
Journal of Parallel and Distributed Computing 132 (2019) 48–68

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Cross-state events: A new approach to parallel discrete event
simulation and its speculative runtime support
Alessandro Pellegrini b, Francesco Quaglia a,∗

a DIAG, Sapienza, University of Rome, Via Ariosto 25, 00185 Roma, Italy
b DICII, University of Rome ‘‘Tor Vergata", Viale del Politecnico 1, 00133 Roma, Italy

h i g h l i g h t s

• Introduction of a new concept of ‘‘event" in parallel discrete event simulation, called cross-state event.
• Introduction of a fully transparent runtime support for parallel discrete event simulation with cross-state events.
• Achievements of advantages in terms of both performance and programmability of parallel discrete event simulation models.
• Enabling of a fully innovative hybrid model-execution environment based on a mix of state partitioning and state sharing across concurrent

simulation objects.

a r t i c l e i n f o

Article history:
Received 15 September 2017
Received in revised form 4 September 2018
Accepted 6 May 2019
Available online 21 May 2019

Keywords:
Discrete event simulation
Parallelization techniques
Synchronization transparency
Multicore computing

a b s t r a c t

We present a new approach to Parallel Discrete Event Simulation (PDES), where we enable the
execution of so-called cross-state events. During their processing, the state of multiple concurrent
simulation objects can be accessed in read/write mode, as opposed to classical partitioned accesses.
This is done with no pre-declaration of this type of access by the programmer, hence also coping
with non-determinism. In our proposal, cross-state events are supported by a speculative runtime
environment fully transparently to the application code. This is done through an ad-hoc memory
management architecture and an extension of the classical Time Warp synchronization protocol. This
extension, named Event and Cross-State (ECS) synchronization, ensures causally-consistent speculative
parallel execution of discrete event applications by allowing all events to observe the snapshot of the
model execution trajectory that would have been observed in a timestamp-ordered execution of the
same model. An experimental assessment of our proposal shows how it can significantly reduce the
application development complexity, while also providing advantages in terms of performance.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Traditionally, Parallel Discrete Event Simulation (PDES) has
been based on the explicit partitioning of the entire simulation
model into distinct simulation objects (or Logical Processes—
LPs) [12] to be dispatched concurrently. Simulation objects’ states
are disjoint, and memory accesses during event processing are
restricted to the state of the simulation object which is executing
the event. Interactions across concurrent objects are only sup-
ported by exchanging timestamped simulation events via mes-
sages. Proper synchronization mechanisms are used in order to
ensure timestamp-ordered execution of events at each individ-
ual object, which is a sufficient (although not necessary [33])
condition for causal consistency.

∗ Corresponding author.
E-mail addresses: pellegrini@diag.uniroma1.it (A. Pellegrini),

francesco.quaglia@uniroma2.it (F. Quaglia).

Such classic approach fits traditional computing environments
based on (large-scale) clusters of machines that embed loosely
coupled CPUs. Indeed, partitioning the simulation model was the
only feasible approach to exploit the computing power offered by
this type of (distributed-memory) platforms, in order to speedup
the execution of demanding applications.

More recent architectural trends slide towards multi/many-
core technology. Here, the same physical memory is directly
shared across a (large) set of tightly-coupled cores. This set can
be large enough to provide an individual machine with the com-
puting power needed to cope with demanding discrete event
simulation models. This paradigm shift has driven the reshuffle
of last-generation PDES platforms, in order to meet the peculiar-
ities and potential of highly parallel shared-memory machines.
Particularly, this has been done by relying on multi-threading,
where all the worker threads operating within the PDES system
share a common address space and can take care of executing
simulation events scheduled to any object. However, literature

https://doi.org/10.1016/j.jpdc.2019.05.003
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.05.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.05.003&domain=pdf
mailto:pellegrini@diag.uniroma1.it
mailto:francesco.quaglia@uniroma2.it
https://doi.org/10.1016/j.jpdc.2019.05.003

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 49

proposals along this direction have been mostly focused on how
to improve the runtime behavior of the PDES system via the
optimization of platform-level tasks. Some of these proposals tar-
get the management of event exchange across simulation objects
(e.g. via shared-memory suited approaches [34,37]), or the (dy-
namic) binding of the simulation objects to the different worker
threads depending on their actual computation demand (e.g. via
load-sharing paradigms [36]).

Yet, none of these proposals had reflections on how PDES
applications are actually coded. In fact, in the supported program-
ming models each object still has its own disjoint state, and the
execution of an individual event only allows to access the state of
the destination object in data separation with respect to the other
objects. In other words, no possibility is provided to access the
state of multiple simulation objects, while atomically processing
an individual event.

In this article, we introduce a new programming model to
code PDES applications, along with the runtime support to make
consistent their concurrent execution on parallel architectures.
In this model, simulation objects can access, while processing
any simulation event, the state of an arbitrary set of other sim-
ulation objects. In other words, our proposal augments the tra-
ditional PDES paradigm with so called cross-state events, which
take place as atomic actions (potentially) touching in read and/or
write mode any memory location currently associated with the
memory image of any simulation object. The runtime support
to handle cross-state events allows an effective exploitation of
parallelism, since it enables the concurrent execution of both
traditional and cross-state events on a multi-threaded PDES en-
vironment.

The motivations behind our proposal already stand out in
the literature. Several results exactly point to the importance of
allowing shared access to the same data in PDES systems while
concurrently processing events at different simulation objects
(see, e.g., [13,22]). In this sense, cross-state events avoid the bur-
den to pass (large) data structures produced during the execution
of some event at simulation object A as the payload of a newly-
scheduled event destined to object B. Indeed, the data can be
directly accessed (e.g. via pointers) from the state of object A
while processing the scheduled event at the destination object B.
This simplifies the job of the application programmer, avoiding
the need to manually implement complex marshaling operation
of the (possibly scattered) data to be sent as payload of the
scheduled event.

Even more important, cross-state events allow to dynamically
‘‘cluster’’ different simulation objects at the logical execution
point of a single event, so that application coding can be ex-
tremely simplified. This is because any activity (e.g. simulation-
state transition) logically involving more that one object can
be implemented in a single event handler, atomically accessing
the states of all the objects involved in the cluster, rather than
being partitioned into multiple activities that are coordinated via
explicit event scheduling across the objects—this is what occurs
in classic PDES, based on full state disjointness.

At the same time, guaranteeing a correct (i.e. causally-
consistent) execution when dealing with cross-state events
requires proper application-transparent synchronization mecha-
nisms to be put in place, which we describe in this article. Overall,
the contributions in this article can be summarized as follows:

1. We describe the methodology behind the fully-transparent
runtime detection of cross-state events, involving any
number of simulation objects. This is done taking as a
reference x86-64 architectures running Linux, although the
concepts can be easily adapted to different architectures
and operating systems—all the architectural facilities which

are exploited are available on most systems, nowadays. As
it will be shown, the runtime identification of cross-state
events is fundamental, when application-transparency is
pursued.

2. We discuss a synchronization protocol for speculative (op-
timistic) PDES systems, which we name ECS (Events and
Cross-State) synchronization, which takes into account
both traditional and cross-state events. This protocol,
which can be seen as an extension of Time Warp synchro-
nization [16], allows the parallel run to behave in a way
which is equivalent to one where all simulation events
are processed in non-decreasing timestamp order at any
individual simulation object they touch, while being al-
lowed to access any valid memory location belonging to the
state of the whole simulation model—namely, any memory
location logically belonging to the state of some object. At
the same time, our protocol allows to run simulation events
destined to different simulation objects concurrently, still
transparently to the programmer.

Both the cross-state event detection methodology and the syn-
chronization protocol have been implemented1 within ROOT-Sim
(the ROme OpTimistic Simulator), an open source simulation li-
brary supporting the development and execution of PDES models
relying on ANSI/ISO-C programming.

The remainder of this article is organized as follows. In Sec-
tion 2 we briefly discuss the fundamentals of Time Warp syn-
chronization for PDES. The management of cross-state events and
the ECS synchronization scheme are presented in Section 3. The
results of an experimental assessment are provided in Section 4.
In Section 5 we discuss related literature results.

2. Recap of time warp synchronization

In this section, we briefly present the foundations of Time
Warp synchronization. The interested reader is invited to find a
more comprehensive discussion in [12,16].

In PDES systems, each simulation object is associated with
its own view of simulation time, known as Local Virtual Time
(LVT), which is used to locally track the advancement of the
computation along the logical-time axis. The execution of an
event can mark an update to its state, and moves the LVT to the
timestamp of the processed event. It is the responsibility of the
underlying runtime environment to track changes of the LVT of
some object when dispatching the event to be processed [12].
While processing some event, new timestamped events destined
to any concurrent object can be generated and injected into
the system. At the same time, state transitions caused by event
processing at the different objects can occur concurrently.

Classical PDES correctness rules are based on enforcing non-
decreasing timestamp-ordered state transitions at the different
simulation objects [12]. Under this enforcement, each simulation
object in the system has a coherent view of the flow of logical
time.

In the speculative (optimistic) approach to synchronization,
also known as Time Warp [16], events are stored by the runtime
environment into per-simulation-object event lists, each of which
is logically partitioned into a future-event list and a past-event
list. The future-event list stores events not yet processed, while
the past-event list records already-processed events. Each simu-
lation object is eligible for dispatching along some thread running
within the PDES platform unless its future-event list is empty.
Once dispatched, the object is allowed to process the minimum-
timestamp event kept by its future-event list. Such an event is
then moved to the past-event list.

1 The source code is available at https://github.com/HPDCS/ROOT-Sim.

https://github.com/HPDCS/ROOT-Sim

50 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

In Time Warp, a simulation object is scheduled for execution
without any safety verification of causal consistency of its next-
to-be-processed event. Hence, timestamp-order violations might
arise, since a simulation object may receive an event (produced
by another object) with a timestamp lower than its LVT. If a
timestamp-order violation is detected, all the events that were
executed out of timestamp order are rolled back by the runtime
environment—they are moved back from the past-event list to
the future-event list. Also, the LVT of the object is pushed back
to the timestamp of the last event executed in correct order, and
the object’s state is restored to its value prior to the timestamp
order violation, which is achieved by either relying on traditional
checkpointing methods (see, e.g., [29–31]) or by the means of
reverse computing approaches (see, e.g., [4,7]), where reverse
versions of the event processing routines are executed when
rolling back processed events.

For the classical scenario where simulation-object states are
disjoint, restoring the system to a correct state entails restoring
individual object states independently, with no risk of domino
effect. In particular, if dependencies occurred due to the schedul-
ing of some event between a rolling back object Oa and another
one Ob, these dependencies are undone via so called anti-events.2
More in detail, an anti-event is generated for each event injected
in the system by Oa during the portion of the computation to be
rolled back, and is used to retract the originally injected event.
Upon the delivery of an anti-event associated with an already
executed event by Ob, the recipient also rolls back. Instead, if
the event has not yet been executed, the anti-event has the only
effect to ‘‘annihilate’’ the originally injected event. This operation
typically occurs within the runtime environment. After rolling
back, any simulation object resumes the execution of the events
from its future-event list.

A concept that is relevant to optimistic synchronization is
Global Virtual Time (GVT), which is defined as the smallest times-
tamp among those of (i) unexecuted events already inserted into
the simulation objects’ event lists, (ii) events being executed, (iii)
events/anti-events in transit from source to destination. Since no
simulation object can ever rollback to a logical time preceding
the GVT [16], the GVT value indicates the commitment horizon
of the speculative computation. It is used both to execute actions
that cannot be subject to rollback, such as displaying of interme-
diate results [1,8], and for recovering memory. Specifically, event
buffers with timestamps lower than the GVT value will never be
reused after a rollback, therefore the runtime environment can
discard them from the past-event lists of the simulation objects.
The same happens to obsolete state information, if any, main-
tained to support state recoverability. The action of recovering
memory after GVT calculation is typically referred to as fossil
collection.

As hinted, in our approach we target optimistic PDES plat-
forms relying on the multi-threading paradigm, which have been
shown to provide a set of benefits and to support optimized
resource usage policies (see, e.g., [6,15,36,37]) when compared to
the traditional counterpart where parallelization is achieved by
running a set of single-threaded processes within the simulation
platform. Hence, we target the scenario where multiple threads
can take care of dispatching whichever simulation object for
execution which takes place by simply calling an event handler,
with proper input parameters, along that thread. It is still possi-
ble to rely on temporary binding schemes between objects and
worker threads in order to cope with, e.g., locality and other
performance-related aspects.

2 An anti-event is a ‘‘negative copy’’ of the corresponding event, or of its
digest.

3. Cross-state events

3.1. Outline

The programming model enabled by cross-state events allows
to bypass state disjointness in event processing. This enriches the
traditional PDES programming model significantly. We provide
such a support fully transparently to the programmer, who is
therefore allowed to design simulation models able to access
memory locations within any simulation objects’ state in read-
/write mode. The programmer is also provided with the illusion
that memory accesses are performed as if the events were dis-
patched for processing in non-decreasing timestamp order. In
other words, the event-handling routine can be coded under the
assumption that any memory access it performs is related to the
current simulation time of the event dispatched for processing.
This corresponds to the LVT of the simulation object targeted by
the event. On the other hand, we still enable parallelism in the
execution in combination with speculation.

To make the programming model clearer, we show in the code
snippet below a C example of an event handler in a PDES model
implemented by relying on cross-state events. The event handler
takes control as a callback function invoked by the underlying
PDES runtime library. As typical of PDES-style coding rules, this
function has a set of input parameters: the identifier of the object
(obj) for which event processing is taking place and the state
base pointer (state) which is the address of the data structure
starting from which the object is allowed to access any other
dynamically-allocated buffer belonging to its state via pointers. It
also takes the timestamp of the currently dispatched event, and
the event payload.

1 void ProcessEvent(object_id obj, state_t ∗state, time_t event_timestamp,
event_payload_t event) {

2
3 char ∗p, q;
4 ...
5 p = event.reference;
6
7 q = ∗p; // reading the content of memory location pointed by the ‘

reference’ field in the event payload
8 ...
9 ∗p = q ; // writing the content of memory location pointed by the ‘

reference’ field in the event payload
10 ...
11 }

This can result in a cross-state event because we find state-
ments where in-place pointer-based accesses to memory occur
both in read (line 7) and write mode (line 9). In the example,
the target memory locations for the accesses are taken from the
payload of an event that has been scheduled for the simulation
object identified by obj. These memory locations might corre-
spond to memory buffers included in the state of the object that
generated the event, which can be different from the one which
runs it, identified by obj in the code snippet. More generally,
a cross-state event is a simulation event scheduled for some
simulation object A, for which the corresponding processing steps
lead to accessing in read/write mode the state of one or multiple
simulation object(s) distinct from A.

This is an innovative programming model not supported by
any literature proposal. Indeed, reference PDES systems (e.g. [3,
39]) allow the programmer to rely only on the base pointer to
the state of the simulation object that is the target of the event
(namely state) to implement memory read/write operations.
Also, the above example shows how in our solution we do not
require any annotation in the code of the event handler. In other
words, the programmer does not need to discriminate whether
a memory access will refer to the local state of the simulation

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 51

Fig. 1. A scheme of state accesses to a simulation object with cross-state events.

object targeted by the event, or to some remote object. We do
not impose/require any a-priori indication of whether some event
scheduled by the PDES application is a cross-state one or not.
Hence we rely (and enable) pure runtime tracking of the occur-
rence of such type of events while the PDES run is in progress.
Overall, the support for the correct handling of the memory
accesses is fully transparent in our proposal, thus masking to the
application developer any complication related to the possibility
for two different objects targeted by a cross-state event to be
concurrently scheduled for execution along two different threads.

Our solution is therefore significantly different from shared-
data management approaches like, e.g., Transactional Memory
(TM), where code portions that might just potentially access the
same data concurrently along different threads must be explicitly
annotated. This is for example what happens when relying on the
TM support offered by the gcc compiler.

Even more important, TM-style synchronization mechanisms
to handle concurrent shared-data accesses are devised to achieve
data consistency via isolation. Rather, a cross-state event does not
only need to be managed via isolated accesses involving multiple
objects along a same thread. It also needs to access object states
that are aligned in simulation time to the timestamp of the cross-
state event—namely, the LVT of the object processing the event.
This is another reason for common TM support to be unsuited for
the purpose of speculative PDES with cross-state events.

In Fig. 1, we provide a schematic representation of the ca-
pabilities of the approach we propose. As depicted, we enable
a single simulation object to advance in simulation time (still
according to a speculative scheme), and to be the target of con-
current threads’ memory operations. One of these threads is in
charge of dispatching events destined to that simulation object—
the simulation object is currently bound to that thread. These
events are denoted as ‘‘local events’’ in the picture. On the other
hand, other threads in charge of dispatching other simulation
objects can anyhow process some cross-state events that require
to access the state of the former simulation object. These events
lead to a kind of remote access by those threads. In our proposal
we provide mechanisms allowing:

A. the transparent runtime detection of remote accesses;
B. the realignment of the state of the simulation object tar-

geted by a remote access to the simulation time corre-
sponding to the timestamp of the cross-state event that
determines the remote access, and the correct operation of
threads in their concurrent activities within the extended
Time Warp synchronization involving cross-state events.

Point A is addressed via a PDES-oriented state management
architecture that controls the way memory is delivered to keep

the states of the simulation objects, and performs operating sys-
tem tasks enabling the PDES runtime environment to track those
remote accesses caused by the processing of cross-state events.
In our solution we deal with object states kept into the heap,
although we do not explicitly consider Thread Local Storage (TLS).
This is because the state of the simulation objects in modern
and general-purpose multi-threaded PDES systems is intrinsically
not private to specific threads, since objects can be dynamically
re-bound to different threads for load-balancing purposes (see,
e.g., [23,36]). Our state management architecture is presented in
Section 3.2. Point B is dealt with via the extension of the Time
Warp synchronization protocol, which we name ECS synchro-
nization. This is presented in Section 3.3. We emphasize again
that, although our proposal targets Linux systems on the x86-64
architecture, the concepts it is based on are general and valid for
other systems and architectures.

An important point to emphasize is that the state management
architecture we present only deals with accesses to virtual ad-
dresses, and is fully transparent to the actual physical placement
of the virtual pages hosting the states of the simulation objects.
This implies that literature optimizations for placing virtual pages
onto physical frames can be combined with our support for
cross-state events. Indeed, our integration of this support within
the ROOT-Sim platform coexists with the NUMA (Non Uniform
Memory Access) optimizations already present in this runtime
library [25]. With respect to this point, we stress again that our
state management architecture is not a competitor of literature
proposals for optimizing memory accesses in PDES on multi-core
machines (like for example the ones presented in [34,39]). Rather,
it is an orthogonal means to enable an application programming
model that was not supported by any literature proposal. Over-
all, our primary objective is to provide the programmer with a
flexible way to develop models, while still guaranteeing adequate
performance by the parallel run.

3.2. Object states management and memory access tracking

In our state management architecture, virtual memory is des-
tined for usage by any simulation object (e.g. for allocating buffers
belonging to the object state) according to stocks. More in detail,
when the object requests new memory buffers, the memory man-
agement architecture reserves an interval of page-aligned virtual
memory addresses (the stock) via the standard mmap POSIX API.
Memory allocation is supported via the standard malloc API,
transparently redirected at compile/link time to a proper memory
allocator—see Appendix A for details.

To understand how the stock abstraction can be used to track
memory accesses related to cross-state events, let us consider the

52 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

Fig. 2. The IA32e paging scheme with 4 KB pages in x86-64 processors.

case of the IA32e paging scheme offered by x86-64 architectures—
this is the paging scheme of x86-64 processors which is exploited
by 64-bit versions of Linux. As shown in Fig. 2, any 64-bit logical
address has only 48 valid bits, which are used as access keys
for a 4-level paging scheme, ultimately supporting pages of 4 KB
in size. The top level page table is called PML4 (or also PGD—
Page General Directory) and keeps 512 entries. All the other page
tables, operating at lower levels, also have 512 entries each.

In our design, the stock of virtual memory pages used to
allocate memory buffers for the state of a given simulation object
corresponds to the set of contiguous virtual pages whose virtual-
to-physical memory translation is associated with a single entry
of the second-level page table, which is called PDP (Page Directory
Pointer), and whose entries are referred to as PDPTE. Note that
a single stock corresponds to 5122 pages, for a total of 1GB of
virtual memory. Hence, a single stock allows to manage object
states with size up to 1GB of (dynamic) memory. On the other
hand, reserving multiple stocks for a same simulation object will
lead to manage object states reaching multiple gigabytes in size.

To interact with this memory management system, our archi-
tecture relies on a driver implemented into a Loadable Kernel
Module for the Linux kernel. This driver creates a special device
file which can be handled via ad-hoc ioctl commands. The
SET_VM_RANGE command allows the driver to register the stocks
to be reserved, and their association to the simulation objects
(which are identified via classical unique numerical identifiers,
as in typical PDES platforms). When this command is issued,
the state of driver changes, and a kernel-level map, accessible
in constant time, is set up. Here, for each reserved stock (logi-
cally related to one entry of a PDP page-table) the identifier of
the simulation object destined to use that stock is recorded. In
Fig. 3 we show an example where a given PDP table has its 0-th
entry (hence the corresponding stock of virtual memory pages)
reserved for object x, and its 1-st entry reserved for object y.

Thanks to this organization, if simulation object x accesses any
virtual address included in the stock reserved for object y, we
know that such a memory access (which can be either in read
or write mode in our execution model) is occurring outside the
boundaries of its local state, and is actually involving the state of
another object. Therefore, we are in the presence of a cross-state
event.

The main problem to cope with to exploit the stocks as the
means to capture whether the generic simulation object x (cur-
rently dispatched for execution along any worker thread, noted
as WTi, in the PDES platform) is involved in a cross-state event
is related to how to determine that event processing gives rise
to a memory reference falling outside the boundaries of the

Fig. 3. Example of association between stocks of virtual memory pages and
simulation objects.

stocks currently reserved for object x. Classical memory protec-
tion mechanisms supported by the operating system (and related
segmentation-fault handling schemes) are not suited for our pur-
poses. Indeed, we cannot simply protect a-priori the accesses
to stocks that are reserved for simulation objects other than x
upon dispatching x along any worker thread WTi. This is because
these simulation objects might be requested to run concurrently
with respect to x along other worker threads, which all share
the same page table and experience the same protection rules as
WTi. Overall, preventing WTi to access the stocks not reserved for
simulation object x upon dispatching it (e.g. via the mprotect
POSIX API) would lead to a change of the state of the page
table so that any other thread would not be allowed to access
those stocks. This definitely hampers concurrency, also leading to
unneeded memory faults—by threads running objects other than
x—in contexts where the object x does not require any access to
‘‘remote’’ stocks while processing the event.

Similarly, addressing the above problem via (user-transparent)
code instrumentation would require to instrument memory-
write3 and also memory-read instructions. This would lead to
(non-minimal) overhead to be paid even if no cross-state access,
although admissible, will ever occur—this renders the tracking of
memory operations pointless on the side of synchronization tasks
related to the management of cross-state events.

3 This is typically done when supporting transparent incremental checkpoint-
ing in speculative PDES platforms [27,40].

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 53

Fig. 4. Example scenario where the memory stock associated with simulation object x is opened for access onto a sibling PDP page table.

To cope with this issue, we have devised a memory manage-
ment architecture where any worker thread WTi is associated
with a sibling PML4 page table, whose entries point to sibling PDP
page tables. By default, the entries of the sibling PDP page tables,
which are associated with the stocks that have been destined for
usage by the simulation objects, are all set to NULL. This means
that they do not allow to reach the lower-level page tables, hence
not allowing access to any already allocated stock. Therefore, any
attempt to access the stocks will lead to a memory fault. On the
other hand, when WTi dispatches simulation object x for event
execution, the entries of the PDP sibling tables that correspond to
the virtual-memory stocks destined for usage by x are ‘‘opened’’
to correctly allow the retrieval of the lower-level page tables
that contain the actual virtual-to-physical memory mapping (or
tell that the pages are not present, e.g., they are swapped-out
pages). This is done by copying the corresponding entries of the
original PDP tables onto the destination entries of the sibling
PDP page tables—see Fig. 4 for an example scenario where the
stock associated with simulation object x is again related to the
0-th entry of a given PDP page table. In our architecture, this
operation can be executed via the ioctl SCHEDULE_ON_PGD
command.

By using this command, the worker thread switches to what
we refer to as simulation-object mode, where the only accessible
stock is the one associated with the dispatched object (x in the
example discussion), while the other stocks are not accessible in
any way, given that their corresponding entries into the sibling
PDP page tables are still set to NULL. As depicted in Fig. 4,
this operation also updates the CR3 register (namely, the page
table pointer register in x86-64 processors). This allows to switch
to the sibling PML4 for virtual-to-physical address resolution
purposes.

Having different sibling PML4 tables, associated with the dif-
ferent concurrent worker threads, allows to concurrently dispatch
and execute different simulation objects – this is done by having
each worker thread open the access to the stocks associated with
the object it is currently dispatching – while still having the
possibility to determine whether any of the dispatched objects
is keeping its memory references within its own stocks.

Two additional points must be discussed. First, having all
the stocks closed for access by the worker thread, except the
one(s) related to the dispatched object, leads (as noted before)
to memory faults in case of a memory access to stocks other
than open one(s). However, these faults cannot be tracked (and
handled) via classical segmentation-fault handling given that the
‘‘remote’’ stocks have already been validated via mmap, and the
Linux kernel would simply lead the fault to reallocate the whole
chain of page table entries for mapping the accessed virtual

Fig. 5. The state diagram for switch operations between original and sibling
PML4 page tables.

page in memory. This would bring the whole system into an
inconsistent state where for the same virtual page multiple chains
of page tables (and thus physical frames) are present. This is
something not directly handled by the Linux kernel, except if
using invasive patches. To prevent this, when loading the external
module, we also change the Interrupt Descriptor Table (IDT),
directly accessible via the IDT register, to make the pointer to
the page-fault handler point to a custom handler, rather than
the original do_page_fault kernel function. If the fault is not
related to accesses to remote stocks within the sibling paging
scheme, then the original handler is invoked. Otherwise, the
custom handler pushes control back to user mode in order to
let the PDES platform actuate synchronization policies to handle
cross-state events, as we shall discuss later when presenting ECS
synchronization.

Upon a memory-fault occurring on sibling PDP entries because
of cross-state dependency materialization, the faulting thread is
put back into what we call platform mode, which implies that
it is switched back to the original PML4. This is done to let
this thread operate any memory access required to reconcile the
execution of the concurrent objects according to ECS synchroniza-
tion. This aspect will be treated in detail in the next section. On
the other hand, if event processing at the currently-dispatched
object ends, the worker thread can switch back to platform
mode on demand—hence gaining again access to any memory
location or data structure supporting the parallel execution—by
using the ioctl UNSCHEDULE_ON_PGD command implemented
within the driver. In Fig. 5, we show the state diagram where
the events causing the switch between simulation-object and
platform modes are depicted.

Second, our architecture needs anyway to co-exist with the
kernel scheduler, which poses issues on the side of managing the
sibling PML4. Particularly, all the threads within a same Linux
process share the same memory management information (the
so called memory context), including the pointer to the original
page table. This pointer is used by the kernel scheduler upon
re-dispatching the thread after it has been context-switched off

54 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

the CPU. Particularly, this pointer is reloaded into the page-table
pointer register CR3 upon the occurrence of a context switch that
gives control to the thread. However, if the thread was executing
in simulation-object mode, CR3 would need to be filled with the
address of the sibling PML4 (instead of the original page table).

Rather than providing a recompiled version of the kernel
directly embedding a custom schedule function for correct man-
agement of the CR3 register (which would reduce the usability
of our system), our Linux module adopts a dynamic patching
approach based on the kprobe facility supported by Linux. It
allows to inject an execution flow variation such that control goes
to a schedule_hook() routine in the module right before the
kernel’s schedule() function would execute its finalization part
(i.e., stack realignment and return). In this way, the actual final
part of the scheduling process is under the control of our external
module. The schedule_hook() function simply executes the
same return actions originally planned by the kernel’s sched-
ule() function. However, patching the original scheduler in this
way allows the hook to take control when the decision about
what thread needs to take control of the CPU-core4 is already
finalized.

The schedule_hook() function implements the CR3 cus-
tom manager. This manager checks whether the CPU-scheduled
thread is running into simulation-object mode (which can be
done by checking per-thread meta-data that were setup via
SCHEDULE_ON_PGD) and, in the positive case, it loads the sib-
ling PML4 pointer into the CR3 register (thus persisting in the
simulation-object mode when running the thread).

3.3. ECS synchronization

In this section we describe ECS synchronization, which ensures
causal consistency for speculative PDES runs involving cross-state
events. ECS synchronization has two goals. First, letting each
simulation object process its events in non-decreasing timestamp
order. Second, allowing any cross-state dependency occurring at
simulation time t—due to the occurrence of a cross-state event
at that time—to let the involved object accessing remote stocks
to observe the state snapshot that would have been observed at
simulation time t in a timestamp-ordered sequential run.

ECS synchronization can be seen as an extension of Time Warp
synchronization based on the following two innovations:

• the introduction of temporary object blocking phases, which
may lead to temporary block the execution of an already
dispatched simulation event at a certain object;

• the introduction of so called rendez-vous events, which are
system-level events not causing updates on the destination-
object state, rather only driving block and unblock actions
for processing activities at the concurrent objects. These
are exploited to temporarily disable a simulation object to
perform updates to its state along the simulation-time axis,
given that its state snapshot is currently being accessed by
a cross-state event (namely, it is involved in what we have
referred to as a cross-state dependency).

3.3.1. Rendez-vous events
In our proposal, each simulation object x is associated with a

cross-state dependency set which we refer to as CSDx. It records
the identifiers of all the simulation objects towards which x has
materialized a cross-state dependency during the processing of a
single event. CSDx is initialized as empty upon dispatching object
x for the execution of any new event, and gets possibly updated

4 It has actually already taken control of the CPU-core, since we are returning
from the CPU-scheduling step.

while processing this same event (if it reveals as a cross-state
one). ECS synchronization exploits the ad-hoc memory manage-
ment architecture that we presented in order to detect that
simulation object x is accessing a remote memory stock, namely
the stock associated with object y, in either read or write mode,
while processing its currently dispatched event ex. The identity
of the object towards which the cross-state dependency is be-
ing materialized (y in our example discussion) is also known,
given that the custom memory-fault handler we designed, which
pushes the faulting thread back in platform mode, notifies such
an identifier into the thread user-mode stack. The memory fault
occurrence gives rise to the following algorithmic steps:

1. The execution of ex is temporarily suspended by having
object x transitioning into a block state;

2. A rendez-vous unique identifier is generated and assigned
to the event ex, which we refer to as rvid(ex);

3. A special rendez-vous event ervy is scheduled for object y,
marked with timestamp equal to the timestamp of event
ex, and with its identifier. We formally express this with
the notations ts(ervy) = ts(ex) and rvid(ervy) = rvid(ex).

Rendez-vous events are not generated by the application layer,
rather they are platform-generated events. Hence they do not
have any associated processing rule at the application level. Nev-
ertheless, ECS rendez-vous events are incorporated into the event
list of the destination object (kept at the PDES platform level) as
if they were traditional events, which is done for synchronization
purposes.

Given that we are targeting speculative synchronization, a
rendez-vous event may be a straggler event (if its timestamp is
lower than the timestamp of some already processed event at the
destination simulation object), thus possibly causing a rollback.
Overall, rendez-vous events need to be processed at the destina-
tion according to timestamp-order (possibly when resuming after
a rollback), and the processing actions are platform-level ones
given that, as hinted above, no application level processing rule
is – and needs to be – specified for rendez-vous events in ECS.

When a simulation object y is dispatched for processing a
rendez-vous event ervy , ECS performs the following algorithmic
steps:

1. Object y is put into a block state;
2. A special rendez-vous acknowledgment event ervax is sched-

uled for object x, marked with no-timestamp but with the
same rendez-vous identifier of ervy , formally rvid(ervax) =

rvid(ervy).

On the other hand, when the rendez-vous acknowledgment
event ervax is delivered to the destination simulation object x, ECS
performs the following steps:

1. It inserts the identifier of the sender object, namely y, into
CSDx.

2. It unblocks the simulation object x so that it can be even-
tually re-scheduled along some worker thread (which can
lead to resuming the execution of the originally-
interrupted event ex).

At this point, we know that simulation object y is blocked,
thus not being currently allowed to process its events. Hence,
the snapshot of its state is available to simulation object x for
read/write operations, such as the operation that originally gave
rise to the cross-state event’s memory fault. However, upon re-
dispatching object x (which leads to resuming the processing of
ex), the involved worker thread cannot move into simulation-
object mode by only opening the stock(s) associated with x into
the sibling page tables. Indeed, we also need to open access to

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 55

Fig. 6. Pseudo-code for the management of rendez-vous events.

the stock(s) associated with object y. In our architectural support,
this can be easily achieved via the SCHEDULE_ON_PGD command,
since is allows to get a set of identifiers whose stocks need to
be opened within the sibling page tables. In particular, when re-
dispatching object x, the SCHEDULE_ON_PGD command is issued
with the set x∪ CSDx as input, which for our example discussion,
contains the identifiers of both objects x and y.

The above algorithmic steps can be iterated in case cross-
state dependencies are materialized towards multiple simulation
objects while processing the event ex, which will lead to the
scenario where simulation object x can be rescheduled multiple
times (while processing ex) with an incrementally enlarged set
of open stocks. Once a remote memory stock (associated with a
distinct object) becomes open for access by object x during the
processing phase of event ex, any access to this stock by x will
not cause any additional memory fault while processing the same
event.

To finalize the processing of ex, we need to notify that the
stocks associated with simulation objects towards which cross-
state dependencies have been detected are no longer locked for

access by object x. Hence, the owner simulation objects can re-
sume their processing activities. This is done through the follow-
ing steps, carried out at the end of the execution of ex at object x:

1. an unblock-event eubk is sent towards any object k whose
identifier is in CSDx. These events are again not marked
with a timestamp, but with the rendez-vous identifier of
the event ex originating the cross-state dependency;

2. upon the delivery of eubk , the recipient simulation object
is simply put back as ready for being dispatched (hence
exiting the block state).

In Fig. 6, we report the pseudocode for the management of
rendez-vous events. Two important notes. First, an event which
generates a rendez-vous keeps the same rvid mark for all the
possibly additional rendez-vous it will generate, in order to have
a unique logical identifier for the rendez-vous, independently of
the actual group of participating objects. Second, when a rendez-
vous is triggered by some object x, the rvid value is recorded in
the per-object variable current_rendez_vous, so that if a rendez-
vous acknowledgment is received with an rvid value that does

56 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

Fig. 7. An example time-line of ECS.

not match the current one seen by the simulation object, then
the processing of the acknowledgment is simply skipped. This is
related to the management of rollbacks in the speculative run,
which we discuss in the next section.

In Fig. 7, we show a timeline illustrating how ECS manages
a cross-state event ex processed by simulation object x. With no
loss of generality, the represented scenario refers to the case of
two objects involved in the cross-state event, which are han-
dled, in terms of CPU-dispatching, by different threads operating
within the PDES system. The red bars indicate the wall-clock-time
intervals along which the simulation objects x and y involved
in the rendez-vous are blocked. Object x is blocked up to the
point in time where the state of object y is ready for being
consistently accessed by the thread that processes the event ex.
In the meanwhile the thread in charge of processing the events
destined to object y can CPU-schedule some object different from
y. After the event is processed, object y stays blocked again up
to the receipt of the ECS unblock event eubx . Afterwards, both the
objects can proceed processing their events concurrently along
different threads. Clearly, in a scenario where the cross-state
event hits a simulation object that is handled by the same thread
that is processing the event, all ECS tasks are run along that same
thread.

3.3.2. Dealing with rollbacks
ECS targets speculative processing, where object blocking is

never caused by native event dependencies, rather by the need
for executing memory read/write operations in multiple stocks
as an atomic action (within a rendez-vous). Thus, some care
must be taken when handling rollbacks. In particular, when we
process an event ex that gives rise to a rendez-vous event ervy ,
we need to define rules to handle the rollback of either object
x or object y at a simulation time t ′ < ts(ex)—or equivalently
t ′ < ts(ervy). The peculiarity of this scenario is related to fact that
ex and ervy are both causally related to each other. Particularly, if
ex is rolled back, then we need to rollback ervy given that object x
may have performed updates on the memory stocks destined to
keep the state of simulation object y while processing ex. On the
other hand, the processing outcome of ex is affected by values
possibly read by object x from the stocks destined to y at time
ts(ex). If these values change due to a rollback of object y at a
simulation time preceding ts(ervy), the updated values should have
been observed while processing ex by object x.

To handle such a mutual dependency, we devise the following
scheme. When the event ex is rolled back, we simply send a clas-
sical anti-event for the rendez-vous event ervy that was scheduled

while processing ex. Given that ervy was incorporated into the
event list of the destination object y, the arrival of the anti-event
gives rise to a classical annihilation that possibly rolls back y to
the latest processed event with timestamp less than ts(ervy).

The only additional aspect to consider is the effect of the
rendez-vous anti-event on the destination object y in case it is
still locked in the original rendez-vous. This scenario may occur
because the source object x may experience a rollback leading
to squashing the currently issues rendez-vous—this might be
requested for progress of the run. In this case, no unblock event
will be notified to y, and the effects of receiving the anti-event
will be exactly that of pushing y out of the block state, as if the
unblock event for the rendez-vous were received.

On the other hand, if the rollback is originated on object y,
and pushes it to a simulation time less than ts(ervy) (which leads
to undoing the execution of ervy), the following actions are taken.
A special rendez-vous-restart event ervrx , marked with the original
rendez-vous identifier rvid(ex) is sent out towards object x. This
special event annihilates the processing of the original instance
(while not removing it from the input queue), which leads to
ultimately undoing ervy via an anti-event. When processed after
the rollback, ex will generate a new instance of rendez-vous
marked with a new unique identifier, so no mismatch will occur
in any annihilation phase for rendez-vous events associated with
different incarnations of their generating event. This also avoids
cycles in the annihilation process.

Furthermore, all the other types of events used in ECS, such
as acknowledgment and unblock events (see Fig. 6), are not
incorporated into the event lists of the simulation objects. Thus
they are inherently ephemeral, and do not require particular care
in the rollback scheme. Assuming FIFO communication across the
objects (as can be typical of multi-thread PDES platforms [37]),
these events can be simply discarded at the recipient side if
the rendez-vous associated with their corresponding identifier
(e.g. rvid(ex) in case of the acknowledgment event sent to x upon
the rendez-vous) is no longer in place.

Appendix B discusses correctness aspects of the presented ECS
rollback scheme, particularly by the side of progress.

4. Experimental study

4.1. Test-bed platform

We integrated ECS within the open source ROOT-Sim pack-
age [24], particularly the symmetric multi-threaded version pre-
sented in [37]. A few relevant modifications to this simulation

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 57

platform have been made for integration purposes. Most rel-
evantly, we have created stack separation across the different
simulation objects, by locating the stack of each object in the
initial part of a stock of memory destined for object usage. This
is done in a fully application-transparent manner. Further, execu-
tion resume in the different stacks, by also providing the correct
processor and stack image, has been supported via modified
versions of the setjmp and longjmp POSIX APIs. These ad-hoc
APIs take into account the fact that an event can be theoretically
descheduled at any memory-access instruction, including points
which are not ‘‘safe’’ from a calling convention point of view.
Further details on these aspects are discussed in Appendix C. They
have also been used as the support to squash the stack when a
rollback occurs while the simulation object is in the block state—
this eventually leads the object to resume execution in a different
context.

The application transparent facilities that have been used in
our implementation to save and restore the states of the simu-
lation objects are offered by the DyMeLoR library [27,35], which
has been integrated with the new memory management based on
stocks. In particular, the memory segments from which DyMeLoR
takes the chunks to be delivered for dynamic memory allocation
by a given simulation object – and keeps the corresponding map
for log/restore operations – correspond to the stocks of memory
destined for that object usage. We recall that relying on DyMeLoR
as actual memory allocator is fully transparent also by the side
of memory management API since the application programmer
is still allowed to use the classical ANSI/ISO-C memory alloca-
tion functions. In fact, in the ROOT-Sim architecture, these are
transparently redirected to functions internal to DyMeLoR.

As for the (temporary) binding of simulation objects to
threads, we still relied on the policies already supported in ROOT-
Sim [36], which are aimed at optimizing the sharing of the
overall simulation workload across the threads operating in the
PDES system along the whole lifetime of the simulation run.
The simulation objects currently bound to a given worker thread
are dispatched according to the Lowest Timestamp First policy.
However, when running with ECS, the simulation objects that are
in the block state are not considered in the dispatching process
(thus being again eligible for dispatching only after exiting the
block state). In any case, the blocking of an object does not
imply blocking the activities of the thread taking care of it, since
this thread is allowed to dispatch other objects and/or to run
platform-level tasks.

We have run experiments on a 32-core HP ProLiant server
equipped with four 2 GHz AMD Opteron 6128 processors and
64GB of RAM. Each processor has 8 physical cores that share a
12 MB L3 cache (6MB per each 4-cores set), and each core has
a 512 KB private L2 cache. The machine is equipped with 64 GB
of RAM – organized in 8 NUMA nodes – and runs Linux 3.2. A
ROOT-Sim configuration with 32 symmetric worker threads has
been used in all the experiments, with GVT and fossil collection
taking place each one second. We have not used more than 32
worker threads (so we have never exceeded the total number of
physical cores) to avoid interference effects which could impair
performance [38]. All the models used for the experimentation
are available online in the ROOT-Sim repository.

4.2. Experimental data

This section is divided into two parts. We initially provide
data for an evaluation of the overhead due to the core memory
management facilities underlying cross-state events and ECS. To
this end, we use a simulation model of a Personal Communication
System (PCS) natively entailing disjointness of memory accesses
by the different simulation objects – thus not exploiting at all

ECS facilities, although paying the cost for the associated memory
management support – which has been parameterized so as to
achieve various runtime dynamics. After, we present data related
to the assessment of the whole innovative approach to PDES –
based on cross-state events – by relying on a multi-robot explo-
ration model. In this part of the study, we also compare the run-
time behavior of models exploiting ECS (implemented by relying
on cross-state events) to the counterpart exclusively based on tra-
ditional PDES programming (only relying on event-dependencies
via simulation objects’ cross-event scheduling).

4.2.1. Pure overhead assessment
We evaluated the overhead induced by the memory manage-

ment architecture supporting cross-state events by relying on a
PCS model with 1024 wireless cells covering a square region,
each one managing up to 1000 wireless channels. It models in-
terference across different channels within a same cell and power
management upon call setup/handoff in a high fidelity fashion
according to the specification provided in [18]. This same model
has been already used to assess the multi-threaded version of
ROOT-Sim where we have integrated ECS, and its detailed de-
scription can be found in [28].5 Two specific aspects are relevant
for this study: (1) each simulation object models an individual
cell, and the interactions between objects exclusively take place
via handoff events of mobile devices across different cells—hence,
as hinted before, memory accesses while processing the events
at the different simulation objects are intrinsically disjoint; (2)
the average granularity (CPU requirement) of the events is di-
rectly proportional to the wireless channel utilization factor, since
the more channels are busy, the more complex is the calcula-
tion of interference and Signal-to-Interference Ratio (SIR) while
simulating power regulation.

We have run this model with three different configurations for
the channel utilization factor, namely 25%, 50% and 75%, which
gave rise to average granularity of the simulation events ranging
from the order of 30 to 100 microseconds on the used computing
platform. Also, we considered three different execution settings:
a classical sequential execution (based on a calendar queue event
scheduler), a parallel execution where no ad-hoc memory man-
agement facility is activated, and a parallel execution where
we rely on the innovative memory management architecture
needed to support cross-state events and ECS. The latter setting
entails switching between object-mode and platform-mode at
each processed event – because of the need for managing the
access to different memory stocks – with refill of the CR3 register
and implicit squash of the TLB. This setting allows us to assess
the pure mode-switch overhead operated by the support for
ECS as evaluated in a scenario where ECS is useless since no
cross-state event is ever detected in the native simulation model
implementation.

In Fig. 8, we show the variation of the speedup (vs the sequen-
tial run) we observed for simulating on the order of 1 million
(committed) events in the different parallel execution modes
(each sample is the average over 10 runs based on different
random-generation seeds). By the data, we see how the max-
imal loss in performance by the ad-hoc memory management
architecture switching between platform and object modes is
on the order of 9% and is observed for the case of finer grain
simulation events—namely, for the case of 25% utilization factor.
Such a performance penalty almost disappears for coarser grain
configurations.

Then, we modified the PCS model in order to generate ficti-
tious cross-state events periodically. When one fictitious cross-
state event occurs, the executing object simply performs a

5 The source code is anyhow available within the ROOT-Sim models’
repository.

58 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

Fig. 8. Relative speed-up by the parallel run without and with ad-hoc memory
management vs the sequential run.

Fig. 9. Relative speed-up by the ad-hoc memory management architecture vs
the classical parallel run.

dummy read operation into the state of an adjacent cell. However,
we do not really enable ECS synchronization, as the dummy read
access is not important for the correctness of the simulation and
can be executed out of timestamp order. Therefore, we only trap
the access and open the stock associated with the object hit by
the read operation. In this way we are able to assess the overhead
induced by the identification at runtime of a cross-state event,
when also including the management of memory faults and the
activation of the ECS handler. For this experiment, we considered
the PCS configuration with wireless channel utilization factor set
to 50%, and we varied the frequency of occurrence of the fictitious
cross-state events between 1% and 10% of the total number
of events processed. In Fig. 9, we show the relative speedup
achieved by the configuration with ad-hoc memory management
and fault handling upon the occurrence of fictitious cross-state
events vs the configuration with no ad-hoc memory management.
By the results, the ad-hoc architecture induces a speed-down
that, as expected, increases with respect to the frequency of
fictitious cross-state events. Note that the speed-down is not only
caused by the overhead for handling the memory faults. It is also
due to the switch between platform and object modes, which
is mandatory in order to create the per-thread memory view
needed to trap the access to the state of other simulation objects.
However, the speed-down is quite limited for relatively infre-
quent fictitious cross-state events, and becomes non-negligible

only when moving towards scenarios with relatively frequent
cross-state occurrences (10% of the processed events).

On the other hand, the whole ad-hoc memory management
architecture has been designed and realized to provide, trans-
parently to the application code, a unique innovative support to
handle cross-state dependencies in presence of concurrent ob-
jects. Hence the loss of performance in contexts where the model
to be executed exhibits intrinsically disjoint accesses across dif-
ferent object-states (such as for the configurations in Fig. 8) is
the unavoidable price to be paid for the achievement of a runtime
environment offering the above-mentioned level of transparency.

4.2.2. Effectiveness assessment
To assess programmability and performance advantages pro-

vided by cross-state events and ECS synchronization, we have
implemented a multi-robot exploration and mapping simulation
model, according to the results in [11]. Specifically, a group of
robots is set out into an unknown space, with the goal of fully ex-
ploring it. The map is constructed during the exploration, relying
on the notion of exploration frontier. By keeping a representation
of the explored world, the robot is able to detect which is the
closest unexplored area it can reach, computes the fastest way to
reach it and continues the exploration.

The robots explore independently of each other until one
coincidentally detects another robot. Whenever two robots enter
a proximity region, they perform three different actions:

1. they use their sensors to estimate their mutual physical
position—recall that they are just in proximity;

2. they verify the goodness of their position hypothesis by
creating a meeting point in the explored part of the region,
and trying to meet again there;

3. if the hypothesis is verified, they exchange the data ac-
quired during the exploration, thus reducing the explo-
ration time and allowing for a more accurate decision of
the actions to be taken.

If step 2 succeeds (i.e., the robots actually meet again), it
means that the estimation of their respective position is correct.
Therefore, they can form a cluster and start exploring the en-
vironment in a collaborative way. Specifically, this collaborative
exploration can take place in two different ways. On the one
hand, they jointly define (by relying on cost and utility functions,
as defined in [11]) their next exploration targets, so that they
can minimize the time required for a complete environment
exploration. On the other hand, they might decide to make a guess
about the position of other robots (the total number of which
is known) which are not part of the cluster yet. In the latter
case, one of the robots (the one for which the utility/cost ratio is
convenient) targets the hypothesized position. If a robot is found
there, the aforementioned steps are carried out, so as to increase
the knowledge of the environment.

When implementing a PDES simulation model for this sce-
nario, three main hindrances are found. First, discovering the
presence of a nearby robot can be difficult. In fact, either the
robots must communicate to each other their current position
– thus exponentially increasing the number of exchanged mes-
sages (events) which in turn can limit the performance of the
simulation – or they have to notify it to specific simulation
objects (i.e., the regions), again increasing the number of mes-
sages/events exchanged. Second, to estimate the respective posi-
tion of the agents, various simulation events could be required.
Third, exchanging map information could entail a data transfer
non-negligible in size, posing a huge burden on the communica-
tion subsystem. Additionally, all these programmatic steps are not
straightforward, as they force the modeler to reason according to
the state-separation paradigm proper of PDES.

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 59

On the other hand, relying on cross-state events and ECS al-
lows for a completely-transparent synchronization of the simula-
tion objects involved in any mutual state update, which therefore
simplifies the development process of the simulation model. In
our implementation we rely on two different types of simulation
objects, namely active ones (implementing the robots) and pas-
sive ones (implementing regions of the explored environment).
More specifically, the environment is represented as a square re-
gion, divided into hexagonal cells. This choice allows us to define
a meaningful mobility model for the agents, and at the same
time allows us to define proximity regions which are used by the
agents to detect the presence of other robots in the nearby. Also,
periodic events occurring into any cell are envisaged as the basis
for modeling the evolution (inside the cell) of any phenomenon
characterizing the dynamic change in the state of the explored
region.

At simulation startup, each passive simulation object creates
random obstacles (which prevent the agents from reaching any
neighbour cell), mimicking a rescue scenario where an open space
is modified by an accident and the robots are used to explore
it for rescue activities. At the same time, each passive object
instantiates in its private simulation state (by relying on a stan-
dard call to malloc()) a presence bitmap. Each bit is associated
with a specific robot, and its value is associated with the robot
being in the cell or not. By relying on a fast bitmap scan, each
robot (thus each active simulation object) is able to discover
which robots are present in the cell. Finally, the passive object
registers its simulation state by storing a pointer in a global array
called states[], thus allowing any other simulation object to
directly access (and/or modify) it. This is done by relying on a
code block where the modeler is not required to rely on any
platform-specific API, as illustrated in the following code snippet
which is executed upon initializing the simulation model.

1 // Allocate the state
2 state = malloc(sizeof(region_state_type));
3
4 for(i = 0; i < 6; i++) {
5 if(isValidNeighbour(me, i)) {
6 // With a random probability, an obstacle prevents from

getting there
7 if(Random() < OBSTACLE_PROB) {
8 state−>neighbours[i] = −1;
9 } else {

10 state−>neighbours[i] = GetNeighbourId(me, i);
11 }
12 } else {
13 state−>neighbours[i] = −1;
14 }
15 }
16 // Allocate the presence bitmap
17 state−>agents = malloc(BITMAP_SIZE(n_prc_tot − num_cells));
18 bzero(state−>agents, BITMAP_SIZE(n_prc_tot − num_cells));
19 // Register the state in a global array. This is forbidden in traditional PDES
20 states[me] = state;

isValidNeighbour() tells whether a cell is placed on the
boundary of the square region, GetNeighbourId() performs
hexagonal-to-linear coordinates conversion for detecting a neigh-
bour id, num_cells is a variable defined by the model (and ini-
tialized at simulation startup by the user) which tells how many
cells must be used to represent the square region, BITMAP_SIZE
is a model-defined macro which converts the number of agents to
be represented into the bitmap to a number of sequential bytes
providing the relative number of bits, n_prc_tot is a variable
initialized at simulation startup which tells the total number of
simulation objects in the current run, and me is a unique integer
used to identify a specific simulation object, passed as input from
the ROOT-Sim runtime environment to callbacks giving control
to the application for event processing (as in most traditional
simulation frameworks).

Thanks to cross-state events and ECS, when an agent en-
ters a hexagonal cell (the id of the cell is piggy-backed on the
event), registering its presence in the cell (which corresponds to
a different concurrent object) is as simple as:

21 state−>current_cell = event_content−>cell;
22
23 // Register the position of the robot in the cell. This is inconsistent in

traditional PDES
24 cell = (cell_state_type ∗)states[state−>current_cell];
25 cell−>present_agents++;
26 SET_BIT(cell−>agents, me − num_cells);

Then, the agent has to collect information about the
environment – which in our model is represented by the ob-
stacles in the current cell – and has to detect the presence of
additional robots. Since we have direct access to the cell’s state
thanks to cross-state events and ECS, this can be easily done by
reading this information from it:

27 // Mark the cell as explored and "discover" the surroundings. This is
inconsistent in traditional PDES

28 state−>visit_map[state−>current_cell].visited = true;
29 memcpy(&state−>visit_map[state−>current_cell].neighbours, cell−>

neighbours, sizeof(unsigned int) ∗ 6);
30
31 // Is there any other robot in the cell?
32 if(cell−>present_agents > 1) {
33 <scan the bitmap>
34 }

If one robot is found in the cell, then the agent simply ‘‘merges’’
its view of the environment. This can be easily done by relying
again on the states[] array, provided that each robot registers
a pointer to its private state in it at simulation startup:

35 robot = (agent_state_type ∗)states[robot_index];
36 for(j = 0; j < num_cells; j++) {
37 if(robot−>visit_map[j].visited) {
38 memcpy(&state−>visit_map[j], &robot−>visit_map[j], sizeof(

map_t));
39 } else if (state−>visit_map[j].visited) {
40 memcpy(&robot−>visit_map[j], &state−>visit_map[j], sizeof(

map_t));
41 }
42 }

No notion of parallelism is present in the shown code snippets
from the simulation model, yet (by relying on cross-state events
and ECS) the ROOT-Sim platforms is able to run the simulation
model in parallel. We emphasize that the simulation model is
written in an easy-to-manage style, without the need for respect-
ing any PDES-related constraint, except for the signature of the
event handlers, which is compliant with the one adopted by the
ROOT-Sim platform.

To provide more details, ECS is triggered in different lines of
the above code snippets. In particular, lines 25 and 32 trigger
the synchronization with a cell (i.e., the current cell hosting the
robot), while lines 37, 38, and 40 synchronize with another robot,
namely one of the (possibly multiple) robots found to be in the
cell. It is interesting to note that lines 25 and 32 access the state in
different ways, the former being a read/write operation, the latter
being simply a read operation. Similarly, line 37 accesses the
state in read mode, while lines 38 and 40 entail writing multiple
bytes of memory. Nevertheless, despite the multiple accesses, ECS
requires executing the synchronization protocol (via rendez-vous
events) only once per each simulation object the state of which
is being accessed while processing the current event.

As for runtime performance, we simulated a region of 4096
cells, and we changed the number of robot units moving around
to 100, 500, and 1000. Higher values (500 and 1000 agents)
give rise to average agent density into the explored space on

60 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

the order of 0.12 and 0.24 per cell, respectively. Although these
values might be above realistic settings, especially for cells mod-
eling regions with non-minimal size, they help assessing how
the performance of the ECS support for easy of programming
and transparent parallelization scales vs variations of the ratio
between the number of passive simulation objects (the cells) and
the number of active ones (the agents). On the other hand, the
configuration with 100 agents gives rise to an average density
of per-cell agents of 0.02, realistically representing cases where,
e.g., a reduced number of highly-specialized agents is employed
for the exploration of a non-minimally sized region.

In Fig. 10, we report the execution time of the simulation
model for the three different cases, and for different amounts of
ROOT-Sim worker threads (8, 16, and 32) deployed on top of the
used multi-core computing system. We also report the execution
time for running the very same application code sequentially,
again on top of a classical calendar-queue scheduler. By the
data we see how the parallel runs provide speedup that ranges
between 30 and 35, which also linearly scales while varying the
number of worker threads in the parallel simulation platform.
This demonstrates the effectiveness of ECS in delivering adequate
parallel performance, beyond providing supports for easy of pro-
gramming. Also, the implementation patterns used in our model
can constitute a reference for different scenarios entailing both
passive (region) and active (agent) simulation objects.

Finally, in Fig. 11, we report performance data for a compar-
ison between the above described ECS-based implementation of
the simulation model, and one that exclusively relies on the clas-
sical PDES paradigm only performing fully disjoint accesses to the
object states by the threads. In this variant, information sharing
across the different objects while the simulation run proceeds is
only based on events’ exchange—the information to share at a
given simulation time is piggybacked on the timestamped events
as their payload. These exchanges take place whenever two (or
more) robots meet in the map, and they have to merge their
knowledge. In particular, every robot sends to any other robot
in the just-formed cluster an event piggybacking the information
associated with the whole portion of the environment that has
been explored so far. Upon processing such a message, a robot
scans the payload and installs in its own private state all the
information which is not present yet. In the plots, we refer to
this implementation of the model as TR (Traditional), as opposed
to the ECS-based one. For this comparative study we also vary
the number of robots exploring the target area in the simula-
tion (‘R’ in the plots) and the number of threads used to carry
out the parallel runs. The reported data points still come from
an average over 10 different runs, all executed with different
random-generation seeds.

By the results, we can see that independently of the number
of robots and the number of active worker threads, ECS-based
synchronization provides a performance increase with respect to
the traditional PDES run, which ranges from 19% to 58%. Any-
how, a more notable aspect is that when the number of robots
increases, a more parallel execution – with increased numbers
of worker threads – gives rise to a higher gap between ECS-
based and traditional PDES. These phenomena are related to the
fact that the event-exchange and the memory copy costs have
a more prominent effect that is adverse to traditional PDES. On
the other hand, ECS-based synchronization better scales with
respect to both the model size and the used computing system
power (number of CPU-cores). It is also important to emphasize
that the variant of the simulation model based on traditional
PDES requires much more code to be written by the simulation
model’s developer, who has also to manually implement some
form of marshaling of the simulation state, in order to transmit
its content as an event payload using the API of the underlying

Fig. 10. Sequential vs parallel ECS-based execution times (log-scale on y-axis).

Fig. 11. Traditional PDES vs parallel ECS-based execution times (log-scale on
y-axis).

runtime environment. To provide a quantification of the benefits
on programmability, we have that the ECS-based version of code
has 25% less lines of code with respect to the traditional version
not exploiting cross-state events.6

By the whole experimentation, we can conclude that cross-
state events, and the associated ECS synchronization protocol,
have the twofold benefit of delivering a non-negligible perfor-
mance increase, anytime that the amount of data to be accessed
across two objects is non-minimal, while enabling in any case a
much simpler programming model.

5. Related work

Several studies in the literature have been aimed at coping
with the issue of state disjointness across concurrent objects in
PDES systems, so as to allow some form of data (hence state)
sharing. The work in [2] discusses how state sharing might be em-
ulated by using a separate simulation object hosting the shared
data and acting as a centralized server. This proposal also in-
troduces the notion of version records, where multi-versioning is
used for shared data maintenance in order to cope with read-
/write operations occurring at different logical times, and to avoid

6 Line counting refers to the versions of the two different models
implementations available in the ‘‘models’’ branch of the ROOT-Sim repository.

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 61

unneeded rollbacks of the centralized server in case of optimistic
synchronization. This is an approach similar to the one proposed
in [22], where a theoretical presentation of algorithms to im-
plement a Distributed Shared Memory mechanism is provided
in terms of protocols to keep replicated instances of a variable
coherent. In particular, one of the provided algorithms proposes
to implement variables as multi-version lists where write opera-
tions install new version nodes and read operations find the most
suitable version. The above approaches are different from what
we propose given that read/write access to shared variables is
mapped to message-passing (namely, event schedule operations),
while we support in-place access to any (by default sharable)
buffer within the simulation object states, e.g., via pointers. Also,
in our proposal sharing is not limited to a particular memory
slice (such as the state image of the centralized server), while
we allow access, and hence sharing, of any memory buffer rep-
resenting a portion of the whole simulation model state. Also,
by design the above approaches are strongly oriented to dis-
tributed simulation environments, while we target the trend of
shared-memory/multi-core machines.

In [10], the notion of state query is introduced, where a sim-
ulation object needing the value of a portion of the state that
belongs to a different object can issue a query message to it and
then waits for a reply containing the suitable value. If this value
is later detected to be no longer valid, an anti-message is sent so
as to invalidate the query. Again, this approach relies on message
passing, and is not transparent to the application programmer,
who needs to embed the usage of query messages within the
application code.

The work in [14] proposes to integrate the support for shared
state in terms of global variables, by basing the architecture
on [5]. Although this proposal supports in-place read/write op-
erations as we do (i.e., simulation objects directly access the
only copy of the data, avoiding a commit phase at the end of
the execution of an event), it provides no transparency, as the
application-level code must explicitly register a simulation object
as a reader/writer on shared variables. Our proposal avoids this
limitation by also allowing the sharing of dynamically-allocated
buffers, for which pre-declaration of the potential need to access
cannot be raised at startup (hence intrinsically leading actual
accesses to be determined as a function of the specific execution
trajectory while running the application).

The issue of transparency has been tackled in [26], where
shared data are allowed to be accessed by concurrent objects
without the need for pre-declaring the intention to access. This
has been achieved via user transparent software instrumentation,
in combination with a multi-version scheme, either allowing the
redirection of read operations to the correct version of the data
(on the basis of the timestamp) or forcing rollbacks of causally
inconsistent reads. This solution is targeted at the management
of global variables. Instead, our proposal is suited for data sharing
of dynamically allocated memory chunks logically incorporated
within the state of each individual simulation object, while still
providing parallelism and synchronization transparency.

In the context of the High-Level-Architecture (HLA), propos-
als for supporting shared-state can be found in [13,20]. They
are again targeted at distributed environments, since they are
based on a middleware component which relies on a timestamp-
ordering approach for implementing a request/reply protocol.
Additionally, these approaches are targeted at the conservative
synchronization protocol, where there is no need to detect and
handle causality violations, while we target optimistic synchro-
nization.

The work in [6] proposes a framework targeted at multi-core
machines and based on Time Warp, where so called Extended
Logical Processes (Ex-LPs), defined as a collection of LPs, have

public attributes that are associated with variables which can be
accessed by LPs in other Ex-LPs. The work proposes to handle the
accesses to shared attributes by relying on a specifically targeted
Transactional Memory (TM) implementation, where events are
mapped to transactions and the actual implementation of the TM
is based on [14]. One core difference between our proposal and
the one in [6] is that the latter requires a-priori knowledge of
the attributes to be shared, which need to be a-priori mapped
to TM managed memory locations. This also requires explicit
annotations within the application code. Rather, our proposal
allows for sharing any memory area within the heap, without
the need for a-priori knowledge of whether some sharing on a
specific area can occur. This increases the level of transparency. In
fact, the programmer is allowed to let any simulation object that
takes control touch any valid memory location within the global
simulation state without the need for any particular care. Overall,
we ‘‘transactify’’ the access to memory chunks across different
concurrent objects without the need for marking data portions
subject to transactional management by the programmer.

6. Conclusions

We have presented a new approach to PDES based on the
introduction of cross-state events. These events can access the
state of multiple concurrent simulation objects, thus being par-
ticularly useful in contexts where the PDES application is based
on sharing information across the objects. In the traditional PDES
paradigm, only entailing disjoint accesses to the simulation ob-
ject states, such a sharing would need to be supported via the
exchange of events with proper payloads. This not only hampers
performance, as we have shown in the experimental assessment
of our new proposal, but rather can also impact the application
programming complexity—this is due to the need for coding the
calls to some event-scheduling API and the packing/unpacking
of event payloads. On the contrary, we offer a runtime sup-
port for cross-state events, which also enables speculative event
processing, such that the programmer does not need to use
any specific API or programming rule in order to implement
cross-state events – namely, to directly share information across
concurrent simulation objects – in his application. He can simply
code the application modules letting them perform in-place ac-
cesses (e.g. pointer-based accesses) to whatever simulation object
state. This is a fully new solution compared to any literature
approach devoted to the study of data/information sharing in
PDES.

Overall, our protocol for runtime handling of cross-state
events, which we called ECS (Event and Cross-State) synchro-
nization, allows breaking the classical limit of PDES, where any
event handler can access memory limited to the local state of an
individual simulation object. Rather, with ECS the event handler
is allowed to touch (in either read or write mode) any valid
memory location currently representing a portion of the overall
simulation model state. This capability has been achieved thanks
to the design and implementation of an innovative memory man-
agement architecture, which creates per-thread views of memory
protection and tracks memory accesses towards specific simula-
tion object states, for transparent handling by ECS, in an efficient
manner. Our proposal targets PDES platforms to be run of top of
shared memory multi-core machines, which nowadays represent
mainstream (off-the-shelf) architectures. We again emphasize
that cross-state events are transparently handled at runtime in
our architecture, which jointly enables concurrency and specu-
lative processing of events across the simulation objects as in
classical speculative PDES.

62 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.05.003.

Appendix A. Additional memory management details

Let us discuss two aspects related to the actual memory alloca-
tion support for the application code and to safety of dual-mode
execution (platform vs simulation-object) in the presence of third
party libraries. As for the first aspect, we integrated the memory
management architecture with the DyMeLoR open source alloca-
tor [27,35], explicitly targeting memory allocation needs in spec-
ulative PDES platforms. It intercepts dynamic memory calls by the
simulation object (e.g. malloc calls) and handles them by manag-
ing (and delivering to the simulation object) memory chunks lo-
cated into a pre-reserved memory segment. DyMeLoR also keeps
bitmaps to determine the currently in use and dirty chunks,
which allows to take (incremental) snapshots and restoring past
states of the simulation object in case of rollbacks within the
speculative processing scheme (while allowing dynamic memory
to be used by the object). Integration of DyMeLoR with the
currently presented architecture has been straightforward given
that, rather than relying on actual malloc implementations for
pre-reserving the segment destined to allocate the chunks for
a given simulation object, in the integrated architecture we let
DyMeLoR rely on the stock allocator. Hence, the virtual memory
segment managed by DyMeLoR corresponds to the stock of virtual
memory pages supported in the presented architecture. We note
that identifying dirty chunks in DyMeLoR relies on compile/link
time instrumentation of memory write instructions within the
application level code. The outcoming memory access-tracking
scheme is completely different from the support we are offering
for cross-state events tracking, which is able to intercept read
access (not only write access) to whichever application destined
memory area without the need for instrumenting all the memory
read instructions.

As for the second aspect raised above, DyMeLoR is shipped
with wrappers for ANSI/ISO-C stateless libraries, so that any
memory allocation by these libraries (such as strdup) is still
handled by DyMeLoR according to the above depicted scheme.
Also, the third-party library interfaces are redirected to an actual
logic which is statically linked to the application code, hence not
requiring intervention by the dynamic linker. This automatically
avoids page table updates while running in simulation-object
mode which would otherwise be caused on sibling page tables
by memory mapping actions by the dynamic linker (in case
the shared libraries were invoked by the application code while
running in simulation-object mode).

In our overall architecture we also offer re-implemented ver-
sions of core stateful libraries, such as strtok, by mapping their
global variables onto specific stocks. This allows treating the state
of the stateful library in a similar manner with respect to the
state of a generic (although passive) simulation object. Hence,
according to the ECS synchronization scheme, the state of the
library will be accessed and manipulated in a causal-consistent
manner within speculative execution (and the associated rollback
scheme), depending on what events will give rise to cross-state
access involving the ‘‘library object’’.7

7 Library functions that can directly interact with non-rollbackable services
of the operating system kernel, such as printf, need ad-hoc management
approaches similar to the one proposed in, e.g., [1]. These approaches can be
anyhow integrated with our software architecture given that they are based on
orthogonal speculation and recoverability techniques (service interception and
delay-until-commit policies for actual finalization of the service).

Appendix B. Ensuring progress within ECS

Care must be taken to avoid deadlocks, livelocks, and the
domino-effect in the rollback scheme involving rendez-vous
events. Let us first consider the deadlock/livelock issue. A dead-
lock may arise in case of rendez-vous events cyclically involving
a set of simulation objects, where the rendez-vous associated
with the minimal timestamp along the cycle leads the simulation
object raising this rendez-vous to wait for the rollback of a
different object that is, in its turn, in the block state due to a
different rendez-vous it issued, which still needs to be completed.
An example situation of this type is shown in Fig. B.12, where
object x issues at time t1 a rendez-vous towards object z, which
is waiting for object y to reach time t3 for a rendez-vous between
z and y. On the other hand, object y is waiting for x to reach time
t2 for a rendez-vous with it.

To avoid deadlock scenarios, we can simply adopt the rule
that, in case a rollback needs to be executed by a simulation
object x which is currently blocked due to a rendez-vous it gener-
ated while processing an event ex, this object is simply resumed
from the block state by also squashing the finalization of the
rendez-vous (this will lead to manage the rollback of the rendez-
vous as explained above, e.g., by issuing the anti-event for the
already sent out rendez-vous event). In other words, with our
solution a rendez-vous event e with a timestamp lower than that
of another rendez-vous event e′ preëmpts the access to the state
of the target simulation object with respect to e′. By the deadlock
theory, no deadlock is possible when using preëmption.

We note that resuming from a block state implies that the cur-
rent stack seen by the object also needs to be refilled with correct
information (since, upon resuming, its context will no longer be
the processing context of the rendez-vous generating event). This
is a problem similar to the one of restoring the correct stack of the
object upon resuming the processing of a rendez-vous generating
event that led it into the block state (so that the worker thread
currently executing this object passes control to a different object,
which needs to operate on a proper stack image). Details on how
we handled this issue in our implementation, where the cross-
state events tracking architecture and ECS have been integrated
into the ROOT-Sim open source optimistic simulation platform,
have been discussed in Appendix C.

We also note that annihilating the rendez-vous event via the
corresponding anti-event (as discussed in Section 3.3.2) is safe
even in case the destination object is currently blocked waiting
for the finalization of the rendez-vous. In fact, it can be simply
resumed from the block state (again with proper stack image
manipulation) and can be rolled back, thus possibly altering its
state image safely given that the image does no more need to be
locked for the access by a different object in a rendez-vous.

We note however that unblocking the object generating a
rendez-vous so as to prevent deadlock in case a rollback is re-
quired may, in its turn lead to livelock. Specifically, livelock may
in principle arise in case of simultaneous events materializing
circular cross-state dependencies across multiple simulation ob-
jects. Each object x along the circle, executing an event ex at
simulation time ts(ex), is hit by another object due to a cross-
state memory faulting access at the same simulation time, which
may lead to request the rollback of the events generating the
rendez-vous circularly. This is known to possibly lead the rollback
circle to reappear indefinitely [19]. To overcome this problem,
we need a priority management scheme for simultaneous events,
that needs to be reflected also on the management of rendez-vous
events. Particularly, if we have two events ex and ey such that
ts(ex) = ts(ey), and we have a priority scheme telling that ex → ey
(namely, ey is identified as causally dependent on ex), then we
need to enforce that any rendez-vous event ervy generated by ex

https://doi.org/10.1016/j.jpdc.2019.05.003

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 63

Fig. B.12. Example scenario with deadlock originated by a rendez-vous generating event at time t1 processed by simulation object x.

Fig. B.13. Example scenario with domino-effect due to a rollback originated on simulation object x.

is also causally related to ey according to ervy → ey. This way,
the rendez-vous occurrences that are caused by events having
the same timestamp are anyway sequentialized according to the
priority scheme. We note however, that the guarantee of progress
in (speculative) PDES systems in the presence of simultaneous
events is a more general problem, with respect to what we might
experience in ECS, and has been already extensively studied [17].
Hence different literature solutions for tie-breaking simultaneous
events (see, e.g., [21]) can be exploited for integration with ECS
according to the scheme suggested above.

The final issue to cope with is the domino-effect in the rollback
scheme, which as hinted is not an issue at all for the case of
disjoint accesses to the simulation object states—as in traditional
Time Warp. We consider the classical case where rolling back the
state image of a simulation object is achieved via checkpointing –
state saving – which is a widely diffused and studied scheme. In
more detail, by the ample literature on log/restore in optimistic
PDES systems (see, e.g., [29,30,32]), we know that sparse state
saving, which avoids logging the simulation object state after the
processing of each event, allows for optimizing the performance
tradeoff between logging cost and restore cost. However, state
restore at time t requires the simulation object to be rolled back
to the latest state log with time less than or equal to t , and then
to fictitiously reprocess intermediate events up to t in a silent
mode (namely with no interactions with other objects), which
is also known to as coasting-forward. In ECS this is no longer
possible since a coasting-forward event might be a rendez-vous

generating event. Hence, in order for this to be re-processed, the
simulation object originally hit by the rendez-vous also needs
to rollback at the time of the rendez-vous, so as to provide
its state snapshot for correct access by the object performing
coasting-forward. It is easy to show that this may lead the origi-
nally rolling-back object to rollback further back along simulation
time, according to the domino-effect. An example is shown in
Fig. B.13, where in order to execute the coasting-forward involv-
ing event ex at object x, we need to reconstruct the snapshot of
object y at time ts(ex). But this leads to the need for processing ey
in coasting forward, which in turn leads x to restore its state to
a time less than ts(ey). To avoid the need for executing coasting-
forwards leading to rollback interactions with other objects (thus
avoiding the domino-effect), our approach is based on comple-
menting the selected sparse state saving algorithm by forcing the
log of the state of a simulation object right after the processing
of a rendez-vous generating event. This will lead to the scenario
where no rendez-vous generating event will ever be included
in the sequence of events between two subsequent logs of the
same simulation objects. Hence no rendez-vous generating event
will need to be re-processed in any coasting-forward phase. On
the other hand, a rendez-vous generated event also needs to
be excluded by any coasting-forward, since for these events the
rendez-vous source object may have performed updates into the
state of the target object. To avoid a rendez-vous generated event
to be included in any coasting-forward phase, we can again force
a state log of the involved object right after the event is processed.

64 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

These forced logs also allow coping with non-determinism of
cross-state events given that no support is required for allowing
them to be re-playable.

Appendix C. Management of contexts

We discuss here the technical details related to the interrup-
tion of the execution of a cross-state event, once it is detected
by our state management system. In the most general case, an
execution context is the program state at a certain point of the
lifetime of the application. This state is composed of the CPU
image and program variables. The former entails all CPU registers,
which allow to determine what is the next instruction to be ex-
ecuted (the program counter), and which keep values commonly
computed by the currently executed function, and all control
registers which allow the hardware architecture and the oper-
ating system to correctly interact with the available hardware
resources (e.g., MMU-related registers to correctly drive a virtual-
to-physical address translation). The latter entails all the variables
kept in the data sections, in the heap, and in the stack.

In our cross-state event architecture, multiple contexts should
be available at the same time within the same multi-threaded
application. Moreover, the multi-threaded application should be
able to switch from one execution context to another at any
point—namely, either when a cross-state event is detected, or
when a remote simulation object is correctly realigned to a cer-
tain simulation time due to the occurrence of a cross-state event.
This means that there are no ‘‘safe points’’ in which one context
could be saved, rather the context switch might happen after
the execution of any machine instruction, since memory accesses
might happen everywhere, also due to some non-determinism
in the application’s code. The contexts we need to manage can-
not therefore be associated with multiple concurrent operating
system’s threads. Rather, they are logically bound to a single
operating system’s thread, and we rely on multiple User-Level
Threads (ULTs), each one associated with a simulation object,
which can be activated by any worker thread—namely, any time a
worker thread can ‘‘jump’’ to the execution flow of any ULT. Given
that simulation objects’ program variables stored in the heap
are transparently managed by the multi-threaded nature of the
simulation engine and state management facilities (see, e.g., [27]),
we rely on the following code snippet to setup a new execution
context for a certain simulation object. This is freely inspired
by the work in [9], although it has been carefully optimized for
symmetric multi-threaded PDES systems.

void context_create(LP_context_t *context, void
(*entry_point)(void *), void *args, void *stack,
size_t stack_size) {
struct sigaction sa;
struct sigaltstack ss;
struct sigaltstack oss;

bzero((void *)&sa, sizeof(struct sigaction));
sa.sa_handler = context_create_trampoline;
sa.sa_flags = SA_ONSTACK;
sigfillset(&sa.sa_mask);
sigdelset(&sa.sa_mask, SIGUSR1);
sigaction(SIGUSR1, &sa, NULL);

ss.ss_sp = stack;
ss.ss_size = stack_size;
ss.ss_flags = 0;
sigaltstack(&ss, &oss);

context_creat = context;

context_creat_func = entry_point;
context_creat_arg = args;
context_called = false;
raise(SIGUSR1);
sigaltstack(&oss, NULL);

context_switch_create(&context_caller, context);
}

The context_create function stores the information related
to this new execution flow (namely, the CPU context and the
stack’s location in memory) within the LP_context_t structure.
To setup this new context, we rely on POSIX signals raised by the
worker thread which is in charge of setting up the context for a
certain simulation object. To allow the new context to live in a
different stack, we rely on the POSIX-compliant sigaltstack()
API, which asks the underlying operating system to run a signal
handler within a separate stack. This stack can be allocated using
any memory allocator, and is passed to the context_create
function as an argument. Then, the context_create function
stores a function pointer (entry_point) and a pointer to a
vector of arguments (args) both passed as arguments to the
context_create function into two TLS variables. This allows
to concurrently run the creation of multiple ULTs by multiple
worker threads, which allows to reduce the overhead to startup
the simulation.

The worker thread then issues a call to the Posix raise() API,
to kill itself with the SIGUSR1 signal. Given that the context
_create function earlier posted the context_create
_trampoline() function as the signal handler, control is passed
to it. The source of the context_create_trampoline function
is as follows:

static void context_create_trampoline(int sig) {
(void)sig;

if(context_save(context_creat) == 0)
return;

context_create_boot();
}

The behavior of this function is quite straightforward if we cor-
rectly catch what the context_save() call does. This function
(which we shall discuss later) is similar in spirit to the traditional
Posix setjmp() API. In particular, the purpose of this function
is to store the whole CPU state of the running thread. We recall
that this signal handler is run using a different stack (the one
passed via the stack parameter to context_create), so the
image saved by context_save actually stores in rsp a pointer to
the top of the new stack. Similarly to setjmp, the context_save
function returns 0 when called directly, while it returns a user-
specified value whenever the context is later restored. Since
at this time we are directly calling context_save, the return
value is 0 and the return statement is executed so that control
returns to context_create. We note that this return statement
completes the execution of the manually-activated signal handler,
so the operating system returns the control to context_create
in a state which is no longer related to the signal which was
raised.

At this point, context_create relies again on sigaltstack
to restore the previous setting (namely, new signals are
not run in the previously-specified different stack) and it is-
sues a call to context_switch_create, which relies on special
versions of the Posix-compliant setjmp()/longjmp() API we
have developed, and is implemented as the following macro:

#define context_switch_create(context_old, context_new) \
if(set_jmp(context_old) == 0) \

long_jmp(context_new, 1)

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 65

Fig. C.14. Steps taken to setup a ULT— 1⃝: a signal is raised towards a signal handler using a separate stack, 2⃝: the CPU context is saved, and control is returned
to complete the signal handler, 3⃝: context is changed explicitly, returning to the signal handler although in regular execution mode, 4⃝: a function is called to store
a local copy of the ULT entry point and arguments, 5⃝: context is switched back again, to restore the original execution flow, 6⃝: eventually the context is switched
again, to activate the ULT, 7⃝: ULT’s entry point is called.

Basically, the purpose of this macro is to store the current
execution context in the context_old variable, and to restore
the context stored in context_new. This can be done safely
by checking again for the return value 0 from set_jmp, which
is returned exactly when context_switch_create is refer-
enced for the first time (i.e., we do not restore context_new
when we return from context_new due to an additional context
switch). Therefore, once context_switch_create is referenced
by context_create, control is returned again to context
_create_trampoline. At this time, since the second argument
of long_jmp in context _switch_create is 1, the check for 0
is not satisfied, and the execution flow continues. We emphasize
that this invocation to long_jmp already changes the stack,
bringing back the stack which was setup by the operating sys-
tem due to the sigaltstack call earlier in context_create.
Nevertheless, the execution is not related to a signal handler now.

Next a call to context_create_boot() is issued. This im-
plements the last step in the construction of the ULT context
upon starting up the simulation, and is declared as a noreturn
function. This is due to the fact that the final goal of ULTs in our
system is to run simulation objects, which have a lifetime as long
as the whole simulation, and therefore they are realized using a
private main loop which never ends—if a simulation object has no
scheduled events, then its context is simply not reactivated by the
worker thread in charge of its execution. The implementation of
context_create_boot is as follows:

static void context_create_boot(void)
__attribute__ ((noreturn));

static void context_create_boot(void) {

void (*context_start_func)(void *);
void *context_start_arg;

context_start_func = context_creat_func;
context_start_arg = context_creat_arg;

// Go back where the thread was created, being ready
to restart from here when the ULT is scheduled!
context_switch(context_creat, &context_caller);

// Magically start the thread
context_start_func(context_start_arg);

// you should never reach this!
abort();

}

By relying on it, the worker thread makes a copy of the ULT
entry point and its arguments (which were temporarily stored
in a TLS variable) in a couple of local variables. These local
variables are actually persistent to further context changes ex-
actly because each ULT has its own stack. At this point, ev-
erything is ready to activate the ULT, but this is postponed to
the time instant the simulation object has to be activated for
event processing—this will be done by calling the local func-
tion pointer context_start_func(). Control is now returned
to the worker thread by issuing a call to context_switch,
which restores the previous context, namely the one at the end
of context_create. The latter function then returns, and the
normal execution flow is restarted. Nevertheless, the argument
context of context_create can now be used to reactivate the
ULT (with a separate stack) whenever an event bound to the sim-
ulation object should be CPU-dispatched. Fig. C.14 summarizes
the steps which we have just described.

We shall now discuss how it is possible to explicitly switch
among two different execution contexts, in our architecture. The
main problem we had to face is related to context-switch man-
agement upon any possible memory-access assembly instruction
generated by the compiler from the application code. To un-
derstand this issue, we must consider the fact that computing
architectures rely on calling conventions to change the control
flow between functions. Calling conventions usually divide gen-
eral purpose registers between caller-save and callee-save regis-
ters. The former category encloses all the registers which, upon
a function call, are not guaranteed to be saved by the called
function—after the function’s return point, their content might
be clobbered. On the other hand, callee-save registers are those
which are guaranteed to be saved by the called function before
using them, so that the previous content can be restored before

66 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

the function returns. It is the responsibility of compilers to co-
herently handle calling conventions, allowing as well for code
reuse (e.g., in the context of libraries) on a same architecture. On
x86-64, which has been used as a reference architecture for the
presentation of our proposal, calling conventions are dictated by
the System V AMD64 ABI. In this calling convention, callee-save
registers are rbp, rbx, and r12–r15, any other general purpose
register is caller-save.

Since compilers are assumed to be consistent with calling con-
ventions, traditional implementations of setjmp/longjmp POSIX
API functions leverage them to reduce their internal execution
time. In particular, a setjmp is regarded by the compiler as a
function call, therefore any required caller-save register is pushed
before issuing that call. This allows setjmp to store the execution
context keeping only callee-save registers rbp, rbx, r12–r15,
along with the program counter rip and the status register
rflags. No other register must be copied, since when control
is returned after the call to setjmp, any required caller-save
register is restored by the code generated by the compiler. Once
again, we emphasize that this (correct) behavior is triggered by
the fact that the compiler sees a function call, and enforces calling
conventions.

In our scenario, such a function call is missing. In particular,
we can change the flow of the program at any point, whenever
a memory-access instruction targets the state of a remote sim-
ulation object. Therefore, the compiler has no clue about what
registers could be clobbered, and it never emits instructions to
store their value. Anyway, they might be required to be saved at
any point in the program. Therefore, traditional setjmp/longjmp
API simply do not work in our approach.

We therefore rely on ad-hoc versions of these functions, which
are calling convention-agnostic, meaning that they save the
whole CPU state. Although this is a bit more costly, it is manda-
tory to enforce correctness in the execution. As an additional note,
x86 CPUs offer a plethora of additional registers, e.g. those related
to floating-point instructions. By the definition of the calling
conventions, they are all caller-save, so they must be explicitly
saved/restored by our context switch facilities. We report in the
following code snippet the source for the _set_jmp() function,
which is at the heart of the implementation of the set_jmp
which we have previously shown. It is directly implemented
in assembly, due to efficiency reasons and because it explicitly
breaks standard x86-64 calling conventions.

To understand the organization of this function, we note that
its C-like signature is long long _set_jmp(exec_context_t
*env), thus it takes as its only argument a pointer to an exec
_context_t structure, which keeps enough space to store the
whole CPU state. According to System V AMD64 ABI, the first
argument of a function (in case it is a pointer) is passed via the
rdi register—when we enter the _set_jmp function, thus, we
have already lost the possibility to save its value, so this should
be handled in a different way.

.align 4

.globl _set_jmp

.type _set_jmp, @function
_set_jmp:
pushq %rax # save rax, it will point to the context
pushq %r11 # save r11, it will be used as the source

lahf # Save status flags on stack
seto %al
pushq %rax

Save the context
movq %rdi, %rax # rax points to the context
movq 16(%rsp), %r11 # r11 keeps the ’old’ rax
movq %r11, (%rax) # rax is the first field of the context
movq %rdx, 8(%rax)
movq %rcx, 16(%rax)

movq %rbx, 24(%rax)
movq %rsp, 32(%rax)
addq $16, 32(%rax) # saved rsp must point one quadword above

the old return address
movq %rbp, 40(%rax)
movq %rsi, 48(%rax)
movq 32(%rsp), %r11 # old ’rdi’ was pushed by the surrounding macro
movq %r11, 56(%rax)
movq %r8, 64(%rax)
movq %r9, 72(%rax)
movq %r10, 80(%rax)
movq 8(%rsp), %r11 # r11 keeps the ’old’ r11
movq %r11, 88(%rax) # r11 is the 12-th field of the context
movq %r12, 96(%rax)
movq %r13, 104(%rax)
movq %r14, 112(%rax)
movq %r15, 120(%rax)
movq (%rsp), %rdx # (%rsp) is flags
movq %rdx, 136(%rax)

movq 24(%rsp), %r11 # Save the original return address
movq %r11, 128(%rax)

Now save other registers. fxsave wants memory aligned to 16 byte.
The context structure is aligned to 16 bytes. We have 18 8-byte
registers, so the next address is correctly aligned.
fxsave 144(%rax)

addq $24, %rsp
xorq %rax, %rax # return 0 because the context is being created
ret

The idea behind our construction of this context-save facility
is to move the content of all CPU registers in a memory buffer. To
this end, we must use some register as a ‘‘pointer’’. This register
is rax, so in order to preserve its value we first push its content
to the stack. We then use rax to save the status register. We
rely on three fast instructions rather than on the x86 pushf one
because pushf has the drawback to flush the whole CPU pipeline,
which is a cost we do not want to pay at all. The trick relies
in that lahf stores everything that is needed to restore ALU-
related bits, except the signed overflow flag, which is anyhow
saved in the low part of rax using the seto instruction. We can
then save all registers to the buffer: this is done via a couple
of mov instructions (we recall that the pointer to the buffer was
passed via %rdi). Some register’s content must be reconstructed,
such as the stack pointer %rsp, since we executed within this
function a couple of push instructions. Nevertheless, since we
know the number of pushes, we can determine the offset to apply
to the current value of %rsp. Similarly, we clobbered the %rax
register to save the content of the status flags, but we pushed
it beforehand, so we can retrieve it from the stack. Similarly,
since we issued a call to _set_jmp, we can retrieve the original
program counter’s value from the stack.

To save the remainder of the CPU state, we must save all
other caller-save registers which are used to support all floating-
point instructions. Manually saving them could be difficult and
performance-unfair, as the number of these registers is large,
and they cannot be accessed using traditional mov instructions.
Therefore, we rely on the fxsave instruction, which is offered
by x86 architectures to save very quickly all registers used for
floating-point and vectorized instructions.

To complete the execution of our context-save procedure, we
return 0, to be compliant with the original semantic of setjmp—
by the calling convention the return value is always stored into
rax. Nevertheless, we still have to discuss how we can save the
original value of rdi, which is clobbered by the function call due
to calling conventions. In fact, context_switch does not call
_set_jmp directly, rather it relies on the set_jmp macro which
is defined as follows:

#define set_jmp(env) ({\
int _set_ret;\
__asm__ __volatile__ ("pushq %rdi"); \

A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68 67

_set_ret = _set_jmp(env); \
__asm__ __volatile__ ("add $8, %rsp"); \
_set_ret;\

})

This macro evaluates the return value of _set_jmp, making it
compliant in its turn with the original setjmp, but before issuing
the call to _set_jmp, it pushes the value of rdi on the stack
(and similarly removes it from the stack after the call returns). In
fact, looking at the code of _set_jmp, we explicitly retrieve the
original value of rdi from the stack, since it was pushed by the
surrounding macro.

To discuss how we can restore a previously-saved context,
we first emphasize that the actual program counter’s value that
we have saved in the CPU context is the address of the first
instruction after the call to _set_jmp, namely the instruction
that stores _set_jmp’s return value into _set_ret in the macro.
Therefore, to discriminate whether we are returning from a
_set_jmp to a longjmp (or equivalent) we can play with this
return value. Nevertheless, care must be taken to restore as
well the actual original value of rax, which is used to store
the return value. First, we introduce the C-like signature of our
_long_jmp (which is presented in the next code snippet) as
__attribute__ ((__noreturn__)) void _long_jmp(exec_
context_t *env, long long val), where val allows to specify
the return value that we want to use as the return value of our
‘‘fake’’ invocation of _set_jmp upon a context restore. This value
is stored into the rsi register, as per the calling conventions.

.align 4

.globl _long_jmp

.type _long_jmp, @function
_long_jmp:
movq %rdi, %rax # rax points to the context

movq 128(%rax), %r10 # This is the old return address
movq 32(%rax), %r11 # r11 is the old rsp
movq %r10, 8(%r11) # restore the old return address

movq %rsi, (%r11) # Put on the old stack the desired return value

movq 8(%rax), %rdx # rdx is the second field of the context
movq 16(%rax), %rcx
movq 24(%rax), %rbx
movq 32(%rax), %rsp
movq 40(%rax), %rbp
movq 48(%rax), %rsi
movq 64(%rax), %r8
movq 72(%rax), %r9
movq 80(%rax), %r10 # Finish to restore GP registers
movq 88(%rax), %r11
movq 96(%rax), %r12
movq 104(%rax), %r13
movq 112(%rax), %r14

Restore FLAGS
movq 136(%rax), %rax # this is flags
addb $0x7f, %al # Overflows if OF was set
sahf

Restore remaining rdi and r15
movq %rdi, %rax # rax now points again to context
movq 56(%rax), %rdi
movq 120(%rax), %r15

fxrstor 144(%rax) # Restore other registers

movq 32(%rax), %rsp # (possibly) change stack
popq %rax # Set the desired return value
ret # do the long jump

In our implementation, we play a bit with the ‘‘other’’ stack,
namely the stack of the destination ULT. This can be done since
we can extract from the stored execution context the value of
rsp before having restored it in the current CPU state. In our
code, register r11 is used to this end. In this way, while executing
on the current stack, we can read/write values to the destination

stack. In fact, we use this facility to make a copy of val (stored
in the rsi register) on the destination stack. This frees the rsi
register, which can be restored along with all other registers. To
move the return value from the stack to rax, we just issue a pop
rax instruction just before returning from _long_jmp. To restore
rflags, we use a triplet of instructions in a way similar to what
we did in the context-save procedure, considering that addb
$0 × 7f, %al generates an overflow only if the overflow flag was
set during the context-save procedure. After this point, we must
ensure that no arithmetic/logical instructions are executed. To
restore floating-point registers, we use the companion fxrestor
instruction.

To actually perform the context switch, we use a trick similar
to what we did to restore rax. In particular, we read from the
saved context the old program counter’s value, and we push it
on the destination stack. Therefore, once the stack is changed, on
the top of the stack we find exactly the address of the instruction
next to the call to the corresponding _set_jmp. A ret instruction
will ‘‘jump’’ to the program counter’s value of the destination CPU
context. In order to have the _long_jmp restore the actual origi-
nal value of rax, it can be called as _long_jmp(context_new,
(context_new)->rax).

References

[1] F. Antonacci, A. Pellegrini, F. Quaglia, Consistent and efficient output-
streams management in optimistic simulation platforms, in: Proceedings of
the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
ACM, ISBN: 978-1-4503-1920-1, 2013, pp. 315–326, http://dx.doi.org/10.
1145/2486092.2486133.

[2] D. Bruce, The treatment of state in optimistic systems, SIGSIM Simul. Dig.
(ISSN: 0163-6103) 25 (1) (1995) 40–49, http://dx.doi.org/10.1145/214283.
214297.

[3] C.D. Carothers, D.W. Bauer, S. Pearce, Ross: A high-performance, low-
memory, modular time warp system, J. Parallel Distrib. Comput. 62 (11)
(2002) 1648–1669, http://dx.doi.org/10.1016/S0743-7315(02)00004-7.

[4] C.D. Carothers, K.S. Perumalla, R.M. Fujimoto, Efficient optimistic parallel
simulations using reverse computation, ACM Trans. Model. Comput. Simul.
9 (3) (1999) 224–253.

[5] K.M. Chandy, R. Sherman, Space-time and simulation, in: Proceedings of
the SCS Multiconference on Distributed Simulation, University of Southern
California, Information Sciences Institute, 1989, pp. 53–57, http://hdl.
handle.net/2060/19940004591.

[6] L.-l. Chen, Y.-s. Lu, Y.-P. Yao, S.-l. Peng, L.-d. Wu, A well-balanced time
warp system on multi-core environments, in: Proceedings of the 2011
IEEE Workshop on Principles of Advanced and Distributed Simulation, in:
PADS, IEEE Computer Society, ISBN: 978-1-4577-1363-7, 2011, pp. 1–9,
http://dx.doi.org/10.1109/PADS.2011.5936752.

[7] D. Cingolani, A. Pellegrini, F. Quaglia, Transparently mixing undo logs and
software reversibility for state recovery in optimistic PDES, ACM Trans.
Model. Comput. Simul. 27 (2) (2017) 11:1–11:26.

[8] D. Cucuzzo, S. D’Alessio, F. Quaglia, P. Romano, A lightweight heuristic-
based mechanism for collecting committed consistent global states in
optimistic simulation, in: Proceedings of the 11th IEEE International
Symposium on Distributed Simulation and Real-Time Applications, 2007,
pp. 227–234, http://dx.doi.org/10.1109/DS-RT.2007.9.

[9] R.S. Engelschall, Portable multithreading: The signal stack trick for user-
space thread creation, in: Proceedings of the Annual Conference on USENIX
Annual Technical Conference, USENIX Association, Berkeley, CA, USA, 2000,
p. 20, http://dx.doi.org/10.1.1.367.6776.

[10] A. Fabbri, L. Donatiello, SQTW: a mechanism for state-dependent parallel
simulation. Description and experimental study, in: Proceedings of the
Workshop on Parallel and Distributed Simulation, 1997, pp. 82–89, http:
//dx.doi.org/10.1109/PADS.1997.594590.

[11] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart, Distributed
multirobot exploration and mapping, Proc. IEEE (ISSN: 0018-9219) 94 (7)
(2006) 1325–1339, http://dx.doi.org/10.1109/JPROC.2006.876927.

[12] R.M. Fujimoto, Performance of time warp under synthetic workloads, in:
Proceedings of the Multiconference on Distributed Simulation, Society for
Computer Simulation, 1990, pp. 23–28.

[13] B.P. Gan, M.Y.H. Low, J. Wei, X. Wang, S.J. Turner, W. Cai, Synchronization
and management of shared state in {HLA}-based distributed simulation,
in: Proceedings of the Winter Simulation Conference, 2003, pp. 847–854,
http://dx.doi.org/10.1109/WSC.2003.1261503.

http://dx.doi.org/10.1145/2486092.2486133
http://dx.doi.org/10.1145/2486092.2486133
http://dx.doi.org/10.1145/2486092.2486133
http://dx.doi.org/10.1145/214283.214297
http://dx.doi.org/10.1145/214283.214297
http://dx.doi.org/10.1145/214283.214297
http://dx.doi.org/10.1016/S0743-7315(02)00004-7
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb4
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb4
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb4
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb4
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb4
http://hdl.handle.net/2060/19940004591
http://hdl.handle.net/2060/19940004591
http://hdl.handle.net/2060/19940004591
http://dx.doi.org/10.1109/PADS.2011.5936752
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb7
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb7
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb7
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb7
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb7
http://dx.doi.org/10.1109/DS-RT.2007.9
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb9
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb9
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb9
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb9
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb9
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb9
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb9
http://dx.doi.org/10.1109/PADS.1997.594590
http://dx.doi.org/10.1109/PADS.1997.594590
http://dx.doi.org/10.1109/PADS.1997.594590
http://dx.doi.org/10.1109/JPROC.2006.876927
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb12
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb12
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb12
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb12
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb12
http://dx.doi.org/10.1109/WSC.2003.1261503

68 A. Pellegrini and F. Quaglia / Journal of Parallel and Distributed Computing 132 (2019) 48–68

[14] K. Ghosh, R.M. Fujimoto, Parallel discrete event simulation using space-
time memory., in: Proceedings of the International Conference on Parallel
Processing, CRC Press, 1991, pp. 201–208.

[15] D. Jagtap, N. Abu-Ghazaleh, D. Ponomarev, Optimization of parallel discrete
event simulator for multi-core systems, in: Proceedings of the Inter-
national Parallel and Distributed Processing Symposium, IEEE Computer
Society, 2012, pp. 520–531, http://dx.doi.org/10.1109/IPDPS.2012.55, ISSN:
1530-2075.

[16] D.R. Jefferson, Virtual time, ACM Trans. Progr. Lang. Syst. 7 (3) (1985)
404–425.

[17] V. Jha, R. Bagrodia, Simultaneous events and lookahead in simulation
protocols, ACM Trans. Model. Comput. Simul. (ISSN: 1049-3301) 10 (3)
(2000) 241–267, http://dx.doi.org/10.1145/361026.361032.

[18] S. Kandukuri, S. Boyd, Optimal power control in interference-limited fading
wireless channels with outage-probability specifications, IEEE Trans. Wirel.
Commun. 1 (1) (2002) 46–55.

[19] J.I. Leivent, R.J. Watro, Mathematical Foundations of Time Warp Systems,
ACM Trans. Program. Lang. Syst. 15 (5) (1993) 771–794, http://dx.doi.org/
10.1145/161468.161470.

[20] M.Y.H. Low, B.P. Gan, J. Wei, X. Wang, S.J. Turner, W. Cai, Shared
State Synchronization for HLA-Based Distributed Simulation, Simula-
tion (ISSN: 0037-5497) 82 (8) (2006) 511–521, http://dx.doi.org/10.1177/
0037549706069342.

[21] H. Mehl, A deterministic tie-breaking scheme for sequential and distributed
simulation, in: Proceedings of the Workshop on Parallel and Distributed
Simulation, ACM, 1992.

[22] H. Mehl, S. Hammes, How to integrate shared variables in distributed
simulation, SIGSIM Simul. Digest (ISSN: 0163-6103) 25 (2) (1995) 14–41,
http://dx.doi.org/10.1145/233498.233499.

[23] S. Meraji, W. Zhang, C. Tropper, A Multi-State Q-Learning Approach for
the Dynamic Load Balancing of Time Warp, in: Proceedings of the 24th
Workshop on Principles of Advanced and Distributed Simulation, 2010,
pp. 1–8.

[24] A. Pellegrini, F. Quaglia, The ROme OpTimistic simulator: A tutorial, in:
Proceedings of the Euro-Par 2013 Workshops, LNCS, Springer-Verlag, 2014,
pp. 501–512.

[25] A. Pellegrini, F. Quaglia, NUMA Time Warp, in: Proceedings of the 3rd ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, London,
United Kingdom, June 10 - 12, 2015, pp. 59–70.

[26] A. Pellegrini, R. Vitali, S. Peluso, F. Quaglia, Transparent and efficient
shared-state management for optimistic simulations on multi-core ma-
chines, in: Proceedings of the International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
IEEE Computer Society, 2012, pp. 134–141, http://dx.doi.org/10.1109/
MASCOTS.2012.25, ISSN: 1526-7539.

[27] A. Pellegrini, R. Vitali, F. Quaglia, Di-DyMeLoR: Logging only dirty chunks
for efficient management of dynamic memory based optimistic simulation
objects, in: Proceedings of the 23rd Workshop on Principles of Advanced
and Distributed Simulation, 2009, pp. 45–53, http://dx.doi.org/10.1109/
PADS.2009.24.

[28] A. Pellegrini, R. Vitali, F. Quaglia, Autonomic state management for opti-
mistic simulation platforms, IEEE Trans. Parallel Distrib. Syst. 26 (6) (2015)
1560–1569.

[29] B.R. Preiss, W.M. Loucks, D. MacIntyre, Effects of the checkpoint interval
on time and space in time warp, ACM Trans. Model. Comput. Simul. 4 (3)
(1994) 223–253.

[30] F. Quaglia, A cost model for selecting checkpoint positions in time warp
parallel simulation, IEEE Trans. Parallel Distrib. Syst. 12 (4) (2001) 346–362.

[31] F. Quaglia, A. Santoro, Non-blocking checkpointing for optimistic parallel
simulation: Description and an implementation, IEEE Trans. Parallel Distrib.
Syst. 14 (6) (2003) 593–610.

[32] R. Rönngren, R. Ayani, Adaptive checkpointing in time warp, in: Proceed-
ings of the 8th Workshop on Parallel and Distributed Simulation, Society
for Computer Simulation, 1994, pp. 110–117.

[33] E. Santini, M. Ianni, A. Pellegrini, F. Quaglia, Hardware-Transactional-
Memory Based Speculative Parallel Discrete Event Simulation of Very Fine
Grain Models, in: Proceedings of the 22nd IEEE International Conference
on High Performance Computing, 2015, pp. 145–154.

[34] B.P. Swenson, G.F. Riley, A New Approach to Zero-Copy Message Passing
with Reversible Memory Allocation in Multi-core Architectures, in: Pro-
ceedings of the 26th Workshop on Principles of Advanced and Distributed
Simulation, 2012, pp. 44–52.

[35] R. Toccaceli, F. Quaglia, DyMeLoR: Dynamic memory logger and restorer
library for optimistic simulation objects with generic memory layout,
in: Proceedings of the 22nd Workshop on Principles of Advanced and
Distributed Simulation, IEEE Computer Society, ISBN: 978-0-7695-3159-5,
2008, pp. 163–172, http://dx.doi.org/10.1109/PADS.2008.23.

[36] R. Vitali, A. Pellegrini, F. Quaglia, Load sharing for optimistic parallel
simulations on multi core machines, ACM SIGMETRICS Perform. Eval. Rev.
40 (3) (2012) 2, http://dx.doi.org/10.1145/2425248.2425250.

[37] R. Vitali, A. Pellegrini, F. Quaglia, Towards symmetric multi-threaded
optimistic simulation kernels, in: Proceedings of the 26th Workshop on
Principles of Advanced and Distributed Simulation, IEEE Computer Society,
ISBN: 978-1-4673-1797-9, 2012, pp. 211–220, http://dx.doi.org/10.1109/
PADS.2012.46, ISSN: 1087-4097.

[38] J. Wang, N. Abu-Ghazaleh, D. Ponomarev, AIR: Application-level interfer-
ence resilience for PDES on multicore systems, ACM Trans. Model. Comput.
Simul. (ISSN: 1049-3301) 25 (3) (2015) 19:1–19:25, http://dx.doi.org/10.
1145/2701420.

[39] J. Wang, D. Jagtap, N.B. Abu-Ghazaleh, D. Ponomarev, Parallel discrete event
simulation for multi-core systems: Analysis and optimization, IEEE Trans.
Parallel Distrib. Syst. 25 (6) (2014) 1574–1584, http://dx.doi.org/10.1109/
TPDS.2013.193.

[40] D. West, K. Panesar, Automatic incremental state saving, in: Proceedings of
the 10th Workshop on Parallel and Distributed Simulation, IEEE Computer
Society, 1996, pp. 78–85.

Alessandro Pellegrini is a Research Fellow at Depart-
ment of Computer, Control, and Management Engineer-
ing at Sapienza, University of Rome, where his main
research topics are high-performance simulation sys-
tem, cloud computing, compiling and executable
manipulation techniques, non-blocking algorithms,
and speculative synchronization techniques for high-
performance computing. He is an active member in
the international research community, serving as a ref-
eree for several international conference and journals,
and as a TPC member for prestigious international

conferences.

Francesco Quaglia received the MS degree in Elec-
tronic Engineering in 1995 and the Ph.D. degree in
Computer Engineering in 1999, both from Sapienza
University of Rome. He has been Researcher and then
Associate Professor at the same institution from 2000
to 2017. Currently, he is Full Professor at the Uni-
versity of Rome ‘‘Tor Vergata’’. His research interests
include parallel and distributed computing systems
and applications, high-performance computing, and
fault tolerance. In these areas, he has authored (or
coauthored) more than 180 technical articles.

http://refhub.elsevier.com/S0743-7315(19)30371-5/sb14
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb14
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb14
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb14
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb14
http://dx.doi.org/10.1109/IPDPS.2012.55
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb16
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb16
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb16
http://dx.doi.org/10.1145/361026.361032
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb18
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb18
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb18
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb18
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb18
http://dx.doi.org/10.1145/161468.161470
http://dx.doi.org/10.1145/161468.161470
http://dx.doi.org/10.1145/161468.161470
http://dx.doi.org/10.1177/0037549706069342
http://dx.doi.org/10.1177/0037549706069342
http://dx.doi.org/10.1177/0037549706069342
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb21
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb21
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb21
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb21
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb21
http://dx.doi.org/10.1145/233498.233499
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb24
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb24
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb24
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb24
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb24
http://dx.doi.org/10.1109/MASCOTS.2012.25
http://dx.doi.org/10.1109/MASCOTS.2012.25
http://dx.doi.org/10.1109/MASCOTS.2012.25
http://dx.doi.org/10.1109/PADS.2009.24
http://dx.doi.org/10.1109/PADS.2009.24
http://dx.doi.org/10.1109/PADS.2009.24
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb28
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb28
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb28
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb28
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb28
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb29
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb29
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb29
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb29
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb29
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb30
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb30
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb30
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb31
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb31
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb31
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb31
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb31
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb32
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb32
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb32
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb32
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb32
http://dx.doi.org/10.1109/PADS.2008.23
http://dx.doi.org/10.1145/2425248.2425250
http://dx.doi.org/10.1109/PADS.2012.46
http://dx.doi.org/10.1109/PADS.2012.46
http://dx.doi.org/10.1109/PADS.2012.46
http://dx.doi.org/10.1145/2701420
http://dx.doi.org/10.1145/2701420
http://dx.doi.org/10.1145/2701420
http://dx.doi.org/10.1109/TPDS.2013.193
http://dx.doi.org/10.1109/TPDS.2013.193
http://dx.doi.org/10.1109/TPDS.2013.193
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb40
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb40
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb40
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb40
http://refhub.elsevier.com/S0743-7315(19)30371-5/sb40

	Cross-state events: A new approach to parallel discrete event simulation and its speculative runtime support
	Introduction
	Recap of time warp synchronization
	Cross-state events
	Outline
	Object states management and memory access tracking
	ECS Synchronization
	Rendez-vous events
	Dealing with rollbacks

	Experimental study
	Test-bed platform
	Experimental data
	Pure overhead assessment
	Effectiveness assessment

	Related work
	Conclusions
	Declaration of competing interest
	Appendix A. Additional Memory Management Details
	Appendix B. Ensuring Progress within ECS
	Appendix C. Management of Contexts
	References

