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A B S T R A C T

We explore the computational advantages of discrete event simulation for cellular automata models of grain
growth. These benefits include a reduction in execution time by up to an order of magnitude and the
elimination of numerical errors that stem from overshooting grain capture events and approximating a Poisson
process with a Bernoulli process. The fundamental mechanisms speeding up the discrete event simulation are
uncovered, and with these we create a speedup model that explains our experimental outcomes.
1. Introduction

Our aim is to introduce discrete event simulation as an efficient
and numerically accurate method of computation for cellular automata
models of grain growth. For this purpose, we develop two simple, but
pertinent, simulators for two well known models. Our first simulator
realizes the probabilistic cellular automaton introduced by Raabe [1,2]
in a discrete event form. This cellular automaton models rate of growth
with a transition probability, which constitutes a Bernoulli process
if the computation proceeds in fixed steps. As the step size tends
towards zero, this Bernoulli process tends towards a Poisson process.
With this example, we show how a discrete event simulation realizes
this model in its limit (i.e., as a Poisson process), thereby eliminating
numerical errors in the Bernoulli approximation. At the same time, we
demonstrate a speedup over the time stepped model which increases as
the step size for the time stepped model shrinks.

Our second simulation is a discrete event realization of the de-
centered square model of grain growth [3,4]. This model is typically
realized with a discrete time simulation, for which a time step must
be selected. A large time step improves the execution time at the
cost of increased error, which manifests in the form of simultaneous
capture events that would not occur in the physical process. Smaller
step sizes reduce the chance for these events to occur, but incur a
greater computational cost. Our discrete event simulation eliminates
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1 The software used to perform our simulation experiments is available as the grain growth example that comes with the adevs simulation package at
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these simultaneous capture events, and thereby eliminates the errors
that these introduce. We compare the execution times of the discrete
event and discrete time simulators when the latter uses a step size that
is small enough to eliminate simultaneous capture events.

Over the last two decades there have been several algorithmic
advancements over earlier forms of cellular automata proposed specif-
ically for materials problems. Some of these advancements have taken
steps towards a discrete event form of simulation. For example, front
tracking methods reduce time to solution by focusing computational
effort on the dynamic portion of the cell space, avoiding unnecessary
computations in areas away from the grain boundary [5]. A similar
proposal that cells be separated into active and inactive sets seeks to
accomplish the same aim in a more general space [6]. Distinct rates of
evolution across the cell space are identified by the algorithm proposed
in [7], which is a natural first step towards the time advance in a
discrete event model.

Discrete event simulation can be seen as integrating these several
ideas into a single framework for computation. Indeed, the motivations
cited in each case strive towards a specialized form of activity tracking,
which describes the natural tendency of a discrete event simulator to
focus computational effort on components in proportion to their rate
of evolution [8,9]. Our example models show how the discrete event
simulation algorithms that realize activity tracking [10–15] can be
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applied to cellular automata in the context of computational material
science.

We begin by outlining the primary elements of a discrete event
model and its simulation procedure. Our approach is based on the
Discrete Event System Specification (DEVS) [16], for which a variety
of open source simulation tools are available.1 After this introduction,
we describe the key steps for transforming a discrete time model into
a discrete event model. Afterwards, the two example models are con-
structed by this translation processes, and we compare execution times
and numerical errors in discrete time and discrete event simulations of
the example models.

2. Discrete event models

To build a discrete event model, we focus on when the next change
in the model will occur. This focus is facilitated by dividing the model
into components that interact via messages. When working with cellu-
lar models, the component is a cell and messages convey information
about the cell’s neighbors.

Each cell has a state 𝑞. This state is influenced by an input 𝑥
received in messages from the neighboring cells. Likewise, an output
𝑦 is produced by a cell to inform its neighbors about a change in
𝑞. Frequently, a time stepping simulator dispenses with these distinct
input and output, instead obtaining the state of a neighboring cell by
direct inspection. A useful view of this special circumstance is that input
and output are computed by the time stepping simulator via direct
inspection. That is, this is a choice of simulator implementation; input
and output are nonetheless present in the model.

In the discrete event model, each cell has a time advance 𝑡𝑎(𝑞) that
is the amount of time the state 𝑞 will persist if the cell does not receive
ew input. If 𝑡 was the time that the cell entered state 𝑞, then 𝑡 + 𝑡𝑎(𝑞)

is time of next event for that cell. The cells with the smallest time of
next event are the imminent components.

The imminent components will change state and report new infor-
mation, via messages, to their neighbors which, in turn, may change
state in response to this input. Hence, the new state of the model
as a whole is determined by calculating new states for the imminent
components and the components that receive input from an immi-
nent component. The simulation procedure can be summarized as
follows [16,17]:

1. Find the smallest time of next event and the components having
this time of next event. These are the imminent components.

2. Calculate the output 𝑦 from the imminent components; this
becomes the input 𝑥 to their neighbors.

3. Calculate the new state of the imminent components and the
components receiving input from the imminent components.

4. Calculate the new time of next event for each component that
has changed state and repeat from step one.

e build a model of a cell by defining the five elements needed to carry
ut this simulation procedure:

1. The variables comprising the state 𝑞 and input 𝑥.
2. The output data 𝑦 = 𝜆(𝑞) provided in each state; this becomes

the input 𝑥 received by other components. The function 𝜆 is the
output function of the model.

3. The time advance 𝑡𝑎(𝑞) for each state.
4. How a new state is calculated in the three possible cases; these

are

1 The software used to perform our simulation experiments is available as
he grain growth example that comes with the adevs simulation package at
ttps://sourceforge.net/projects/adevs/.
2

(a) When the component is imminent. These are called in-
ternal events, and the cell’s new state 𝑞′ is given by the
internal state transition function 𝑞′ = 𝛿int(𝑞). The time that
was spent in state 𝑞 is 𝑡𝑎(𝑞).

(b) When the component receives input. These are called
external events. The cell’s response is defined by the
external state transition 𝑞′ = 𝛿ext(𝑞, 𝑒, 𝑥) where 𝑒 is the
time spent in state 𝑞 and 𝑒 ≤ 𝑡𝑎(𝑞).

(c) When the model is imminent and receives input. These
are called confluent events. The cell’s response is defined
by the confluent transition function 𝑞′ = 𝛿con(𝑞, 𝑥). The
time that was spent in state 𝑞 is 𝑡𝑎(𝑞).

A trivial transformation from a discrete time to discrete event model
eeps the discrete time model intact. In this trivial transformation, the
tate, input, output, and transition rules are exactly as they appear in
he discrete time model. The time advance is fixed at the step size.
he result is that every component is imminent and receives input at
ach time step, and so the evolution of the model is governed by the
onfluent transition function.

However, this trivial transformation does not take advantage of
he computational efficiencies offered by the discrete event simulation
rocedure. Creativity is indispensable for realizing an efficient discrete
vent model, but there are several steps typical of any transformation
rom discrete time model to discrete event model.

1. Given a state 𝑞 of a component, if the input to this component
does not change, then when will it change state? This defines
the time advance 𝑡𝑎(𝑞). In essence, we are asking when the
component will undergo a change of state assuming it is the only
active component.

2. At the instant the time advance expires and a change of state
is about to occur, what data does the component provide to its
neighbor and what is the component’s new state? This defines
the output 𝜆(𝑞) and internal state transition function 𝛿int(𝑞).

3. If the component receives input before the time advance expires,
then how does the state change? That is, given our present state
𝑞, the received input 𝑥, and the elapsed time 𝑒 ≤ 𝑡𝑎(𝑠), how do we
calculate the new state? This defines the external state transition
𝛿ext(𝑞, 𝑒, 𝑥).

4. If the component receives an input 𝑥 at the same instant the time
advance expires, then how does the state change? That is, given
the present state 𝑞, input 𝑥, and that the elapsed time 𝑒 = 𝑡𝑎(𝑞),
how do we calculate the new state? This defines the confluent
transition function 𝛿con(𝑞, 𝑥).

Having answered these questions, the resulting computations are
ncoded using a discrete event simulation package. Typically, these are
bject oriented libraries, and creating a component involves deriving
rom a base class that provides virtual (or abstract) methods for realiz-
ng the time advance, output function, and the internal, external, and
onfluent state transitions.

The simulation package provides an efficient implementation of
he simulation procedure, which it applies to instances of the derived
lasses to generate the behavior of the whole model. This is analogous
o how many numerical integration packages are used. A system defini-
ion is provided in the form of a function that calculates derivatives; this
s supplied by the modeler. The simulation package applies a numerical
ntegration procedure to this function to generate behaviors.

. A probabilistic model of grain growth

We borrow the essential growth mechanism from the cellular au-
omaton proposed in [18]. The state of a cell in this model is its grain
rientation 𝐶, which is recorded as an integer so that if two cells have
he same integer they have the same orientation. The actual angle of
rientation is irrelevant to the simulation’s progress. At each step of

https://sourceforge.net/projects/adevs/
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the cellular automaton, each cell changes its grain orientation with
probability �̂�.

Specifically, for each step, at each cell, we sample a uniform random
ariable in [0, 1]. If this sample is greater than �̂�, then the grain

orientation at that cell is unchanged. Otherwise, a new orientation
is determined. Each cell has eight neighbors arranged in a Moore
neighborhood. The orientation of neighbor 𝑘 at step 𝑛 of the simulation
is 𝐶𝑘(𝑛). We select a neighboring cell at random, and the 𝐶𝑘(𝑛) of that
neighbor becomes the candidate for the next orientation 𝐶(𝑛 + 1) at
he cell undergoing a transition. Whether to accept the new orientation
epends on the resulting boundary energy.

At step 𝑛, the boundary energy 𝐸(𝑛) is equal to the number of
neighbors with orientations 𝐶𝑗 (𝑛) different from 𝐶(𝑛). If 𝐶𝑘(𝑛) is the
candidate reorientation, then the boundary energy 𝐸(𝑛+ 1) that would
result from this orientation is the number of neighbors such that 𝐶𝑘(𝑛) ≠
𝐶𝑗 (𝑛). If 𝐸(𝑛+ 1) < 𝐸(𝑛) then 𝐶𝑘(𝑛) becomes the new orientation of the
cell; that is, 𝐶(𝑛 + 1) = 𝐶𝑘(𝑛). If 𝐸(𝑛 + 1) > 𝐸(𝑛) then the change is
rejected and 𝐶(𝑛+1) = 𝐶(𝑛). Otherwise, with probability 1∕2 we retain
𝐶(𝑛) and with probability 1∕2 we accept 𝐶𝑘(𝑛).

For example, suppose 𝐶(𝑛) = 0 and its eight neighbors have orienta-
tions 0, 0, 1, 1, 2, 2, 2, and 3 respectively. The boundary energy at 𝐸(𝑛)
is 6; two neighbors have orientation zero and six have orientations that
are not zero. If we select 3 as our candidate orientation for step 𝑛 + 1,
then 𝐸(𝑛 + 1) = 7. In this case, the change in orientation is rejected.

To obtain a discrete event version of this model, we follow the
procedure sketched in Section 2. The state 𝑞 comprises the orientation
𝐶 of the cell, the reported orientations 𝐶1, ..., 𝐶8 of its neighbors, and
a new variable ℎ that is the time remaining until the cell could change
orientation given the current 𝐶, 𝐶1, ..., 𝐶8. The output function 𝜆 is the
new orientation 𝐶 ′ that the cell will obtain. This is calculated using
the procedure described above to minimize energy. The time advance
simply reports ℎ. Hence,

𝑡𝑎((𝐶,𝐶1,… , 𝐶8, ℎ)) = ℎ and
𝜆((𝐶,𝐶1,… , 𝐶8, ℎ)) = 𝐶 ′ .

The internal transition function replaces 𝐶 with the new orientation
𝐶 ′ and calculates a new value ℎ′ for the time until the next internal
event. The external transition function reduces ℎ by 𝑒 and replaces the
prior neighbor orientation 𝐶𝑗 with the newly received orientation 𝐶 ′

𝑗 .
The confluent transition function is defined by composing the internal
and external transition functions, hence

𝛿int((𝐶,𝐶1,… , 𝐶8, ℎ)) = (𝐶 ′, 𝐶1,… , 𝐶8, ℎ
′),

𝛿ext((𝐶,𝐶1,… , 𝐶8, ℎ), 𝑒, 𝐶 ′
𝑗 ) = (𝐶,𝐶1,… , 𝐶 ′

𝑗 ,… , 𝐶8, ℎ − 𝑒), and

𝛿con((𝐶,𝐶1,… , 𝐶8, ℎ), 𝐶 ′
𝑗 ) = 𝛿ext(𝛿int((𝐶,𝐶1,… , 𝐶8, ℎ)), 0, 𝐶 ′

𝑗 ).

It remains to show how ℎ is calculated. If the orientations are such that
a change of orientation is not possible, then ℎ = ∞. Such a cell is idle.
Otherwise, ℎ is selected by sampling an exponential random variable
with the rate parameter 𝑤∕𝑠. We turn now to the derivation of this
rate parameter.

3.1. From Bernoulli to Poisson

To begin, we review the role that transition probability �̂� in the
cellular automaton plays in approximating a Poisson process, and how
it converges to a Poisson process as the time represented by a step
of the automaton becomes very small. To arrive at this conclusion
we begin with the method put forward by Raabe [1,2] to derive �̂�.
This parameter originates from two factors. The first is a physically
motivated rate of advance 𝑤, which is derived from Turnbull’s rate
expression. This physically motivated parameter is further adjusted by
the scaling factor in space 𝑠 and a grid attack frequency 𝑣0, which
determine the resolution of the model in space and time respectively.
These choices by the modeler determine the probability �̂� = 𝑤∕(𝑠𝑣0),
and each simulation step represents ℎ = 1∕𝑣 units of time.
3

0

In a unit interval of time, the cellular automaton takes 𝑣0 steps. The
likelihood of a transition at each step is identical to and independent
from the likelihood at any other step. Therefore, the cellular automaton
regulates the rate of transitions in such a way that the likelihood of
obtaining 𝑘 transitions in a unit of time is

𝑃 (𝑘) =
𝑣0!

𝑘!(𝑣0 − 𝑘)!

(

𝑤
𝑣0𝑠

)𝑘(

1 − 𝑤
𝑣0𝑠

)𝑣0−𝑘
. (1)

t is well known (see, e.g., [19]) that as 𝑣0 grows to infinity the
robability 𝑃 (𝑘) converges to

lim
0→∞

𝑃 (𝑘) = 1
𝑘!

(

𝑤
𝑠

)𝑘
exp (−𝑤∕𝑠) . (2)

hich is characteristic of a Poisson process with rate 𝑤∕𝑠. It follows
that as 𝑣0 → ∞ the interval ℎ between state transitions is described by
he probability density function (again see, e.g., [19])

(ℎ;𝑤∕𝑠) = (𝑤∕𝑠) exp (−ℎ𝑤∕𝑠) . (3)

Consequently, the discrete event model, by using a real valued
ime advance, does not require the modeler to select 𝑣0. Instead, using
(ℎ;𝑤∕𝜆) and a single draw 𝑝 from a uniform random variable in [0, 1],

he time to the next reorientation at the cell is

= − 1
𝑤∕𝑠

ln
𝑝

𝑤∕𝑠
. (4)

3.2. Bernoulli errors

Turnbull’s rate expression describes a process that is continuous
in time and properly expressed as a Poisson process. For this reason,
the discrete event model is exact regarding when transitions should
occur. Relative to this exact discrete event model, a discrete time model
with its fixed rate 𝑣0 contains a numerical error. In a time stepping
simulation, the probability of obtaining a change of state at the 𝑛th
step is

�̂�(1 − �̂�)𝑛−1 = 𝑤
𝑠𝑣0

(

1 − 𝑤
𝑣0𝑠

)𝑛−1
. (5)

However, the exact Poisson process gives a different probability of the
next state transition occurring after 𝑛 steps. The 𝑛th step corresponds
to an interval of time 𝑛∕𝑣0, and so the cumulative probability of the
Poisson process is

∫

𝑛∕𝑣0

0
(𝑤∕𝑠) exp (−ℎ𝑤∕𝑠) 𝑑ℎ = (𝑤∕𝑠)

(

1 − exp
−𝑛𝑤∕𝑠
𝑣0

)

. (6)

The difference between the Bernoulli probability in Eq. (5) and the
Poisson probability in Eq. (6) is

𝑤
𝑠𝑣0

(

1 − 𝑤
𝑠𝑣0

)𝑛−1
− (𝑤∕𝑠)

(

1 − exp
−𝑛𝑤∕𝑠
𝑣0

)

. (7)

This is the error incurred by the discrete time simulation relative to the
more precise discrete event simulation.

For the purpose of comparing the two simulation procedures, it is
convenient to use the same rate parameter in the discrete event and
discrete time simulation. Unconcerned with the physical interpretation
of our example, let us set the product 𝑠𝑣0 = 1 so that 𝑤 = �̂�. If 𝑤
is small, then by using 𝑤 as the rate parameter in our discrete event
simulation we obtain a result close to the discrete time simulation. The
time advance should now be interpreted as (fractional) steps of the time
stepping simulator, and the difference in transition probabilities at 𝑛
steps is

𝑤(1 −𝑤)𝑛−1 −𝑤
(

1 − exp(−𝑤𝑛)
)

. (8)

This expression for the error is derived from Eq. (7) when the model’s
rate parameter is fixed at 𝑤.

A plot of the error given by Eq. (8) is shown in Fig. 1 for several
choices of 𝑤. The probability of an early transition in the discrete
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Fig. 1. Errors indicated by Eq. (8) for 𝑤 = 0.2, 0.1, 0.05, and 0.01.
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time simulation is large relative to the exact discrete event simulation,
suggesting the error creates a faster rate of evolution than should occur.
Of course, this error diminishes with 𝑤 indicating that a slower process
is simulated with less error than a quicker process if the resolution in
time and space is fixed (in this example, fixed so that 𝑠𝑣0 = 1).

We have assumed for convenience that 𝑤 < 1 when picking the
resolution of the model such that �̂� = 𝑤. More generally, �̂� < 1 is
achieved by picking a suitably refined resolution in time and space.
Referring back to Eq. (7), we note that the error with regard to growing
𝑣0 is the same one shown in Fig. 1. That is, when using a time
stepped simulation procedure that implements a Bernoulli process, finer
resolution in time leads to smaller errors. The discrete event simulation
avoids error by sampling directly from the exponentially distributed
intervals of the Poisson process.

3.3. Computational efficiency

The time required to perform a simulation with the discrete time
simulator is simple to calculate. Assume, on average, that to calculate
a single state transition at a cell requires one unit of time. To simulate
a two dimensional model with 𝑁 × 𝑁 cells for 𝑇 steps requires 𝑁2𝑇
units of time.

A state transition at a cell in the discrete event simulation carries
with it the computational overhead of sorting cells by their time of next
event, the test for quiescence, and the cost of initializing the cell at
simulation start. In any given simulation execution, this overhead will
tend to be a constant so that the cost of a state change relative to the
discrete time simulation is some 𝑎 > 1. The value of 𝑎 will depend on
the scheduling algorithm used by the discrete event simulator and the
number of cells in the model.

The number of state transitions calculated in an interval of time will
depend on 𝑤 and the fraction of the cell space that is quiescent. On
average, an active cell in the discrete event model will calculate 𝑤 state
transitions for each state transition of a cell in the cellular automaton.
If the fraction of the space that is active is 𝛼 then the total cost of
simulating for 𝑇 steps is

𝛼𝑁2𝑇𝑤𝑎 . (9)

The speedup of the discrete event simulation relative to the discrete
time simulation will be

𝑁2𝑇
𝛼𝑁2𝑇𝑤𝑎

= 1
𝛼𝑤𝑎

. (10)

In a model of grain growth, 𝛼 will be related to the grain size. If
grains are approximately circular with radius 𝑟 and if only the cells on
4

a

a grain boundary are active, then 𝛼 will be close the ratio of the area
to the perimeter

𝛼 ≈ 2𝜋𝑟∕𝑟2 = 2𝜋∕𝑟 . (11)

The grains grow in size as time progresses, and so it is the average
grain size over the interval 𝑇 that determines the speedup. Writing this
as �̂�(𝑇 ), the speedup is
�̂�(𝑇 )
2𝜋𝑤𝑎

(12)

e will not explore the three dimensional case here except to note
hat Eq. (12) will change only by multiplication with a constant.
he fraction 𝛼 becomes the ratio of surface area to volume, which is
roportional to 𝑟2∕𝑟3 = 1∕𝑟.

To demonstrate this speedup law, the discrete time and discrete
vent simulations were implemented in C++. Total execution time and
otal transition counts for several choices of 𝑤, 𝑁 , and 𝑇 are listed in
able A.1 (see the appendix). These model parameters are selected so
hat each simulation covers that same span of time if we assume a fixed
hysical dimension for the space spanned by the model. The Linux clock
unction is used to measure time. The model is initialized with a unique
rientation at each cell.

The overhead 𝑎 imposed by the discrete event simulation algorithm
elative to the discrete time simulation is measured by counting the
otal number of state transitions in each simulation, dividing these by
he total execution time, and then normalizing. These measurements
re shown in Fig. 2 for the simulation experiments tabulated in Ta-
le A.1. The essentially flat overhead curves are a product of the sorting
lgorithm used by the simulation package.

This sorting algorithm that determines 𝑎 imposes an overhead pro-
ortional the log2 𝑀 , where 𝑀 is the number of active cells. In the
orst case, 𝑀 = 𝑁2, but generally 𝑀 is much smaller than this

because of the quiescent cells. Nonetheless, increasing 𝑁 leads to
reater overhead at a rate similar to 2 log2 𝑁 . The more slowly evolving
rains created by reducing 𝑤 results in fewer quiescent cells and so
larger 𝑀 and somewhat larger overhead. The slight decline as a

unction of execution time seen in Fig. 2 is due to an increase in the
umber of idle cells as the simulation progresses.

Fig. 3(a) shows the change in �̂�(𝑇 ) as estimated using Eq. (12) from
he known 𝑤 and 𝑇 , the measured speedup, and 𝑎. Fig. 4 emphasizes
he relationship between average grain size, time, and speedup. There,
he grain patterns grown by the cellular automaton and discrete event
odel at 𝑇 = 1500 and 𝑇 = 48,000 are shown for 𝑁 = 300 and 𝑤 = 0.01.
he growth in grain size is readily apparent in the sequence of plots,

greeing qualitatively with the speedup seen in Fig. 3(b) and estimated
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Fig. 2. State transition overhead of the discrete event simulation relative to the discrete time simulation for each of the scenarios presented in Table A.1.
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rain size in Fig. 3(a). The estimated grain size grows approximately
n proportion to

√

𝑡, which is the expected shape of the growth rate
or an idealized physical model [20]. This is illustrated for two cases
here the constant of proportionality was chosen so that the idealized

ate and simulation rate are close.

. De-centered square for grain growth

The decentered square (or, in 3D, octahedron) cellular automaton
DoCA) was first introduced in 2D [21] and then 3D [22] to model
rain growth during solidification. The DoCA is typically implemented
ith a time stepped evolution of the size of the grain envelop until the

enter of a neighboring cell is encompassed by the growing envelope.
nce this happens, the neighboring cell is considered captured and then
roceeds to propagate its own grain envelope.

The time step has historically been selected to having a grain
nvelope grow in size by at most 1∕25 of a cell length at each step [22],

although larger time steps, such as 1∕5 of a cell at each step [23], have
also been used to improve computational speed. Because a cell can
only be captured once, having multiple capture events at a cell within
the same time step can lead to an incorrect assignment. This type of
error occurs more frequently as the step size is increased. Just as in
the previous example, selecting a step size requires a trade between
execution time and accuracy.

Our second example of a discrete event simulation concerns the 2D
DoCA with a constant growth rate. Though DoCA is used to model
grain growth in real materials, this example does not consider any
specific material and thus both the growth rate and nucleation density
are non-dimensional. The growth rate is the fraction of a cell length
an envelope is allowed to grow per step. The nucleation density is the
fraction of the total number of cells from which a grain can originate.
To arrive at a discrete event simulation, the state of a cell comprises
the state variables in the discrete time simulation: angle of orientation,
size of the grain, center of the grain, if the cell has been captured,
and its capture status (true or false). We add to these state variables
the time ℎ remaining to the next capture event and the neighbor that
will be captured at that time. The cell’s time advance reports ℎ and the
5

t

output function produces a message for the neighboring cell that will
be captured.

At an internal event, the cell expands its grain envelope and cal-
culates the time and location of the next capture event. If all of the
neighboring cells have been captured, then ℎ = ∞. Otherwise, ℎ = 𝑑∕𝑣
where 𝑑 is the distance the diagonals of the grain envelope need to grow
for the grain envelope to reach the center of the nearest uncaptured cell
and 𝑣 is the rate of growth of these diagonals. At an external event,
the cell becomes captured if it is not already captured. If it becomes
captured, ℎ is set as just described. Otherwise, ℎ remains at ∞ or is
set to ℎ − 𝑒. As before, the confluent state transition function is the
composition of the internal and external state transition functions.

The model is initialized by assigning a nucleation time to a fraction
of the space. These cells capture themselves spontaneously after a fixed
interval of time if they are not captured by a grain before that interval
expires. The orientation of these nucleating sites is selected at random.

The speedup of the discrete time simulation relative to the discrete
event simulation depends chiefly on the step size used by the discrete
time simulator. For a simulation of 𝑁 cells over an interval 𝑇 using a
step size 𝛥𝑡, the discrete time simulator requires 𝑁𝑇 ∕𝛥𝑡 state transitions
to be calculated. The discrete event model has a fixed upper limit of
17 state transitions at each cell. Hence, for 𝑁 cells we require at most
𝑀 < 17𝑁 state transitions. If 𝑎 > 1 is the overhead imposed by the
scheduler in the discrete event simulation, the speedup of the discrete
event simulator relative to the discrete time simulator is
𝑁𝑇
𝛥𝑡

1
𝑀𝑁𝑎

= 𝑇
𝑀𝛥𝑡𝑎

= 𝑘
𝛥𝑡

(13)

where 𝑘 = 𝑇 ∕(𝑀𝑎).
This speedup curve is shown in Fig. 5. For this speedup experiment

the model is simulated until each cell has been captured. The fraction of
the space that nucleates spontaneously affects the constant 𝑘 by chang-
ing the simulation interval 𝑇 and the number of events 𝑀 calculated
at each cell. Nonetheless, the primary dependence of the speedup on
1∕𝛥𝑡 is apparent in the plot. The choice of 𝛥𝑡 has a practical lower
imit of 1∕100 in this example. Fig. 6 shows this solution, and solutions
alculated with a time step below this lower limit are indistinguishable
ecause each cell experiences a single capture event. The speedup in

his case is 20x relative to the discrete time simulation.
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Fig. 3. Speedup and grain size in the discrete event simulation.
5. Conclusion

The two example models presented here highlight the key benefits
of applying discrete event simulation to cellular automata models of
grain growth. The discrete event algorithms achieve speedup by focus-
ing computational effort on the active cells in the model and eliminate
errors by advancing time precisely to the events of interest. In the
probabilistic model, this avoids error inherent in approximating the
underlying Poisson process. The discrete event formulation of the DoCA
model ensures that exactly one capture event happens at each cell.

For the sake of clarity, these simple examples omit physics that
could complicate the time advance function. An important applications
of the DoCA model involves coupling to a finite element model (FEM)
of a thermodynamic system [3]. One-way coupling consists of sending
local thermal information from the FEM to the DoCA model, whereas
6

two-way coupling consists of then having the DoCA model send back
information about how much material has solidified. In these coupled
problems, the rate of growth of the grain boundary changes with time
in response to the thermodynamic system, making the simple projection
used in our example impractical.

Solutions for these more practical and more complicated problems
is a topic for future research. In some cases, it may be sufficient to apply
known techniques for the numerical solution of (partial) differential
equations within a discrete event simulation [16,24,25]. In other cases,
the development of new models or techniques may be necessary. For
example, using only the time and cooling rate of a melting event, it
may be possible to solve for the exact capture time if a suitable interface
response function is chosen. A low order polynomial fit could be solved
directly for the time of the next capture event. Using a power law such



Computational Materials Science 219 (2023) 111990J. Nutaro et al.
Fig. 4. Grains grown in the discrete event (DE) and discrete time (DT) simulations. The cell space is 300 × 300.
Fig. 5. Speedup of discrete event model relative to the cellular automaton.
as 𝑉 (𝛥𝑇 ) = 𝐴(𝛥𝑇 )𝐵 for the interface response function [26] also makes
calculating the time of capture events straightforward.

With the surge in popularity of Additive Manufacturing (AM), DoCA
models have seen heavy use in large-scale simulations. Since many AM
processes have large thermal gradients, large cooling rates, and a small
fraction of the domain in liquid form at any given time, simulation
7

of any kind is typically costly. The most common approach involves
one-way coupling of the DoCA model to a model for heat transport,
although these simulations have taken days to run [27–29]. Recently a
different approach, which does not involve coupling of the numerical
solvers, uses a reduced data format that encodes only vital information
about solidification, and these simplified models have been successfully
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Fig. 6. DoCA algorithm with time step 1∕100. The cell space is 600 × 600.
Table A.1
Simulation running times and state transition counts for the selected model configurations. Speedup is discrete time simulation (DT) running
time/discrete event simulation (DE) running time.
𝑤 𝑁 𝑇 DT time DT counts DE time DE counts Speedup

0.05 150 150 72671 3375000 113703 434428 0.639
0.05 150 300 139537 6750000 140223 540889 0.995
0.05 150 600 273839 13500000 168674 673318 1.62
0.05 150 1200 537476 27000000 216937 857985 2.48
0.05 150 2400 1063516 54000000 268989 1131750 3.95
0.05 150 4800 2144793 108000000 353048 1505820 6.08

0.01 150 750 274532 16875000 119653 434428 2.29
0.01 150 1500 548217 33750000 139030 540889 3.94
0.01 150 3000 1066221 67500000 168542 673318 6.33
0.01 150 6000 2132721 135000000 221465 857985 9.63
0.01 150 12000 4255555 270000000 270455 1131750 15.7
0.01 150 24000 8513285 540000000 353436 1505820 24.1

0.05 300 300 531174 27000000 796988 2183600 0.666
0.05 300 600 1039835 54000000 952761 2734736 1.09
0.05 300 1200 2247851 108000000 1181496 3491166 1.90
0.05 300 2400 4353459 216000000 1540635 4559428 2.83
0.05 300 4800 8475025 432000000 1850272 6060432 4.58
0.05 300 9600 16836433 864000000 2408221 8188391 6.99

0.01 300 1500 2088987 135000000 798049 2183600 2.62
0.01 300 3000 4175458 270000000 970023 2734736 4.30
0.01 300 6000 8381972 540000000 1168745 3491166 7.17
0.01 300 12000 16659350 1080000000 1453958 4559428 11.5
0.01 300 24000 33347265 2160000000 1886000 6060432 17.7
0.01 300 48000 67969468 4320000000 2387508 8188391 28.5
used to predict grain structure [30]. More recent work using a reduced
format [31] has shown improved running times through the use of GPU
enabled code; however, because only a small fraction of the domain
is liquid at any time, it still scales poorly on multi-node computing
architectures due to most work being done on a single node.
8

Parallel algorithms for discrete event simulation may offer new op-
portunities for using high performance computers to simulate complex
DoCA models. Introductions to these parallel algorithms can be found
in [16,17,32] and a recent, preliminary application of these parallel
algorithms to kinetic Monte Carlo problems is described by Oppelstrup
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d

et al. [33]. The excellent performance of these algorithms on very
large scale parallel computers derives from their elimination of barrier
synchronization at the time step. Each part of the parallel execution
proceeds independently until an exchange of information becomes
necessary. In a well constructed parallel discrete event simulation, this
operating principle is used to advance each processor to a point in time
where its assigned portion of the model is active, thereby avoiding idle
processors and achieving excellent speedup.
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Appendix

Table A.1 lists state transition counts and execution times observed
in the speedup experiments that we describe in Section 3.3.
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