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Abstract 

Efficient scheduling is essential for optimizing resource allocation and robust system performance in a 

wide range of real-life applications. In most of these cases, the success of scheduling largely depends on 

one’s ability to ensure that system resources can be utilized to their maximum capacity, yet without 

overloading the system. In this work, we study the problem of critical utilization and efficient scheduling 

by considering systems with discrete schedules, widely used in real-life workflows.  Using an 

implementation-based approach, we introduce discrete scheduling by developing its analytic equations, 

which enables us to express the behavior of the scheduling metrics with respect to system utilization. 

Using this result, we define critical resource utilization and solve for its exact value as a function of 

schedule length. Finally, we compare our results with the equations from the classical queueing theory, 

and discuss their applicability. Our findings have immediate practical implications in developing robust 

schedules and controlling for optimal system performance. 
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1 Introduction 

Efficient and robust scheduling presents a well-known challenge in many practical areas from 

engineering to healthcare to e-commerce (Blake, Carter, & Richardson, 1996), (López, García, Díaz, & 

García, 2000), (Dhall & Liu, 1978), (Kumar, 2001), and becomes particularly demanding, when an 

expensive resource - such as a complex device or an operating room - needs to be utilized to its full 

capacity to justify the cost. However, as classical queueing theory suggests (Little, 1961), (Pollaczek, 

1930), and practical experiences confirm (Brown, Gans, Mandelbaum, Sakov, & Shen, 2005) (Kc & 

Terwiesch.),  increasing resource utilization inevitably leads to higher wait times and more fragile, 

bottlenecking workflows. In particular, working in a busy healthcare facility, we are constantly observing 

faster-than-linear escalation of delays as hospital resource utilization increases (Figure 1). Knowing the 

exact nature of this trend and its critical utilization threshold, responsible for escalating delays, presents 

one of the most central problems of practical operations management.  

                  



  

Figure 1: Patient wait time W to schedule an appointment, and probability Pov of rescheduling to a later time, as 

functions of scheduled resource utilization, in a busy outpatient healthcare facility. Individual dots correspond to 

the actual observed values, smooth lines – to the resulting trends. 

The problems of processing queues and delays have been extensively studied for more than a century 

(Erlang, 1909), and classical queueing theory developed a number of useful theoretical models to 

estimate waiting lines, times, and utilization (Cooper, 1981), (Kleinrock, 1975). However, these models 

tend to rely on a rather continuous view of queueing, where the queue is formed by a random flow of 

tasks, arriving to a busy server. This view does not fit well with many real-life problems, where the 

principal challenge comes not from the dynamics of the arrival and service timing, but from the 

complexity of assigning tasks to a limited number of predefined (scheduled) slots – such as assigning 

patients to hospital rooms, or assigning airplanes to airport gates. Consequently, classical queueing 

theory offers no advice on finding the optimal number of busy slots to avoid bottlenecking. 

To investigate discrete slot-allocation problems more efficiently, more computational approaches have 

been developed, solving sophisticated queueing problems numerically (Neuts M. F., 1973) (Klimko & 

Neuts, 1973) (Neuts & Klimko, 1973) (Heimann & Neuts, 1973). This led to a wide range of scheduling 

algorithms based on Markov chains (Neuts M. F., 1973) (Chan & Maa, 1978), dynamic programming 

(LaGanga & Lawrence, 2012), convex steepest descent (Begen & Queyranne, 2011), Monte Carlo 

(Punitha, 2018), integer linear programming (Zacharias & Yunes, Multimodularity in the Stochastic 

Appointment Scheduling, 2019), discrete event simulation (DES) (Wainer, 2009), (Petrean, 1998), and 
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more (including healthcare scheduling, where numerical simulations were frequently used to optimize 

emergency room utilization (Blake, Carter, & Richardson, 1996), patient no-shows (Zacharias & Pinedo, 

Appointment Scheduling with No-Shows and Overbooking, 2014), and allocation of staff and resources 

(Marchesi, Hamacher, & Fleck, 2020), (Huggins, Claudio, & Eduardo, 2014) ). This extensive analysis of 

numerical solvers also helped advance their theoretical grounds – including the proofs of multimodular 

and convex optimization for scheduling cost functions (Zacharias & Yunes, Multimodularity in the 

Stochastic Appointment Scheduling, 2019). However, by their very nature, numerical optimization 

methods were focused on simulating very specific scenarios, making their findings hard to generalize. 

Also, the ever-increasing complexity of computational equations and math made them prohibitevy 

expensive for routine, real-life applications, and did not produce any interpretable guidance for the 

scheduling practitioners.  

As a result, in their comprehensive review of discrete scheduling methods in healthcare, (Cayirli & Veral, 

2003) conclude that “discussions on implementation issues reveal how misleading it can be to view the 

problem as a “pure optimization” problem”. Working in this field, we completely agree with this verdict: 

we seriously lack approaches facilitating real-life scheduling decisions. Complex optimizers cannot be 

run nor maintained in routine settings; complex logic cannot be followed by human schedulers and 

facility administrators; complex probabilistic data may not be known, or may greatly vary over time, 

invalidating its models. As a result, and especially in the areas with significant process variability (such as 

healthcare), a true real-life scheduling solution must be optimizing day-to-day scheduling decisions – 

rather than optimizing whatever is computationally possible. 

To bridge this gap, we propose a new approach to discrete scheduling problems, and study it to develop 

a practically-applicable solution.  

2 Discrete scheduling problem and “one more task” approach 

We define the problem of discrete scheduling as the problem of assigning tasks to a finite number N of 

discrete schedule slots (scheduling cycle, such as a workday), as shown in Figure 2. The time window of 

each slot is defined ahead of time, and remains constant – thus forming a preset scheduling grid (in 

contrast with conventional “walk-in” task queueing). Tasks can be processed only if and when they are 

assigned to the remaining open slots, one task per slot. 

                  



This definition significantly changes the problem-solving paradigm: while the main goal in “walk-in” 

queueing is to process the tasks on time, the main goal in discrete scheduling is to find the time to 

process. To solve this problem in the most correct, pragmatic way, we have to put ourselves in the 

position of a scheduling manager, who was asked, at a random time, to accomodate one more task. At 

this point, the manager is not already concerned with the previously-scheduled tasks, which cannot be 

changed, even if scheduled for the future slots. Likewise, the manager is not concerned with any new 

tasks which might (or might not) arrive later. The only real problem the manager has to solve is whether 

accepting one more task is possible, and if so, whether this task will wreck operational havoc. The 

scheduler needs a simple and reliable rule to make this decision. 

 

Figure 2: Discrete scheduling problem, where arriving tasks have to be assigned to a limited number of processing 

slots N. As the number of busy slots K increases, the new tasks will need to wait longer for the next open slot. 

This new game-theory-like approach “freezes” the problem at a specific decision time, placing us in a 

very interesting position, significantly different from the previous scheduling optimization research. We 

do not need to know the temporal properties of the system, such as task arrival distribution, queueing 

discipline, or distribution of the service times: at a single “frozen” time point, we are not solving for the 
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entire scheduling template. Moreover (and most pragmatically), the temporal properties of the system 

may not be known to the scheduler, may be too complex, and may significantly vary in time (for 

instance, we do not know at the time of scheduling how much a patient will deviate from the prescribed 

care path). Our scheduler, just like an average chess player, is concerned only with the current move, 

and cannot think ten moves into the future. 

Consequently, we need to assume that at least at the time of decision-making, (1) all tasks have equal 

priority, (2) all open slots have equal availability, and (3) all tasks can be performed during their 

scheduled times. The first two assumptions follow from the fact that we ignore the temporal flow of the 

tasks. The third, although looking the most restrictive, reflects the underlying assumption of feasible 

scheduling – otherwise, the schedule cannot be followed, and the process collapses to walk-in queueing, 

so elaborated in the classical queueing theory. 

Finally, the assumption of equal slot availability leads to assuming that all N slots have the same fixed 

duration of 1/N time units (considering the duration of the entire schedule as a single time unit). This is 

another assumption often rejected in complex scheduling models, trying to fine-tune slot durations to 

specific task processing patterns. However, having same-size slots is critical to make them 

interchangeable – which is much more important practically, than overoptimized slot durations. Thus, 

unlike the “pure optimization” methods, we deliberately sacrifice optimality to achieve more realistic 

scheduling – which is an absolute must, if we want to implement our solution. For example, note that 

same-size slots are dominating healthcare scheduling.  

Then what does our scheduler know? In complex, varying workflows we can count on only one bit of 

ground truth: our scheduler does know, how many slots K have been already taken. This means that the 

“one more task” acceptance will be decided by this number (or equivalently, by the number of open 

slots N-K). That is, the task-accepting decision becomes a function of the schedule utilization u=K/N, 

defined as the fraction of currently taken slots. 

Thus, considering discrete task scheduling problem from the point of real-life decision-making, we state 

two principal questions that must be answered by any pragmatic scheduling approach:  

- Investigating how discrete scheduling processing efficiency depends on the schedule utilization 

u=K/N, and based on this 

                  



- Determining the maximum utilization value, which should not be exceeded to avoid significant 

system overload 

In the following sections, we solve these two problems by developing mathematical equations for 

discrete scheduling systems, deriving their analytical solutions, and using these solutions to propose an 

upper bound on optimal system utilization.   

3 Discrete Scheduling Equations 

 

3.1 Scheduling metrics 

To decide on adding “one more task” to a busy schedule, we consider a discrete schedule with N time 

slots, where K≤N slots have been already allocated to previously assigned tasks, resulting in the current 

system utilization of u=K/N. At this point, a new (K+1)st task presents at a random time and needs to be 

scheduled in the remaining open slots.  

Lacking any other knowledge on system properties or scheduler’s strategies, we choose to study the 

best, most optimistic task assignment scenario – assigning the new task to the nearest open slot. Note 

that we assume this only for the current, (K+1)st task. That is, we want to know how well the system will 

perform if, running at utilization u, it schedules one more task in the most time-efficient way (Figure 2).  

Applying the optimal strategy only to one single task presents another significant difference from the 

previous research, but derives from the practical scheduling experience as well. In real life, what makes 

scheduling decisions most challenging is the need to accommodate new, unexpected tasks. For example, 

in a healthcare schedule most appointments might be allocated well in advance, with least disruption. It 

is the addition of one more unexpected patient that will require decision-making, and can escalate 

processing delays (the infamous “last straw” challenge). 

To measure the feasibility and efficiency of this “one more task” assignment, we define two principal 

metrics: 

- Overload probability Pov(N,K) – the probability of not finding any open slot, when all slots after 

the new task arrival are already taken, and 

                  



- Wait time W(N,K) – the time that the new task will have to wait for the next open slot 

Both metrics can be viewed as scheduling cost functions, expressing scheduling efficiency as a function 

of utilization. While using the wait time metric is very typical for queuing and scheduling problems, 

including overload probability emphasizes the time-independent, discrete nature of slot assignment, 

outlined earlier. In either case, we want to investigate the dependency of these two principal metrics on 

the current system utilization u=K/N, and use this to define the critical system utilization value uc, 

corresponding to the most rapid escalation of system bottlenecking.  

 

3.2 Discrete scheduling equations 

In discrete scheduling with equally-sized time slots, it is natural to measure time in slot durations. 

Assuming that K≤N slots in the schedule are currently taken, let ωi denote the event when a new 

arriving task had to wait for i busy slots (i≤K), and let P(ωi) denote the probability of this event.  

 

For a task to wait for i slots, the task must either (1) arrive into a system where there are i occupied time 

slots immediately after arrival and the (i+1)st time slot is unoccupied, or (2) arrive into a system with 

exactly i time slots remaining, all of which are occupied (corresponding to the system overload event). In 

the second case the new task cannot be taken and will have to wait at least i slot units until the schedule 

ends, and new scheduled slots could be potentially allocated. We do not know, whether this can be 

done, and working overtime may not be possible at all. But regardless of this, adding the new task right 

after the scheduled time simply reflects the same optimistic assumption of processing the (K+1)st task as 

early as possible, to estimate the lower bound on the costs. Note that this lower bound is also realistic – 

for example, in many healthcare workflows arriving patients are never turned down, and will be taken 

after all current patients are processed (Zacharias & Yunes, Multimodularity in the Stochastic 

Appointment Scheduling, 2019). 

Using this model, we can derive the equations for expected task wait W(N,K) and schedule overload 

probability Pov(N,K). In the first case, when the new task is scheduled to the (i+1)st time slot, the task 

should arrive with at least (i+1) time slots remaining in the schedule. This is possible if and only if the 

task arrives anywhere during the first j slots (“earlier slots” in Figure 2), such that j+(i+1)≤N, or j≤N-

(i+1). With total slot count of N, the probability of arrival within the first N-(i+1) slots is  
𝑁−(𝑖+1)

𝑁
. 

                  



Conditioning on this, one needs to find the probabilities of each of the next i time slots being occupied. 

Since we know that the total number of occupied slots is K, the probability that the time slot 

immediately after arrival is occupied is 
𝐾

𝑁
, the one after it 

𝐾−1

𝑁−1
, and so on until we reach 

𝐾−(𝑖−1)

𝑁−(𝑖−1)
. The 

probability that the (i+1)st time slot is open is then given by 
𝑁−𝐾

𝑁−𝑖
, since there are (N-K) as of yet 

unidentified free slots in the schedule, and (N-i) remaining possible locations for these slots in the 

schedule. By independence, we multiply all these terms together, giving us the first term in (Eq. 1). 

Similarly, in the second case, the task arrives with exactly i time slots remaining, which occurs with 

probability 
1

𝑁
. Conditioning on this, we have the same term denoting the probability that all remaining i 

timeslots are all occupied, and there are no more slots left. This gives us the second “overload” term in 

(Eq. 1).  

𝑃(ω𝑖) =  (
𝑁 − (𝑖 + 1)

𝑁
)(
𝐾

𝑁
⋅
𝐾 − 1

𝑁 − 1
⋅ … ⋅

𝐾 − (𝑖 − 1)

𝑁 − (𝑖 − 1)
) (
𝑁 − 𝐾

𝑁 − 𝑖
)

+
1

𝑁
(
𝐾

𝑁
⋅
𝐾 − 1

𝑁 − 1
⋅ … ⋅

𝐾 − (𝑖 − 1)

𝑁 − (𝑖 − 1)
)

 (Eq. 1) 

Factoring and simplifying, we have 

𝑃(𝜔𝑖) = (
𝐾 ⋅ 𝐾 − 1 ⋅ … ⋅ 𝐾 − (𝑖 − 1)

𝑁 ⋅ 𝑁 − 1 ⋅ … ⋅ 𝑁 − (𝑖 − 1)
) (
𝑁 − 1 − 𝑖

𝑁

𝑁 − 𝐾

𝑁 − 𝑖
+
1

𝑁
) = 

=
1

𝑁
(

𝐾!

(𝐾 − 𝑖)!

(𝑁 − 𝑖)!

𝑁!
)(
(𝑁 − 1 − 𝑖)(𝑁 − 𝐾)

𝑁 − 𝑖
+ 1) 

  (Eq. 2) 

 

Consequently, the total probability of schedule overload is computed as the sum of all overload 

probabilities over possible slot utilization values of K (second terms in (Eq. 1)): 

𝑃𝑜𝑣(𝑁, 𝐾) =∑
1

𝑁
(

𝐾!

(𝐾 − 𝑖)!

(𝑁 − 𝑖)!

𝑁!
)

𝐾

𝑖=1

=
1

𝑁

𝐾!

𝑁!
∑
(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=1

    ,     (Eq. 3) 

 

                  



and the expected wait time for the new task is found as 

𝑊(𝑁,𝐾) =∑𝑃

𝐾

𝑖=0

(𝜔𝑖) ⋅
𝑖

𝑁
=
1

𝑁2
𝐾!

𝑁!
∑(

(𝑁 − 1 − 𝑖)(𝑁 − 𝐾)

𝑁 − 𝑖
+ 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖,   (Eq. 4) 

 

In the Appendix (Theorem 1), we prove that the summations in (Eq. 3) and (Eq. 4) can be reduced to a 

much shorter form: 

 

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾

𝑁 − 𝐾 + 1
= 
1

𝑁

𝑢

1 +
1
𝑁 − 𝑢

= 𝑃𝑜𝑣(𝑢),         𝑢 =
𝐾

𝑁
,    0 ≤ 𝑢 ≤ 1 

  (Eq. 5) 

𝑊(𝑁,𝐾) =  
𝐾(𝑁2 + 𝑁 − 𝐾𝑁 − 1)

𝑁2(𝑁 − 𝐾 + 1)(𝑁 − 𝐾 + 2)
=  
1

𝑁

𝑢(1 +
1
𝑁 +

1
𝑁2
− 𝑢)

(1 +
1
𝑁 − 𝑢)(1 +

2
𝑁 − 𝑢)

= 𝑊(𝑢) 

𝑊(𝑢)
𝑁→∞
→   𝑊𝑎(𝑢)= 

1

𝑁

𝑢

(1+
2

𝑁
−𝑢)

 

  (Eq. 6) 

 

This provides us with a very concise set of equations, describing two principal metrics of discrete 

scheduling. Moreover, this important result enables us to express W(u) and Pov(u) as functions of system 

utilization u. Although in discrete scheduling u can take only selected rational values u=K/N, our 

equations enable us to study W(u) and Pov(u) as continuous functions of utilization u, to better 

understand their trends and behavior.  

The equations, illustrated by plots for W(u) and Pov(u) in Figure 3, lead to a few important observations. 

 

 

                  



 

Figure 3: Plots of schedule overload probability Pov(u) and expected task wait W(u) as functions of the system 

utilization u, for several schedule sizes N. Note that both cost functions are finite at u=1:  Pov(1)=1, and 

W(1)=1/2+1/(2N). The dashed curve in W(u) plot represents Pollaczek–Khinchine formula WPKh(u) for N=10, 

diverging to infinity as u approaches to 1. 

 

First, both W(u) and Pov(u) behave as hyperbolas (see Corollary 1 and 2 in the Appendix), starting nearly 

flat at u=0, but becoming increasingly vertical as u approaches to 1. This can be seen by considering the 

first derivatives of these functions w.r.t utilization u: 

𝑃𝑜𝑣
′ (0) =

1

𝑁 + 1
,      𝑃𝑜𝑣

′ (1) = 𝑁 + 1,      

𝑊′(0) =
𝑁2 + 𝑁 − 1

𝑁(𝑁 + 1)(𝑁 + 2)
  
𝑁→∞
→     

1

𝑁
  , 𝑊′(1) =

𝑁2 − 𝑁 − 2

4𝑁
  
𝑁→∞
→     

𝑁

4
  ,  

  (Eq. 7) 

 

Note that this theoretical hyperbolic behavior matches the trends observed in many real-life data – such 

as those presented in Figure 1. Furthermore, as (Eq. 7) suggests, hyperbolic behavior becomes 

particularly pronounced as the number of slots N increases. In practical applications this means that 

discrete scheduling systems, steady at low values of u, become progressively unstable as u approaches 

to 1 (100%). This agrees with real-life experiences, when overcrowded processes break down not only 

because they lead to escalating wait time, but also because finding an empty slot for a new task 

                  



becomes highly improbable (overload probability Pov(u=1)=1 ) – which often leads to increased errors, 

stress and overburn, so visible in the human-driven environments. 

Second, it is instructive to compare our equations to the classical queueing theory Pollaczek–Khinchine 

formula 𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2+𝜆2𝑉

2(1−𝑢)
), where λ denotes the task arrival rate, and V - service time variance. 

In our case of tasks fitting into the scheduled slots, we can assume V=0, λ=N, leading to     

𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2 + 𝜆2𝑉

2(1 − 𝑢)
) =

1

𝑁

𝑢 (1 −
1
2𝑢)

1 − 𝑢
  ,    (Eq. 8) 

bearing visible similarities with our W(u) and Wa(u) in (Eq. 6). However, although all these functions have 

a hyperbolic trend w.r.t utilization u, discrete scheduling wait W(u) remains finite even when utilization 

u approaches to 100% (see WPKh(u) plot in Figure 3): 

𝑊(𝑁,𝐾 = 𝑁) = 𝑊(𝑢 = 1) =
1

2
+
1

2𝑁
 , 

thus asymptotically converging to ½ for large N (task arriving to a fully-scheduled system will have to 

wait ½ day on average to get processed at the end). Undoubtedly, non-diverging, finite wait offers a 

more realistic reflection of practical scheduling experience (Figure 1). 

4 Critical utilization 

4.1 Definition and equations 

Critical utilization can be defined as the “last straw” utilization limit, when the cost of accepting one 

more task becomes prohibitively high. Although hard to formalize theoretically, finding the most 

appropriate critical utilization value presents one of the most central challenges in real-life operations 

management. For example, one would always want to utilize the most expensive resource as fully as 

possible, but avoid overcrowding and stress associated with overloads. Therefore, while it is clear that 

approaching 100% utilization leads to fragile workflows with no cushions to absorb new work, no 

solution has been offered to determine what exact threshold under 100% should not be exceeded.  

                  



As a result, utilization threshold is often estimated by various external indicators of system overload 

(overcrowded waiting rooms, long waiting times, dropped calls, stress, and so on). However, these 

indicators call for their own thresholds, equally elusive, and failing to generalize to a universal principle. 

This challenge is only augmented by the hyperbolic nature of the principal utilization metrics that we 

have discovered with (Eq. 5) and (Eq. 6). Sharing the same hyperbolic behavior, these functions and all 

their derivatives are monotonically increasing with utilization u, perfectly reflecting escalating system 

instability, but suggesting no specific point of “breakage”.  

However, there is one particular property of hyperbolas which serves to our advantage – as can be seen 

in Figure 3, especially for larger values of N. Starting nearly horizontally at u=0, hyperbolas become 

more and more vertical as u approaches 1 (see (Eq. 7)). This L-shaped behavior is captured with a very 

specific “turning point” of the sharpest change from the horizontal to the vertical trend. Mathematically, 

this sharpest turn occurs when the curvature of the hyperbolic function reaches its maximum. 

 

 

 

Figure 4: Left: Overload probability Pov(u) with maximum curvature points. Right: Corresponding curvature 

functions. Note that as schedule size N increases, curvature peak becomes sharper and closer to 1. 

 

In practical scheduling this means that accepting one more task at this point will produce the sharpest 

turn into the escalating, “vertical” trend, which is exactly what any scheduler needs to avoid. Therefore, 

we define critical utilization uc as the point of the maximum curvature in the utilization metric function – 

Curvature maximum 

                  



when the metric and its underlying process experience the most abrupt shift into the overloaded 

pattern (Figure 4).  

Curvature analysis provides a universal mathematical framework, independent of the specific problem 

and overload definitions. Moreover, this approach enabled us to derive the exact critical utilization 

solutions for the two major metrics used in this study: Pov(u) and Wa(u) (asymptotic form of W(u)), as we 

prove in the Appendix (Corollary 3): 

 

𝑢𝑐 =  1 +
2

𝑁
− √

1

𝑁
+
2

𝑁2
= 1 −

1

√𝑁
+
2

𝑁
−

1

𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
) = 𝑢𝑐

𝑠𝑞𝑟𝑡 + 𝑂 (
1

𝑁
) 

 

  (Eq. 9) 

𝑢𝑐
𝑜𝑣  = 1 +

1

𝑁
− √

1

𝑁
+
1

𝑁2
= 1 −

1

√𝑁
+
1

𝑁
−

1

2𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
) = 𝑢𝑐

𝑠𝑞𝑟𝑡 + 𝑂 (
1

𝑁
) 

𝑢𝑐
𝑠𝑞𝑟𝑡  = 1 −

1

√𝑁
 

  (Eq. 10) 

Both critical utilization functions 𝑢𝑐
𝑜𝑣 and 𝑢𝑐  are shown in Figure 5, which also shows their asymptotic 

approximation 𝑢𝑐
𝑠𝑞𝑟𝑡

. Figure 5 also includes the 𝑢𝑐
true curve – the curvature of the original W(u) function. 

Direct application of curvature math to the W(u) in (Eq. 6) leads to a 12th degree equation, with no 

analytically-tractable solution – the problem we overcame by introducing the Wa(u) function as an 

asymptotic approximation to W(u) (see Corollary 2 in the Appendix). Yet interestingly enough, the 

analytical solution for the critical curvature uc, that we have found from Wa(u), is virtually 

indistinguishable from the true solution 𝑢𝑐
true, found numerically (see Figure 5). Consequently, the uc 

formula from (Eq. 9) can be used as a very accurate substitute for 𝑢𝑐
true, at least for N≥10 shown in 

Figure 5. 

 

 

                  



 

Figure 5: Discrete schedule critical utilization as function of the schedule size N. The 𝑢𝑐
𝑡𝑟𝑢𝑒 curve shows maximum 

curvature of the original W(u) function, which has no analytical solution, and was found numerically.  

𝑢𝑐
𝑠𝑞𝑟𝑡

= 1 −
1

√𝑁
  corresponds to the simple approximation, to which 𝑢𝑐

𝑡𝑟𝑢𝑒, 𝑢𝑐 , and 𝑢𝑐
𝑜𝑣 converge asymptotically. 

 

One can also notice that both critical utilization solutions –  𝑢𝑐
𝑜𝑣 for Pov(u) and uc  for Wa(u) – have very 

similar expressions, coming only 1/N (one slot size) apart from each other ((Eq. 9), (Eq. 10)). This means 

that despite two conceptually-different choices of scheduling metrics – time-based W(u) and availability-

based Pov(u)  – they identify the same point of the scheduling process breakdown, a very unexpected 

and interesting result.  

Second, at the same “one slot” margin of error, both critical utilization values in (Eq. 9) and (Eq. 10) 

converge to 𝑢𝑐
sqrt

= 1 −
1

√N
  . Since we defined utilization as the fraction of busy slots ( u=K/N ), this 

leads to a very simple estimate of the critical busy slot count Kc: 

𝐾𝑐 = 𝑁𝑢𝑐 = 𝑁(1 −
1

√N
 ) =   𝑁 − √𝑁    

As Figure 5 demonstrates, 𝑢𝑐
sqrt

= 1 −
1

√N
  slightly underestimates 𝑢𝑐

𝑜𝑣 for Pov(u) and uc  for Wa(u), thus 

setting a “safe” threshold on utilization, not to be exceeded. This short and elegant result – “keep at 

least √𝑁 slots open to avoid schedule breakdown” - provides a concise, universal, and practical guidance 

𝑢𝑐
𝑡𝑟𝑢𝑒 ≈ 𝑢𝑐  

 

Asymptotic 𝑢𝑐
𝑠𝑞𝑟𝑡

 

                  



for managing discrete schedules of any size N. Moreover, using the time-based interpretation provided 

by the W(u) function, we can rephrase this result as “keep at least √𝑁 slot time open to avoid schedule 

breakdown” – which becomes more applicable for the processes where utilization is measured in the 

resource busy time, rather than slots. This “time-availability equivalence” of the critical utilization value 

can be seen as one of the most fundamental properties of discrete scheduling, independent of the 

scheduling metric.  

Finally, as schedule size N increases, critical utilization uc approaches to 1, which means that schedules 

with shorter slots are generally more immune to overloads. This can be intuitively true – “one more 

task” is easier to accept when the task duration is getting shorter – but has its own disadvantage, very 

visible in Figure 4 and  (Eq. 7). Large values of N result in sharper curvature change, and more vertical 

escalation of delays after exceeding the critical uc point. Thus, going beyond critical utilization for large 

schedule sizes N will have more devastating effects on the process stability and operations. 

 

4.2 Extension to queueing theory 

The idea of using maximum curvature to identify the point of critical change is general enough to be 

applied to any process with L-shaped cost function (convex and monotonically increasing in our case). 

Moreover, recognizing inherent similarities between discrete scheduling and queueing theory 

equations, it becomes natural to apply the same concept to find the critical utilization of the latter. 

To do so, we consider the original Pollaczek–Khinchine formula (first equation in (Eq. 8)). Although 

developed for a very different case (M/G/1 “walk in” queue with Poisson arrivals), Pollaczek–Khinchine 

formula produces a similar hyperbolic wait time trend, and leads to the same practical question of 

determining the critical utilization value. We were still able to derive the exact expression for the 

Pollaczek–Khinchine critical utilization as well, as proven in the Appendix (see Corollary 4, (Eq. 28)). 

𝑢𝑐
𝑃𝐾ℎ = 1 − √

(1 + 𝜆2𝑉)2

1 + 4𝜆2

4

   (Eq. 11) 

First, it is interesting to observe, that queueing critical utilization 𝑢𝑐
𝑃𝐾ℎ decreases as processing time 

variability V grows. Not only this supports a well-known observation that high processing variability 

                  



“kills” any organized processing, but now provides a numerical way to control for the variability value, to 

ensure safe utilization limits.  

Second, using Pollaczek–Khinchine result to approximate our discrete scheduling by setting λ=N, V=0, 

yields   

 

𝑢𝑐
𝑃𝐾ℎ = 1 − √

1

1 + 4𝑁2

4

= 1 −
1

√4
4
√𝑁

+
1

16√4
4
𝑁2√𝑁

+ 𝑂 (
1

𝑁4√𝑁
)   (Eq. 12) 

 

That is, as N increases, critical utilization 𝑢𝑐
𝑃𝐾ℎ for the queued task wait tends to 1 as  1 −

1

√4
4
√𝑁

, which is 

very similar, but faster compared to  𝑢𝑐 = 1 −
1

√𝑁
  in the case of discrete scheduling  ((Eq. 9), (Eq. 10), 

Figure 5).  

 

 

Critical utilization for 
Pollaczek–Khinchine 

                  



Figure 6: Comparing critical utilization 𝑢𝑐
𝑃𝐾ℎ found for the queueing theory wait function (Pollaczek–Khinchine 

equation, dashed line) to our critical utilization for discrete scheduling wait uc  . 

 

Higher critical utilization values found in queueing,  𝑢𝑐
𝑃𝐾ℎ > 𝑢𝑐 nicely correspond to our intuition: in 

general, queueing is a more robust process compared to discrete scheduling. In the case of discrete 

scheduling, tasks have to be fitted into slots, or some of the server future slots may be already assigned, 

thus reducing overall processing capacity, and making the discrete systems easier to overwhelm. 

However, discrete scheduling is a more predictable and “satisfying” form of processing from the task 

(customer) perspective, when it is much more appreciated to get service at a guaranteed time, rather 

than wait for it in a line. This certainly justifies widespread use of scheduling in real-life operations. 

5 Limitations 

Our “one more task” approach was developed by deliberately ignoring any temporal pattern or strategy 

in scheduling the previous K tasks – otherwise, if these tasks were allocated in some optimal way, this 

could have made the scheduling of the next (K+1)st task more possible and more optimal. However, 

more optimal scheduling can be achieved only when (1) more knowledge about the process properties is 

readily available, (2) this knowledge does not change, (3) one has enough mathematical expertise and 

computing power to process this information with a model, and (4) the resulting optimal schedule can 

be executed with minimal disruptions. Unfortunately, none of the above can be guaranteed in most 

real-life scheduling processes, healthcare included.  

Consequently, we had to consider the lower (optimistic) bound on the scheduling costs W and Pov, 

meaning that our critical utilization formula corresponds to the upper (optimistic) bound. This implies 

that in reality system bottlenecking can develop even for the lower utilization values, and our upper 

bound should be treated as the value that should not be exceeded.  

We also had to assume that our schedule is feasible (tasks fit into slots), and the slots are equally-sized – 

borrowing the latter from healthcare scheduling.  Although this does not invalidate our approach and 

critical utilization definition, our principal equations will need to be adjusted to reflect a specific slot 

time distribution. Still, we have to note that schedules with different slot times are less common, 

especially in processes with scheduling alterations: different slot sizes make swapping task assignments 

                  



impossible. The ability to have modifiable schedules is essential for many practical areas (such as 

healthcare, where patients often need to cancel or reschedule their appointments), which calls for 

same-slot-size schedules, making them very ubiquitous (Rosenthal & Pianykh, 2021).  

Finally, we used λ=N, V=0 as a simple means to reveal the intrinsic similarity between the classical 

queueing theory (Pollaczek–Khinchine result) and our discrete scheduling equations. This was done only 

to compare the two results using reasonably close settings. One should still bear in mind, that Pollaczek–

Khinchine was derived under a different set of assumptions (such as Poisson task arrivals), and for a 

different processing model (queueing).  

 

6 Conclusion 

The problem of discrete schedules and their utilization limits represents the most important challenge in 

real-life applications, but has been given very little treatment in the previous operational research. 

Therefore, in our work we studied discrete scheduling through the lens of real-life scheduling decision-

making, using mathematical analysis to discover practically-applicable scheduling decision rules.  

The first major contribution of our analysis was in deriving closed-form analytical expressions for Pov(u) 

and Wa(u), which in turn made possible the study of their hyperbolic behavior and limits. This work led 

to our second principal contribution: proposing a new definition for the critical system utilization 

threshold uc, as the point at which system performance experiences the most abrupt change from the 

stable to the escalating pattern. As a result, we were able to solve for the exact analytical expression for 

uc, and demonstrate its asymptotical 1 −
1

√N
  behavior. This yielded a reliable, easy-to-use practical 

estimate to control for scheduling system overload. Keeping √𝑁 slots open provides a remarkably 

simple rule for many scheduling processes, be it a small physician office, or a large hospital with many 

inpatient beds, or a shared supercomputer CPU time, or seats in a large stadium.   

Finally, the principal novelty of our work is largely based on our “one more task” approach, where we 

consider the reality of the scheduling decision-making process, which leads to a concise, closed-form 

analytical solution on maximum utilization threshold. This result has a very clear practical meaning and 

can be used to develop efficient scheduling guidelines. Knowing robust scheduling bounds and heuristics 

is critical in many fields, and can help with developing better operational strategies. 
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8 Appendix: Proofs 

In this appendix, we provide the formal proofs for all key results presented in this work.  

Some proofs will be using the following geometric progression summation formulas: 

∑𝑞𝑖𝑖

𝐾

𝑖=0

=
1 − 𝑞𝐾+1

1 − 𝑞
                                                                     𝑞 ≠ 1 (Eq. 13) 

∑𝑞𝑖𝑖

𝐾

𝑖=0

=
𝐾𝑞𝐾+2 − (𝐾 + 1)𝑞𝐾+1 + 𝑞

(1 − 𝑞)2
 (Eq. 14) 

∑𝑞𝑖𝑖2
𝐾

𝑖=0

=
−𝐾2𝑞𝐾+3 + (2𝐾2 + 2𝐾 − 1)𝑞𝐾+2 − (𝐾 + 1)2𝑞𝐾+1 + 𝑞2 + 𝑞

(1 − 𝑞)3
 (Eq. 15) 

The first sum represents a geometric progression, and the other two can be derived from it by taking 

first and second derivatives w.r.t progression factor q. Therefore, treating these results as well-known 

(see 0.112, 0.113, and 0.114 in (Gradshteĭn & Ryzhik, 2007)), we omit their proofs here. 

We will also use a standard definition of the “polynomial coefficient” operator [𝑥𝑖]: 𝑔(𝑥), returning the 

coefficient gi for the power term xi in polynomial (power series) g(x): 

                  



[𝑥𝑖]: 𝑔(𝑥) = [𝑥𝑖]: {∑𝑔𝑗𝑥
𝑗

𝑗=0

} =   𝑔𝑖 (Eq. 16) 

In particular, by definition of binomial coefficient, 

[𝑥𝑖]: (1 + 𝑥)𝑚 = (
𝑚

𝑖
) (Eq. 17) 

 

With these baseline results in mind, our proofs start with the following 

Lemma 1 (“binomial summation”): 

For any non-negative integer numbers N and K, K≤N 

𝑆0 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
)

𝐾

𝑖=1

= (
𝑁

𝑁 − 𝐾 + 1
) (Eq. 18) 

𝑆1 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
) 𝑖

𝐾

𝑖=0

= (
𝑁 + 1

𝑁 − 𝐾 + 2
) (Eq. 19) 

𝑆2 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
) 𝑖2

𝐾

𝑖=0

= (
𝑁 + 1

𝑁 − 𝐾 + 3
) + (

𝑁 + 2

𝑁 − 𝐾 + 3
) (Eq. 20) 

 

Proof: 

Considering the sum for any non-negative integer power p, and using the definition of binomial 

coefficient, we rewrite 

                  



𝑆𝑝 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
) 𝑖𝑝

𝐾

𝑖=0

=∑(
𝑁 − 𝑖

𝑁 − 𝐾
) 𝑖𝑝

𝐾

𝑖=0

 

Using (Eq. 17) 

 

𝑆𝑝 =∑(
𝑁 − 𝑖

𝑁 − 𝐾
) 𝑖𝑝

𝐾

𝑖=0

=∑[𝑥𝑁−𝐾]: (1 + 𝑥)𝑁−𝑖 𝑖𝑝
𝐾

𝑖=0

= [𝑥𝑁−𝐾]: {(1 + 𝑥)𝑁∑(1+ 𝑥)−𝑖𝑖𝑝
𝐾

𝑖=0

} 

Note that for the three choices of p=0, 1, 2 that we have to prove, the expression under summation 

directly corresponds to the sums in (Eq. 13), (Eq. 14), and (Eq. 15) for q=(1+x)-1. For example, the most 

complex case of p=2 leads to 

 

𝑆2 =∑(
𝑁 − 𝑖

𝑁 − 𝐾
) 𝑖2

𝐾

𝑖=0

= [𝑥𝑁−𝐾]: {(1 + 𝑥)𝑁∑(1 + 𝑥)−𝑖𝑖2
𝐾

𝑖=0

} = [𝑥𝑁−𝐾]: 

{
 

 
(1 + 𝑥)𝑁

−𝐾2

(1 + 𝑥)𝐾+3
+
(2𝐾2 + 2𝐾 − 1)
(1 + 𝑥)𝐾+2

−
(𝐾 + 1)2

(1 + 𝑥)𝐾+1
+

1
(1 + 𝑥)2

+
1

(1 + 𝑥)

(1 −
1

(1 + 𝑥)
)
3

}
 

 
= 

[𝑥𝑁−𝐾]: 

{
(1 + 𝑥)𝑁

𝑥3
(
−𝐾2

(1 + 𝑥)𝐾
+
(2𝐾2 + 2𝐾 − 1)

(1 + 𝑥)𝐾−1
−
(𝐾 + 1)2

(1 + 𝑥)𝐾−2
+ (1 + 𝑥) + (1 + 𝑥)2)} 

 

Moving x3 under the coefficient operator, and observing that only the last two terms under the curly 

brackets have powers higher than N-K+3, we conclude: 

𝑆2 = [𝑥
𝑁−𝐾+3]: {−𝐾2(1 + 𝑥)𝑁−𝐾 + (2𝐾2 + 2𝐾 − 1)(1 + 𝑥)𝑁−𝐾+1 − (𝐾 + 1)2(1 + 𝑥)𝑁−𝐾+2

+ (1 + 𝑥)𝑁+1 + (1 + 𝑥)𝑁+2} = [𝑥𝑁−𝐾+3]: {(1 + 𝑥)𝑁+1 + (1 + 𝑥)𝑁+2}

= (
𝑁 + 1

𝑁 − 𝐾 + 3
) + (

𝑁 + 2

𝑁 − 𝐾 + 3
) 

 

                  



The equations for S0 and S1 are proven in the same exact way using (Eq. 13) and (Eq. 14) respectively, 

therefore we omit their derivations here for brevity.  

q.e.d. 

 

Theorem 1 (“discrete scheduling”): 

The expected overload probability Pov(N,K) and wait time W(N,K) for discrete schedule with N slots (K of 

which are busy) can be found as 

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾!

𝑁!
∑
(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=1

 = 
1

𝑁

𝐾

𝑁 − 𝐾 + 1
,   (Eq. 21) 

𝑊(𝑁,𝐾) =
1

𝑁2
𝐾!

𝑁!
∑(

𝑁 − (𝑖 + 1)

𝑁 − 𝑖
(𝑁 − 𝐾) + 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖

=  
𝐾(𝑁2 + 𝑁 − 𝐾𝑁 − 1)

𝑁2(𝑁 − 𝐾 + 1)(𝑁 − 𝐾 + 2)
, 

  (Eq. 22) 

 

Proof: 

Converting the factorials under the sum into a binomial coefficient for Pov(N,K) yields 

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!
∑(

𝑁 − 𝑖

𝐾 − 𝑖
)

𝐾

𝑖=1

  

Using the first equation (Eq. 18) from Lemma 1  

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!
∑(

𝑁 − 𝑖

𝐾 − 𝑖
)

𝐾

𝑖=1

 =  
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!
(

𝑁

𝑁 −𝐾 + 1
)

=
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!

𝑁!

(𝑁 − 𝐾 + 1)! (𝐾 − 1)!
=
1

𝑁

𝐾

𝑁 −𝐾 + 1
 

thus proving the equation for Pov(N,K).  

                  



Following the same approach for W(N,K):  

𝑊(𝑁,𝐾) =
𝑁 − 𝐾

𝑁2
𝐾!

𝑁!
∑(

𝑁 − (𝑖 + 1)

𝑁 − 𝑖
(𝑁 − 𝐾) + 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖

=
𝑁 − 𝐾

𝑁2
𝐾!

𝑁!
∑
(𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖

𝑁 − 𝑖

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖 =

=
𝑁 − 𝐾

𝑁2
𝐾!

𝑁!
∑((𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖)

(𝑁 − 1 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖 =

=
𝑁 − 𝐾

𝑁2
𝐾! (𝑁 − 𝐾 − 1)!

𝑁!
∑((𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖)𝑖

𝐾

𝑖=0

 (
𝑁 − 1 − 𝑖

𝐾 − 𝑖
) 

 

Simplifying the first factor under the summation as 

(𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖 = 𝑁2 −𝑁𝐾 + 𝐾 − 𝑖(𝑁 − 𝐾 + 1) 

we rewrite W(N,K) as 

𝑊(𝑁,𝐾) =
𝑁 − 𝐾

𝑁2
𝐾! (𝑁 − 𝐾 − 1)!

𝑁!

× {(𝑁2 −𝑁𝐾 + 𝐾)∑(
𝑁 − 1 − 𝑖

𝐾 − 𝑖
) 𝑖

𝐾

𝑖=0

 − (𝑁 − 𝐾 + 1)∑(
𝑁 − 1 − 𝑖

𝐾 − 𝑖
) 𝑖2

𝐾

𝑖=0

}  

 

 

The two summations in this formula can be computed using our equations from Lemma 1 (replacing N 

by N-1), leading to 

𝑊(𝑁,𝐾) =
𝑁 − 𝐾

𝑁2
𝐾! (𝑁 − 𝐾 − 1)!

𝑁!

× {(𝑁2 −𝑁𝐾 +𝐾) (
𝑁

𝑁 −𝐾 + 1
)  − (𝑁 − 𝐾 + 1)((

𝑁 + 1

𝑁 − 𝐾 + 3
) + (

𝑁 + 2

𝑁 − 𝐾 + 3
))}  

Now, similarly to Pov(N,K), we expand binomial coefficients into factorials, and reduce the factorials 

arriving to the final result: 

                  



𝑊(𝑁,𝐾) =
1

𝑁2
𝐾!

𝑁!
∑(

𝑁 − (𝑖 + 1)

𝑁 − 𝑖
(𝑁 − 𝐾) + 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖 =  
𝐾(𝑁2 +𝑁 − 𝐾𝑁 − 1)

𝑁2(𝑁 − 𝐾 + 1)(𝑁 − 𝐾 + 2)
 

 

q.e.d. 

 

Corollary 1 (“utilization equations”): 

Rewriting (Eq. 21) and (Eq. 22) as functions of the system utilization u=K/N results in 

 

𝑃𝑜𝑣(𝑢) =  
1

𝑁

𝑢

1 +
1
𝑁
− 𝑢

=
𝜀𝑢

1 + 𝜀 − 𝑢
,                         𝜀 =

1

𝑁
∈ (0,1],    𝑢 ∈ [0,1],     

  (Eq. 23) 

𝑊(𝑢) =
1

𝑁

𝑢

1 +
1
𝑁
− 𝑢

=
1

𝑁

𝑢(1 +
1
𝑁
+
1
𝑁2
− 𝑢)

(1 +
1
𝑁
− 𝑢)(1 +

2
𝑁
− 𝑢)

=
𝜀𝑢(1 + 𝜀 + 𝜀2 − 𝑢)

(1 + 𝜀 − 𝑢)(1 + 2𝜀 − 𝑢)
   (Eq. 24) 

 

In particular, note that Pov(0)=0 (no overload for completely open schedule), and Pov(1)=1 (full overload 

for schedule with no open slots), which certainly corresponds to our intuition. 

 

Now we demonstrate that the formula for W(N,K) can be efficiently approximated with a more simple 

expression, to which it also converges for the large values of N:  

Corollary 2 (“asymptotic W”): 

Rewriting (Eq. 21) and (Eq. 22) as functions of the system utilization u=K/N results in 

𝑊(𝑢) =
𝜀𝑢(1 + 𝜀 + 𝜀2 − 𝑢)

(1 + 𝜀 − 𝑢)(1 + 2𝜀 − 𝑢)
     

𝑁→∞
→       𝑊𝑎(𝑢) =

𝜀𝑢

 1 + 2𝜀 − 𝑢
, 𝜀 =

1

𝑁
   (Eq. 25) 

                  



|𝑊(𝑢) −𝑊𝑎(𝑢)| ≤
1

2𝑁
      for    𝑢 ∈ [0,1] 

Proof: 

As N increases, ε tends to 0, therefore one can neglect the highest order 𝜀2 term in the numerator, 

which reduces W(u) to the expression for Wa(u). Note that 𝑊(𝑢) = 𝑊𝑎(𝑢) (1 +
𝜀2

 (1+𝜀−𝑢)
), where 

𝜀2

 (1+𝜀−𝑢)
≤ 𝜀 =

1

𝑁
 for any 𝑢 ∈ [0,1].  Since 𝑊𝑎(𝑢) ≤ 𝑊𝑎(1) =

1

2
, this leads to |𝑊(𝑢) −𝑊𝑎(𝑢)| ≤

1

2𝑁
.   

q.e.d. 

 

 

Figure 7: Comparing W(u) (solid lines) and its asymptotic approximation Wa(u) (dashed lines) for different schedule 

sizes N. As one can see, for N beyond 10 the two curves become practically identical. 

 

As a result, one can use Wa(u) as a very tight approximation to the original W(u) function (Figure 7); and 

both overload probability Pov(u) and wait time W(u) can be seen as having hyperbolic behavior w.r.t. 

system utilization u.  

 

                  



To obtain analytical solutions for the critical curvature value, we need to solve for the curvature extrema 

points, which we accomplish with the following lemma: 

Lemma 2 (“hyperbolic curvature”): 

Function 𝑓(𝑢) =
𝑎

𝑏−𝑢
+ 𝑑(1 − 𝑢),   𝑎, 𝑏 > 0, 𝑢 < 𝑏     has curvature 

𝑘(𝑢) =  
2𝑎(𝑏 − 𝑢)3

[(−𝑑(𝑏 − 𝑢)2 + 𝑎)2 + (𝑏 − 𝑢)4]3/2
 

which attains its maximum value at    𝑢𝑐 = 𝑏 − √
𝑎2

𝑑2+1

4
 

 

Proof: 

Using the definition of curvature 𝑘(𝑢) =
𝑓′′

(1+(𝑓′)2)3/2
, we compute the derivatives: 

𝑓′(𝑢) =  
𝑎

(𝑏−𝑢)2
− 𝑑,      𝑓′′(𝑢) =  

2𝑎

(𝑏−𝑢)3
   

leading to  

𝑘(𝑢) =
𝑓′′

(1 + (𝑓′)2)
3
2

=

2𝑎
(𝑏 − 𝑢)3

(1 + (
−𝑑(𝑏 − 𝑢)2 + 𝑎
(𝑏 − 𝑢)2

)
2

)

3/2
= 

2𝑎(𝑏 − 𝑢)3

((−𝑑(𝑏 − 𝑢)2 + 𝑎)2 + (𝑏 − 𝑢)4)3/2

=
2𝑎𝑡3

((−𝑑𝑡2 + 𝑎)2 + 𝑡4)3/2
= 𝑘(𝑡), 𝑡 = 𝑏 − 𝑢 > 0 

To find the maximum point, we set the derivative 𝑘′(𝑡) = 0, yielding the following equation: 

6𝑎𝑡2[(−𝑑𝑡2 + 𝑎)2 + 𝑡4]−3/2 =
5

2
2𝑎𝑡3[2(−𝑑𝑡2 + 𝑎)(−2𝑑𝑡) + 4𝑡3][(−𝑑𝑡2 + 𝑎)2 + 𝑡4]−5/2 

which for t>0 simplifies to 

𝑡4(𝑑2 + 1) = 𝑎2,   𝑡 = 𝑏 − 𝑢 > 0,  

yielding the only possible solution for 𝑢 < 𝑏 

                  



 𝑡𝑐 = √
𝑎2

𝑑2+1

4
= 𝑏 − 𝑢𝑐,  

Under the assumption 𝑎, 𝑏 > 0, 𝑢 < 𝑏 this corresponds to the maximum point of k(u). 

q.e.d 

 

 

Corollary 3 (“critical utilization in discrete scheduling”): 

Critical utilization values for overload probability and asymptotic wait in discrete scheduling are 

 

𝑢𝑐 =  1 +
2

𝑁
− √

1

𝑁
+
2

𝑁2
= 1 −

1

√𝑁
+
2

𝑁
−

1

𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
) = 1 −

1

√𝑁
+ 𝑂 (

1

𝑁
) 

 

  (Eq. 26) 

𝑢𝑐
𝑜𝑣  = 1 +

1

𝑁
− √

1

𝑁
+
1

𝑁2
= 1 −

1

√𝑁
+
1

𝑁
−

1

2𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
)

= 1 −
1

√𝑁
+ 𝑂 (

1

𝑁
) 

 

  (Eq. 27) 

 

 

Proof: 

The proof follows directly from our definition of critical utilization and Lemma 2, since in the case of 

asymptotic Wa(u) we have 

                  



𝑊𝑎(𝑢) =  
1

𝑁

𝑢

1 +
2
𝑁
− 𝑢

= − 
1

𝑁
+ 

1
𝑁
(1 +

2
𝑁
)

1 +
2
𝑁
− 𝑢

 

The first constant term has no effect on curvature, and the second corresponds to 

𝑎 =
1

𝑁
(1 +

2

𝑁
) =

1

𝑁
+
2

𝑁2
, 𝑏 = 1 +

2

𝑁
,      𝑑 = 0 

in Lemma 2, yielding 

𝑢𝑐 = 1 +
2

𝑁
−√

1

𝑁
+
2

𝑁2
= 1 +

2

𝑁
−
1

√𝑁
(1 +

2

𝑁
)

1
2
= 1 +

2

𝑁
−
1

√𝑁
{1 +

1

𝑁
+ 𝑂 (

1

𝑁2
)}

= 1 −
1

√𝑁
+
2

𝑁
−

1

𝑁√𝑁
+𝑂 (

1

𝑁2√𝑁
) 

 

The result for 𝑃𝑜𝑣(𝑢) is proven in the same way.  

q.e.d. 

 

It is interesting to observe that both critical utilizations, 𝑢𝑐
𝑜𝑣 and 𝑢𝑐 , although derived from two 

different cost functions, result in very similar values, converging asymptotically to 1 −
1

√𝑁
 . 

 

 

 

Corollary 4 (“critical utilization of queueing”): 

Critical utilization of Pollaczek–Khinchine formula 

𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2 + 𝜆2𝑉

2(1 − 𝑢)
) 

can be found as 𝑢𝑐
𝑃𝐾ℎ = 1 − √

(1+𝜆2𝑉)2

1+4𝜆2

4
 

                  



 

Proof: 

𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2 + 𝜆2𝑉

2(1 − 𝑢)
) = −

1

2𝜆
 (1 − 𝑢) +

1 + 𝜆2𝑉

2𝜆(1 − 𝑢)
  

Therefore, we can apply Lemma 2, using  

𝑎 =
1 + 𝜆2𝑉

2𝜆
,   𝑏 = 1,   𝑑 = −

1

2𝜆
  

resulting in  

𝑢𝑐
𝑃𝐾ℎ = 1 − √

𝑎2

𝑑2 + 1

4

=  1 − √
(1 + 𝜆2𝑉)2

1 + 4𝜆2

4

=  1 −
√1 + 𝜆2𝑉

√1 + 4𝜆2
4    (Eq. 28) 

 

q.e.d 

 

In particular, setting parameters V=0, λ=N as an approximation to our discrete scheduling scenario leads 

to 

𝑢𝑐
𝑃𝐾ℎ = 1 − √

1

1 + 4𝑁2

4

 

One can easily demonstrate (by substituting 𝑥 =
1

√𝑁
, and expanding as Taylor series at x=0) that 

 

𝑢𝑐
𝑃𝐾ℎ = 1 − √

1

1 + 4𝑁2

4

= 1 −
1

√4
4
√𝑁

+
1

16√4
4
𝑁2√𝑁

+ 𝑂 (
1

𝑁4√𝑁
)   (Eq. 29) 

 

                  



That is, as N increases, critical utilization 𝑢𝑐
𝑃𝐾ℎ for the queueing wait time converges to 1 as  1 −

1

√4
4
√𝑁

, 

which is very similar, but faster compared to  𝑢𝑐 = 1 −
1

√𝑁
  in the case of discrete scheduling.  
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