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A B S T R A C T

Current onsite safety management always relies on time-consuming predefinitions of hazardous zones based on
the managers' personal capabilities. However, in a typical labor-intensive industry such as construction, the
workers themselves can provide a wealth of information for hazard identification. Historical accident-free
working locations on site provide a valuable means of recognizing safe workplaces. This paper presents an
approach to the automated classification of construction site zones derived from the location tracks of workers
collected from a real-time location system (RTLS). Through data mining, filtering and analysis, the location
tracks are transformed into grid density maps and continuous density maps. These illustrate the characteristics of
spatial-temporal activities onsite as well as providing a visual representation of the distribution of safe and
hazardous individual workplaces. A personnel hazard map is generated automatically based on historical
accident-free location tracks from a field project using the proposed approach. Compared with the actual
workplaces in terms of accuracy, precision, sensitivity and specificity, the evaluation result reveals that the
hazardous areas on a construction site can be automatically classified to improve the workplace management of
individual workers. The contributions of this research include an automated zone classification algorithm and an
evaluation framework consisting of four indicators for hazard awareness onsite.

1. Introduction

Identifying the changing hazards or controlling risks during con-
struction activities is an important, but often quite difficult task. This is
especially the case onsite, even when most of the activities are
conducted repetitively [1], where it is almost impossible to avoid all
the safety hazards in a workspace due to the complex nature of
construction projects [2,3]. Construction sites are also highly dynamic,
with exposed workspaces and their occupation constantly changing,
exacerbating the already serious hazard identification problem for both
the construction site and crew. Since it is uneconomical or ineffective to
employ more safety inspectors, an efficient and automated approach is
needed.

There is an increasing use of personal mobile devices integrated
with geographic location tracking, context-awareness and wireless
communication in the construction industry, and working habits are
changing accordingly. This is providing the potential for accessing a

wealth of information for evaluation, communication and collaboration
onsite. Basic data concerning the continuously changing locations of
communication devices onsite enables the geographic position and
spatial-temporal behavior of workers, materials and equipment to be
monitored by simple manipulation, providing managers and workers
with opportunities for creative initiatives for the collection, tracking
and visualization of onsite construction activities [4–9]. This has given
rise to the introduction of location-based services (LBS) that offer value-
added services for individuals in the form of new utilities embedded in
their personal devices [10]. Properly leveraged, this rich spatial-
temporal information has the potential to improve hazard identification
and the control of risks onsite.

However, the increasing amount of research applying LBS to safety
issues is mostly based on predefined unalterable manual rules.
Proximity hazard indicators between workers, equipment and hazar-
dous areas are widely employed in pro-active real-time construction
systems due to the growing body of evidence indicating that potential
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risks and accidents can be reduced by avoiding working in, or close to, a
dangerous location at a specific time [11–16]. The workspace require-
ments of labor and equipment operations in 3D BIM models are being
generated with increasing precision to improve the efficacy of proxi-
mity alert systems and approaches [17,18]. Although these studies
greatly assist in safety management onsite, pre-construction safety
plans are still insufficiently adequate to cope with the dynamic and
multiple objectives that occur during daily onsite activities. The whole
hazard identification process needs to be involved prior to the applica-
tion of these proximity approaches [2], otherwise, unidentified hazards
will continue to threaten the health and safety of the workforce.
Moreover, the situation is exacerbated by most planners being con-
servative and unable to provide timely updates of hazardous locations
according to changing site conditions.

Since the construction process lasts so long, it is reasonable to
consider the hazard zones to be static at short time intervals.
Accordingly, this study aims to develop an automated approach to
identifying, mapping and updating all of the area-restricted hazards or
safe zones onsite in a timely manner. This involves deriving crucial
historical locations deemed to be safe working zones, such as accident-
free walk paths, by crowd sourcing (workers engaged in similar activities
or in the same group) to assist in individual safety decision-making
[19]. This exploratory approach attempts to classify the entire site into
hazardous and safe zones through a novel peer based approach based on
their frequency of occupation by workers, potentially providing an
available means to reuse the historical data for further prediction in the
short run. On the assumption that areas that have been occupied by
accident-free workers are more likely to be safe areas than otherwise,
the issue then becomes one of identifying such areas. The approach
utilizes data mining and information technology to extract and
integrate density maps from these areas to provide individual guides
to safe zones in the form of personal hazard maps [20].

Consequently, to achieve the objectives of this paper that harness
accident-free work trajectories and safety preferences by like-minded
peers, the rest of the paper is structured as follows. Section 2
investigates the background of the research, containing traditional
hazard identification approaches and potential issues in practice. Then
the core proposed framework consisting of four modules is introduced
in Section 3. Curial zones of workplaces are visualized via density maps
to display their distribution and mark the characteristics of workers
onsite. In Section 4, a field case study is described to demonstrate the
capability to create an automated zone classification map for an
individual worker and evaluate its accuracy. Finally, conclusions and
future research possibilities are provided in the last section.

2. Background

Although the associated root causes of fatal/serious accidents are
well known, including lack of attention, insufficient safety training,
tiredness, poor quality materials and equipment [21], there nonetheless
still exist unidentified hazards or risks that cannot be anticipated prior
to their occurrence. From an external environment perspective, the
hazards are a result of a variety of circumstances, including unexpected
site conditions. The constantly changing dynamic of aggregated vari-
ables onsite also undermines hazard identification [2]. From an internal
worker perspective, different workers share different safe and hazar-
dous zones due to human factors [22,23]. For instance, a ditch on a site
may be a safe working zone for an experienced excavator operator who
understands the work method involved and uses appropriate personal
protective equipment (PPE), but may be a hazardous zone for other
workers. Both perspectives make it impossible to identify all the
hazards involved completely in advance.

Commonly, most accidents onsite are regarded as the result of
contact collisions mainly caused by low awareness and blind spots
[12,24]. Thus, apart from site inspections, proximity safe alert systems
based on real-time location systems (RTLS) have been extremely

popular and unsafe-proximity identification is widely used to provide
proactive safety management [1]. Spatial interference between person-
nel, related equipment and materials, such as the proximity of labor to
operating heavy equipment or moving vehicles, can be detected or
predicted [5,13], For example, based on onsite dynamics, the analysis
of activities and related hazards, Guo has identified space conflicts by
considering space constraints and path interferences to assist decision-
making [25]; Sacks et al. has designed an algorithm to estimate the
likelihood of spatial and temporal exposure to related hazards [1]; Lee
et al. have developed a radio frequency identification (RFID)-based
RTLS suitable for diverse sites to contribute to aggressive safety
management [16]; and Marks and Teizer propose proximity detection
between workers and equipment [12]. To enhance the efficiency of
proximity safe systems, Kim et al. have developed a human-assisted
obstacle avoidance system during equipment operation [26]; Wang and
Razavi have constructed a low false alarm rate model by adding
position, heading direction and speed attributes [15]; and Cheng
et al. further propose to utilize the fusion of RTLS and physiological
status as well as thoracic posture to activity analysis [27,28]. On the
other hand, Vahdatikhaki and Hammad, Tantisevi and Akinci generate
a dynamic equipment workspace [17,29,30]; Akinci et al. design a
project-specific model to build workspace requirements at the activity-
level [31]; with Zhang et al. then integrating BIM into the 3D
visualization of the workspace requirements to promote the accurate
calculation of proximity [18]. These studies all require the manual pre-
identification of unsafe-proximity prior to applying field-testing, which
is time-consuming and prone to invalidate the approaches due to
unpredicted conditions.

Since it is impossible and uneconomical for managers to identify all
the unsafe-proximity hazards before construction, a novel approach to
extracting spatial-temporal information from historical location tracks
is to use the wealth of information available of the locations of workers,
materials and equipment [32]. This can be conveniently obtained by
utilizing such advanced technology as UWB, RFID and GPS [4,33–35].
A few researchers have attempted to promote proximity safe alert
systems through learning from the spatial-temporal proximity relation-
ships of near misses. Wu et al., for example, have designed an
autonomous system by considering the characteristics of near misses
based on typical historical accident cases [24]; and Teizer and Cheng
have collected and studied near-miss data to provide a proximity
hazard indicator to identify obstacles for route searching and generate
heat maps for safety planning [36,37], which enhances safety knowl-
edge sharing among stakeholders [13]. These studies attempt to
transfer safety knowledge from not only inspectors and managers but
also the workforce itself. However, such approaches commonly view
and serve workers as a community, with often-insensitive unsafe-
proximity recommendations being provided for safety initiatives.

Therefore, an approach that automatically updates according to
movement feedback from specific groups of workers onsite has a
genuine potential to provide the responsiveness required sufficiently
and efficiently. However, a major problem with historical location
resources is that enormous amounts of information have to be examined
in order to find the relevant pieces needed. If the working area of a
worker is safe, then it should also be safe for similar workers under-
taking similar activities at a similar time. Thus, integrating the density
maps of historical accident-free locations should provide a much better
alternative than increasing the number of safety managers onsite.

3. Framework of automated zone classification

The framework of the proposed approach is represented in Fig. 1.
The origin dataset is cloud-stored and contains historical locations, real-
time locations, layout and predefined special zones. It is not compulsory
to input the data in the dot boxes since sometimes workers are new to
the site or adequate detailed information of the geographic attributes of
sites cannot be obtained before construction. The essential assumptions
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of the framework are first described and each module is illustrated in
the remainder of this section.

3.1. Essential hypotheses

Two essential hypotheses are proposed in order to provide the
foundation for the processing modules. That is:

Hypothesis 1. Workers generally tend to avoid hazards instinctively.
While workers are working or moving from one workplace to another,
they tend to walk around hazards at an appropriate distance [2]. Hence,
an accident-free location can involve one of two possible circumstances:
(1) the location is completely within a safe, hazard-free area; or (2) the
location is partially within a hazardous area where the associated
hazards are under control. Taken in short time intervals, a dynamic
construction site can be considered static and thus such areas can be
treated as temporal safe areas with only a tiny probability of accidents.

Hypothesis 2. Workers always undertaking the same or similar tasks
onsite face similar hazards and risks. Though many factors, such as
training levels, health conditions, etc., have an obvious impact on
workers' decisions and actions, to simplify the process here only the
task is taken into account in zone classification as the same concepts
hold for other factors involved in the task. Therefore, workers in the
same task group are treated as a crowd source sharing the same safe

zones.

3.2. Data collection

The core dataset required to be input contains three parts, the real-
time locations, working characteristics of labor crew and the layout of
the project. The first part can be collected from a real-time location
system based on either of RFID, UWB, WLAN, GPS etc. [33–35]. These
systems require the manual deployment of equipment and tags ahead of
normal operation. For example, the RTLS used in this study is
developed based on a wireless personal area network (WLAN) [42] in
which the pre-installation of sensing infrastructure and tags are
essential before actual construction. Generally, numerous workers carry
out activities last for a long time per day and therefore the overall
amount of locations is so large that processing with ordinary computa-
tion capability onsite is problematic. To remedy this, the entire location
arrangement is simplified and only part of the locations is taken into
account. The available components in this study are the locations where
workers are involved in direct and hauling activities, which are
identified by observers in the following pre-processing module. Note
that a satisfactory degree of accuracy in a Cartesian coordination
representation is also necessary for further analysis. The second part -
the working characteristics of workers - containing working experience,
task allocation and relevant team members, can be determined by
observing and investigating the subjects directly or by referring to the
managers daily reports. The last part is layout, which can be derived
from shop drawings or aerial photography from drones, providing the
current situation of the construction site.

3.3. Pre-processing module

The objective of the pre-processing module is to filter out and
smooth incorrect location boundaries. Although off-the-shelf hardware
customized to suit the needs of a precise location can be used, the
signals received may still contain unwanted noise hidden inside the
dataset [37], leading to a location with cusps and occasional outliers.
Since this noise is mainly the result of measurement rather than
processing errors, a high proportion follows a normally distribution.
The Kalman filter, as a robust algorithm, is therefore used to eliminate

Fig. 1. Framework for automated zone classification.

Fig. 2. MCS and MIS grid.
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the noise and smooth the location boundaries [38]. Compared with the
extended and federated Kalman filter, the linear Kalman filter is likely
to be more effective and easier to apply in real-time situations [39,40].

The following manual filter aims to overcome two kinds of site-
related problems. The first concerns the initialization of the system, in
that abnormal signal readings might be received while initializing the
configuration settings. The other concerns the discontinuity of tasks
occurring on the site. The intervals between activities include the
workers' breaks or rest times and the inevitable waiting time, such as in
the hardening time of concrete. Workers might relax outside the
detectable zones or log out leading to duration intervals. Because the
focus of the proposed framework aims to analyze the main workplaces,
these irrelevant records have to be eliminated manually. For inaccurate
initialization locations, an inference variable is added into the RTLS in
the form of a fixed point onsite. The location signals of workers are
ignored until the inference signals are constantly received. For irrele-
vant locations from rests, etc., an upper bound is determined by
observation or feedback once the rest time is over the threshold, so
the locations during the rest are ignored.

3.4. Grid density map module

In order to extract workplace information and establish the funda-
mental characteristics of the workers, the whole construction site is
divided into grids by constructing a two-dimensional lattice layout for
analysis. This module comprises two steps: (1) meshing the layout plane
and (2) counting the frequency of occupancy in each grid and drawing
the density maps.

3.4.1. Mesh plane
Assume that the Pro-Active Construction Management System

(PCMS) [41] is used as the main RTLS. This is designed to send and
receive signals every 0.5 s with the broadcast frequency of around 2 Hz.
Thus, the influence area of a single worker is a circle with a radius of
1 m, assumed to be the potential moving distance in a half second. For
simplicity and fast segmentation, the grid shape of the influence area is
transformed into a square. Thus, the dimensions of the maximum
inscribed square (MIS) and the minimum circumscribed square (MCS)
are 1.414 m and 2 m respectively. As Fig. 2 illustrates, if the detection
points are located in the gray areas, the points for the MIS are regarded

Fig. 3. Conversion of density matrix and grid density map.
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as in the grid but not actual influence areas, with an error rate of 0.214;
while the points for MCS are regarded as in another grid instead of the
actual one, with an error rate of 0.429. Thus, compared with the
9 m× 9 m grid for earthmoving operations [42], a 3 m × 3 m grid for
trucks [43] and 0.5 m × 0.5 m grid for workplace requirements
analysis [18], the whole site is divided into a 2 m× 2 m chequerboard.

3.4.2. Count frequency
To describe the characteristics of the spatial distribution of workers

and activities, density maps as the common thematic maps can offer a
comprehensive picture of the actual construction site [44]. A form of
discrete and abrupt density map of existing spaces between observa-
tions – the grid density map (also called a heat map) is employed in this

module to quantitatively deal with the tracked locations. Just as the
histogram provides a graphic visualization of one-dimensional numer-
ical data, the grid density map represents the distribution of two-
dimensional movement data. When the construction site is divided into
a series of equal grids, known as bins, the algorithm counts how many
movement points fall into each grid and enters the frequency into the
density matrix to plot the grid density map as shown in Fig. 3.

3.5. Continuous density map module

Considering the complex nature of construction sites, a qualitative
description might be sometimes used to simplify the reasoning process
dealing with inaccurate location tracks as well as to show the crucial

Fig. 4. Transformation to a continuous density map.
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factors involved. Thus, this module contains additional two-steps for
plotting: a kernel density estimate (KDE) and bandwidth selection.

3.5.1. Kernel density estimation (KDE)
The grid density map can be treated as a two-dimensional histogram

with grid length and width, which is simple and user-friendly. However,
the actual distribution might be skewed if parts of the location tracks
are lost. In particular, different orientations and grid dimensions can
also result in discrepancies in the visualization of the same distribution.
KDE is an efficient algorithm to alleviate these issues, making the plots
smoother and more robust.

As a popular non-parametric density estimator, KDE has various
kernel functions, including Epanechnikov, Biweight and Cosine. Most
are radially symmetric and unimodal, such as the Gaussian kernel
function widely employed, with
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where n is the number of samples and the bandwidth, and h is the
smoothing parameter. However, location tracks are multivariable cases,
and features with disproportionate weights in need of a covariance
matrix can result in a complicated procedure. In the present case,
however, the dimensions of location tracks - x and y - are independent,
sharing a same kernel function. Therefore, the product kernel is used
here as a suitable alternative for multivariate KDE, as
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3.5.2. Bandwidth selection
Bandwidth is a crucial factor affecting the slopes in KDE. Too large a

bandwidth over-smooths the density estimation and disguises the
structure of the data, while a bandwidth that is too small under-
smooths the density estimation and forces it to be too spiky to interpret.
Therefore, an optimal bandwidth is selected to minimize the combina-
tion of bias (system errors) and variance (random errors) as well as to
cover all the features simultaneously. The mean integrated squared
error (MISE) is the standard optimality criterion, where

∫h E f x f x dxMISE( ) = ( ( ) − ( ))h
2

If the true distribution is assumed Gaussian, the optimal bandwidth
as initial input to fulfill the optimality criterion approximates to

h σn≈ 1.06Gaussian
∗ − 1

5

where σ is the sample standard deviation and n is the sample size.
However, in practical field tests, the hidden distribution of trajectory is
unknown. The initial bandwidth requires updating using a data-based
method such as Gaussian approximation or Silverman's rule.

Consequently, continuous density maps can be drawn as shown in
Fig. 4 based on the estimated function to identify the features of
workplaces.

Fig. 5. Grid density map of a sample worker.
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3.6. Post-processing module

This module deals with the grid and continuous density maps
generated by the former modules to fulfill different zone classification
requirements. For personal zone services, density maps of relevant
workers are selected and integrated to guide the identification of the
worker safety zones. For population zone services, on the other hand,
density maps of a certain time period are transformed into a sequence
showing the dynamics on site. The current approach focuses on formal
safety recommendations.

3.6.1. Neighbor selection
Neighbors are defined here as like-minded peers, such as a co-

operator in a team, among an onsite crowd source and who are engaged
in the same, similar or related activities. This subset of the workforce
commonly experiences major threats posed by the same hazards. For
instance, being aware of a hazardous floor hole, a bar bender attempts
to carry out construction tasks at a distance from the hole. As a result,
no location tracks within the hazardous area can be derived from RTLS.
Other bar benders also only accept the workplace without the hole as
being safe, while the rest of the workforce, such as excavators whose
workplace might contain the hole, would not consider the hole to be a
serious hazard. Therefore, the current accident-free locations of work-
ers are potentially safe working zones. In this exploratory research, all
the tracked workers are aggregated into data sets by occupation.

3.6.2. Integrate maps
To accomplish density map integration, each worker is treated as

having the same impact on other similar neighboring workers. Thus,
the density maps of neighbors can be superimposed linearly on a layout
or actual site map following the superposition principle.

For grid density maps, the integrated procedure can be formulated
as a weighted mixture.

∑g x y w f x y( , ) = ( , )
i N

i i
∈

where x and y represent the row and column of the grid perspective, N
is the dataset of neighbors, wi denotes the weights corresponding to
neighbor i decided by variables such as experience and fi(x,y) is the
discrete function of the count frequency. Here, all weights are taken as
equal to each other without considering personal attributes such as age
or gender.

For continuous density maps that qualitatively illustrate the dis-
tribution of the main workplaces, the ultimate zone classification
indicating safety probability is referred to as a mixture density. Since
the number of peer workers is finite and countable, the density sum is
the same formula as for the grid density maps. However, an extra step
needed in practice is that the data-based bandwidth has to be reselected
in order to combine or separate the distribution kurtosis, with a flatter
or more pointed peak and slighter or heavier tails.

Area recommendation services would ultimately be carried out
based on the integrated maps throughout the framework. Grid density
maps provide precise safety and hazard guides in which grids with high
frequency are treated as potential safety zones and vice versa. The
continuous density maps indicate the important workplaces upon
which to focus and re-filter out abnormal grids, showing the dynamics
of the construction site and changing workplaces. Managers can then
check the zone classification and mark other predefined special zones
on the final maps.

4. Case study

To examine the approach, assume that a group of workers involved
in a bridge project are tracked by a location tracking technology, a
series of historical location tracks are obtained with certain accuracy
that satisfies the requirements of density computing. Here, the hazards
on construction sites were mainly comprised of electrical and fire
dangers; and the experienced workers tended to conduct construction

Fig. 6. Analysis of the four indicators with increasing number of neighbors.
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activities far away from these hazards. Thus, accident-free location data
were firstly pre-processed with a Kalman filter and a manual filter to
smooth and eliminate the obvious erroneous points due to accidental
errors, and the dimension of grids was determined to be 2 m× 2 m
according to literature. The density maps were then drawn based on the
occupancy of each grid by individual workers. A worker was selected
randomly to be a target worker, while the remaining workers were
selected by random sampling to comprise the neighborhood set for the
target worker. Compared the safety and hazard zones of target worker
with the generated density maps from neighborhood set, the proposed
approach could be examined and validated. To provide significant help
to layout planners, operators and managers, the system needs to
identify core hazardous areas accurately with an economic warning
distance. This means that the accuracy, precision, sensitivity and
specificity of the safe and hazardous workplace classifications are
crucial. Here, accuracy measures the bias of the core hazard and safety
locations between the actual workplace and density maps; precision
indicates the variability of the zone classification, seriously impacting
on the boundaries; sensitivity assesses the performance of classification
by measuring the proportion of safety zones that are correctly
identified; and specificity, which can be regarded as an economic
indicator, refers to the probability of encountering actual hazards in
all the hazardous zones. To measure the efficacy of the approach, the

actual accident-free locations of any worker are selected as the
reference for comparison with the zone classification based on the
crowd source subset.

4.1. Validation of grid density maps

The integrated density maps are transformed into a binary matrix
according to the frequency of the grids. As Fig. 5 shows, the potential
outcomes are defined as:

True safe (TS): safe grids correctly identified as safe.
False safe (FS): hazardous grids incorrectly identified as safe.
True hazardous (TH): hazardous grids correctly identified as hazar-
dous.
False hazardous (FH): safe grids incorrectly identified as hazardous.

The four indicators are calculated by

TS TH
TS FS TH FH

Accuracy (ACC) = number of +
number of + + +

TS
TS TH

Precision (PRE) = number of
number of +

Fig. 7. Analysis of the four indicators of three neighbors by their reliability ratio.
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TS
TS FH

Sensitivity (SEN) = number of
number of +

TH
TH FS

Specificity (SPE) = number of
number of +

If the fellow workers are all experienced and cautious, the grids for
the accident-free locations can be assumed to indicate a completely safe
workplace. The results of the four indicators for a bar bender are
presented in Fig. 6. Apart from the target worker, the eight fellow
workers comprising the neighbor set provide 255 combinations of
subsets. Although both accuracy and specificity decline gradually with
an increasing number of neighbors, their ranges are still over 80%. One
possible explanation is that the decreasing homogeneity of the workers
involved in the reference set resulted in the rapid expansion of safe
zones so that the proportion of potentially hazardous areas for the
target worker, but safe areas for fellow workers, would rise. Although
the precision was relatively low due to the small proportion of hazards
onsite, there was a dramatic increase in sensitivity. This might be
attributed to the robustness of the crowd resource, in that the
involvement of more workers would eliminate the individual zone
characteristics.

However, historical location tracks, such as in the preliminary
period of new projects, are not easily accessible in practice.
Therefore, the safety probability of the collected location tracks is
added as an argument to enhance reliability. Commonly, the working

locations of experienced workers provide more reliable information
than new workers and therefore they are allocated a higher proportion
in map integration. Considering the computing requirements involved
and the total size of samples, three neighbors were selected to be
temporal references as they provided acceptable evaluated indicators.

As Fig. 7(a) illustrates, when the reliability ratio of the neighbors
and target worker falls, there is a sharp rise in accuracy to almost 1,
especially for the edge areas. This perhaps indicates that eliminating a
few frequency grids significantly increases accuracy. Since system
errors are inevitable and lead to some abnormal location tracks, using
reliability ratio filtering at low-frequency locations could improve the
effectiveness of the system. By contrast, precision falls suddenly with
the reliability ratio, which is interpreted as due to the reduction of
available grids from neighbors and user, leading to less mutual work-
places. Thus, the amount of TS grids gradually decreases while TH
rapidly increases. The graphs displayed in Fig. 7(c) and (d) show that
sensitivity and specificity tend to develop asymmetrically when con-
sidering reliability ratios. Lower reliability ratios result in lower
sensitivity and higher specificity, especially for the user, since the
individual workplaces are always so small that reliability has a
profound effect in comparison with neighbors.

This evaluation illustrates the influence of the number of neighbors
and reliability on system performance and demonstrates the validity of
the grid density maps. Although the indicators are not stable and are
seriously affected by the combinations of workers selected and their

Fig. 8. Bandwidth selection.
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working experience and dynamic changes in frequency on site, the
approach nevertheless has considerable potential for identifying most
safe and hazardous zones onsite.

4.2. Validation of the continuous density maps

Unlike density maps, continuous density maps assist in zone
classification by taking into account the population distribution onsite.
As a crucial factor in the performance and appearance of KED methods,

bandwidth is selected first based on the same three neighbors in the
above case. The 3-D surfaces in Fig. 8 show the conceptualized
distribution based on three bandwidth selection methods: Standard
Gaussian, Silverman's rule and Scott's rule. Although all identify the
main workplaces of the three neighbors, the Standard Gaussian does
this in an abrupt fashion, while Scott's rule combines and flattens the
distribution, expanding the predicted safety zones and leading to an
inaccurate horizontal projected area. Therefore, Silverman's rule is
selected as being the most suitable.

Fig. 9. Integrated density map of a sample worker.

Fig. 10. Computation time for generating discrete and continuous density maps.
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Since construction workplaces are spatial-temporal continuous, the
continuous density maps show the possible distribution as actual field
practices. Although the continuous density maps have fuzzy bound-
aries, they assist in reinforcing true grids and eliminating false grids.
The fragmentary grids outside the distribution without any connection
to core workplaces are likely to be incorrect owing to system error and
therefore need to be filtered out.

Fig. 9 shows the integrated grid density map and continuous density
map overlaid on the planned construction site layout. The white closed
line represents the contour plot of the assumed distribution of
neighbors. Based on the boundaries of the continuous density maps,
the sparse grids outside the normal distribution of the workplaces of
neighbors are, as with the grids surrounded with thick boxes, elimi-
nated owing to abnormal tracks. Therefore, the previous FS grids that
are classified as safe but are actually hazardous, are transformed into a
TH grid. Compared with the single grid density map classification, the
integrated method increases accuracy and specificity from 91.97% and
93.17% to 92.71% and 93.24% respectively, decreasing precision from
6.27% to 6.22% and maintaining sensitivity at 76.98%.

Hence an analysis of algorithm complexity was performed by
computation time for generation of discrete and continuous density
maps with respect to location amount, which was operating on an HP
Z400 workstation with Intel Xeon W3550 (3.06 GHz). As Fig. 10
reveals, the computation time, including CPU computing and plotting,
holds stable values with the increase in the number of location tracks.
Obviously, the computation time for continuous density maps was
higher than that for discrete 2 m × 2 m grid maps due to the complex-
ity of KDE. Both the absolute times take an average of less than 1 s,
suggesting that the update of zone classification can be made in a timely
manner. Another Fig. 11 shows the core computation time for generat-
ing discrete density maps with the respect to neighbor set size. With the
number of neighbors increasing, the mean computation time increases
linearly. The calculation time is reasonable since the map integration is
linear and simple. However, because of the discrepancies in location
tracks, the computation time ranges are changing unsteadily.

Although not all hazards were identified and cold-starts could not be
accommodated (due to the lack of historical records of a new site or
location tracks), once the cloud dataset of the workers was established,
the hazardous locations onsite could be recognized automatically.
Throughout the case study, the final integrated density maps were
evaluated to be effective and valuable for managers and for individual
workers' better personal safety on site.

5. Conclusions, limitations and future research

Manual hazard identification for construction safety management is

time-consuming and difficult to accommodate site dynamics. This paper
presents a novel approach to zone classification, leveraging the
historical working locations of peer crowd-source workers. After pre-
processing, the location tracks from the RTLS are delivered to two core
modules to extract the grid density maps and continuous density maps
respectively. The whole site is divided into grids to calculate the
frequency of occupancy of locations, with KDE concurrently estimating
the possible distribution of the locations. Finally, density maps of a time
period or worker are integrated to provide a zone classification guide.

The approach contributes to enhancing hazard identification onsite
without the need for predefinition or utilizing knowledge and experi-
ence in recognizing safe/hazardous workplaces. The automated zone
classification extracted from accident-free locations is made by compu-
tational data mining and processing, making use of the historical
tracking capacity of the PCMS. The maps generated also offer a novel
form of visualization of spatial-temporal characteristics or workplaces
and their possible distribution. Indicators of accuracy, precision,
sensitivity and specificity computed by comparing binary matrices in
a novel way are used to evaluate the performance of the approach.

A case study is used for demonstrating, testing and validation, and
shows how the changing evaluation indicators with reliable ratios and
bandwidth selection can be used to enhance performance. Although not
all reference workers are experienced and whose main working
locations cannot always be treated as safe workplaces, the approach
to zone classification is shown to be feasible and provides a wealth of
information concerning the spatial-temporal distribution of workers
onsite. Using grid density maps and continuous density maps with
geographical data onsite, the case study indicates the potential of the
approach to act as a very accurate automated workplace safety guide.

However, it is noticed that this approach cannot support the
identification of all hazardous areas exactly onsite. That could be
attributed to the assumptions made for the proposed model as well as
equipment limitations. One of the major arguments was that not all the
hazards onsite are static and interrelated with locations, such as truck
crashes, which was not tested by the case project but is common in
practice. Furthermore, personal training levels, health conditions,
protective equipment, etc., might significantly affect workers' decisions
and behaviors, which could not be taken into account in this study
because of the size of teams. In addition, cold-starts and hazardous
areas smaller than a grid could not be accommodated or identified due
to the lack of historical records of a new site or tiny regions. Such
problems could only be solved if the cloud dataset of the workers was
established and real-time data was input to the model using feedback
loops, leading to a more realistic and automated prediction. With
respect to equipment limitations of accuracy, the RTLS used on realistic
construction sites still requires improvement to perform better and

Fig. 11. Computation time of computing the density matrix from neighbors.
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more reliably. Future research needs to utilize advanced technologies
and measurements, such as iBeacon and laser scanning, to improve the
location accuracy in a comprehensive outdoor environment, as well as
consider more variables, to enhance the effectiveness of zone classifica-
tion. In addition, future studies are needed to propose a framework to
select crowd source automatically to enhance the current algorithm.
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