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Simulation Based Design: Overview about Related

Works

Wafa MEFTEH

MIRACL Laboratory, University of Sfax, Tunisia

Abstract

Simulation is a very important tool which has been used for several years in
several fields (with computer and non computer systems). Given its impor-
tance, simulation has been used as soon as possible during a system’s design
phase. This paradigm is called ”Simulation-Based Design” or SBD. Using
SBD aims at eliminating unfit designs as early as possible before significant
resources have been consumed. It is the process in which simulation is the pri-
mary means of evaluation and verification. In this paper, we give an overview
about related works. We classify the related work in three classes: simulation
to design non computer systems in several domains, simulation to design soft-
ware and simulation to design Multi-Agent Systems, self-Organising Systems
or Systems with Emergent Functionality.

Keywords: Simulation, Simuation-Based Design, Complex System Design,
Computer Based Simulation, Mathematics Based Simulation

1. Introduction

To understand and analyze a phenomenon or to anticipate the expected
results, several means and tools have been used for long. Among these means
and tools, we can cite the following:

• Replacing humans by animals: this consists in finding the animal pop-
ulations whose behaviors are similar to human behaviors with respect
to a given phenomenon. Many pressure groups are fighting against this
practice.
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• Man-oeuvres: for example for the military whose play two opposing
forces (the white against the black) on a real course with real hardware
but without using live ammunition.

• Mock-up: this consists in building a copy with small scale and testing
it.

• Equation: there are many examples which have been used by pupils
and students in courses of physics, chemistry, etc... This simulation
can be used only with simple phenomena.

All these tools are simulation. The main purpose of simulation is to shed
light on the underlying mechanisms that control the behavior of a system.
It is practically used to understand and predict the behavior of the system.
So to predict the way in which the system will evolve and respond to its sur-
roundings, so we can identify any necessary changes that will help to make
the system performs the way that we want it to [21]. Given its importance,
simulation has been used as soon as possible from the design process in or-
der to minimize design costs and eliminate unfit designs as early as possible.
This paradigm called ”Simulation-Based Design” or SBD has been applied in
several areas especially with systems that require a thorough study of what
the system can deliver before consuming enormous resources to eliminate as
soon as possible design failures in order to save effort, time and resources.

In this paper, we give an overview about related works where SBD
is used. Our objective is not to give a state of the art about all
existing works. The purpose is mainly to see how simulation has
been used in several domains. What techniques are used for dif-
ferent types of systems ? What tools have been used ?

For this, we decomposed the related works into three parts. We firstly talk
about using simulation to design non computer systems in several domains,
then using simulation to design software and finally to design Multi-Agent
Systems (MAS), self-organizing systems and systems with emergent func-
tionality.

2. Simulation Based Design for Non-Computer Systems

Simulation Based Design has been applied in several areas such as elec-
tronic, automotive, maritime, product life cycle, fine chemistry and phar-
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macy, production, plant layout, shipboard power system protection... . In
this section, we present an overview about these works.

Simulation has been largely used to design supply chain which is a complex
process integrating several actors (suppliers, manufacturers, warehouses, and
retailers). The main purpose of a supply chain process is to produce goods
and deliver them at the right quantities, and at the right time, while mini-
mizing costs as well as satisfying customer requirements. The difficulty with
supply chain modeling is that a poor plan can easily propagate to the whole
supply chain areas [10]. Some solutions were proposed as the Enterprise Re-
source Planning and the Supply Chain Management but it is too costly to
use those solutions for academic research.
[5], [9] and [6] discuss the use of simulation to model supply chain. They
aim at taking advantages from its benefits for a specific supply chain prob-
lems. They demonstrate that using simulation permits to enhance the quality
of the produced supply chain with minimal costs. Indeed, simulation:

• helps to understand the overall supply chain processes and character-
istics by graphics/animation;

• permits to capture system dynamics: using probability distribution,
user can model unexpected events in certain areas and understand the
impact of these events on the supply chain;

• minimize the risk of changes in planning process: by what-if simulation
which enables the user testing various alternatives before changing plan.

These researchers do not propose a simulation-based approaches to model
supply chain. They only give demonstrations of the benefits from using
simulation to design supply chain. Other researchers propose simulation
approaches for supply chain modeling and develop simulation models and
simulation-modeling tools to address different needs within supply chain do-
mains. Biswas et al. [30], developed DESSCOM, an object oriented supply
chain simulation modeling methodology. Figure 1 presents the architecture
of DESSCOM which details the steps followed using DESSCOM. These steps
are:

• Specify supply chain: the construction of the object models.
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Figure 1: The DESSCOM architecture proposed by Biswas et al. [30] as an object oriented
supply chain simulation modeling methodology.

• Generate problem formulation: the object model created in the previ-
ous step is then used to generate the data for an analysis or an opti-
mization model of the supply chain.

• Solve problem: the problem formulation generated above is then solved
using an appropriate methodology.

• Iterate if necessary: this is realized using an analytical model to obtain
optimal parameters at an aggregate level and then using simulation to
refine these parameters to take into account the details.

This methodology contains iterative activities based on simulation and anal-
ysis. The iterative analysis enables a progressive construction of the model
which is important for the final decision making.
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Cope et al. [12] propose an approach that provides a simulation solution
for supply chain modeling. An overview of this methodology is presented in
figure 2. It consists in the definition (by users) of the supply chain simu-
lation model using SCOR 1 (Supply Chain Operations Reference) based on
ontology. The ontology will include supply chain knowledge (supply chain
elements, functional units, processes, information, etc) and the knowledge
required to build a simulation model of the supply chain system. The sim-
ulation model will then be generated automatically from the ontology. The

Figure 2: A hybrid modeling framework for supply chain simulation proposed by Cope et
al. [12] as a simulation solution for supply chain modeling.

main goal of this automatic simulation model generator is to provide sound
tools for the end users to input their logistics structures and interactions
accurately without requiring too much knowledge of simulation techniques.
The automatic generation is a good point which reduces the simulation mod-
eling cycle time. Simulation has been a very effective tool in cast components
design. The foundry engineer participates early in the product development
stage. This reduces the time between the concept stage and the production
stage.
In this area, [2] and [17] demonstrate the importance of using simulation

1It is a common model for defining supply chains. SCOR model is developed by the
supply chain council and aims to describe the operations of various supply chain constructs.
It classifies the operations of supply chain as Plan, Source, Make, Deliver and Return.
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to design cast components. They present the advantages of using simulation
approach regarding the old trial and error approach for process development.
They highlight some case studies for casting process. The advantages are:

• Simulation helps to calculate real costs.

• Simulation can be used as a tool to negotiate the right quality.

• The modeling has been made easy for the designer.

• Decreasing the modeling errors and costs. Authors indicate that the
costs to change the design increase ten-fold in every step of the design
and manufacturing process.

• Simulation has also proven to be an effective educational tool in the
foundry industry.

Figure 3: Trial and error development versus Computer Assisted Development as presented
in [17] to highlight the advantages of using simulation approach regarding the old trial
and error approach for process development.

Figure 3 presents the trial and error development versus Computer Assisted
Development. This figure shows that with the first development, the control
is made after the realization of the activity which can necessitate to return
to the previous activities in order to make changes and corrections. With
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the new development, using simulation, the different activities are verified
progressively during their realization which enables the production of the
right quality with less cost than the first way because it enables less mis-
takes. The goal of this research is essentially to demonstrate the benefits
from using simulation to design cast components.

Simulation has been also used to design plant layout. There are many tech-
niques to design plant layout but their results are limited and layout design
and planning is becoming more and more critical due to shorter product life
cycles and highly dynamic demand conditions. M Arni Luovo [1] has demon-
strated that, the traditional layout types such as process layout and product
layout do not have the ability to respond quickly to the changes.

Jayachitra et al. [22] use the WITNESS 2006 simulation software to
simulate many models. Design of experiments is used to plan the simulation
experiment. They analyze the different results in order to identify the suit-
ability of a particular layout in a given environment.

Smutkupt et al. [32] use simulation in the plant layout design to show
more information about the design such as total time in system, waiting
and use time (figure 5). They indicate that the result from the other popular
techniques to design industrial plant layout, like CRAFT (Computerize Rela-
tive Allocation Facilities Technique), was limited and showed only minimum
total transfer cost between departments. Thus, they use Microsoft Visual
Basic to develop a design system based on CRAFT model. Then, it is used
to link the design system to a simulation system in Arena as represented in
figure 4. Arena is a simulation software from Rockwell Software Company.
Finally, the simulation system sends back overall results to a report system
in Microsoft Visual Basic output form.

This approach considers a preliminary validation before experimenting
the design. The experimentation results are analysed in order to decide if a
new experimentation is needed or not.

Michael Jensen [23] applies simulation to design hybrid vehicle in order
to optimize the performance, reliability and cost. The hybrid vehicle were
advanced as the bridge between the internal combustion engine and increased
tailpipe emissions. They offer the increased fuel efficiency and reduced emis-
sions of the electric vehicle, and the long distance range and readily available
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Figure 4: Plant layout design simulation with ARENA presented by Smutkupt et al. [32]
to link the design system to a simulation system in Arena.

support infrastructure of an internal combustion engine vehicle. In a hybrid
vehicle, the drive contains components of both internal combustion engine
and electric vehicles. Their integral use of mechanical, electrical and software
technologies makes system integration more challenging and the design pro-
cess more complex than for conventional vehicles. For this, Michael Jensen
proposes a SBD methodology (figure 6) to design hybrid vehicle systems.
The objective from proposing this methodology is making the design process
of hybrid vehicle less complex. The methodology considers different levels
of verification. It contains also activities of analysis and evaluation. The
problem is that we don’t see any iteration in figure 6. Generally, verifica-
tion, analysis and evaluation activities are followed by returns to previous
activities in order to make necessary changes if the result of these activities
is insufficient.

Maarten Chin Seah et al. [11] propose an agent-based modeling and
simulation approach for design and analysis of NASA’s Mars Exploration
Rover (MER) mission operations. A space mission operations system is a
complex network of human organizations, information and deep space net-
work systems and spacecraft hardware. This approach is based on Brahms
which is a multi-agent modeling and simulation tool. Brahms allows simula-
tion of these elements of the space mission operation as agents and objects
with behaviors. This approach is based on multi-agent simulation which en-
able the decomposition of the system into less complex entities. The main
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Figure 5: The simulation technique of developed by Smutkupt et al[32] to introduce sim-
ulation in the plant layout design.

advantage of this approach is that when an error occurs, it is more simple
to repair it than a non decomposed simulation and thus this decreases the
design cost.

As a synthesis, from the study of several works of which the main ones were
cited above and which studying and using simulation to design non-computer
systems, we deduce that simulation has been greatly used to design these sys-
tems because they require a thorough study of what the system can deliver
before consuming enormous resources in order to eliminate as soon as pos-
sible design failures and so save effort, time and resources. The approaches
are classified in two principal classes as mentioned in table 1: model-based
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Figure 6: Hyprid vehicle system design process depending on a systematic development
flow and requires advanced simulation capabilities developed by Michael Jensen [23] to
use simulation to design hybrid vehicle.

simulation class and test-based simulation class.

3. Simulation-Based Design for Software

Simulation Based Design for software has been essentially used to cope
with the complexity of the development of some software.

Xiaolin Hu [34] presents a simulation-based software development method-
ology to manage the complexity of distributed real time software (figure 7).
This methodology, based on discrete event system specification (DEVS), has
been proposed to overcome the ”incoherence problem” between different de-
sign stages by emphasizing ”model continuity” through the development pro-
cess. Specifically, the designed control models can be tested and analyzed by
simulation methods and then deployed to the distributed target system for
execution. They developed a virtual test environment which enables software
to be effectively tested and analyzed in a virtual environment, using virtual
sensor/actuators. Within this environment, step-wise simulation methods
have been developed so these different aspects, such as logic and temporal
behaviors, of a real time system can be tested and analyzed incrementally.
This methodology proposed three simulation methods to be used to simulate
different aspects of real time systems. Based on the simulation results, the
model can be refined if necessary.

10



Simulation-Based Design for Non Computer Systems

Model-based simulation Test-based simulation
The model-based simulation con-
sists in the simulation of an im-
age of the system which is usually
incomplete because the designer
does not have complete knowl-
edge about the domain of the
system. In this case, simulation
gives the designer more informa-
tion about the system and the do-
main and thus enables the pos-
sibility of completing the missing
characteristics.

The test-based simulation con-
sists in the simulation of an im-
age of the system. This image is
usually almost complete because
the designer can have complete
knowledge about the system do-
main but he wants to simulate
the functioning of the system be-
fore building the real system. We
are not talking here about the
difference between test and sim-
ulation but we are talking about
two types of simulation. The test
is another paradigm which dif-
fers from simulation. It consists
in the experimentation of the fin-
ished real system in order to en-
sure its proper function.

Table 1: Main classes of works applying SBD for Non Computer Systems.

Ehsan Azarnasab et al. [3] present a progressive SBD methodology
for developing complex systems. It provides a design process that explicitly
focuses on systematic transitions from simulation models to real system re-
alization. The design process consists of three stages which are depicted in
figure 8, each of which is characterized by the types of entities (virtual or
real) that are involved.

• The first stage is conventional simulation, where simulation is carried
out using all models.

• The second stage is virtual environment simulation, where simulation-
based study is carried out with combined real system components and
simulation models.

• The final stage is real system test, where all real system components
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Figure 7: The simulation-based software development methodology proposed by Xiaolin
Hu [34] to manage the complexity of distributed real time software.

are tested in a physical environment.

Along this design process, the framework emphasizes two parallel activities
in a progressive manner: replace models with real system components, and
update models. As the design moves forward, real system components are
gradually brought into the simulation to replace models. This progressive
SBD methodology was applied to design a networked software (radio system).
This software refers to a radio communication system capable of transmitting
and receiving different modulated signals across a large frequency spectrum
using software programmable hardware. This methodology enables design-
ers to validate their design assumptions and to reveal new design details
overlooked before. Such information is fed backward to the previous stages
to update the models if needed. The updated model will then be used for
follow-on design and test. This activity of model update enables designers
to maintain a coherent model of the system under development.

Simonetta Balsamo et al. [4] give a simulation-based performance mod-
eling of software architectures specified in UML. Software performance is the
process of predicting and evaluating whether the software system satisfies
performance goals defined by the user. Performance evaluation refers to the

12



Figure 8: The development process of the methodology developed by Ehsan Azarnasab et
al. [3] for developing complex systems.

Figure 9: The methodology proposed by Simonetta Balsamo et al. [4] for simulation
modeling of software systems and their performance.

activity of measuring the performances of an actual implementation of a
system. The software architecture specification is considered as a set of an-
notated UML Use Cases, Activity and Deployment diagrams. Annotations
are expressed according to a subset of the UML Performance Profile. Simu-
lation model parameters are derived from the tagged values extracted from
the UML diagrams. Once the process structure of the simulation model
is defined, its implementation is built into a simulation program, which is
eventually executed. Simulation results are inserted into the UML diagrams
as tagged values and can be used to provide a feedback at the software
design level. The modeling cycle can be iterated to compare design alterna-
tives and to identify a software architecture that satisfies given performance
requirements. This approach (figure 9) translates Use Case diagrams into
processes called workloads in the simulation model, Activity diagrams into
processes called generic processing steps, and Deployment diagrams into pro-
cesses representing computational resources (processors). Simulation model
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parameters are derived from the tagged values extracted from the UML di-
agrams representing the software architecture. Once the process structure
of the simulation model is defined, its implementation is built into a sim-
ulation program, which is eventually executed. The main objective of this
approach is the simulation of the system’s performance. The problem with
this methodology is that the translation of the UML diagrams to the simu-
lation model is made manually.

Gabriel Wainer et al. [33] propose DEMES (Discrete-Event Modeling
of Embedded Systems) which is a modeling and simulation-based develop-
ment methodology based on discrete-event systems specifications. Figure 10
shows the architecture of the process used in DEMES. SoI is the system of
interest to be modeled and simulated. This process consists of:

Figure 10: DEMES development cycle proposed by Gabriel Wainer et al. [33] for modeling
and simulation-based development of software.

• (1): Defining a specification model of the system using a formal model
(DEVS or alternative techniques translated to equivalent DEVS mod-
els).

• (2): Model-checking can be used for validation of the model properties.

• (3): The same models are then used to run DEVS simulations of the
behavior of the different sub-models under specific loads

• (4) and (5): The same DEVS specification model is used to derive test
cases, which can be also used for the simulation studies. Test cases are
derived from both the model and from the simulation results in order
to check that the model conforms to the requirements.
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• (6) If the designer is satisfied with both analytic and simulated results,
the model is incrementally moved into a target platform. A real-time
Executive (6) executes the models on the particular hardware (9). The
executive allows to execute dynamic models and to schedule static and
dynamic tasks.

• (7): The parts that are still unverified in the formal and simulated envi-
ronments are tested. Some parts can still unverified when the hardware
is not available and so the software components still be developed in-
crementally and tested against a model of the hardware to take early
design decisions. As the design process evolves, both software and
hardware models can be refined..

• (8): Any modifications require going back to the same model specifi-
cations.

The principal characteristic of this approach (DEMES) is that it combines
the advantages of M&S (Modeling and Simulation) with the rigor of a formal
methodology based on DEVS (Discrete Event Systems Specification) formal-
ism. The software life-cycle is cyclic, allowing refinement following a spiral
approach.

As a synthesis, software design saw more evolution in recent years be-
cause of the diversity of application areas. Systems are becoming increasingly
complex, distributed and dynamic. To meet the current systems complexity,
efficient technologies should be used to better develop and explore these sys-
tems before implementation. SBD was greatly applied to support software
products. From the study of related works, we classify existing approaches
in two main classes as mentioned in table 2.

Note that, given the popularity of UML, researchers always think to reuse
it or inspire from its diagrams and protocols even if it does not allow total
design of their systems and they will be forced to make extensions to meet the
specificity of their systems. Reusing standards and extending them is good
in the sense that it favors the standardization of the new proposed methods
based on these standards.
For the second class, we find that during the last years, discrete event sim-
ulation has been largely adopted. Discrete event modeling and simulation
consists in modeling and simulating systems based on the DEVS (Discrete
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Simulation Based Design for Software

Extending UML New approaches with-
out referring to UML

Reuse UML paradigm.
They make extensions to
UML diagrams and in-
tegrate simulation-based
activities.

They present a new way (a
specific process) integrating
simulation techniques in or-
der to apply SBD without
reference to UML.

Table 2: Main classes of works applying SBD to develop Software.

EVent Specification) formalism. A real system modeled with DEVS is de-
scribed as a hierarchical and modular composite of models that can be be-
havioral (atomic) or structural (coupled) [33] [14].

4. Simulation-Based Design for Multi Agent Systems, Self-Organizing
Systems and Systems with Emergent Functionality

We begin this section by giving a brief definition of Multi Agent Sys-
tems, self-organizing systems and systems with emergent functionality. A
Multi-Agent System is (MAS) is a set of software agents that interact to
solve problems that are beyond the individual (agent) capacities or knowl-
edge of each problem solver. A self-organizing system is a structure that
processes where some form of coordination which arises out of the local in-
teractions between its component parts initially disordered. The process of
self-organization can be spontaneous. System with emergent functionality
tends to be more tolerant because they are more adaptable when their envi-
ronment change.
In this section we are interested to works which use simulation to facilitate
the design of such systems. Why simulation has been used to design such
systems and what are the adopted approaches.

Fortino et al. [19], [13] propose an agent-oriented simulation-driven
development process obtained by enriching the PASSI 2 methodology with

2Process for Agent Societies Specification and Implementation
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a simulation step supported by MASSIMO 3, a Java-based discrete event
simulation framework for MAS based on a simulation methodology. PASSI
methodology is a step-by-step requirements-to-code methodology for design-
ing and developing multi-agent societies. Figure 11 presents the simulation
methodology integrated to PASSI. This simulation methodology is based on
the following three iterate phases: modeling, coding and simulation of the
MAS under-development.

• The Modeling phase is enabled by the Distilled State Charts (DSCs)
formalism.

• The Coding (or prototyping) phase is supported by the Mobile Active
Object Framework (MAO Framework).

• The simulation phase is supported by MASSIMO framework.

Figure 11: The simulation methodology proposed by Fortino et al. [19], [13] and integrated
into the PASSI methodology

The Simulation phase of MASSIMO is to allow the validation and evaluation
of:

• The dynamic behavior (computations, communications, and migra-
tions) of individual and cooperating agents;

• The basic mechanisms of the distributed architectures supporting agents,
namely agent platforms;

• The functionality and emergent behaviors of applications and systems
based on agents.

3Multi Agent System SIMulation framewOrk
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The simulation is integrated to PASSI as a new process phase (as indicated in
figure 11). If the simulation results are insufficient, new iteration is executed
in order to make necessary changes. But, there is only one possible type of
iteration which consists in returning to the Modeling phase. Although there
is an integration of simulation in the process, however this phase can be seen
as a test phase more than a simulation phase. We consider that what was
proposed for PASSI do not correctly corresponds to a simulation-based de-
sign.

Sierra et al. [31] develop an Integrated Development Environment to
design electronic institutions as multi-agent systems. The adopted process is
depicted in figure 12. This process consists of:

Figure 12: The Development Cycle proposed by Sierra et al. [31] for Electronic Institution.

• At the Design phase, electronic institutions can be graphically specified
with ISLANDER which is a graphical tool that supports the specifica-
tion of rules and protocols in an electronic institution. At the verifica-
tion phase, the specified institution should be verified before opening
it to external, participating agents.

• Then, a simulation tool SIMDEI is used to dynamically verify the spec-
ifications and the protocols to be implemented.

• At the Development phase, the verified institution can be implemented
using the aBUILDER tool.

• Then, the electronic institution can be deployed.
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With this approach, simulation is considered as a way to achieve what is
defined as dynamic verification of the system. Simulations are realized using
a simulation tool developed under Repast (which is multi-agent simulation
tool). The analysis of the simulation results is the responsibility of the de-
signer who can decide to return to the design phase if the simulation results
differ from the expected ones. The problem with this approach is that the
designer in not guided in the analysis task and the approach is not widely
applied in various fields of applications. A wider range of application areas
must be addressed in order to better evaluate it.

De Wolf et al. [15] uses an equation-free macroscopic analysis approach
proposed in [25] and [24] to build self-organizing emergent systems. This
approach consists in the definition of the macroscopic behavior (the agent
behavior) using an equation (called a macroscopic equation) and numerical
algorithms are used to obtain quantitative statements about the macroscopic
properties. Traditionally, numerical analysis is applied to equation-based
models. But, given that the complexity of the definition of a macroscopic
equation for complex and dynamic systems, the equation-based model has
been replaced by a realistic individual based simulation model.

Figure 13: Equation-free accelerated simulation guided by the analysis algorithm proposed
by De Wolf et al. [15] to build self-organizing emergent systems.

Figure 13 shows the adopted procedure to apply this approach which
consists of:

• Initial values (Xi) for all the macroscopic variables under study are
supplied to the analysis algorithm.
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Figure 14: Equation-free accelerated simulation over time proposed by De Wolf et al. [15]
to build self-organizing emergent systems.

• Then, the initialization operator (init) initializes a number of simula-
tions according to these values.

• Next, simulations (simulate) are executed for a predetermined duration.

• Finally, the averages over all simulations of the values of the macro-
scopic variables (xi+1) are measured. These measures are then given
to the analysis algorithm as a result. The equation and its evaluation
are replaced by the simulation and the analysis algorithm processes the
new results to obtain the next initial values.

This init-simulate-measure cycle is repeated until the analysis algorithm
reaches its goal. Figure 14 shows this procedure over time. In this ap-
proach, designers have to define the results that are expected from the anal-
ysis, the parameters of the simulation are then initialized and simulations
are launched. Finally, the simulation results are analysed and depending on
the outcomes, the next initial values are determined. The analysis approach
is integrated into the engineering process in order to achieve a systematic
approach for building self-organizing emergent systems as the following:

• First, the prototype of the system is built based on experience and com-
bining existing mechanisms and guidelines to achieve a self-organizing
emergent system.

• Then the system is systematically analyzed with respect to the wanted
macroscopic requirements using the analysis approach mentioned above.
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• Feedback from that analysis is then used in a next engineering cycle to
adjust and tune the solution in order to systematically evolve towards
a final solution that meets all the requirements. The feedback obtained
through the analysis of self-organizing emergent systems can also result
in more experience and guidelines to use in future engineering processes.

The principal objective from proposing this approach is the systematic anal-
ysis of the agent behavior in order to decide if the required macroscopic
behavior is achieved. The design is modified in an iterative manner until
the system meets the requirements. The approach aim to achieve a system-
atic simulation-based engineering process where analysis and feedback are
essential. However, this analysis approach is not exploited in an engineering
process.

Gardelli et al. [16] proposes an approach to tackle the early-design stages
in self-organizing multi-agent systems engineering. It is a three-stages design
modeling, simulation and tuning approach. The approach is based on the
A & A (Agent and Artefact) meta-model. This model describes a MAS in
terms of agents and artifacts. Agents are defined as proactive goal-driven
entities and artifacts are defined as encapsulating services to be exploited by
agents. This approach consists of the following stages which can be executed
in a cyclic way:

• Modeling: it is to develop an abstract formal specification of the sys-
tem. The designer provides a characterization for user agents, artifacts
and environmental agents. Environmental agents are used to embed
self-organizing mechanisms into a MAS environment.

• Simulation: it is to use such a specification to qualitatively and quan-
titatively investigate the dynamics of the system.

• Tuning: it is to change model parameters and behavior so to adjust sys-
tem dynamics. In the tuning phase, environmental agents behavior and
working parameters are successively tuned until the desired dynamics
are observed.

The objective from proposing this approach is not to develop a complete new
methodology for MAS engineering. Instead, it is to integrate the approach
within existing Agent Oriented Software Engineering methodologies, and ad-
dressing the peculiar issues raised by self-organizing MAS. They assume that
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requirements have been collected and the analysis has been performed, in
particular identifying the services to be performed by environmental agents.
Then, this approach can be situated between the analysis and design phase.

Figure 15: Actions Counting NCS under SeSAm. [8].

Figure 16: Location of the rules auto-scheduling system. [27].

Bernon et al. [8] focus on MAS based on the AMAS (Adaptive Multi-
Agent System) theory in which the main design point is to improve the
behavior of involved agents and removing the detected Non Cooperative Sit-
uations (NCS) (which represent problems of cooperation). They proposed
an approach, based on simulation, to automatically identify NCS while a
prototype of a targeted MAS is executing. The AMAS theory was proposed
to help designers confronted with complex systems that are functionally ad-
equate and for which classical algorithmic solutions do not exist. Figure
15 presents an example of NCS detection. Indeed, by observing the system
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while it ”lives”, a designer can be aware of problems (NCS) that occur in the
system and then solve them by (essentially) modifying the agents behaviors.
This enables to design agents while the system is simulated. In this case, an
agent can be partially designed and its capabilities of actions and reactions
can be progressively improved by developers. A first simulation tool was-
integrated in the implementation phase of the ADELFE process. This [7],
based on the SeSAm platform [26], allows designers to see a MAS prototype
during its execution in order to detect a number of NCS. The designer can
then modify and improve the behavior of deficient agents.

Lemouzy et al. [27] define a tool enabling the self-scheduling of behav-
ioral rules of a cooperative agent (figure 16) . It is an automatic mechanism
of scheduling rules in order to select actions to be performed by an agent. A
subsumption rule can be considered as a set of rules and each of them triggers
one action. The modification of the deficient agents behavior steel, in these
two previous works, done manually, but it would be interesting, to ease the
task of the designer, to allow agents to self-define the set of behavioral rules
which are considered the most cooperative.

Mefteh et al. [29] and [28], develop a new cooperative agent model
which is able to self-design based on simulation. This agent model (named
S-DLCAM 4) gives to cooperative agent the ability to self-detect and self-
correct the cooperation problems (Non Cooperative Situations) in order to
self improve its behavior by anticipating the NCS during its life.

As a synthesis, several MAS methodologies have seen the day in recent
years. MAS were heavily used to design and simulate many real problems.
However, the use of simulation during the MAS’s design process has been
poorly applied. The principal objective of using simulation to design MAS
is to better understand the behavior of each agent and to well identify the
different interactions. Simulation enables to see the results given by a MAS
model and if the designer isn’t satisfied, he can rectify its model by changing
the interactions or the agent properties. For self-organizing and emergent
systems, simulation has been used because the designer has not a complete
knowledge about the system behavior and its environment. In this case, sim-

4Self-Design and Learning Cooperative Agent Model
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ulation has been used to complete the design. The designer gives generally
a preliminary specification of the system and by using simulation, he can
deduce new information which enables it to improve the design.

5. General Synthesis

Simulation has been used to design different types of complex systems.
The objective is generally to eliminate unfit design as early as possible in
order to decrease design cost. There are also some other specific objectives
related to each domain of application.
The different approaches, using SBD for non-computer systems,
are classified in two main classes: model-based simulation class and test-
based simulation class. The model-based simulation consists in the simu-
lation of an image of the system which is usually incomplete because the
designer does not have complete knowledge about the system In this case,
simulation gives the designer more information about the system and the
domain and thus enables the possibility of completing the missing character-
istics. The test-based simulation consists in the simulation of an image of the
system. This image is usually almost complete because the designer can have
complete knowledge about the system domain but he wants to simulate the
functioning of the system before building the real one. We are not talking
here about the difference between test and simulation but about two types
of simulation. The test is another paradigm which differs from simulation. It
consists in the experimentation of the finished real system in order to ensure
its proper function.
The approaches using SBD for software are also classified in two main
classes: approaches extending UML diagrams and other propose their spe-
cific process without reference to UML. Reusing UML paradigm consists on
making extensions to UML diagrams and integrating simulation-based ac-
tivities. Reusing standards and extending them is good in the sense that
it favors the standardization of the new proposed methods based on these
standards. But, it is not always possible.
For MAS, self-organizing systems and systems with emergent
functionality, little development approaches have been proposed in the
literature. And to systematically build a self-organizing emergent MAS re-
mains an open issue.

This classification of related works is justified by the fact that my objec-
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tive from carrying out this study is to inspire from existing related works to
justify using a SBD approach for developing Adaptive Multi-Agent Systems
(AMAS) and find the suitable way to integrate it in the ADELFE process.
ADELFE is a methodology for designing software with emergent functional-
ity and it is based on the AMAS theory. For this, I have decomposed works
into three parts from the more general approaches to reach the closest to
my domain. So, I first talked about using simulation to design non com-
puter systems in several domains, then using simulation to design software
and finally to design Multi-Agent Systems or systems that have one or more
AMAS characteristics (self-Organizing Systems or Systems with Emergent
Functionality).
AMAS [18] [20] systems are complex multi-agent systems with emergent func-
tionality. Generally, the AMAS designer does not have a complete knowledge
about the dynamic environment and he cannot deduce the complete global
behavior of the system from building the agent behaviors and vice versa.
Building AMAS systems can challenge even the most experienced designer.
With applying SBD, we assist the AMAS designer by automatizing as much
as possible its task and enhance the quality of the produced AMAS. Sim-
ulation plays a strategic role because it helps to support the modeling and
simulation of agents that dynamically adapt their interactions, composition,
and behavior. Indeed, SBD allows to realize a progressive AMAS design
based on simulation by integrating a simulation-driven approach in the de-
sign process in order to enrich the ADELFE methodology by engineering
activities and tools to help the designer and guide him to produce a better
AMAS quality. The adopted simulation activities are depicted in figure 17.

• A1: Define model. The model is defined according to the thematic
(analysis, design, ...) requirements. The output of this activity is a
defined model.

• A2: Preliminary validation. The model is then preliminary vali-
dated according to properties which are required for the model. The
result of this activity is the model to be simulated. This activity is
done manually by an expert in order to eliminate errors that can be
detected easily before launching simulations.

• A3: Experimentation. This is to experiment the preliminary de-
fined model. This activity should be conducted by a tool which gives
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Figure 17: Our adopted Simulation-Based Work-flow Pattern

the ability to run experimentation by changing the experimentation
parameters.

• A4: Analysis. This is to analyze the results produced in the previous
activity and give conclusions. This activity also should be conducted
by a tool.

If the conclusions produced by A4 satisfy the thematic, the process is stopped.
Otherwise, a new cycle can be executed. The new cycle may begin either
from A3 in order to change the experimentation parameters, or from A1 in
order to refine the initial model.
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