

-Not scalable of simulating sensor networks accurately  

-Does not support phenomena occurring outside of the 

simulation environment 

-Only supports simulating IP networks 

-Unavailability of new protocols 

-No specific routing protocols for sensor network 

-No energy consumption models 

 

QualNet 

-A comprehensive set of advanced wireless modules is 

provided  

-User-friendly tool 

-Sophisticated animation capabilities 

-Support for multi-processor systems and distributed 

computing 

-Extensibility is good 

-Annual license is expensive 

-Limited online resources and tutorials are available 
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Worldsens 

-Supports large-scale USN simulation 

-Language dependent: runs native code generated for the 

target microcontroller 

-Enables accurate time control 

-Node architecture is limited to systems based on 

MSP430 microcontroller from Texas Instruments and on RF 

transceivers from the same manufacturer 

-Co-simulation generates significant simulation time 

ShoX 

-GUI and visualization support 

-Architecture 

-Simulator user guide and documentation is unavailable 

-Lack of models 

Wireshark 

(Ethereal) 

-Supports hundreds of protocols 

-Supports rich display filter capabilities  

-Packet sniffer – live capture and offline packet analysis 

-Considerable protocol knowledge is need for deep 

analysis and inspection 

TOSSIM 

-Designed specifically for TinyOS applications to be run 

on MICA motes 

-Possible to build scalable and high fidelity simulations 

of full sensor network applications 

-Graphical User Support (Tiny ViZ)  

-Simple and powerful emulator for USN 

-Support thousands of Nodes  

-High degree of accuracy or running the application 

source code unchanged 

-Can emulate radio models and code executions 

-Good extensibility 

-Processing time is fast 

-TOSSIM would be effective for simulating thread-based 

systems 

-The cost of the large number context switches (even if in 

user-land) would be prohibitive 

-Not good for low level protocols (MAC)  

-Does not simulate the physical phenomena that are 

sensed  

-Each node must run the exact same code  

-Makes several assumptions about the target hardware 

platform  

-Does not model energy consumption by itself (possible 

with add-on PowerTOSSIMz) 

-Assumes that each node in the network must run the 

exact same code, so making it less flexible 

-Unsuitable for heterogeneous environments 

Avrora 

-Instruction-level simulator 

-Provides fast speed and good scalability 

-Enables validation of time-dependent properties of 

large-scale networks 

-Supports energy consumption simulation 

-Can simulate different programming code projects 

-Fails to model clock drift  

-50% slower than TOSSIM  

-Cannot model mobility 

-Absence of GUI 

-Cannot simulate network management algorithms 
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ATEMU 

-One of the most accurate sensor simulators  

-Uses a cycle-by-cycle strategy to run application code 

-Can simulate multiple sensor nodes at the same time 

-Has a large library of a wide range of hard devices 

-Can provide a very high level of detail emulation in 

USN 

-GUI can help users debug programs 

-Scalability problems  

-Long simulation time 

-Has fewer functions to simulate routing and clustering 

problems 

EmStar 

-Support modular programming model  

-Can mitigate faults among sensors  

-Evaluation of bugs is much easy  

-GUI support available  

-Fast  processing time  

-User friendly  

-Supports hybrid mode  

-Provides an option to interface with actual hardware 

while running a simulation  

-Compatible with two different types of node hardware 

-Limited scalability  

-Only run in a real time simulation  

-Supports only the code for the types of nodes that it is 

designed to work with 

Performance assessment of simulators and emulators  

Selecting the most appropriate simulator or emulator for USN purpose among the numerous versions available 

remains a controversial task. Several studies have evaluated the performance of USN simulators and emulators and 

analyzed and compared the results with each other in terms of popularity, architecture, OS, credibility, accuracy, 

scalability, execution speed and time, CPU usage, visualization and GUI, debugging, and even learning difficulty criteria. 

Each study has defined a scenario comprised of several parameters. In this context, Table 12 addresses these efforts in 

brief. 

Table 12. Comparative studies of the performance of USN simulators and emulators. 

Ref

erence 

Compared 

Simulators/Emula

tors  

Scenario Parameters Performance assessment 

[30

4] 

NS-2, NS-

3, GloMoSim, 

and OMNet++ 

Simulation Time: 500 s 

X, Y Dimensions: 1000 x 1000 

Mobility Model: None 

Packet size: 512 kb 

Number of nodes vs. Memory usage 

Number of nodes vs. CPU utilization 

Number of nodes vs. Computational time 
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Number of nodes: 400-2000  

Routing protocol: AODV 

[75] 

NS-2, 

TOSSIM, and 

Shawn 

Simulation Time: 60 s 

Rate of sending packet: 250 ms 

X, Y Dimensions: 500 x 500 

Number of nodes: 10000 

Number of nodes vs. Abstraction level 

Number of nodes vs. CPU time 

Number of nodes vs. Memory usage 

[74] 

Castalia, 

MiXiM, and 

TOSSIM 

Number of nodes: 15 

Packet Reception Rate (PRR) for different log normal shadowing 

settings in Castalia 

PRR for different noise floor in Castalia 

PRR for different modulation techniques in Castalia 

PRR for different deciders in MiXiM 

PRR for different noise floor in TOSSIM 

PRR for different noise models in TOSSIM 

[30

5] 

NS-2, 

OMNeT++, and 

OPNET 

Application: Fire fighter 

Simulation Time: 500 s 

Rate of sending packet: 0.2 s 

Node speed: 0.5 km/h 

Number of nodes: 25 

Packet size: 32 bytes 

Routing protocol: AODV 

Throughput and delay at firefighter 

Throughput and delay at command post node 

Received throughput at fire fighter node 

Received throughput at incident commander node 

Firefighter to incident commander packet delay 

Firefighter to incident commander packet delay frequency 

distribution 

[30

6] 

OPNET, 

GloMoSim, and 

NS-2 

Terrain size: 1km x 1km 

Number of nodes: 50 

Node placement: uniform 

No. of broadcasting nodes: 10 

No. of broadcasts per node: 100 

MAC protocol: 802.11 without 

RTS/CTS 

Bit rate: 2 Mbps 

Wireless propagation model: 

FreeSpace 

Antenna Type: Omni directional 

Success rate vs. Power range 

Success rate vs. Mobility 

Overhead vs. Mobility 

Time delay vs. Mobility 
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Mobility model: Random waypoint 

Minimum node speed: 0 m/s 

[24

0] 

IDEA1 and 

NS-2 

Number of nodes: 31 

Simulation Time: >1000 s 

Accuracy evaluation, simulation time, and power dissipation analysis 

[18

4] 

SXCS and 

OMNet++ 
Number of nodes: 10-1000 

Agents processing time vs. Number of nodes 

Remaining energy profiling 

Memory usage vs. Number of nodes 

Packet loss vs. Number of nodes 

[30

7] 

NS-2, NS-

3, 

OMNet++/Castali

a, TOSSIM, and 

J-Sim 

Simulation Time: 500 s 

X, Y Dimensions: 1000 x 1000 

Mobility Model: None 

Packet size: 512 kb 

Number of nodes: 400-2000 

Routing protocol: LEACH 

Number of nodes vs. Memory usage 

Number of nodes vs. CPU utilization 

Number of nodes vs. Computational time 

[30

8] 

NS-2 and 

JiST/SWANS 

Number of nodes: 200-1000 

Transmission range: 250 m 

Field: 2368-5296 m 

Mobility: Random waypoint 

Max speed: 20 m/s 

Min speed: 1 m/s 

Pause: 0s 

Duration: 120 s 

Warm up: 20 s 

Cool down: 10 s 

Noise: Independent 

Path loss: Tworay 

Fading: None 

Packet loss: None 

Traffic: 1 packet/min 

Number of nodes vs. Delivery success ratio 

Number of nodes vs. Hopcount of message transfer 

Number of nodes vs. Average message delay 

Number of nodes vs. Processing time of CGGC routing protocol 

Number of nodes vs. Processing time of AODV routing protocol 

Number of nodes vs. Memory usage 
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Routing protocol: CGGC, AODV 

Beaconing: 1 Hz 

Packet caches: Unlimited 

Destination radius: 100-300 m 

[30

9] 

JiST/SWA

NS and 

OMNet++/INET

MANET 

VANET scalability: Circular road 

and rectangular road 

Number of Vehicles: >5000 

Execution times: 3-10 

Routing protocol: AODV 

Number of vehicles vs. Overall time for simulations 

Number of vehicles vs. Memory consumption 

[31

0] 

OMNeT++, 

NS-2, and 

OPNET 

Number of nodes: 500-2000  

X, Y Dimensions: 500 x 500 m 

Simulation time: 300 s 

Query generating nodes: 10 and 100 

Comparison of delivery ratio  

Execution time of 10 queries generate nodes (SimpleMAC) 

Execution time of 100 queries generate nodes (SimpleMAC) 

Memory usage of 10 queries generate nodes (SimpleMAC) 

Memory usage of 100 queries generate (SimpleMAC) 

Execution time of 10 queries generate nodes (IEEE 802.11MAC) 

Execution time of 100 queries generate nodes (IEEE 802.11 MAC) 

Memory usage of 10 queries generate nodes (IEEE 802.11 MAC) 

Memory usage of 100 queries generate nodes (IEEE 802.11 MAC) 

[15

0] 

NS-2 and J-

Sim 

Number of sink nodes: 1 

Number of target nodes: 2 

Number of sensor nodes: n2 − 1  

X, Y Dimensions: 1500 × 1500 m 

Target nodes speed: 10 m/s 

Nodes’ sensing radius: 200 m 

Simulation time: 1000 s 

Routing protocol: AODV (Scenario 

A) 

Routing protocol: GPSR (Scenario 

B) 

Network size n2 + 2 vs. Execution time 

Network size n2 + 2 vs. Number of events 

Memory usage before simulation start vs. Network size n2 + 2 

Memory usage before simulation ending vs. Network size n2 + 2 

Execution time vs. Network size n2 + 2 (GPSR routing protocol) 

Number of events vs. Network size n2 + 2 (GPSR routing protocol) 

Memory usage before simulation start vs. Network size n2 + 2 (GPSR 

routing protocol) 

Memory usage before simulation ending vs. Network size n2 + 2 

(GPSR routing protocol) 

[31

1] 

TOSSIM, 

TimeTOSSIM, 

and Avrora 

Number of nodes: 650  

Simulation time: <1000 s 

Scalability comparison: Number of nodes vs. Time 

Accuracy, speed, and energy consumption 
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[11

8] 

NS-2 and 

LSU 

SensorSimulator 

Number of nodes: 5-200  

MAC layer: 802-11 MAC  

Number of nodes vs. Delivery ratio 

Execution time for 10 queries for 150 simulation seconds  

Execution time for 100 queries for 150 simulation seconds 

Memory utilized to setup the network for 10 queries 

Memory utilization during simulation for 10 queries 

Memory utilized to setup network for 100 queries 

Memory utilization comparison during simulation for 100 queries 

Directed Diffusion-GEAR-MAC802.11 execution time for 10 queries 

simulated for 300 simulation seconds 

Directed Diffusion-GEAR-MAC802.11 memory usage for 10 queries 

simulated for 300 simulation seconds 

One approach for conducting a relative comparison of USN simulation/emulation performance is to define 

scenario(s). Each scenario is comprised of a set of parameters to run. These parameters may vary with respect to 

simulators/emulators throughput and defined application; however, such tool assessment has some general parameters in 

common. We categorize these parameters into four groups of node, execution, terrain, and other, as presented in Figure 7. 

The node category comprises several qualitative and quantitative features, which are attributed to the sensor nodes, 

ranging from sensor numbers to sensor functionalities. The execution category is dedicated to all the settings for carrying 

out a simulation/emulation, such as simulation time, packet characteristic, protocol type, etc. The terrain (field) category 

is one of the most important components in simulation/emulation. In real-world applications the sensed data from the 

sensors need to be routed to the targeted sensors/services. Any physical intruder (e.g., wall, topography) that cause 

problem in proper transmission of these data needs to be simulated in advance. Finally, there are several general and 

specific components that do not fall into the earlier categories, which are placed in other category. 

 

Figure 7. Scenario parameters for USN simulation and emulation. 

Although Table 3 has proposed several features for simulation assessment, the most critical one, i.e., scalability (or 

number of nodes), needs to be assessed specifically for USN simulators and emulators. This feature demonstrates the 

ultimate throughput of a simulator/emulator in handling a number of sensor nodes effectively. Scalability is so imperative 

that the majority of comparative studies in Table 12 have compared it against other performance assessment features (see 

Figure 8). A review of the literature acknowledges that the number of sensor nodes directly affects other features, as well 

as the final performance of the simulator/emulator.    

Scenario parameters 

Dimension 

Topography 

Simulation time 

Routing protocol 

Packet size 

No. of sensing nodes 

No. of sink nodes 

No. of target nodes 

No. of broad casts per node 

Traffic 

Fading 

Noise 

Static node 

Maximum speed 

Topology  
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Figure 8. Pairwise performance assessment: number of nodes feature versus other 

simulator’s/emulator’s features. 

Scalability and the potential number of sensor nodes deployed in simulation and emulation environments have been 

challenging tasks. Given the widespread and pervasive projects of USN and emerging technologies in USN, simulation 

and emulation by more sensor nodes can be an advantage. However, a review of the literature ascertains that higher 

scalability and more sensor nodes heavily increase the execution time, CPU utilization, and memory usage, which affect 

the delivery success ratio of messages and in some cases delay the message. Figure 9 demonstrates the approximate 

number of sensor nodes that a simulator and emulator can handle effectively. 
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Figure 9. Simulators’ and emulators’ scalabilities: approximate number of supported sensor 

nodes. 

Simulators’ and emulators’ designers and developers have employed a variety of programming languages for 

generating such tools. In this research, the programming languages of 102 out of 130 simulators and emulators were 

found in their corresponding websites and tutorials as well as the articles that firstly introduced the tools. A review of 

literature demonstrates that almost half of the simulators and emulators are scripted by C/C++ and their derivatives (e.g., 

C++ Builder, CompC++, NesC, PARSEC), while 39 percent have made use of Java programming language. In this 

regard, C/C++ engines are expected to have better functionality and productivity than their Java counterparts. Python is 

used for developing 6 percent of simulators and emulators. A small proportion of simulators or emulators have utilized 

other programming languages (e.g., C# and m-file). This information is illustrated as a chart in Figure 10. 

 

Figure 10. Percentage of simulator/emulator programming languages. 

Lesson Learned, Open Issues, and Future Directions 

In this section, we first summarize the lesson learned from literature, and then point out some general and specific 

research directions for USN simulators and emulators.  

Lesson Learned 

This survey has presented several lessons. We have highlighted some tips for students and researchers, for whom 

this paper has been targeted at. The study should clarify the choice of a simulator or an emulator. The goal of design and 

development of a simulator/emulator varies among the available versions. Each tool has its own advantages and 

disadvantages. So, choose the one that best fits your application, effort, time, and budget. Most of the presented USN 

simulators and emulators fall into research and commercial domains. Among the simulators, NS-2, OPNET, and 

QualNet, and for the emulators, TOSSIM, have gained more popularity. From an educational perspective, limited tools 
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are available that have an academic version released. Among them, OPNET IT Guru and OMNet++ have gained more 

attention, especially due to their free license, rich tutorial, and excellent GUI. A good GUI facilitates interaction between 

users and software by dragging and dropping the simulation elements and presenting the outputs graphically. However, if 

a student neglects the GUI and can get familiar with scripting, NS-2 and NS-3 are suitable educational tools. Last but not 

least, an open source facility enables modification of current programs and free extension of the software. However, they 

may not be user-friendly and convenient with GUI. NS-2 and OMNeT++ are two frequently used open source software. 

Choosing an authoritative tool that provides flexible modeling and validation can drastically improve the results. 

Also, the tool should enable statistical analysis of output data. Users/developers should ensure the validity of the model 

inputs and outputs. Researchers and tool developers should consider the positive and negative aspects of 

simulators/emulators, appropriate programming language, architecture (i.e., component-based or object-oriented 

architecture), degree of simulator/emulator complexity, presence and shortage of features, parallel execution, real 

deployment of sensor nodes, and several other factors. 

Researchers normally execute simulation/emulation repeatedly by using one simulator/emulator. It should be noted 

that execution of several runs does not necessarily results in better results. The simulation/emulation outputs are directly 

related to the mathematical models developed in that specific tool. The variation in the built models leads to 

discrepancies among the simulation/emulation outputs. Although simulation/emulation models should be built credibly, 

more complex models require more computational time and resource. A good USN simulator/emulator, however, offers a 

balance between several criteria, such as accuracy, scalability, feature, extendibility, scripting language, GUI support, 

and ease of use.  

Future Work 

Many types of research have been conducted addressing simulation and emulation issues in USN. However, there 

are still a lot of potential future studies which either remain unsettled or unexplored comprehensively. We classify them 

into general and specific open issues. From the general perspective we have identified the following trends. 

A promising future work relates to deeply reviewing other performance evaluation techniques (i.e., analytical 

modeling, physical testbed, and real world experimentation) suitable for USNs along with addressing a standardized 

criteria list for assessing the performance of such techniques. 

Interoperability of USN simulators/emulators is a topic that has not been deeply explored so far; that is, developing 

integrated simulators/emulators to support a wide range of features. In this context, one tool can be complemented by 

other tools for their distinctive features such that the output of one can be imported as an input to the other one. To this 

end, a model can be analyzed through different simulation tools synchronously/asynchronously. This enables the 

strengths and weaknesses of the model to be revealed and makes the model possible to be improved in the design 

process. Experimenting with multiple simulators/emulators is a non-trivial challenge and should be supported with a 

common API for all participants.  

USN has gained attention in different indoor and outdoor applications, such as health, transportation, agriculture, 

and military, to name a few [312-316]. These applications have specific characteristics that are coupled with technology. 

Therefore, there is an enormous potential to run and test application-specific scenarios through USN simulators and 

emulators. Since simulations and emulations can reveal design flaws to a large extent, the scenarios need to compare 

different parameters to increase the knowledge about impacting factors. 

Given the ability of simulators/emulators in modeling sensor networks in diverse scales, exploring their capabilities 

in terms of terrestrial, underground, underwater, multi-media, and mobile USNs is an interesting area of research that can 

be carried out in future. 

Besides the aforementioned general directions, we also highlight the following specific issues, which are not fully 

addressed or remain unaddressed by the current USN simulators and emulators so far. A promising future direction can 

be toward extending the functionality of simulators and emulators, especially the open-source ones, which suffer from 

the appropriate extension/feature of the USN emerging technologies (e.g., cognitive radio sensor networks, the Internet of 

Things (IoT), cloud computing, etc. [317]). 
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Cognitive radio sensor networks: In applications that require a large number of sensor nodes, the available 

bandwidth may not suffice to support all the transmissions, which can result in loss of useful data. In order to minimize 

data loss, an emerging trend in USNs is to equip the wireless sensor nodes with cognitive radio (CR) technology. CR is 

an adaptive, intelligent radio and network technology, capable of automatically detecting vacant channels (termed 

spectrum sensing) in a wireless spectrum, change their transmission parameters accordingly (termed spectrum 

decision), and making use of these available channels in an opportunistic manner, improving the overall spectrum 

utilization [318]. Incorporating cognitive radio capability in sensor networks yields a new sensor networking paradigm, 

termed cognitive radio sensor networks (CRSNs). Depending on the application, a USN composed of sensor nodes 

equipped with cognitive radio may benefit from its potential advantages. Several researches have investigated the 

theories behind this technology, such as radio resource allocation in CRSNs [319], channel bonding in CRSNs [320], and 

adaptive medium access control in CRSNs [321], to name a few. In spite of these considerations, the majority of 

researchers are using analytical methods to understand the behavior of CRSNs and a very few simulation models at 

present are providing support for combined features of USNs and CRNs. Accordingly, CRSNs has not been a main 

research focus in USN simulators and emulators. As an exceptional and pioneering study, a NS-2 based CRSN simulator 

model was proposed by [322]. This model supports the fundamental requirements of a CR-based wireless sensor 

network. As the research trend is shifting towards CRSNs technology, there is a possibility of examining different 

aspects of such technology and practically identifying the challenges in multiple applications (e.g., indoor sensing, 

multimedia, multiclass heterogonous sensing, real-time surveillance, etc.) by USN simulators and emulators for future 

research.  

Energy management and harvesting: In USN applications static and dynamic sensor nodes are normally dispersed 

over a large area while they are prone to failure due to energy depletion. Exploiting power suppliers from fixed utilities 

may not be technically or economically possible in all practices. Therefore, energy management, harvesting, and 

replenishment become crucial to maximizing sensor networks’ lifetimes and throughputs [323, 324]. Despite the plethora 

of theories relevant to these issues, very few researches have pointed out the difficulties in energy efficient protocol 

design using simulators/emulators; for example, [325] analyzed and compared a limited number of routing protocols for 

energy harvesting USNs in different scenarios by the Castalia simulator. Therefore, measuring the energy consumption 

of the (mobile) sensor nodes and experiencing energy efficient protocols are topics that have not been deeply explored in 

simulators/emulators thus far. More specifically, energy saving mechanisms (e.g., energy-efficient routing protocol, 

power-conserving MAC protocol, battery management, energy-efficient packet scheduling, etc. [326]) besides renewable 

energy resources (e.g., light, vibration, heat, radio frequency, wind, etc. [324]) are the issues that can be individually or 

collaboratively investigated by different applications in USN simulators and emulators.   

The Internet of Things: During recent years, a lot of attention has been towards establishing infrastructures for smart 

and context-aware environments [327]. In this respect, in the Internet of Things (IoT) paradigm, concurrent collection of 

data from numerous devices and communications between them has been a challenging task for network technologies. To 

overcome this challenge, sensor networks try to complement the sensing and communication infrastructures. The 

integration of sensor networks and IoT is theoretically discussed in [328]. Also, the review by [15] demonstrates the 

utility of IoT and USN integration in real-world applications. Therefore, in the light of USN simulators and emulators, 

exploring the scalability and topology issues along with communication protocols, targeting at IoT applications, can be 

an interesting topic for prospective research. 

Cloud computing: For ubiquitous applications, the collected data by sensor nodes need to be available at any time, at 

any place. However, due to the limitations of sensors in storage, bandwidth, battery power, processing, security, etc., one 

drastic solution for communication among sensor nodes is using cloud infrastructure. High-performance computing, less 

maintenance, seamless availability, and scalability are only a few features of cloud computing. Therefore, combination of 

USNs with clouds enables sharing and analyzing real time sensor data pervasively on-the-fly. A USN-Cloud platform 

normally comprises of USN, cloud infrastructure, and client(s). USN consists of physical wireless sensor nodes to sense 

the environment and route the data to the cloud. The cloud provides the client(s) on-demand data/service over the 

Internet. Despite the effectiveness of USN-Cloud computation, very few works have undertaken specific features of it. 

[329] presented a model by combining the concept of USNs with the cloud computing paradigm, and demonstrated that 

how both can benefit from this combination. [330] proposed a novel framework to integrate the cloud computing 

paradigm with USN, aiming to facilitate the shift of data from USN to the cloud environment. In this perspective, more 

general models must be further developed and be evaluated in different scenarios to measure the advantages and 

shortcomings of USN-Cloud combination. A large part of the work can be handled in USN simulators and emulators 

through developing patches/extensions. Then, the output of simulators/emulators can be imported as input for cloud 

computing. 
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Conclusion 

The purpose of this study was to expand the understanding of researchers and tool developers about the available 

simulation and emulation tools for USN. We believe this study will aid them in choosing an appropriate simulator and/or 

emulator for sensor network performance testing based on their requirements and constraints. In this context, this paper 

overviewed 130 simulator and emulator environments and frameworks that were originally designed or adapted for USN. 

The brief explanation provided for each tool accompanied by corresponding designer/developer, the latest version, and 

the software link. A number of prominent USN simulators and emulators were qualitatively and quantitatively compared 

based on multifarious criteria: those that are available for the community and supported by their developers, are popular, 

have published results, and have interesting characteristics and features. The strengths and weaknesses of each were 

comparatively addressed as well. Several studies that cited relative performance analysis of simulators and emulators 

were introduced. Finally, we summarized with some recommendations for potential future works. We conclude from the 

observations that choosing an appropriate simulator/emulator and building a correct simulation model are two important 

aspects for USN. However, there is no standard simulator or emulator for all USN applications; its choice depends on the 

operational environment. 
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