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This study offers a multi-response simulation–optimization approach to optimize an Alarm Monitoring
Center’s performance. In this paper, the multi-response simulation–optimization application is firstly
addressed in the Alarm Monitoring Center. Five performance criteria affect the performance of Alarm
Monitoring Center and five factors, each of which has three control levels, are identified. The data belong-
ing to the performance criteria, which are determined, are obtained with the help of the running scenar-
ios combining with the factor levels using Taguchi design. Then, signals to the noise (S/N) ratios are
calculated for these which are obtained from the performance data. A decision matrix is generated with
S/N ratios; the TOPSIS method is used to transfer the multi-response problems into the single-response
problems. The system improvement rate is also determined by finding the levels of factors to optimize
the system using Taguchi’s single response optimization methodology.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The need for reaching relevant authorities, especially in the
security problems, has recently increased in parallel with the
developments in the information and computer technologies. Since
2001, the safety and security issues have gained major importance
all around the world, creating one of the fastest growing industry
sectors. The state in Turkey is not different (Ilgaz, 2007). Among
the European countries, Turkey ranks second after Poland in the
size of its private security guards. Although Turkey has been deal-
ing with socio-economic issues for last decades, the increases in
safety threats have made the security a prime concern for citizens.
The security sector in Turkey especially consists of physical secu-
rity services whereas in economically developed countries, the
security sector is more weighted toward the methods of electronic
security. Therefore, it can be expected that as the Turkish economy
develops, a change toward the methods of electronic security will
occur (Ilgaz, 2007).

‘‘Alarm Monitoring Center’’ (AMC) is a newly developing con-
cept in Turkey. The alert systems, which are established in houses
and workplaces, send information to related alert monitoring cen-
ter nearby any alert situations, and provide the intervention of po-
lice or fire department or health care departments for various alert
types (robbery, fire, etc.). Alert monitoring centers provide service
for 7 days 24 h. The receptors of these systems transfer incoming
alerts to computer screens which sort by importance of alert. Every
communication detail of the alert place is automatically provided
to operator. The alert monitoring center performs certain proce-
dures and processes, which was determined before.

House and workplace alert systems are typically composed of
fire and robbery alert systems. The main purpose of robbery alert
systems is to sense the passage of any persons in the time intervals
which are determined. In practice, these systems accept every en-
try in the time intervals, which are determined, as robbery and
send information to the alert monitoring center. Many different
sensors are being used in buildings in order to sense unwanted en-
tries and to send these senses to the desired centers as electrical
signals. Robbery sense sensors or perimeter and interior detector
devices can generally be classified; ultrasonic movement detectors,
passive infrared detectors (PIR), sound detectors, light sensors,
capacitance sense detectors and acoustic glass break detectors
(Eren, 2006).

The fire monitoring systems are the electronic notification alert
systems, which sense the fire incidences in the region by sensors.
These are generally used as building fire systems: ionization, opti-
cal smoke type of fire detectors, fixed temperature, temperature
rising speed detectors, linear temperature rising detectors, heat
type detectors, flame detectors, sound alert/horns, sound – flash
alert horns, analog addresses, and conventional fire notification
alert panels (Eren, 2006). Heat and smoke detectors are the most
widely used fire detection devices. Heat detectors are designed to
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detect a rapid increment of heat in the area of the detector (CSAA,
2011). Smoke detectors could detect the presence of smoke in an
area (CSAA, 2011). There are two well-known types of smoke
detectors, ionization and photoelectric. Ion detectors detect a flam-
ing fire faster; however a photo electric detector detects a smolder-
ing fire quicker in most situations (CSAA, 2011). Carbon Monoxide
(CO) or gas detection equipments are used for detection of the spe-
cific gas or vapor to be encountered (CSAA, 2011). Sensors are
linked to a control unit via low-voltage wiring or a narrowband
radio frequency signal which is used to interact with a response
device (Elfahaksany et al., 2011).

The procedure of data collection in an AMC is illustrated in
Fig. 1. The robbery alert system senses the unwanted entries to
the building and, as desired, notifies the alert monitoring center
about the situation. Detectors are connected to system panels,
and sirens and flashers are connected to the alarms.

In any alert situations, the control panel makes the alarm equip-
ments active due to the coming signals. Then, if the system is
connected to any alert monitoring centers, the control panel noti-
fies the central security station about the alert/failure state of sys-
tem. The detectors, which provide this information, are movement
detectors, glass break detectors to sense the glass breaks in first
floor, seismic detectors and magnetic contacts in windows/doors.
The fire alert system is sensitive to any smoke, any chemical gas,
nonlinear rising of area temperature and light radiation. If the data
of detectors, which are used, exceeds the certain level in security
zones, these data are sent to the central control unit through the
control panel by different communication methods. Then, the fire
cooling systems are being activated. The computer–phone
Fig. 1. Data collect
integration system is a system which forwards the coming call to
operator and at the same time, provides the clients information
to the operator screen. Alert zone and alert type are transferred
to the alert monitoring center telephone central. At the same time,
the information of conference between client and operator is re-
flected to the screen. So, the client conference times and alerts
types are recorded to the database.

In previous researches, the performance analysis of Alarm Mon-
itoring Centers (AMC) has not been studied. An AMC system can
provide a variety of functions such as customer service, contact
centers service, and technical support (Rothrock, 2011; Ma et al.,
2011). AMC is similarly considered as ‘‘Call Centers’’ for queuing
system which consists of customers (callers), servers (telephone
agents), and queues. The incoming calls are classified as true or
false. This is a former process of filtering without noticing to the
relevant departments. True ones are forwarded to related
institutions.

In this study, an AMC performance is improved. This study is
the first in the literature to carry out the performance improve-
ment of AMC with the simulation–optimization. First of all, the
performance criteria of system as well as factors and their levels
that affect these performance criteria are identified for perfor-
mance optimization of AMC. The data belonging to performance
criteria, which are determined, are obtained with the help of
running scenarios combining with the factor levels using Taguchi
design. Then, signal to noise (S/N) ratios are calculated for these ob-
tained performance data. After a decision matrix is generated with
S/N ratio, TOPSIS (Technique for Order Preference by Similarity to
an Ideal Solution) is used to transfer the multi-response problems
ion procedure.
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into the single-response problems. As a result, the best factor levels
are identified according to Taguchi method principles for one-re-
sponse problem (Simsek et al., 2013).

The remainder of this paper about the performance optimiza-
tion of AMC is organized as follows: a literature survey is provided
in Section 2. System is defined and then the performance analysis
of the existing system is presented in Section 3. The details of the
proposed methodology and the empirical results are discussed in
Section 4. The conclusions are presented in Section 5.

2. Literature review and conceptual background

2.1. Simulation–optimization

Simulation is a useful tool for modeling and analyzing the per-
formance of dynamic and complex system. Simulation can also be
used for some purposes such as the prediction of the performance
of system in the conditions which are proposed and according to
specified criteria, the comparison of the proposed system designs
or policies and in order to determine which factors are effective
on the performance of system (Wainer, 2009). In a simulation
study, the data which are collected from the real system is used
to estimate the input parameter which is required to run the model
of system (Law, 2007).

In last decade, the computer simulation has been a more impor-
tant tool for studying, understanding and controlling complex sys-
tems. The complexity and uncertainty of the nature of complex
systems require complex solution tools or hybrid approaches
including knowledge management, mathematical modeling,
simulation, decision support systems, etc. (Guo et al., 2003;
Bagdasaryan, 2011; Wang et al., 2011; Alexander and Kelly, 2013).

The simulation model does not provide a method for the optimi-
zation. To solve a simulation–optimization problem, the response
surface methodology (RSM), meta-model applications and meta-
heuristic methods are proposed in the literature (Yang and Chou,
2005; Kuo et al., 2008). The RSM simulation–optimization approach
presents a statistical summary of simulation results. It provides
some graphical illustrations and extrapolations from the simulated
system conditions, and also, has the potential to offer assistance in
the optimization (Yang and Chou, 2005; Kuo et al., 2008). Also,
other abstract model called meta-model is used to replace the sim-
ulation model. Meta models provide an application to the statistical
summarization of simulation results, allowing interpolation from
the currently simulated system conditions to reduce the require-
ments of the run time. Meta-models are also taking a role as the
objective function in the optimization process considering system
boundaries (Dengiz and Akbay, 2000; Dengiz, 2009; Kleijnen,
1979; Kleijnen and Sargent, 2000; Kumar and Sridharan, 2010).
On the other hand, meta-heuristics (such as particle swarm optimi-
zation, genetic algorithms, simulated annealing, ant colony optimi-
zation, tabu-search, or scatter search) can be used as an
incorporated local search algorithm associated with the simulation
software for a simulation–optimization problem (Yang and Chou,
2005; Pasandideh and Niaki, 2006; Syberfeldt et al., 2009; Kuo
and Yang, 2011). Although there are various studies in the literature
that address single-response simulation–optimization problems,
most of the industrial real case simulation–optimization problems
include the multi-response characteristics (Yang and Chou, 2005).
Some of the approaches were proposed in the literature for the
solution of the multi-response simulation–optimization problem
(Myers and Carter, 1973; Azadivar and Lee, 1988; Castillo and
Montgomery, 1993; Khuri, 1996; Fan and Castillo, 1999; Park
et al., 2001; Yang and Tseng, 2002; Angün et al., 2003; Pasandideh
and Niaki, 2006; Rosen et al., 2007; Oddoye et al., 2009; Um et al.,
2009; Syberfeldt et al., 2009; Kuo and Yang, 2011; Azadeh et al.,
2011; Yazgan et al., 2011; Subulan and Çakmakçi, 2012).
Multi Attribute Decision Making (MADM) methods, especially
TOPSIS (technique for order preference by similarity to ideal solu-
tion) (Yang and Chou, 2005), GRA (Grey Relational Analysis) (Kuo
et al., 2008; Chiang and Hsieh, 2009), DEA (Data Envelopment
Analysis) (Liao, 2004), and AHP (Analytic Hierarchy Process (Liao
and Kao, 2010; Azadeh et al., 2011) incorporated to Taguchi meth-
ods to solve the multi response simulation–optimization problems.
For example, Yang and Chou (2005) proposed to TOPSIS based
Taguchi optimization to solve the multi-response simulation–opti-
mization problem. They illustrated a real case study from an inte-
grated-circuit packaging company. Also, Kuo et al. (2008) used
GRA-based Taguchi optimization to solve the Yang and Chou’s
(2005) problem. On the other hand, Azadeh et al. (2011) presented
a decision support system based on Fuzzy Analytical Hierarchy
Process (Fuzzy AHP), TOPSIS, and the computer simulation to find
the most efficient number of operators in a cellular manufacturing
system. The Fuzzy AHP method was used to find the importance
weight of the criteria. Also, the TOPSIS method was used to rank
alternative scenarios (Azadeh et al., 2011).
2.2. AMC domain

The AMCs of today now plays a vital role in the chain of security
protecting homes and businesses alike. There is no study in the lit-
erature to performance improvement of an AMC (Web of Science,
2013). The present research explores the possibility of a hybrid
Taguchi method and TOPSIS approach to solve a multi response
simulation–optimization problem with the discrete factors in the
AMC domain. The goal of this study is to provide a systematic
AMC modeling framework to analyze the performance of system
as well as gross-level toward the improvement of an AMC service
system design. We believe that the simulation–optimization ap-
proaches, which only involve in the single response, shed little
light on the evaluation of overall service performance for particular
AMC. In order to manage AMCs effectively with the proper perfor-
mance, managers should know the optimal level of the quality
characteristics of their system.
2.3. Research contributions

While the queue-centered analytic models are still popular, sev-
eral factors such as rapid change operations, cheaper and faster
computing, and complex call traffic have recently increased the de-
mand for the analysis of even more complex AMC through the sim-
ulation. Although there are some research approaches of operation
which deal with the call center problems based on the optimiza-
tion such as mathematical and stochastic programming models,
they still focus on only single response (Atlason et al., 2004; Arta-
lejo et al., 2007; Jouini et al., 2009; Cezik and Ecuyer, 2008; Robbins
and Harrison, 2010; Roubos and Jouini, 2013; Valle et al., 2012).
Also, the previous call center simulation studies are only focused
on the specific quantity measures such as average talk time, calls
per hours, and average speed of answer at the gross-level. The sim-
ulation model is a successful tool in solving the performance anal-
ysis problems of stochastic call center and allows analyzing of the
likely behavior of an AMC system under the selected conditions.
However, it does not provide a method for the optimization. The
performance optimization of the AMCs is very important for the
optimal setting of control factors. A macro research level such as
‘‘improving the way in which the link between efficiency and qual-
ity of service is modeled’’ is significant for future AMC operations
research. The present study predicts the system performances for
any combinations of levels of the controllable factors (quality char-
acteristics) by using the main effects of the control factors accord-
ing to the principles of a Taguchi’s robust design method.
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Although there is a significant body of literature in the call cen-
ter domain that addresses the single-response optimization prob-
lems, the practical problems often embody many characteristics
of a multi-response optimization problem in AMC domain. For
example, one such practical problem is to minimize the average
number of customer waiting in queue while simultaneously max-
imizing the average system utilization. So, this makes the problem
more complex to solve. In order to tackle the difficulties of multi-
response optimization, we propose a combined TOPSIS-based
Taguchi approach. This study is focused on solving a multi-re-
sponse simulation–optimization problem with discrete variables
using a TOPSIS-based Taguchi optimization, which has not been
considered in the traditional queue-centered analytic models.
3. Proposed multi-response simulation–optimization
methodology

There are 5 flow steps in the performance optimization of AMC.
This flow diagram is given in Fig. 2. The TOPSIS procedure is used to
integrate all the determined performance values of the system into
a single value that can then be used as the single performance in
the simulation–optimization problems (Simsek et al., 2013).

The current AMC system is simulated in this study. The perfor-
mance values are obtained with the results of simulation model.
SIMAN, Slam and SIMSCRIPT are the simulation languages of major
event sequence. Over the years, these languages have started to be-
come more process oriented. These three languages bring into the
use of high level languages such as FORTRAN and C in models. This
facility is an important feature that should be in terms of the real-
ization complex systems. SIMAN simulation language is a general
purpose simulation language which is developed for modeling dis-
crete, continuous or discrete–continuous systems (Pegden et al.,
1995). In this study, SIMAN simulation language is used to model-
ing of the AMC.

A large number of simulation experiments have to be examined
when the number of system parameters increases. To solve this
problem, the Taguchi method presents special orthogonal arrays
to examine the entire system parameter space with only a small
Fig. 2. Proposed performance
number of the simulation experiments (Kuo et al., 2008). There-
fore, the first step of the proposed methodology of simulation–
optimization is to determine an appropriate orthogonal array in
which every row illustrates a simulation scenario. The simulation
runs are then executed by following the experimental structure
of the selected orthogonal array (Kuo et al., 2008). The proposed
TOPSIS-based Taguchi method includes the idea of a multi-re-
sponse robust design principles to solve the multi-response simu-
lation–optimization problem. The robust design procures an
effective method for obtaining the optimal composition of design
variables such that the product is efficient and has a high level of
performance, and also is robust to noise factors (Yang and Chou,
2005; Kuo et al., 2008; Simsek et al., 2013). The noise factors are
defined as uncontrollable factors. The signal-to-noise ratio (S/N ra-
tio, g) is a useful metric to find significant factors by evaluating
minimum variance (Kuo et al., 2008). S/N ratios can be used for
measuring a system performance. The ‘‘smaller is better’’ response
is suitable for the seven performance measures determined for
AMC. S/N ratio for the smaller is better is given by equation:

gij ¼ �10log10
1
n

Xn

k¼1

y2
ijk

" #
ð1Þ

where yijk be the simulation result for the response j of scenario i, in
the k th replication; n is the total number of replications (Kuo et al.,
2008). The multiple-response problem has been converted to the
single-response problem with following steps using TOPSIS meth-
odology (Yurdakul and Ic, 2003; Yurdakul and Ic, 2005; Yang and
Chou, 2005; Yurdakul and Ic, 2009).

3.1. TOPSIS methodology

TOPSIS has been developed by Hwang and Yoon (1981) for solv-
ing the MADM problems. It is based on the idea that an alternative,
which is chosen, should have the farthest distance from the nega-
tive ideal solution and on the other side, the shortest distance from
the positive ideal solution (Jafarian and Vahdat, 2012; Mahdavi
et al., 2008; Grassi et al., 2009). In our study, TOPSIS method is
selected for five main reasons (Zeleny, 1982; García-Cascales and
optimization framework.
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Lamata, 2012; Shih et al., 2007): (i) TOPSIS procedure is rational
and understandable. (ii) The computation process is depicted in a
simple mathematical form. (iii) The importance weights can be ob-
tained by the direct assignation. (iv) A simple computation process
can be easily programmed into a spreadsheet. (v) TOPSIS procedure
is not affected by any extra parameter (e.g., n is GRA method and v
in VIKOR method) as it happens in case of other MADM methods
(Chakraborty, 2011). For this reason, the TOPSIS method is highly
stable for the decision making studies. The TOPSIS procedure con-
sists of the following steps:

i. Determination of decision matrix.

In the TOPSIS method application, characteristic values of alter-
natives at attributes are inputs and placed in the matrix form as
shown in Eq. (2).

D ¼

g11 g12 � � � g1n

g21 g22 � � � g2n

� � � � � � � � � � � �
gm1 gm2 � � � gmn

2
6664

3
7775 ð2Þ

where, gij is S/N ratio and, i = 1,2, . . . , number of scenarios (m),
j = 1,2, . . . , number of responses (n)).

ii. Calculate normalized ratings by the vector normalization.
rij ¼
gijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1g2
ij

q i ¼ 1; . . . ;m and j ¼ 1; . . . ;n ð3Þ

iii. Calculate weighted normalized rating.

The weighted normalized value vij is calculated by Eq. (4).

tij ¼ wjrij i ¼ 1; . . . ;m j ¼ 1; . . . ; n ð4Þ

These weights can be obtained by the direct assignation.

iv. Identify positive ideal and negative ideal solutions.

The positive ideal value set A� and the negative ideal value set
A� are determined as follows:

A� ¼ ðmax
i

v ij jj 2 JÞ; ðmin
i

v ij jj 2 J0Þ
� �

ð5Þ

A� ¼ ðmin
i

v ij jj 2 JÞ; ðmax
i

v ij jj 2 J0
� �

ð6Þ

where J is associated with the benefit criteria, and J0 is associated
with the cost criteria.

The A� and A� are defined in terms of the weighted normalized
values, as shown in Eqs. (5) and (6):

v. Calculation of separation measures.

The separation between scenarios can be measured by the n-
dimensional Euclidean distance. The separation of each scenario
from the positive ideal solution, A�, and the negative ideal solution,
A� is then given by Eqs. (7) and (8) respectively:

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
ðv ij � v�j Þ

2
r

ð7Þ

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
ðv ij � v�j Þ

2
r

ð8Þ
vi. Calculation of relative closeness to the ideal solution.

C�i ¼
S�i

S�i þ S�i
; i ¼ 1; . . . ;m ð9Þ
4. The performance improvement of an Alarm Monitoring
Center

4.1. Determination of the performance measures

A discrete system is one for which the state variables instanta-
neously change at the separated point of time (Law, 2007). The sim-
ulated AMC has two-serviced queue system. A queue system is an
example of discrete system, since state variables (e.g., the number
of customer in the AMC system) change only when a customer ar-
rives or when a customer finishes being served and system. The state
variables of the system must be monitored for estimating the perfor-
mance criteria in the discrete event simulation model using the time
advancement technique with the closest event to the time.

The performance analysis of AMC is focused on the quantity mea-
sures to specify the service quality within an individual service
activity of AMC operations. The measure of a ‘‘telephone service fac-
tor’’ is used as a core factor (Ma et al., 2011). So, we have been deter-
mined five controllable service grade oriented factors for AMC. The
factor levels have determined by the expert’s opinion by taking into
consideration of the characteristics of the current system. Seven per-
formance measures (R1–R7) are also determined for the equilibrium
state of the system. R1, R2 and R3 are present the percentage of the
average service times according to the type of job. R4 and R5 are
present in the average number of customers waiting in the queues.
These measures give an idea about how much customer satisfaction
is provided. Finally R6 and R7 provide information about the rates of
service utilization according to the type of job. The measures of per-
formance and their weights are assigned by the consensus of the two
managers who are responsible of AMC (Table 1).

4.2. Determination of factors and their levels

In this section, five factors, each of which has three control lev-
els affecting to the performance criteria, are determined. The first
and second factors are probability of Type-1 job type and probabil-
ity of Type-3 job type login system respectively. The third and
fourth factors are the average service delay time of first and second
service. The last factor is the probability of false job logout system.
These factors are symbolized A, B, C, D, E respectively and their lev-
els are illustrated in Fig. 3.

4.3. Simulation model establishment of current system

Analysis of system performance are contained these sections
such as the definition of problem, the determination of input prob-
ability distribution, modeling system with SIMAN simulation lan-
guage and validation of model.

4.3.1. System identification
The service system is working 24 h and 7 days. Loss of service

before or after the shift is being ignored. There are not any inter-
ruptions in daytime (like lunch, etc.). There are 3 types of entries
in the system; Type-1 (fire – 0.10 possibility), Type-2 (robbery –
0.20 possibility) and Type-3 (wrong – 0.70 possibility). The simula-
tion model has two serial services, which of each has a queue.
There is some priority scheduling in this research. Three types of
priority according to job type were determined for ‘‘Queue-1’’
and ‘‘Queue-2’’. In the queues, Job Type-1 is more privileged than
Job Type-2. Also, Job Type-2 is more privileged than Job Type-3.
There are two different work stations (phones), each of which



Table 1
Determination of the performance measures and their weights.

Symbol Performance measure Description Assigned
performance
measure’s weights

Normalized
weight

R1 Average time in system of Type-1 job (h)b The average time that spent for the type of fire work in the system 2 0.051

R2 Average time in system of Type-2 job (h) The average time that spent for the type of robbery work in the system 2 0.051

R3 Average time in system of Type-3 job (h) The average time that spent for the type of wrong work in the system 9 0.231

R4 Average number of customer waiting in
phone 1 queuea

The average number of callers waits to meet with first operator in the first
line

5 0.128

R5 Average number of customer waiting in
phone 2 queue

The average number of callers waits to meet with second operator in the
second line

5 0.128

R6 Service 1 utilization ratec The percentage of time that first operator talking on the phone with
customers

8 0.205

R7 Service 2 utilization rate The percentage of time that second operator talking on the phone with
customers

8 0.205

Total 39 1.0

a Queue is a line that the caller waits to meet with operator.
b Job is the call type was transmitted to the operator by the customer.
c Service is an operator speaking on the phone with customers.

Fig. 3. Factor levels.
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has a queue in the system; ‘‘Service 1’’ and ‘‘Service 2’’. 90% Of
probability of wrong or empty work, 10% of probability true work
gone from the ‘‘Service-2’’. The alert notifications, which come,
wait for getting process from ‘‘Phone-1’’. The client, who completes
these service processes, joins the queue to speak to the ‘‘Service 2’’.
Calls are being classified here as true or wrong alerts. Wrong ones
are removed from the system. But true ones are forwarded to re-
lated institutions. Time between arrivals is coming from the expo-
nential distribution with 0.14 h average. Average ‘‘Service 1’’ time
has normal distribution between (0.0020, 0.0062, 0.0099) hours,
and the average service time has between (0.0014, 0.0060, 0.098)
hours. With these assumptions, the 30 days simulation of system
can be made.

4.3.2. Determine input probability distribution
Simulation, which is performed, is needed to determine the

probability distribution of input. Simulation uses random values
from these distributions. Some special distributions have special
statistical values (Law, 2007). These statistics are acquired from
data and compared to the point statistics of theoretical distribu-
tion. A compliant distribution should be determined for data after
the collection of data. A pre-analysis is performed for the data set.
First of all, statistics of various samples are calculated due to data.
If the sample width is smaller for the sample average, it can be ig-
nored. The main purpose of pre-analysis is to determine whether a
model is compliant for data or not. With this purpose, many dia-
grams are developed. Some of them are general (for example histo-
gram), and some of them are special for some special models. After
the examinations about time interval between arrivals, the expo-
nential distribution is accepted as candidate model of data model-
ing in this study. After the determination of suitable distribution
for data, the parameter values should be determined for the usage
of this distribution. There are many ways to specify the form of an
estimator for a particular parameter (b) of selected exponential
distribution, and many alternative ways to evaluate the quality
of an estimator. In this study, we used ‘‘maximum-likelihood esti-
mator-MLE’’ since the basis for MLEs is most easily understood in
the discrete case (Law, 2007). The parameters of exponential distri-



Table 2
v2 Test results for the time interval between arrivals.

Intervals Observed
values

Intervals Expected value
n � ½FðYuÞ � FðYlÞ�

Adjacent
intervals (k)

Observed
values

Expected
value

v2 Test
statistics

v2
3;0:95ðv2

k�m�1;1�aÞ

1 28 0.016–0.136 32.12b 1 28 32.12 3.24a 7.81
2 18 0.136–0.256 23.54 2 18 23.54
3 9 0.256–0.376 7.71 3 9 7.71
4 4 0.376–0.496 6.19 4 13 16.75
5 6 0.496–0.616 6.336
6 1 0.616–0.736 1.056
7 1 0.736–0.856 1.049
8 1 0.856–0.976 1.062

Total 68

a Null hypothesis H0 = the Xi’s are interdependent and identically distributed random variables with distribution function F. Since 3.24 < 7.81, null hypothesis would not
reject.

b 68 � [F(0.136) � F(0.016)] = 32.12.

Table 3
v2 Test results for the average service time 1.

Intervals Observed
values

Intervals Expected value
n � ½FðYuÞ � FðYlÞ�

Adjacent
intervals (k)

Observed
values

Expected
value

v2 Test
statistics

v2
3;0:95ðv2

k�m�1;1�aÞ

1 28 0.0016–0.0136 33.01 1 28 33.01 2.309a 5.99
2 18 0.0136–0.0256 20.22 2 18 20.22
3 9 0.0256–0.0376 10.32 3 9 10.32
4 4 0.0376–0.0496 5.430 4 13 13.890
5 6 0.0496–0.0616 5.075
6 1 0.0616–0.0736 0.871
7 1 0.0736–0.0856 1.582
8 1 0.0856–0.0976 0.932

Total 68

a Null hypothesis H0 = the Xi’s are interdependent and identically distributed random variables with distribution function F. Since 2.309 < 5.99, null hypothesis would not
reject.
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bution model for AMC application are estimated by most possibil-
ity method and calculated as b = 0.14 (see Fig. A1).

On the other hand, for the average time of ‘‘Service 1’’ and ‘‘Ser-
vice 2’’ data, normal distribution model is accepted as the candi-
date model for the modeling data. For average time of ‘‘Service
1’’, a and b parameters of normal distribution (Law, 2007) is calcu-
lated as 0.0020 and 0.0099 by the moment method. For the average
time of ‘‘Service 2’’, a and b parameters of normal distribution is
calculated as 0.0014 and 0.0098 by the moment method (see
Figs. A2 and A3).
4.3.3. Verification of the model
The final step in the process of modeling is to verify the selected

model. This step includes the goodness of fit tests. The goodness of
fit tests is statistical techniques that provide to test model hypoth-
esis (Walpole et al., 2007). v2 (Chi-square) goodness of fit test is
Table 4
v2 Test results for the average service time 2.

Intervals Observed
values

Intervals Expected value
n � ½FðYuÞ � FðYlÞ�

Adjace
interv

1 28 0.0016–0.0136 31.43 1
2 18 0.0136–0.0256 19.54 2
3 9 0.0256–0.0376 11.87 3
4 4 0.0376–0.0496 5.129 4
5 6 0.0496–0.0616 7.879
6 1 0.0616–0.0736 0.634
7 1 0.0736–0.0856 0.547
8 1 0.0856–0.0976 1.814

Total 68

a Null hypothesis H0 = the Xi’s are interdependent and identically distributed random v
reject.
carried out in 95% confidence level. The appropriate distribution
with Chi-square goodness of fit tests determined as follows. The
time interval between arrivals is distributed with 0.14 h mean
exponential distribution (Table 2), average ‘‘Service 1’’ delay time
is distributed with (0.0020 and 0.0099) hours mean uniform distri-
bution (Table 3), average ‘‘Service 2’’ delay time is distributed with
(0.0014 and 0.0098) hours mean uniform distribution (Table 4).
4.3.4. Modeling of the system with SIMAN
The simulation model of the AMC is coded by SIMAN which has

been validated and is used for the empirical illustrations. The study
horizon was 30 days (720 h). These data came from a real case
study. Incoming calls (call time, call type, etc.) are saved on the
computer with the systems such as the automatic number identi-
fication (ANI) and the computer telephony integration (CTI). The
calling time of an incoming call is instantly transferred to the com-
nt
als (k)

Observed
values

Expected
value

v2 Test
statistics

v2
3;0:95ðv2

k�m�1;1�aÞ

28 31.43 1.818a 5.99
18 19.54
9 11.87
13 15.996

ariables with distribution function F. Since 1.818 < 5.99, null hypothesis would not



Fig. 4. Seven responses and their performance values in current systems.

Table 5
L27 experimental results.

Exp. no. Taguchi design S/N ratios

L27 R1 R2 R3 R4 R5 R6 R7

A B C D E

1 1 1 1 1 1 46.3553 47.5350 47.3145 51.4373 65.3682 34.9294 39.8870
2 1 1 1 1 2 46.7335 46.8665 46.8531 51.6439 65.4005 34.8057 39.0102
3 1 1 1 1 3 47.5185 46.4442 47.3205 51.0506 67.5557 34.1842 38.6877
4 1 2 2 2 1 37.6506 36.4101 37.6321 37.6004 40.5903 29.0406 28.9403
5 1 2 2 2 2 37.9575 36.7302 37.7734 39.9153 39.6077 29.3760 29.1311
6 1 2 2 2 3 38.4898 37.4185 37.5662 37.3779 40.3682 28.9830 28.8138
7 1 3 3 3 1 32.6109 29.7538 32.1492 29.1234 29.2534 26.0154 25.0487
8 1 3 3 3 2 30.8657 30.1456 31.7599 29.0830 29.2989 26.0347 25.1365
9 1 3 3 3 3 32.8227 31.6565 32.0228 30.8484 28.1447 25.0224 24.6187

10 2 1 2 3 1 32.8642 33.1236 32.0868 37.6307 24.7298 28.8311 24.4863
11 2 1 2 3 2 32.8722 33.0745 32.1972 37.6149 24.6594 28.8362 24.5442
12 2 1 2 3 3 33.1468 32.8745 31.6818 36.7559 23.6231 28.6873 24.2567
13 2 2 3 1 1 34.8402 35.4156 37.7492 28.2278 71.7676 25.1174 38.7476
14 2 2 3 1 2 36.7392 38.6177 38.6921 30.1177 63.4655 24.7696 39.5787
15 2 2 3 1 3 34.1673 35.4515 37.2087 27.0951 70.9950 24.7261 38.7808
16 2 3 1 2 1 40.1578 40.6772 40.0794 49.3500 38.1379 34.2664 28.6505
17 2 3 1 2 2 39.8835 40.0619 39.8203 48.2908 36.9365 34.0931 28.5407
18 2 3 1 2 3 40.5006 40.8603 40.1879 49.6614 40.0724 35.0489 29.7080
19 3 1 3 2 1 33.5859 33.6329 33.9968 28.0205 45.8146 25.2574 29.6881
20 3 1 3 2 2 34.8402 34.9960 34.5836 28.7644 29.2539 25.1983 29.2539
21 3 1 3 2 3 34.8359 33.7569 34.0360 26.8260 45.1675 24.7268 29.3968
22 3 2 1 3 1 33.6050 35.4819 35.2130 58.2942 29.6126 35.8129 25.3227
23 3 2 1 3 2 35.0902 34.0479 33.6601 52.0516 24.3232 34.5753 24.1529
24 3 2 1 3 3 35.9819 34.1085 34.0685 53.2349 24.9786 35.0141 24.5211
25 3 3 2 1 1 41.4198 43.0325 41.6425 38.9986 67.0523 28.7525 39.0998
26 3 3 2 1 2 40.8192 40.6537 40.8574 36.2304 65.9859 28.1438 38.7266
27 3 3 2 1 3 42.6448 41.1271 41.1668 41.0690 63.5436 30.1088 38.9924
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puter screen. In this study, the customers have sought to AMC 69
times in 24 h. The time (68 pieces) interval probability distribu-
tions between the saved calls were determined by the following
steps. The determination of steps that are in the distribution of col-
lection of data input possibility, determination of the distribution
family, estimation of parameters and goodness of fit test. The
speaking durations (service time) of operators with the customers
are automatically transferred to the computer screen again. The
Table 6
TOPSIS values using vector normalization.

Exp. no. Taguchi design (L27) Weighted normalized decision

A B C D E

1 1 1 1 1 1 0.024 0.041 0.064
2 1 1 1 1 2 0.024 0.040 0.064
3 1 1 1 1 3 0.024 0.040 0.064
4 1 2 2 2 1 0.019 0.031 0.051
5 1 2 2 2 2 0.019 0.031 0.051
6 1 2 2 2 3 0.020 0.032 0.051
7 1 3 3 3 1 0.017 0.025 0.044
8 1 3 3 3 2 0.016 0.026 0.043
9 1 3 3 3 3 0.017 0.027 0.044

10 2 1 2 3 1 0.017 0.028 0.044
11 2 1 2 3 2 0.017 0.028 0.044
12 2 1 2 3 3 0.017 0.028 0.043
13 2 2 3 1 1 0.018 0.030 0.051
14 2 2 3 1 2 0.019 0.033 0.053
15 2 2 3 1 3 0.017 0.030 0.051
16 2 3 1 2 1 0.021 0.035 0.055
17 2 3 1 2 2 0.020 0.034 0.054
18 2 3 1 2 3 0.021 0.035 0.055
19 3 1 3 2 1 0.017 0.029 0.046
20 3 1 3 2 2 0.018 0.030 0.047
21 3 1 3 2 3 0.018 0.029 0.046
22 3 2 1 3 1 0.017 0.030 0.048
23 3 2 1 3 2 0.018 0.029 0.046
24 3 2 1 3 3 0.018 0.029 0.046
25 3 3 2 1 1 0.021 0.037 0.057
26 3 3 2 1 2 0.021 0.035 0.056
27 3 3 2 1 3 0.022 0.035 0.056

mA1 = 1/9 (0.878 + 0.878 + 0.914 + 0.357 + 0.346 + 0.357 + 0.106 + 0.105 + 0.091) = 0.448.

Fig. 5. Means plots for factor effec
distribution families of speaking durations of operators with the
customers were determined by similar methods again. With the
probability distributions time (68 pieces) interval between the
calling times of the incoming calls within 24 h, the distribution
family of periods of conversation of operators with customers
has been defined, and the model of the existing system has been
formed with SIMAN. Ten replications generated from the simula-
tion model where obtained from real observations of the alarm
matrix S�i S�i C�i

0.016 0.079 0.015 0.008 0.008 0.058 0.878
0.016 0.080 0.015 0.008 0.008 0.058 0.878
0.016 0.082 0.015 0.008 0.006 0.061 0.914
0.012 0.049 0.012 0.006 0.042 0.023 0.357
0.013 0.048 0.013 0.006 0.043 0.023 0.346
0.012 0.049 0.012 0.006 0.042 0.024 0.357
0.009 0.036 0.011 0.005 0.059 0.007 0.106
0.009 0.036 0.011 0.005 0.059 0.007 0.105
0.010 0.034 0.011 0.005 0.060 0.006 0.091
0.012 0.030 0.012 0.005 0.063 0.005 0.075
0.012 0.030 0.012 0.005 0.063 0.005 0.075
0.012 0.029 0.012 0.005 0.064 0.005 0.067
0.009 0.087 0.011 0.008 0.021 0.059 0.741
0.010 0.077 0.011 0.008 0.021 0.050 0.707
0.009 0.086 0.011 0.008 0.022 0.058 0.731
0.016 0.046 0.015 0.006 0.043 0.025 0.368
0.015 0.045 0.015 0.006 0.044 0.023 0.345
0.016 0.049 0.015 0.006 0.040 0.027 0.399
0.009 0.056 0.011 0.006 0.040 0.027 0.404
0.009 0.036 0.011 0.006 0.057 0.009 0.142
0.008 0.055 0.011 0.006 0.041 0.027 0.395
0.018 0.036 0.015 0.005 0.055 0.015 0.213
0.016 0.030 0.015 0.005 0.062 0.010 0.143
0.017 0.030 0.015 0.005 0.061 0.011 0.153
0.012 0.082 0.012 0.008 0.013 0.056 0.815
0.011 0.080 0.012 0.008 0.015 0.054 0.781
0.013 0.077 0.013 0.008 0.016 0.052 0.769

ts using vector normalization.



70 B. S�ims�ek, Y.T. _Iç / Safety Science 66 (2014) 61–74
monitoring system. The average seven responses were calculated
and are given in Fig. 4.

According to the job type [Type-1 (fire), Type-2 (robbery) and
Type-3 (false)], the average time in system is respectively calcu-
lated; 0.01706 h, 0.01629 h and 0.01663 h. The average number of
customer waiting in ‘‘Service 1’’ (phone 1) and ‘‘Service 2’’ (phone
2) are respectively calculated as 0.01918 and 0.01072. ‘‘Service 1’’
and ‘‘Service 2’’ average utilization rate, in other words traffic den-
sities, are also respectively calculated as 0.04533 and 0.04707.

4.4. Simulation–optimization

In this study, a Taguchi orthogonal array (L27) is selected to col-
lect the simulation results (Phadke, 1989). In Table 5, columns 1–5
are represented the five control factors and their levels. For each
experimental scenario, there are 10 replications to collect the prop-
er simulation response variance data. The study took ten replica-
tions for each factor assignment to estimate the impact of noise
factors. The experiments were carried out in a randomized order
for each replication. The seven responses are; the average time in
system of Type-1 job (R1), the average time in system of Type-2
job (R2), the average time in system of Type-3 job (R3), the average
Fig. 6. Simulation results for optim
number of customer waiting in phone 1 queue (R4), the average
number of customer waiting in phone 2 queue (R5), the service 1
utilization rate (R6), and the service 2 utilization rate (R7).

The simulation model provided the seven performance mea-
sures simultaneously to represent the multi-response simula-
tion–optimization problem. S/N ratios are calculated from Eq. (1)
for each response. The experimental design and S/N ratios for sim-
ulation results are shown in Table 5.

To convert multi-response simulation–optimization problem to
single response problem TOPSIS method is used (Simsek et al.,
2013). In Table 5 columns 7–13 is illustrated to ‘decision matrix’
for the first step of the TOPSIS methodology. The normalized deci-
sion matrix and then the weighted normalized decision matrix are
obtained by using Eqs. (3) and (4) respectively (Table 6). The posi-
tive ideal solution (A�) and negative ideal solutions (A�) could be
found by Eqs. (5) and (6). Eqs. (7) and (8) is used to determine
the separation measures (Simsek et al., 2013). Finally, Eq. (9) is
used to calculate of the similarity to ideal solution for each sce-
nario, (C�i ).The final results are summarized in Table 6.

By using the robust design principles, the average responses
(TOPSIS ranking scores) by factor levels can be determined. Accord-
ing to the robust design principles, by using the additive property,
al parameter setting condition.



Fig. 7. Anticipated improvement in optimal parameter condition.

1 (3 �� 5) means 5 factors with 3 levels each.
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the average responses by factor levels can be solved (Yang and
Chou, 2005). For example, the determination of the optimal factor
setting for A at level 1 (mA1) from Table 6 is shown as Eq. (10):

mA1 ¼ 1=9ðC�1 þ C�2 þ C�3 þ C�4 þ C�5 þ C�6 þ C�7 þ C�8 þ C�9Þ
¼ 1=9ð0:878þ 0:878þ 0:914þ 0:357þ 0:346þ 0:357
þ 0:106þ 0:105þ 0:091Þ ¼ 0:448 ð10Þ

Eq. (10) is the average value of the effects shown in factor A column
and level 1 rows from the L27 (see Table 6) orthogonal array. The same
procedure is then applied to all other factor levels. The resulting fac-
tor effects are showed in Fig. 5. Their associated factor effect plots are
shown as Fig. 5. The final optimal parameter design of A1 B1 C1 D1 E1

can be determined by using the TOPSIS ranking scores (Fig. 5).

4.5. Comparison with the original process parameter setting

In order to predict the anticipated improvement under the se-
lected optimum conditions in the parameter design stage, ten addi-
tional simulation runs were made by the optimal parameter
settings for seven responses (Fig. 6). Then, the results obtained
from these simulation runs were compared with the values ob-
tained from the original parameter setting simulation results of
AMC. Fig. 7 shows these results.

Fig. 7 reveals the significant anticipated improvement in the opti-
mal parameter condition (TOPSIS-based Taguchi method’s result),
providing the average time in system of Type-1 job as being
0.004571, which is smaller than 0.015808 in the original parameter
condition. Similarly, with the anticipated improvement in the opti-
mal parameter condition, the average number of customer waiting
in phone 2 queue is 0.000304, which is smaller than 0.013425 in
the original parameter condition. So, the average time in system of
Type-1 job decreases 71.08% and the average number of customer
waiting in phone 2 queue decreases 97.74%. As a result, the proposed
TOPSIS-based Taguchi method outperformed original parameter
condition’s results for the average time in system of Type-1 job
(71.08%), the average time in system of Type-2 job (77.17%), the
average time in system of Type-3 job (75.16%), the average number
of customer waiting in phone 1 queue (89.94%), the average number
of customer waiting in phone 2 queue (97.74%), the service 1 utiliza-
tion rate (61.37%), and the service 2 utilization rate (77.95%) (Fig. 7).
The improvements were quite significant. In general, the compara-
tive results demonstrated that the proposed method is effective in
solving the Alarm Monitoring Center optimization problem.
5. Conclusions

This paper proposed a TOPSIS-based Taguchi method to solve the
multi-response simulation–optimization problem in an Alarm Mon-
itoring Center. This study demonstrates how the simulation model-
ing and the TOPSIS-based Taguchi approach can be used to design
and performance optimization of an Alarm Monitoring Center. The
use of a TOPSIS-based Taguchi experimental design provides an
effective way to convert the multi-response simulation–optimiza-
tion problem into the single-response problem. The study illustrated
the effectiveness of the proposed method. Fig. 7 is illustrated that the
difference in the performance between the optimal conditions and
the current conditions is significant. It should also be noted that, in
practice, many organizations struggle to improve the performance
of system to the competitive advantage such evaluations.

TOPSIS based Taguchi application has been proposed to effec-
tively solve (see Fig. 7) the AMC performance optimization prob-
lem with the multiple performance measures. TOPSIS based
Taguchi method provides an effective way to convert multi-re-
sponse simulation–optimization problem into the single-response
problem. The TOPSIS method provides the global performance
scores (C�i ) for all responses. Thus, according to the Taguchi’s ro-
bust design principles, the average responses by factor levels are
easily determined. Moreover, S/N ratios and Taguchi’s basic orthog-
onal arrays are two main advantages of the Taguchi method. The
performance optimization process becomes more reliable when
the S/N ratio is used, especially when various different responses
can be treated as a dynamic characteristic. Using the S/N ratio is
also useful way to obtain robust system design by evaluating min-
imum variance (Simsek et al., 2013). Taguchi advocated the S/N ra-
tio as a single indicator that jointly and simultaneously considers
the average value and standard deviation of test results to deter-
mine the relative importance of the factors under study (Chang
et al., 2011). Also, an L27 orthogonal array is used to reduce the
experiment time and the simulation costs. In the Taguchi’s L27

(3 �� 5)1 design (orthogonal array), only 27 simulation experiment
scenario are required. If the full factorial design were used, it would
have least 53 = 125 simulation runs.

The TOPSIS based Taguchi application is very simple and easy to
perform compared to the other multi-response simulation–optimi-
zation methodologies i.e., RSM, the meta-model applications and
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Fig. A2. Histogram and parameter estimation for the service 1.
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the meta-heuristic methods (Simsek et al., 2013). These methodol-
ogies are known to increasingly become difficult for the practitio-
ners as the number of variables of the evaluation increase. Two
main problems, namely large simulation time and simulation cost
requirements for experiments and complex mathematical and
statistical calculations resulting from RSM, the meta-model appli-
cations and the meta-heuristic methods, will be encountered in
practice (Simsek et al., 2013).



Fig. A3. Histogram and parameter estimation for the service 2.
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Study outcomes were shared with the AMC institution and
studies have been initiated to increase the system performance.
The proposed methodology can easily be extended to other service
industry’s applications. The proposed method presents a new op-
tion for solving multi-response simulation–optimization problems
in service industry.

Appendix A.

See Figs. A1–A3.
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