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A B S T R A C T

Reliable and predictable ground operations are essential for punctual air traffic movements.
Uncertainties in the airborne phase have significantly less impact on flight punctuality than
deviations in aircraft ground operations. The ground trajectory of an aircraft primarily consists of
the handling processes at the stand, defined as the aircraft turnaround, which are mainly con-
trolled by operational experts. Only the aircraft boarding, which is on the critical path of the
turnaround, is driven by the passengers’ experience and willingness or ability to follow the
proposed procedures. We used a recurrent neural network approach to predict the progress of a
running boarding event. In particular, we implemented and trained the Long Short-Term Memory
model. Since no operational data of the specific passenger behavior is available, we used a re-
liable, validated boarding simulation environment to provide data about the aircraft boarding
events. First predictions show that uni-variate input (seat load progress) produces insufficient
results, so we consider expected passenger interactions in the aircraft cabin as well. These in-
teractions are aggregated to a prior-developed complexity metric and allow an efficient eva-
luation of the current boarding progress. With this multi-variate input, our Long Short-Term
Memory model achieves appropriate prediction results for the boarding progress.

1. Introduction

From an air transportation system view, a flight could be seen as a gate-to-gate or an air-to-air process. Whereas the gate-to-gate is
more focused on the aircraft trajectory flown, the air-to-air process concentrates on the airport ground operations to enable efficient
flight operations proving reliable departure times. Typical standard deviations for airborne flights are 30 s at 20min before arrival
(Bronsvoort et al., 2009), but could increase to 15min when the aircraft is still on the ground (Mueller and Chatterji, 2002). To
evaluate these deviations in an economic context, Cook and Tanner (2015) provide reference values for the cost of delay to European
airlines. The average time variability (measured as standard deviation) is, in the flight phase (5.3min), smaller than the variability of
both departure (16.6min) and arrival (18.6 min) (Eurocontrol, 2017). If the aircraft is departing from one airport, changes with
regards to the arrival time at the next are comparatively small (Tielrooij et al., 2015). Current research in the field of air traffic
management primarily addresses the economic and ecological impact of flight trajectories (Rosenow et al., 2017a,b, 2018; Niklaß
et al., 2017) but has to include efficient aircraft ground operations as well in order to ensure an efficient aircraft trajectory over the
day of operations (Rosenow and Schultz, 2018).

The aircraft turnaround on the ground consists of seven major ground handling operations at the stand: deboarding, catering,
cleaning, fueling and boarding as well as the parallel processes of unloading and loading (cf. Airbus, 2017). All these handling
processes follow clearly defined procedures and are mainly controlled by ground handling, airport or airline staff (Fricke and Schultz,
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2008, 2009). In particular, aircraft boarding is driven by passengers’ experience and willingness or ability to follow the proposed
procedures and is disturbed by individual events, such as late arrivals, specific (high) numbers of hand luggage items, or priority
passengers (privileged boarding). To provide reliable values for the target off-block time (SESAR, 2014), which is used as a planning
time stamp for the subsequently following departure procedures, all seven major turnaround processes are assessed on prediction.
With the given focus on the aircraft boarding, this stochastic and passenger-controlled process makes it difficult to reliably predict the
turnaround and target off-block time, even if boarding is already in progress.

Today, there are no operational data available from inside the aircraft cabin, which could provide actual status information about
the current boarding progress. Data from small-scale laboratory tests (cf. Gwynne et al., 2018) or field measurement campaigns
(Schultz, 2018a) only provide input to calibrate models for simulation of aircraft boarding. Therefore, a developed and validated
stochastic boarding model (Schultz, 2018b) is used to provide a comprehensive set of data from inside the aircraft cabin (Schultz,
2018c). In this paper, we develop and implement a recurrent neural network approach to predict the boarding progress using this
quasi-actual cabin information. It is expected that a future connected aircraft cabin will provide a sensor environment, which could
be used as operational input for a real-time prediction of the boarding progress and sustainably improve the turnaround management.

1.1. Status quo

Our research is connected to three different topics: aircraft turnaround (focus on boarding), passenger behavior (complexity
metric), and machine learning (recurrent neural networks). Comprehensive overviews are provided by Schmidt (2017) for aircraft
turnaround, by Jaehn and Neumann (2015) for boarding, and by Nyquist and McFadden (2008) and Mirza (2008) for the corre-
sponding economic impact (cf. Cook and Tanner, 2015). Relevant studies include, but are not limited to, the following current
examples.

The aircraft turnaround, as part of the aircraft trajectory over the day of operations, has to be part of optimization strategies for
minimizing flight delays (Montlaur and Delgado, 2017) and ensuring flight connection considering operational uncertainties (cf.
Oreschko et al., 2011, 2012). In this context, turnaround absorbs inbound delay (Fricke and Schultz, 2009) and could enhance slot
adherence at airports (Ivanov et al., 2017) or mitigate problems of push-back scheduling (Du et al., 2014). Schultz et al. (2013a)
provide a microscopic turnaround model aiming at open and closed-loop process control for higher automation levels in turnaround
management. Kafle and Zou (2016) focused on an inter-aircraft propagated delay, since individual delays could result in parallel
demand of turnaround resources (personnel, space, and equipment). Furthermore, delayed use of infrastructure may cause excessive
demand in later time frames, and both turnaround stability and resource efficiency will provide significant benefits to airline and
airport operations (Fricke and Schultz, 2009; Grunewald, 2016). Okwir et al. (2017) explore turnaround performance focusing on
collaborative management involving all stakeholders. Mota et al. (2017) analyze turnaround for identification of variables that affect
the future performance. When airports are dealing with heavy traffic demand, operators are often pushed to the limit of their
available capacity. To efficiently handle airport operations, Mirkovic et al. (2016) provide a tool for an interactive resource allo-
cation. When introducing new aircraft using alternative energy concepts, Schmidt et al. (2016) aim at compatibility with airline
operations, existing ground handling procedures and airport infrastructure requirements.

With a focus on efficient aircraft boarding, Milne and Kelly (2014) develop a method that assigns passengers to seats so that their
luggage is distributed evenly throughout the cabin, assuming a less time-consuming process for finding available storage in the
overhead bins. Qiang et al. (2014) propose a boarding strategy that allows passengers with a large amount of hand luggage to board
first. Milne and Salari (2016) assign passengers to seats according to the number of hand luggage items and propose that passengers
with few pieces should be seated close to the entry. Zeineddine (2017) emphasizes the importance of groups when traveling by
aircraft and proposes a method whereby all group members should board together, assuming a minimum of individual interferences
in the group. Bachmat et al. (2009) demonstrate with an analytical approach that boarding efficiency is linked to the aircraft interior
design (seat pitch and passengers per row), so Chung (2012) and Schultz et al. (2013b) address the aircraft seating layout and indicate
that alternative designs could significantly reduce the boarding time for both single- and twin-aisle configuration. Fuchte (2014)
addresses aircraft design and, in particular, the impact of aircraft cabin modifications with regard to the boarding efficiency. Schmidt
et al. (2015, 2017) evaluate novel aircraft layout configurations and seating concepts for single- and twin-aisle aircraft with 180–300
seats. The innovative approach to dynamically changing the cabin infrastructure through a Side-Slip Seat is evaluated by Schultz
(2017). In the context of calibration (input parameter) and validation (simulation results), few experimental tests have been con-
ducted. Steffen and Hotchkiss (2012) tested airplane boarding methods in a mock Boeing 757 fuselage. Kierzkowski and Kisiel (2017)
provide an analysis covering the time needed to place items in the overhead bins depending on the availability of seats and occupancy
of the aircraft. Gwynne et al. (2018) perform a series of small-scale laboratory tests to help quantify individual passenger boarding
and deplaning movement considering seat pitch, hand luggage items, and instructions for passengers. Schultz (2018a) provides a set
of operational data including classification of boarding times, passenger arrival times, time to store hand luggage, and passenger
interactions in the aircraft cabin as a fundamental basis for boarding model calibration. Miura and Nishinari (2017) conducted an
experiment to understand how passengers assessed boarding/deboarding times.

If the research is aimed at finding an optimal solution for the boarding sequence, evolutionary/genetic algorithms are used to
solve the complex problem (e.g. Li et al., 2007; Wang and Ma, 2009; Soolaki et al., 2012; Schultz, 2017). In this context, neural
network models have gained increasing popularity in many fields and modes of transportation research due to their parameter-free
and data-driven nature. Neural networks are able to rebuild highly complex functions and identify data interdependencies of mul-
tidimensional nature. As a network can be trained to certain kind of problems, a real-time usage of this network can be done with low
computing times. Reitmann and Nachtigall (2017) focus on a performance analysis of the complex air traffic management system.
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Maa et al. (2015) apply a Long Short-Term Neural Network to capture nonlinear traffic dynamic and to overcome issues of back-
propagated error. Zhu et al. (2017) propose a bi-level model to solve the timetable design problem for an urban rail line, where the
upper level model determines headways between trains to minimize total passenger cost and the lower level model addresses pas-
sengers’ arrival times at their origin. Deep learning techniques are investigated by Zhang et al. (2018) to detect traffic accidents from
social media data with Deep Belief Network and Long Short-Term Memory approaches. These techniques are also used to predict
traffic flows, addressing the sharp nonlinearities caused by transitions between free flow, breakdown, recovery and congestion (Lv
et al., 2015; Polson and Sokolov, 2017). Zhou et al. (2017) propose a microscopic car-following model based on a Recurrent Neural
Network that is able to accurately capture and predict traffic oscillation, whilst Zhong et al. (2017) aim at an online prediction model
of non-nominal traffic conditions. In the context of application of machine learning approaches to the airspace and air traffic
management, Cao et al. (2018) provide an evaluation of the operation complexity of airspace sectors, Verdonk Gallego et al. (2018)
analyze the impact of operational factors on the vertical flight profiles, Wang et al. (2018) address the short-term trajectory pre-
diction problem in the terminal maneuvering area, and Gerdes et al. (2016, 2018) and Standfuss et al. (2018) develop an approach for
a dynamic airspace sectorization for flight-centric operations.

1.2. Scope and structure of the document

This paper provides, for the first time, an approach to predict aircraft boarding progress, which will add a significant benefit to
aircraft turnaround operations (e.g. precise scheduling due to reduction of uncertainties). Since no operational data are available
from inside the aircraft cabin, we use a validated stochastic boarding model as simulation environment, which covers individual
passenger behaviors and operational constraints (Schultz et al., 2008, 2013a,b), to provide reliable status information about the
boarding progress (Schultz, 2018c). This status contains seat load (percentage of seated passengers), interference potential (com-
plexity measure considering already used seats), and the quality of the boarding sequence (chronological order of passenger arrival).
The status information is input for a Long Short-Term Memory (LSTM, Hochreiter and Schmidhuber (1997)) model (sub type of
recurrent neural networks), which is trained with boarding simulation data (time series) and enables a prediction over time (see
Fig. 1).

After the introduction, in Section 2, the stochastic boarding model and the simulation environment are briefly introduced, fol-
lowed by a description of general boarding progress. To evaluate the boarding progress in more detail, a developed complexity metric
is presented (Schultz, 2018c), which covers specific interdependencies between passengers during luggage storing and seating
process. In particular, the derived interference potential demonstrates the high impact of these interdependencies on the final
boarding time and could indicate a trend as to how the boarding progress will proceed (qualitative differentiation between fast and
slow boarding progress). At this point, the complexity metric seems to be a good candidate for machine learning approaches to allow
for quantified prediction of boarding time. In Section 3, general principles of the machine learning approach are discussed, including
the preparation of input datasets and the introduction of neural network models, with a focus on the Long Short-Term Memory
(LSTM) approach. To use the prediction model in real operations, immediate access to the boarding data during the ongoing op-
erations is mandatory. However, considering the high computing times and the system requirements, a live training system would not
be applicable for real-time usage. Therefore, the neural network needs to be adjusted to a huge bandwidth of historical data of
boarding events for a reliable prediction. As the LSTM model requires the same input data in the application as in the training, the
complexity metric data need to be receivable in real-time (see Fig. 2).

In a field trial at Cologne/Bonn airport with Eurowings, a prototype of a connected cabin was successfully tested. Here, the
necessary sensor information could be provided and transformed to a complexity value in real-time (cf. Schultz, 2018d). In Section 4,
we set up a test scenario to demonstrate the prediction capabilities of our machine learning approach. We choose the random
boarding (passengers have pre-assigned seats and enter the aircraft unconstrained, with no specific order) as a common boarding
process and the individual boarding (each passenger has a specific position in the waiting queue at the gate, cf. Steffen (2008)) as one
of the fastest boarding processes as reference implementations. With the stochastic boarding model, 150,000 boarding events are
simulated to provide input for the recurrent neural network. The major part of these simulated events is used to train our LSTM model
and the other, learning-independent part is used for testing. We test our approach with three evaluation scenarios and demonstrate

Fig. 1. General approach of data-based process analysis. System-related parts in solid lines, data-related parts in dotted lines: boarding simulation as
reliable surrogate for unavailable access to real operational systems, complexity metric to extract system data, which describe system behavior, and
neural network approach for both learning the complex behavior and predicting the boarding progress (cf. Reitmann and Schultz, 2018).
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the capabilities of the LSTM model to predict the boarding progress as well as the necessity of the complexity metric as multi-variate
input for the LSTM model. Finally, the paper closes with a summary and outlook.

2. Aircraft boarding model

For the application of the machine learning approaches a multi-variate dataset is needed, which provides a time-based, com-
prehensive description of the current aircraft boarding progress. To provide reliable status information, a stochastic boarding model
is used, which covers both the dynamic behavior of passengers and operational constraints (Schultz, 2018b). The input parameters for
the boarding model (passenger characteristics) are calibrated with data from field measurements and the simulation results (boarding
times) are validated against real boarding events (Schultz, 2018a). Thus, this model delivers detailed information about the boarding
progress, although operational airline/aircraft systems are not able to provide this information today. To provide a comprehensive
status of the boarding progress, a complexity metric was developed, which covers relevant evaluation parameters: seat load progress
(number of passengers seated), expected passenger interactions during boarding, and chronological order of passengers. Since the
stochastic boarding model and the complexity metric are already described in Schultz (2018b,c), only a brief introduction is given to
underline the common principles of the stochastic boarding model and evaluation of boarding progress. Following this brief in-
troduction, the complexity metric is used as multi-variate input for the machine learning environment.

2.1. Stochastic passenger behavior and process model

The model provides a reliable basis for the operational progress of aircraft boarding using a calibrated stochastic movement model
for the dynamic passenger behavior (Schultz, 2014; Schultz et al., 2010). This model was previously successfully adapted to re-
produce dynamic passenger behavior in the airport terminal (cf. Schultz, 2010; Schultz and Fricke, 2011). In the context of aircraft
boarding, passenger movement is assumed to be a stochastic, forward-directed, one-dimensional and discrete (time and space)
process. Therefore, the aircraft cabin layout is transferred into a regular grid with aircraft entries, aisle(s) and passenger seats (Airbus
A320 as reference with 29 rows and 174 seats (Airbus, 2017)). The regular grid consists of equal cells with an edge length of 0.4 m,
whereas a cell can either be free or occupied by exactly one passenger. The boarding process consists of a simple set of rules for
passenger movements: (a) enter at assigned aircraft door, (b) move forward along the aisle from cell to cell until reaching the assigned
seat row, and (c) store hand luggage and take the seat. The passenger movement only depends on the state of the next cell (free or
occupied). The hand luggage storage and seat taking are stochastic processes and depend on individual number of hand luggage items
and seat constellations in seat row, respectively. An operational scenario is mainly defined by: underlying seat layout, number of
passengers to board, arrival rate of the passengers at aircraft door, number of used aircraft doors, specific boarding strategy, and
conformance of passengers in following boarding strategy. In this context, the conformance rate describes several operational de-
viations from the intended boarding strategy caused by boarding services provided by airlines (e.g. priority boarding, 1st class seats)
or late arrival of passengers. To model different boarding strategies, the grid-based approach enables both individual assessment of

Fig. 2. Connection of the proposed model to a real-time application. The system emits raw performance data, which are aggregated in the forms the
complexity metric defines. These data are input for the pre-trained model and are used to predict the boarding process ending.

Fig. 3. Grid-based simulation environment – reference Airbus A320 layout (above) and example for block (here back-to-front) boarding strategy
modelled in the simulation environment (darker seats are boarded first) (below).
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seats and classification/aggregation according to the intended boarding strategy of airlines. In Fig. 3, the seats are color-coded (gray-
scale) and aggregated to a superior block structure. The boarding takes place in the order of the gray-scale value (darker seats are
boarded first). Boarding strategies are defined by a specific sequence of passengers (and their seats) that is mainly driven by a
combination of the block (based on seat rows) and outside-in procedures (based on seat positions: window seats are boarded first,
followed by middle and aisle seats). For the block boarding, an optimal block sequence is defined (Schultz, 2018a–d) and the back-to-
front sequence (rear blocks boarded first) is a commonly used block strategy in airline operations. The reverse pyramid strategy is a
hybrid approach of back-to-front and outside-in boarding. With the individual boarding, each passenger has a specific (optimal) po-
sition in the waiting queue at the gate (cf. Steffen (2008)). The random boarding is defined as the reference case, where passengers
have pre-assigned seats and enter the aircraft unconstrained, with no specific order. For each of the six boarding strategies (random,
block, back-to-front, outside-in, reverse pyramid, individual), 25,000 boarding events are simulated and available as inputs for our
machine learning approach.

2.2. Simulation environment

In the simulation environment, the boarding process is implemented as follows. Depending on the seat load, a specific number of
randomly chosen seats are used for boarding. For each seat, a passenger (agent) is created. The agent has individual parameters, such
as number of hand luggage items, maximum walking speed in the aisle, seat position, number of hand luggage items (time to store the
hand luggage (Schultz, 2018a)) and arrival time at assigned aircraft door. Furthermore, several process characteristics could be
recorded during simulation runs, such as waiting times, number of interactions, and current cabin status. To create the time needed to
store the hand luggage, a triangular distribution provides a stochastic time value depending on the number of items (see Schultz et al.,
2008, 2013b). The agents are sorted with regard to the current boarding strategy (depending on their seats). From this sequence, a
given percentage of agents are taken out of the sequence (conformance rate) and inserted into a position which contradicts the
current strategy (e.g. inserted into a different boarding block). According to arrival time distribution and boarding sequence, each
agent receives a timestamp, where the agent enters the simulation and appears at the aircraft door queue. When the simulation starts,
the first agent of this queue enters the aircraft by moving from the queue to the entry cell of the aisle grid (aircraft door), if this cell is
free. In each simulation step, all agents located in the row are moved to the next cell, if possible (free cell and not arrived at the seat
row), using a shuffled sequential update procedure (emulate parallel update behavior, cf. Schultz, 2014). If the agent arrives at his
seat row, he waits at this position for as long as it takes to store the hand luggage. Depending on the seat row condition (e.g. assigned
window seat but blocked aisle or middle seat or both are blocked), an additional waiting time is stochastically generated to perform
the seat shuffle. During the whole waiting process, no other agent can pass in. If the agent’s waiting process finishes, he is set to his
seat and the aisle cell is set free. The consequences of this seat shuffle are shown in Fig. 4, where the passengers are color-coded with
green (no seat interactions), yellow (minor interactions), orange (medium interactions), and red (high interactions). Each boarding
scenario is simulated 100,000 times to achieve reliable calculation results in order to determine the average boarding time with
corresponding standard deviation (measure of stability). In close cooperation with German airports and airlines, field trials were
conducted to calibrate input parameters of the stochastic model and to validate the simulation results. Finally, recorded boarding
times from the field and boarding times provided by the simulation environment show deviations smaller than 5% (Schultz, 2018a).

2.3. Evaluation of boarding progress

The aircraft boarding time possesses a stochastic characteristic, which results in a statistical distribution of the boarding time (cf.
Schultz, 2018b). In Fig. 5, three different boarding scenarios are shown with their probability density to demonstrate the effect on

Fig. 4. Visualization environment for the aircraft boarding progress considering a back-to-front strategy. Interactions of passengers during seating
are emphasized with a color scale from green (no interactions) to red (high interactions), by means of no blocked seats/empty row (green) and two
blocked seats (red) when passenger wants to take the assigned seat. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

M. Schultz, S. Reitmann Transportation Research Part C 98 (2019) 391–408

395



boarding time with reduction of hand luggage items and boarding with two doors against a reference boarding time distribution
(random boarding). The effect on the corresponding boarding time is twofold: both scenarios possess a smaller standard deviation
(more stable) and are faster than the reference boarding scenario.

However, to predict the end of a specific boarding event, a combination of expectation concerning the future progress and the
already reached progress is required. In the course of aircraft boarding, passengers will reach their seats and have to be no longer
considered for the (stochastic) prediction of boarding time tb. Thus, the prediction could be divided into a fixed, realized boarding
time tr and a versatile, stochastic component ts of the boarding time, to cover still-existing uncertainties. During the course of
boarding, the number of passengers seated in the aircraft increases constantly and the stochastic component of the boarding time has
a decreasing influence on the final boarding time. Fig. 6 demonstrates the implication of decreasing uncertainty during the course of
boarding, indicated by higher values for the corresponding probability density.

To provide a closer view of the uncertainties during the course of boarding, an example is given in Fig. 7, with a boarding progress
of 90% and 13 free seats. From a general, qualified point of view, a free seat at the window with two already occupied seats will result
in a high interference between passengers (seat shuffle: two passengers have to move into the aisle), whereas free aisle seats demand
no interference during seating. This effect could be more prominent if other passengers have to wait during the luggage/seating
process. Having this in mind, the free seats could be ranked according to their interference potential. In Fig. 7, this interference is
qualitatively clustered by high, medium, and low level of interference. Depending on the current boarding sequence, this potential
interference could result in high numbers of interactions if the seats with the highest potentials are boarded first, or result in small
numbers if the seats are boarded vice versa.

This exemplary boarding sequence emphasizes that a reliable predication of the boarding demands both current boarding pro-
gress and the evaluation of upcoming interactions between passengers. In the next section, a metric is briefly introduced which
comprehensively considers expected passenger interactions during boarding. This metric (of complexity) depends on the already
realized boarding progress and three major indicators: seat position in seat row, seat row position in cabin, and boarding sequence.

2.4. Complexity metric

The interactions caused by the seat position in the seat row are quantified by positions of the specific seats (window, middle, aisle)
and corresponding operational seat conditions Cseat: not booked (Cseat = 0), free (Cseat = 1), and occupied (Cseat = 2). Since the A320

Fig. 5. Distribution of simulated boarding times using two different boarding scenarios compared against the reference scenario (random boarding,
cf. Schultz (2018b,c)).

Fig. 6. Boarding time distribution during the aircraft boarding based on a realized boarding progress of 0%, 50% and 80%.

M. Schultz, S. Reitmann Transportation Research Part C 98 (2019) 391–408

396



reference is a single-aisle aircraft with three seats on the left and the right sides respectively, three seats are aggregated to a seat row
condition Crow, left|right. A trinary aggregation of seat conditions per (half) row, according to Eq. (1), results in 27 distinct values for
Crow, left|right. In the general formulation of Eq. (1), c represents the number of different seat conditions; in the current case c=3.

= + +C c C c C c Crow aisle middle window,left|right
0 1 2 (1)

As an example, if all seats in a row are occupied, Crow is 26 (= 30× 2+31× 2+32× 2); if aisle seat is occupied, middle seat is
not booked, and window seat is free, Crow is 11 (= 30× 2+31× 0+32× 1). Each Crow condition results in a specific number of
interactions between passengers and depends on the seat position of the arriving passenger. If all seats are free, there will be no
interactions at all. If, however, the aisle seat is occupied, the next arriving passenger demands a seat shuffle with a minimum of four
movements (cf. Bazargan, 2007; Schultz et al., 2008): the passenger in the aisle has to step out, the arriving passenger steps into the
row (two steps) and the first passenger steps back into the row. In the following, the interference potential Pr of a specific Crow

condition is defined as the expected value of passenger movements (interactions) derived from all probable future seat row conditions
(equally distributed). Fig. 8 demonstrates the transition between different seat row conditions and corresponding development of the
interference potential Pr (green circles). Here, Pr develops over the time and decreases continuously if the seat row is filled up window
seat first, followed by middle and aisle seat (Pr, step 0 =8.3, Pr, step 1 =3.5, Pr, step 2 =1). This development results in only three
passenger movements, since each passenger can directly step into the row without any interactions. If the boarding sequence starts
with the middle seat and ends with the window seat, eleven passenger movements are necessary, and Pr develops: Pr, step 0=8.3, Pr,

step 1=8.0, and Pr, step 2=9.
The negative effect of high Pr values increases (longer waiting, boarding time) if other passengers are hindered in reaching their

corresponding seat row and queue in the aisle. This effect depends on the position of the row where the interaction takes place and
the number of passengers who have to pass this row or wait in the queue to reach the seats located in front of this row. Here, only
passing passengers with higher seat row numbers are considered. This is done by counting all seats which are currently free
(Cseat = 1) in the concerned row and the rows behind, whereby this number is stored as the value pb,r (number of passengers located
in and behind this row r). To weight the influence of pb,r an exponential function with A as scaling factor is chosen. In Eq. (2), Pr is
weighted in order to consider the indirect interference caused by aisle queues and summed up to an aircraft-wide interference
potential P, where m represents the maximum number of rows.

=
=

P P e
r

m

r
Ap

1
,left|right b r,

(2)

The aircraft-wide interference potential P is based on the expected value of Pr, since several future seat states are possible. To
provide a more comprehensive dataset, the difference between maximum and minimum value of Pr is calculated as well (ΔP), as
measurement of convergence. It is expected that lower ΔP (less spread) will result in a more reliable prediction of the boarding time.

To complement the complexity metric, the quality of the passenger sequence k has to be considered as well (Eq. (3)). Since the
passengers seated are already covered in P, the boarding sequence contains passengers who have already passed the boarding counter
but not been seated in the aircraft in the chronological order of the arrival at the boarding counter. Beginning with the first passenger

Fig. 7. 90% boarding progress with 13 free seats. Depending on the seat coordinates (row and position), a qualitative level of interference could be
derived (see colour-coded potential ratings in the chart key). Passengers using a seat in the back or at the aisle will only have minor potential for
interference.

Fig. 8. Progress of seat row development (aisle seat right and window seat left) indicating both the movements/interactions expected (green circle)
and realized (blue circle). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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i in the queue (with n members), each subsequently following passenger j is marked as influenced (d=1) if he wants to reach a seat
row with a higher number than the passenger in front of him. In Eq. (3), an exponential function is used to consider the weighted
distance of the passengers in the queue, and the expected seat row interference potential Pri for passenger i is also taken into account.
While iterating over all passengers in the queue, the current passenger i will be virtually seated, which results in a continuous update
of future seat row states for the subsequently following passengers. A lower value of k indicates a lower level of influence between the
passengers in the queue.

=

= >

= =k t d e P

d

( )

1, seat row seat row
0, seat row seat row

i
n

j i
n

i j
B i j

ri

i j
paxi paxj

paxi paxj

1 ,
( )

, left|right

,
(3)

Finally, the complexity metric consists of four different indicators to evaluate the boarding progress. These indicators address the
major, time-dependent drivers of boarding: progress of passengers seated 1− fsl (seat load), interference potential P (different
blocking conditions), convergence of interference potential ΔP (difference of maximum and minimum values), and passenger se-
quence k (boarded, but not seated). We used the 1− fsl definition for seat load function, to provide a consolidated picture of the
complexity metric; all indicators end with zero when the boarding finishes. Fig. 9 demonstrates the characteristic of the developed
complexity metric using a fast and slow boarding event exemplarily. The fast boarding event depicts a lower interference potential P,
quicker convergence ΔP, smaller values for the passenger sequence k and, finally, a faster boarding progress (1− fsl).

3. Machine learning

To overcome resulting complexities and dynamic effects of passenger boarding, time predictions can be applied using advanced
statistical procedures, such as neural networks. Neural networks are a family of network types of machine learning (ML) with the
ability to learn and adjust. The setup of a neural network depends on the specific task. Training it with certain datasets will adjust the
parameters and transfer the input values to a learned output set of data. In the field of ML, there are several opportunities for
statistical analyses, sequence predictions and knowledge approximations. For value-discrete time-series prediction, Multi-Layer
Perceptron (MLP) and Recurrent Neural Network (RNN) approaches are mainly established and offer different subtypes.
Furthermore, Time Delay Neural Networks (TDNN) or Radial Basis Function (RBF) networks would also be suitable for the objectives
in the given task of boarding time prediction. To capture the core idea of identifying long-term dependencies and correlations
between the indicators of the complexity metric, RNN and TDNN are the most suitable approaches, whereby RNN plays a much more
important role in the context of sequence prediction. For simple problems, ML methods can be a too-powerful tool, since the effort to
prepare the model is significantly higher than the effort needed to solve the problem. In these cases, Gaussian processes and ARIMA
(Auto Regressive Integrated Moving Average) models provide alternative approaches which are not, however, discussed in this paper,
as they are not able to represent a suitable model for the given task of real-time prediction based on nonlinear time series. This section
provides an overview concerning data transformation techniques to convert boarding time series to applicable datasets for machine
learning (cf. Yu et al., 2006), followed by a brief description of neural network structures and introduction of LSTM models. The
section closes with an overview about specific learning algorithms for recurrent neural network types.

Fig. 9. Complexity metric to evaluate the boarding process and progress: seat load (top left), interference potential (top right), boarding sequence
(bottom left), and convergence of interference potential (bottom right).
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3.1. Dataset and feature selection

As output of the boarding simulation, we use 25,000 datasets of independent simulation runs for each boarding strategy (random,
block, back-to-front, outside-in, reverse pyramid, individual). This results in a total number of 150.000 available datasets. Each dataset
contains the four mentioned features: P, ΔP, 1− fsl and k. Considering the real applications, we want to keep the number of features
low. For this reason, we chose a uni-variate and multi-variate approach. The feature set of the uni-variate approach contains the
feature {1− fsl}, the set of the multi-variate approach contains {1− fsl, P}. According to the complexity metric (Section 2.4), the
indicator ΔP is directly related to P and redundancy is to be expected between ΔP and P. Because P is a direct indicator of the quality
of the dynamic boarding progress, this feature is preferred to the feature k. Fig. 10 confirms this assumption.

Table 1 contains a descriptive view of the given dataset, clustered by the boarding strategies and the 4 indicators of the com-
plexity metric. The characteristics are average value (mean), standard deviation (std), minimum (min) and maximum (max), as well
as the 25th, 50th, and 75th quantiles. The table reflects that the individual, reverse pyramid, and outside-in strategies result in a fast
boarding progress, while back-to-front, block, and random boarding are slower on average (cf. Schultz, 2018b). Random boarding is
one of the slower methods, which makes the analysis interesting as to whether this slower random boarding can be used for training to
predict faster procedures (such as individual). Since random does not follow any restrictions, the dynamic passenger behavior should
nevertheless be able to be mapped quickly. Table 1 is intended to serve as an estimate of the underlying database.

3.2. Data transformation

Neural networks use supervised learning methods, like the majority of machine learning approaches, and compare the predicted
output against a reference value. For a given set of input variables {x(t)} and output variables {y(t)} an algorithm learns a functional
dependency between input and output. The goal is to efficiently approximate the real (unknown) functional correlation and to predict
output variables y∈ {y(t)} by just having input variables x∈ {x(t)}.

In the context of passenger boarding, a sequence of observations is given as a dataset of time series demonstrating the progress of
boarding, such as the interference potential P, which will be exemplarily used to introduce supervised learning. In a straightforward
implementation, the next value of the interference potential (output) only depends on the current (input) value P(t)→ P(t+ 1). To
derive predictions for long-term sequences with a time horizon d (interval value from given t0 measured in discrete time steps), the
values need to be iterated from t0-d to t0, where the predicted value of every time step receives an input for the next step. This sliding
window is shown in Table 2 with a time horizon d=2. Table 2 additionally demonstrates that a prediction with three input
parameters could initially start when all input parameters are set (t= 2). Furthermore, this example shows that least nominal scaled
data are needed, and it is expected that the accuracy of the prediction increases if a longer time horizon is taken into account
(history). The consideration of historic values results in a sliding window effect, which is fundamental to prepare a discrete time
series as input for a supervised learning approach. The size of this sliding window will be adjustable and has a significant influence on
prediction, especially on the computational time and interdependencies (e.g. time-delayed correlations). In this context, the sliding
window emphasizes the opportunity to handle a particular time series, but time series with more than one observation at each time
step could be handled as well.

Traditionally, time series are differentiated into uni-variate (observation of one single variable) and multi-variate (observation of
datasets) series. In the case of aircraft boarding, the multi-variate time series consists of interference potential P, seat load 1− fsl,
passenger sequence k, and convergence of interference potential ΔP. The application of the boarding model provides values for every
single indicator, which could be used as multi-layer input considering current and past values. Since classical statistical methods

Fig. 10. Comparison of a three-dimensional relationship representation: (left) quality of passenger queue (k), interference potential (P) and seat load
(1− fsl) and (right) quality of passenger queue (k), variability of interference potential (ΔP) and seat load (1− fsl). The relationships between
interference and variability are similar in data dynamics (representation of one exemplary random boarding simulation).
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either work insufficiently in rebuilding complex functions (multi-variate approaches are mostly limited to linear approximations) or
are not able to represent a wide range of possible underlying processes, the application of intelligent machine learning approaches is
favored (cf. Karlaftis and Vlahogianni, 2011). As an example, the boarding dataset could be transformed to a supervised learning
problem using P and 1− fsl with a window size of one, as a multi-to-one time series (three input features and one output value, see

Table 1
Descriptive statistics of all 4 features – passenger queue (k), interference potential (P), variability of interference potential (ΔP) and progress of seat
load (1− fsl) for the six concerned boarding strategies covering 25.000 simulation runs each.

random mean std min 25th 50th 75th max

k 186.78 94.61 0 118.73 199.9 259.76 362.89
P 255.12 155.93 0 115.74 259.03 396.6 495.23
ΔP 183.77 189.98 0 19.76 110.54 313.39 608.23
1− fsl 0.47 0.31 0 0.19 0.45 0.74 1.00

back-to-front mean std min 25th 50th 75th max

k 232.6 128.48 0 134.56 235.41 336.93 472.05
P 242.71 157.57 0 101.17 231.06 386.04 494.57
ΔP 227.67 195.23 0 49.86 180.92 384.69 608.34
1− fsl 0.48 0.32 0 0.19 0.46 0.77 1.00

block mean std min 25th 50th 75th max

k 222.62 141.43 0 124.75 200.12 309.83 544.59
P 254.73 152.67 0 127.46 250.08 388.99 494.66
ΔP 239.78 189.89 0 57.37 229.89 374.15 608.46
1− fsl 0.5 0.31 0 0.23 0.52 0.76 1.00

outside-in mean std min 25th 50th 75th max

k 110.29 62.89 0 63.88 108.40 155.22 254.30
P 196.84 154.66 0 59.84 161.30 321.40 493.77
ΔP 182.28 197.42 0 12.05 100.24 322.10 607.50
1− fsl 0.51 0.31 0 0.23 0.51 0.79 1.00

reverse pyramid mean std min 25th 50th 75th max

k 101.69 57.94 0 58.13 101.61 144.17 232.16
P 214.74 158.36 0 68.23 194.67 346.75 493.99
ΔP 220.69 201.24 0 32.82 167.29 378.02 608.38
1− fsl 0.51 0.32 0 0.23 0.50 0.80 1.00

individual mean std min 25th 50th 75th max

k 63.99 38.55 0 35.08 59.45 88.61 168.09
P 187.92 153.05 0 54.42 148.22 306.09 493.87
ΔP 175.11 197.56 0 8.43 90.51 308.43 608.12
1− fsl 0.51 0.31 0 0.23 0.51 0.78 1.00

Table 2
Transformation of input data (sliding window).

Time Input 1 Input 2 Input 3 Output
t X(t− 2) X(t− 1) X(t) Y(t+ 1)

0 – – P(0) P(1)
1 – P(0) P(1) P(2)
2 P(0) P(1) P(2) P(3)
3 P(1) P(2) P(3) P(4)

Table 3
Multi-to-one time series using interference potential and seat load.

Time Input 1 Input 2 Input 3 Output
t X1 X2 X3 Y

0 – – P(0) 1− fsl (1)
1 P(0) 1− fsl (1) P(1) 1− fsl (2)
2 P(1) 1− fsl (2) P(2) 1− fsl (3)
3 P(2) 1− fsl (3) P(3) Prediction
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Table 3) (cf. Graves et al., 2007).
In order to follow up a multi-step prediction, the prediction datasets of the network are adjusted online (during active phase of

application). To do so, the predicted value of a sequence (for example 1− fsl) is added to the upcoming input sequence (see Table 4).
The estimated value 1− fsl, real is only used for deviation analysis of the network’s output compared to the real output. Using this
online dataset adjustment, we ensure that long-term predictions are made over different steps of time and train the network so that it
is able to handle time-carried calculation errors.

3.3. Neural network models

A standard recurrent neural network (RNN) computes the hidden vector sequence h = (h(1), …, h(T)) and output vector se-
quence y = (y(1), …, y(T)) for a given input sequence x = (x(1), …, x(T)) as shown in (4) and (5):

= + +h(t) H(W x(t) W h(t 1) b )hy hh h (4)

= +y(t) W h(t) b .hy y (5)

The looped structure of RNN allows information to be passed from one step to the next. Fig. 11 depicts the unfolded loop of an
RNN model with module A being the simplified inner structure. The self-connected model (left) is split into multiple copies of the
same network (right) considering, however, different inputs, which are related to the time.

Regarding (4) and (5), the W terms denote weight matrices to the corresponding connections (e.g. Why is the hidden-output
weight matrix), which basically comprise the parametrization sensibilities of the network. The b terms denote bias vectors as an
extraction of the threshold function (e.g. by as the output hidden vector) and H is the hidden layer function. Usually, H is an element-
wise application of the logistic sigmoid function. Unlike classical feedforward neural networks, RNN models perform well in detecting
and processing long-term correlations of inputs and outputs. Fig. 12 illustrates an effect of the input vectors x(0) and x(1) on the
hidden output h(t + 1). Such interdependencies, delayed over certain time steps, are an essential part of a multi-variate data analysis,
as the dynamic of the system needs to be described through the influence of indicators on each other.

Long Short-Term Memory (LSTM) networks address the problem of vanishing gradients of RNN by splitting in four inner gates and
building so-called memory cells to store information in a long-range context. LSTM networks are explicitly designed to avoid the long-
term dependency problem. They also have a chain-like structure, but the module A has a different composition. Instead of having a
single neural network layer, the inner workings of LSTM modules are split into four gates. The LSTM structure is implemented
through the following Eqs. (6)–(9):

= + + +i(t) (W x(t) W h(t 1) W c(t 1) b )ixi hi ci (6)

= + + +f(t) (W fx(t) W fh(t 1) W fc(t 1) b )x h c f (7)

= + + +c(t) f(t) c(t 1) i(t) tanh(W x(t) W h(t 1) b )xc hc c (8)

= + + +o(t) (W x(t) W h(t 1) W c(t) b )xo ho co o (9)

σ and tanh represent the specific, element-wise applied activation functions of the LSTM. i, f, o and c denote the mentioned inner-cell

Table 4
Neural network adjustments.

Input 1 Input 2 Input 3 Output Error
X1 X2 X3 Y

P(0) – P(1) 1 − fsl, pred (1) 1 − fsl, pred (1)↔ 1 − fsl, real(1)

Neural Network Parameter Adjustment (Learning)
P(1) 1 − fsl, pred (1) P(2) 1 − fsl, pred (2) 1 − fsl, pred (2)↔ 1 − fsl, real (2)

Neural Network Parameter Adjustment (Learning)
P(2) 1 − fsl, pred (2) P(3) 1 − fsl, pred (3) 1 − fsl, pred (3)↔ 1 − fsl, real (3)

Neural Network Parameter Adjustment (Learning)
P(3) 1 − fsl, pred (3) P(4) –

Fig. 11. Unfolded RNN structure for computations from 0 to T.
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gates, respectively the input gate, forget gate, output gate, and cell activation vectors. Function c needs to be equal to the hidden
vector h. The W terms again denote weight matrices.

As LSTM models are RNN-based models, the overall composition is similar, so a set of inputs is computed to an output set through
a module A (see to Figs. 11 and 12). Unlike basic RNN models, A is more complex in this case: Fig. 13 depicts the availability of the
cell memory, which can be interpreted as the information store, and the inner workings of the described four gates: computing the
input, updating the cell, forgetting about certain information and setting the output (cf. Gers et al., 2000).

To train RNN structures, a backpropagation through time algorithm is applied (cf. Hochreiter et al., 2001). It is used for cal-
culation of the gradients of the error with respect to weight matrices {W}. For a given batch size, which sets the amount of data after a
gradient, an update is performed and the neural network can adjust its parametrization to retrieve given target values. Normally,
RNN structures have problems with a vanishing gradient (a backpropagation of tanh values near 0 or 1 over time might lead to a
blowing-up or disappearing). LSTM networks address this problem by splitting in 4 inner-cell gates with the opportunity to “store”
knowledge in the inner-cell gate. RNN-based models are characterized by the number of hidden layers (nhiddenlayer), the number of
samples propagated through the network for each gradient update (batch size), the number of trained epochs (nepoch) and the learning
rate (η).

3.4. Simulation framework

The simulation framework consists of fundamental components: layers (LSTM, concatenate, input, dense, dropout), optimizers,
and metric/loss functions. The structure of the implemented LSTM depends on the given scenario. For a one-dimensional application,
one input layer is added to the model, followed up by the LSTM recurrent layer, dense layer, and dropout layer. In Fig. 14, the
network structure is presented for both cases one-to-one (solid) and multi-to-multi regression (dotted).

Each layer consists of specific tasks in the framework. The LSTM (recurrent) layer represents the specific ML model. The input
layer is a Keras tensor object from the underlying backend (TensorFlow) and contains certain attributes for building a Keras model,
just by knowing only inputs and outputs of the model. The concatenate layer merges several inputs (list of tensors, with same shape)
and returns a single tensor. The dense layer is a regular densely-connected neural network layer and implements the fundamental
output operation: output = activation(dot(input, kernel) + bias), where activation is the element-wise activation function passed as the
activation argument, kernel is a weights matrix created by the layer, and bias is a vector created by the layer. The dropout layer
provides a regularization technique, which prevents complex co-adaptations on training data in neural networks (overfitting) by
dropping a number of samples in the network (dropout rate).

An optimizer is one of the two arguments required to finally compile the Keras model. Two optimizers are available: AdaGrad
(adaptive gradient algorithm), modified stochastic gradient descent approach with per-parameter learning rate (Duchi et al., 2011),
and Adam (Adaptive Moment Estimation), family of sub-gradient methods that dynamically incorporate knowledge of the geometry
of the data observed in earlier iterations (Kingma and Ba, 2014). The optimizers are parametrized with learning rate η=0.01 and
η=0.001 for AdaGrad and Adam respectively. The loss function (optimization score function) of our model is the mean squared error
(MSE).

Fig. 12. Long-term interdependencies in RNN models encompassing a connection of the input vectors x(0) and x(1) to the hidden output vector h
(t + 1).

Fig. 13. Inner structure of an LSTM module A emphasizes hidden gates and the cell information memory.
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4. Simulation framework and application

The input data for the LSTM model is provided by the stochastic boarding model, which covers several boarding strategies, such
as random, block, back-to-front, outside-in, or individual boarding (cf. Schultz, 2018b). We implemented the given RNN structures in
Python 3.6 using the open-source deep learning library Keras 2.1.3 (frontend) with open-source framework TensorFlow 1.5.0
(backend) and Scipy 1.0.0 (routines for numerical integration and optimization). Training and testing were performed on GPU
(NVIDIA Geforce 980 TI) using CUDA as parallel computing platform and application programming interface.

4.1. Scenario definition

Table 5 provides an overview of the analyzed scenarios (A, B, C), focusing on the prediction of boarding progress of random
(passengers have pre-assigned seats and enter the aircraft unconstrained, with no specific order) and individual boarding (each
passenger has a specific position in the waiting queue at the gate, cf. Steffen (2008)) of A320 aircraft. Here, random boarding is used
as a common process and individual boarding as one of the fastest boarding processes. In scenario A, the prediction of random
boarding is based on learning of random boarding scenarios. In scenario B, the learned interrelationships from random boarding are
used to predict the boarding progress of individual boarding. In scenario C, the progress of individual boarding is predicted on the basis
of all available boarding datasets (cf. Schultz, 2018b). As input values P, 1− fsl, or both are used to predict the output 1− fsl. All
three scenarios are computed for a given set of start times: 300 s, 400 s, and 600 s after boarding starts.

The supervised learning demands for a separation of the datasets into training, test and (obligatory) validation data. In our
scenario analysis, we have 25,000 separate boarding results for random and individual boarding, and 100,000 boarding results from
other strategies. For the given tasks, we use 1000 randomly chosen boarding events to train the LSTM and 100 randomly chosen non-
compiled/non-trained boarding progresses to evaluate the prediction.

4.2. Results

We trained the model within 27 different variants: three main scenarios, each with three different input sets split into three
different starting points. Similar experiments demonstrate several clues concerning useful combinations of certain optimizers and
network structures depending on the amount of input data (Reitmann and Nachtigall, 2017). As we have two one-dimensional input
sets (1− fsl and P), a more complex structure is needed, so we set nhiddenlayer=120 (number of hidden LSTM layer next to input and
output layer) for these variants. In the case of uni-variate prediction, we set nhiddenlayer=40. A higher number of nhiddenlayer increases
the ability of the network to understand complex data structures, but also increases the complexity of learning. AdaGrad works quite
well with a more complex network structure, as its learning rate η is 10 times lower than η of Adam, which improves gradient-based
learning in multi-branched inlays. For both cases, uni- and multi-variate, we trained the model 20 times, which results in 20,000
training cycles. The window size is set to 25 and 5 for uni-variate and multi-variate respectively. The batch size (number of samples
per gradient update) was set to 50 to balance computation time and accuracy. The model worked with a dropout rate of 0.5% for one-
dimensional and 2.0% for multi-dimensional applications. Fig. 15 depicts the prediction results, using a slow and fast boarding
progress. Here, the prediction starts at 400 s. The comparison of real and predicted boarding progress demonstrates that the LSTM

Fig. 14. Layer design of simulation framework.

Table 5
Scenario definition (see Schultz (2018b) for further details about different boarding strategies).

Scenario boarding strategy learned boarding strategy
predicted

input from complexity metric prediction start time t (s)

A1 random random {P, 1− fsl, [P, 1 − fsl]} {300, 400, 500}
A2 individual individual
B random individual
C all (random, block, back-to-front, outside-in, reverse pyramid,

individual)
individual
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model is a promising candidate for boarding time prediction.
The following Table 6 provides an overview of the accuracy of each single model to the corresponding scenario including the

computation time. The accuracy is the mean error value of 100 tested scenarios after training phase (1000 sample sets). In Table 6,
cells are color-coded, whereby red stands for MSE (learning error) > 65%, green if MSE < 25%, and yellow is in-between these
values. As common statistical regression models would gradually suffer from calculation errors, the neural network models receive
the knowledge to end at point 0 (end of boarding) in every case of training. An insufficiently trained model might show bifurcations

Fig. 15. Prediction of seat load progress with LSTM model for two exemplary processes (start at 400 s).

Table 6
Results of computations for the scenarios A, B and C considering time series accuracy, accuracy of final boarding time and computational time t.
Bold values represent best values of specific input configuration.
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and chaotic behavior during the boarding process (red-colored cells or NaN results) but would tend to reach point 0 at the end in any
case. In our case, uni-variate inputs are not sufficient and only the multi-variate input results in reliable output values. Uni-variate
models might tend to adequately predict the final boarding time (see 1-fsl at t= 500 s, scenario A2) but possess a non-nominal process
identification.

Figs. 16–19 show the time and progress differences, using 400 s (start time for prediction) as a reference start value. The box-plots
of the time differences refer to the values illustrated in Table 6, using an interquartile ratio of 0.7. The red-colored boxes include the
last computed steps of the simulations (99%).

Scenario A is shown in Fig. 16 (A1, random, slow) and Fig. 17 (A2, individual, fast). The left pictures show the time differences: the
individual boarding does not differ until 40% boarding progress. Since time variation in random boarding is significantly higher than
in individual boarding, the inner progress differences are also higher (pictures on the right). Both prediction results point out a
positive offset over time.

The major difference between scenario A and scenarios B and C is that in scenario A the LSTM is trained with appropriate datasets.
In scenario B, the individual boarding is predicted with random datasets (explicitly not containing individual boarding) and scenario C
uses all available datasets for training (only excluding datasets for testing). In doing so, the computational time for training increases
significantly (see Table 6). Due to the higher bandwidth of operational progresses in scenarios B and C, the LSTM model is able to
identify more interdependencies during the training process, which results in a more precise prediction (see Figs. 18 and 19).

5. Summary and outlook

Future 4D aircraft trajectories demand the comprehensive consideration of environmental, economic, and operational constraints.
A reliable prediction of all aircraft-related processes along the specific trajectories is essential for punctual operations. We set a
specific focus on the aircraft ground operations, which provide operational milestones for both the current and the destination
airport. These mutual interdependencies between airports result in system-wide, far-reaching effects (reactionary delays). The ground
trajectory of an aircraft primarily consists of the handling processes at the stand (deboarding, catering, fueling, cleaning, boarding,
unloading, and loading), which are defined as the aircraft turnaround. To provide a reliable prediction of the turnaround, the critical
path of processes has to be managed in a sustainable manner. The turnaround processes are mainly controlled by the ground handling
and airport or airline staff, except the aircraft boarding, which is driven by the passengers’ experience, willingness or ability to follow
the proposed procedures.

This paper provides, for the first time, an approach to predict aircraft boarding progress, which is expected to add significant
benefit to future aircraft ground operations (e.g. precise scheduling due to reduction of operational uncertainties). Our approach
shows how sensor information from a connected cabin could be used to derive the progress of the passenger boarding. Since today
there are no operational sensor data available from inside the cabin, we simulated the boarding process with a validated boarding
model (Schultz, 2018a,b). This model provides detailed data about passenger movements and operational processes (e.g. waiting in

Fig. 16. Scenario A1 (random - random) - time (left) and progress (right) differences after 1000 training iterations and 100 tests.

Fig. 17. Scenario A2 (individual - individual) - time (left) and progress (right) differences after 1000 training iterations and 100 tests.
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the aisle, storage of hand luggage, or used seats). In particular, we aggregated these data to complexity values, which describe the
expected interactions of passengers comprehensively (2018c). The complexity metric is a multi-variate input for an LSTM model,
which is trained with boarding simulation data (time series) and enables a prediction of the final boarding time. We could de-
monstrate that the proposed complexity metric is a necessary element for prediction of the aircraft boarding progress. Whilst the
progress of the seat load was insufficient to reliably predict the boarding (high deviations), together with the complexity metric, the
deviations are reduced by up to 75% (cf. Table 6). A closer look at differences between boarding progress and prediction shows an
inherent positive offset. If this offset could be classified as constant, the prediction showed only a difference of± 20 s between
prediction and underlying boarding simulation. Therefore, we see our LSTM approach model as a promising candidate for extended
investigations. Furthermore, a hardware prototype of a connected cabin (seat and floor sensors) proves the operational feasibility of
our prediction concept (cf. Schultz, 2018d).

As a next step, we want to focus on the robustness of the LSTM prediction model and quality of the input factors. Thus, we want to
transform the given RNN models to a feedback control structure representing a dynamical system. In doing so, we will be able to
apply several studies regarding robustness and dynamic behavior, such as Lyapunov stability (Reitmann and Schultz, 2017). First
tests with the LSTM input indicate that a smoothed input stream results in better prediction results (Reitmann and Schultz, 2018).
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