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Highlights

e Discrete scheduling efficiency degrades hyperbolically as schedule utilization increases
e Concise expression for maximum schedule utilization can be found analytically
e For schedules with N slots, keeping VN slots open helps avoid worst delays

e Utilization-based decision-making helps schedulers avoid bottlenecking
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Abstract

Efficient scheduling is essential for optimizing resource allocation and robust system performance in a
wide range of real-life applications. In most of these cases, the success of scheduling largely depends on
one’s ability to ensure that system resources can be utilized to their maximum capacity, yet without
overloading the system. In this work, we study the problem of critical utilization and efficient scheduling
by considering systems with discrete schedules, widely used in real-life workflows. Using an
implementation-based approach, we introduce discrete scheduling by developing its analytic equations,
which enables us to express the behavior of the scheduling metrics with respect to system utilization.
Using this result, we define critical resource utilization and solve for its exact value as a function of
schedule length. Finally, we compare our results with the equations from the classical queueing theory,
and discuss their applicability. Our findings have immediate practical implications in developing robust

schedules and controlling for optimal system performance.
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1 Introduction

Efficient and robust scheduling presents a well-known challenge in many practical areas from
engineering to healthcare to e-commerce (Blake, Carter, & Richardson, 1996), (L6pez, Garcia, Diaz, &
Garcia, 2000), (Dhall & Liu, 1978), (Kumar, 2001), and becomes particularly demanding, when an
expensive resource - such as a complex device or an operating room - needs to be utilized to its full
capacity to justify the cost. However, as classical queueing theory suggests (Little, 1961), (Pollaczek,
1930), and practical experiences confirm (Brown, Gans, Mandelbaum, Sakov, & Shen, 2005) (Kc &
Terwiesch.), increasing resource utilization inevitably leads to higher wait times and more fragile,
bottlenecking workflows. In particular, working in a busy healthcare facility, we are constantly observing
faster-than-linear escalation of delays as hospital resource utilization increases (Figure 1). Knowing the
exact nature of this trend and its critical utilization threshold, responsible for escalating delays, presents

one of the most central problems of practical operations management.
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Figure 1: Patient wait time W to schedule an appointment, and probability Pov of rescheduling to a later time, as
functions of scheduled resource utilization, in a busy outpatient healthcare facility. Individual dots correspond to

the actual observed values, smooth lines — to the resulting trends.

The problems of processing queues and delays have been extensively studied for more than a century
(Erlang, 1909), and classical queueing theory developed a number of useful theoretical models to
estimate waiting lines, times, and utilization (Cooper, 1981), (Kleinrock, 1975). However, these models
tend to rely on a rather continuous view of queueing, where the queue is formed by a random flow of
tasks, arriving to a busy server. This view does not fit well with many real-life problems, where the
principal challenge comes not from the dynamics of the arrival and service timing, but from the
complexity of assigning tasks to a limited number of predefined (scheduled) slots — such as assigning
patients to hospital rooms, or assigning airplanes to airport gates. Consequently, classical queueing

theory offers no advice on finding the optimal number of busy slots to avoid bottlenecking.

To investigate discrete slot-allocation problems more efficiently, more computational approaches have
been developed, solving sophisticated queueing problems numerically (Neuts M. F., 1973) (Klimko &
Neuts, 1973) (Neuts & Klimko, 1973) (Heimann & Neuts, 1973). This led to a wide range of scheduling
algorithms based on Markov chains (Neuts M. F., 1973) (Chan & Maa, 1978), dynamic programming
(LaGanga & Lawrence, 2012), convex steepest descent (Begen & Queyranne, 2011), Monte Carlo
(Punitha, 2018), integer linear programming (Zacharias & Yunes, Multimodularity in the Stochastic

Appointment Scheduling, 2019), discrete event simulation (DES) (Wainer, 2009), (Petrean, 1998), and
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more (including healthcare scheduling, where numerical simulations were frequently used to optimize
emergency room utilization (Blake, Carter, & Richardson, 1996), patient no-shows (Zacharias & Pinedo,
Appointment Scheduling with No-Shows and Overbooking, 2014), and allocation of staff and resources
(Marchesi, Hamacher, & Fleck, 2020), (Huggins, Claudio, & Eduardo, 2014) ). This extensive analysis of
numerical solvers also helped advance their theoretical grounds — including the proofs of multimodular
and convex optimization for scheduling cost functions (Zacharias & Yunes, Multimodularity in the
Stochastic Appointment Scheduling, 2019). However, by their very nature, numerical optimization
methods were focused on simulating very specific scenarios, making their findings hard to generalize.
Also, the ever-increasing complexity of computational equations and math made them prohibitevy
expensive for routine, real-life applications, and did not produce any interpretable guidance for the

scheduling practitioners.

As a result, in their comprehensive review of discrete scheduling methods in healthcare, (Cayirli & Veral,
2003) conclude that “discussions on implementation issues reveal how misleading it can be to view the
problem as a “pure optimization” problem”. Working in this field, we completely agree with this verdict:
we seriously lack approaches facilitating real-life scheduling decisions. Complex optimizers cannot be
run nor maintained in routine settings; complex logic cannot be followed by human schedulers and
facility administrators; complex probabilistic data may not be known, or may greatly vary over time,
invalidating its models. As a result, and especially in the areas with significant process variability (such as
healthcare), a true real-life scheduling solution must be optimizing day-to-day scheduling decisions —

rather than optimizing whatever is computationally possible.

To bridge this gap, we propose a new approach to discrete scheduling problems, and study it to develop

a practically-applicable solution.

2 Discrete scheduling problem and “one more task’ approach

We define the problem of discrete scheduling as the problem of assigning tasks to a finite number N of
discrete schedule slots (scheduling cycle, such as a workday), as shown in Figure 2. The time window of
each slot is defined ahead of time, and remains constant — thus forming a preset scheduling grid (in

contrast with conventional “walk-in” task queueing). Tasks can be processed only if and when they are

assigned to the remaining open slots, one task per slot.
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This definition significantly changes the problem-solving paradigm: while the main goal in “walk-in”
gueueing is to process the tasks on time, the main goal in discrete scheduling is to find the time to
process. To solve this problem in the most correct, pragmatic way, we have to put ourselves in the
position of a scheduling manager, who was asked, at a random time, to accomodate one more task. At
this point, the manager is not already concerned with the previously-scheduled tasks, which cannot be
changed, even if scheduled for the future slots. Likewise, the manager is not concerned with any new
tasks which might (or might not) arrive later. The only real problem the manager has to solve is whether
accepting one more task is possible, and if so, whether this task will wreck operational havoc. The

scheduler needs a simple and reliable rule to make this decision.

New task

arrival

wait i time slots for the next open slot

Decision to accept -
one more task processing Nearest available

open slot

i+1

Earlier slot E;
Earlier slot E;
Busy siot By
Busy slot B,
Busy slot Bi
Open slot 04
Busy slot B

\ I\ ) =
. . A ; . Y ] time
] earlier slots, j/N total time i busy slots, iIN total time

Single scheduling cycle, one time unit total, N processing slots ,\

/

Figure 2: Discrete scheduling problem, where arriving tasks have to be assigned to a limited number of processing

slots N. As the number of busy slots K increases, the new tasks will need to wait longer for the next open slot.

This new game-theory-like approach “freezes” the problem at a specific decision time, placing usin a
very interesting position, significantly different from the previous scheduling optimization research. We
do not need to know the temporal properties of the system, such as task arrival distribution, queueing

discipline, or distribution of the service times: at a single “frozen” time point, we are not solving for the
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entire scheduling template. Moreover (and most pragmatically), the temporal properties of the system
may not be known to the scheduler, may be too complex, and may significantly vary in time (for
instance, we do not know at the time of scheduling how much a patient will deviate from the prescribed
care path). Our scheduler, just like an average chess player, is concerned only with the current move,

and cannot think ten moves into the future.

Consequently, we need to assume that at least at the time of decision-making, (1) all tasks have equal
priority, (2) all open slots have equal availability, and (3) all tasks can be performed during their
scheduled times. The first two assumptions follow from the fact that we ignore the temporal flow of the
tasks. The third, although looking the most restrictive, reflects the underlying assumption of feasible
scheduling — otherwise, the schedule cannot be followed, and the process collapses to walk-in queueing,

so elaborated in the classical queueing theory.

Finally, the assumption of equal slot availability leads to assuming that all N slots have the same fixed
duration of 1/N time units (considering the duration of the entire schedule as a single time unit). This is
another assumption often rejected in complex scheduling models, trying to fine-tune slot durations to
specific task processing patterns. However, having same-size slots is critical to make them
interchangeable — which is much more important practically, than overoptimized slot durations. Thus,
unlike the “pure optimization” methods, we deliberately sacrifice optimality to achieve more realistic
scheduling — which is an absolute must, if we want to implement our solution. For example, note that

same-size slots are dominating healthcare scheduling.

Then what does our scheduler know? In complex, varying workflows we can count on only one bit of
ground truth: our scheduler does know, how many slots K have been already taken. This means that the
“one more task” acceptance will be decided by this number (or equivalently, by the number of open
slots N-K). That is, the task-accepting decision becomes a function of the schedule utilization u=K/N,

defined as the fraction of currently taken slots.

Thus, considering discrete task scheduling problem from the point of real-life decision-making, we state

two principal questions that must be answered by any pragmatic scheduling approach:

- Investigating how discrete scheduling processing efficiency depends on the schedule utilization

u=K/N, and based on this
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- Determining the maximum utilization value, which should not be exceeded to avoid significant

system overload

In the following sections, we solve these two problems by developing mathematical equations for
discrete scheduling systems, deriving their analytical solutions, and using these solutions to propose an

upper bound on optimal system utilization.

3 Discrete Scheduling Equations

3.1 Scheduling metrics

To decide on adding “one more task” to a busy schedule, we consider a discrete schedule with N time
slots, where K<N slots have been already allocated to previously assigned tasks, resulting in the current
system utilization of u=K/N. At this point, a new (K+1)* task presents at a random time and needs to be

scheduled in the remaining open slots.

Lacking any other knowledge on system properties or scheduler’s strategies, we choose to study the
best, most optimistic task assignment scenario — assigning the new task to the nearest open slot. Note
that we assume this only for the current, (K+1)* task. That is, we want to know how well the system will

perform if, running at utilization u, it schedules one more task in the most time-efficient way (Figure 2).

Applying the optimal strategy only to one single task presents another significant difference from the
previous research, but derives from the practical scheduling experience as well. In real life, what makes
scheduling decisicns most challenging is the need to accommodate new, unexpected tasks. For example,
in a healthcare schedule most appointments might be allocated well in advance, with least disruption. It
is the addition of one more unexpected patient that will require decision-making, and can escalate

processing delays (the infamous “last straw” challenge).

To measure the feasibility and efficiency of this “one more task” assignment, we define two principal

metrics:

- Overload probability Po(N,K) — the probability of not finding any open slot, when all slots after

the new task arrival are already taken, and
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- Wait time W(N,K) — the time that the new task will have to wait for the next open slot

Both metrics can be viewed as scheduling cost functions, expressing scheduling efficiency as a function
of utilization. While using the wait time metric is very typical for queuing and scheduling problems,
including overload probability emphasizes the time-independent, discrete nature of slot assignment,
outlined earlier. In either case, we want to investigate the dependency of these two principal metrics on
the current system utilization u=K/N, and use this to define the critical system utilization value u,

corresponding to the most rapid escalation of system bottlenecking.

3.2 Discrete scheduling equations

In discrete scheduling with equally-sized time slots, it is natural to measure time in slot durations.
Assuming that K<N slots in the schedule are currently taken, let wi denote the event when a new

arriving task had to wait for i busy slots (i<K), and let P(w;) denote the probability of this event.

For a task to wait for i slots, the task must either (1) arrive into a system where there are i occupied time
slots immediately after arrival and the (i+1)% time slot is unoccupied, or (2) arrive into a system with
exactly i time slots remaining, all of which are occupied (corresponding to the system overload event). In
the second case the new task cannot be taken and will have to wait at least i slot units until the schedule
ends, and new scheduled slots could be potentially allocated. We do not know, whether this can be
done, and working overtime may not be possible at all. But regardless of this, adding the new task right
after the scheduled time simply reflects the same optimistic assumption of processing the (K+1)* task as
early as possible, to estimate the lower bound on the costs. Note that this lower bound is also realistic —
for example, in many healthcare workflows arriving patients are never turned down, and will be taken
after all current patients are processed (Zacharias & Yunes, Multimodularity in the Stochastic

Appointment Scheduling, 2019).

Using this model, we can derive the equations for expected task wait W(N,K) and schedule overload
probability Poy(N,K). In the first case, when the new task is scheduled to the (i+1)* time slot, the task
should arrive with at least (i+1) time slots remaining in the schedule. This is possible if and only if the

task arrives anywhere during the first j slots (“earlier slots” in Figure 2), such that j+(i+1)<N, or j<N-

N—(i+1)

(i+1). With total slot count of N, the probability of arrival within the first N-(i+1) slots is I
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Conditioning on this, one needs to find the probabilities of each of the next i time slots being occupied.

Since we know that the total number of occupied slots is K, the probability that the time slot

. . S . . K L K-1 . K—(i-1
immediately after arrival is occupied is " the one after it Y and so on until we reach (i-1)

" N G-D The

probability that the (i+1)* time slot is open is then given by %, since there are (N-K) as of yet

unidentified free slots in the schedule, and (N-i) remaining possible locations for these slots in the
schedule. By independence, we multiply all these terms together, giving us the first term in (Eq. 1).
Similarly, in the second case, the task arrives with exactly i time slots remaining, which occurs with

probability % Conditioning on this, we have the same term denoting the probability that all remaining i

timeslots are all occupied, and there are no more slots left. This gives us the second “overload” term in

(Eq. 1).

Plop) = <N—(i+1)><K K-1 .K—(i—1)>(N—K>

N N N—-1 " N-(G-DJ\N=i
JL(K K-1  K-GzD) (Eq. 1)
N\N'N—1 ""N-G-1

Factoring and simplifying, we have

K-K=1-...K=({=D\N-1—iN-K 1
P(wi):<N-N—1-...'N—(i—1))( N N—i+ﬁ):
(Eq. 2)
_L(_ KL N -DN((N-1-DN-K)
_N<(K—i)! N1 >< N—i +>

Consequently, the total probability of schedule overload is computed as the sum of all overload

probabilities over possible slot utilization values of K (second terms in (Eq. 1)):

vy ST KL =D 1R (VD)
ov( ) )_;N((K—i)! N! >_Nmi=1(K_i)! ’ (Eq. 3)
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and the expected wait time for the new task is found as

K
[ 1 K! (N—l—L)(N K) (N-10)!
W(N,K) = ZP(wl) NzN_ﬁ;( — + 1) KD i, (Eq. 4)

In the Appendix (Theorem 1), we prove that the summations in (Eq. 3) and (Eq. 4) can be reduced to a

much shorter form:

bl K 1w K
oo (N, )_ﬁN—K+1_N1+1 =Fp(W), usg, Osus (£q.5)
N—u
11
K(N?2+ N —KN —1) 1 u(l+ytgz—w
WK = e R+ DN =K +2) N .1 2 =W
1+ —u)(l+2-
A+7-w+y—u 06
u
W) o Wal= s

This provides us with a very concise set of equations, describing two principal metrics of discrete
scheduling. Moreover, this important result enables us to express W(u) and Pq(U) as functions of system
utilization u. Although in discrete scheduling u can take only selected rational values u=K/N, our
equations enable us to study W(u) and Poy(u) as continuous functions of utilization u, to better

understand their trends and behavior.

The equations, illustrated by plots for W(u) and Poy(u) in Figure 3, lead to a few important observations.
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Figure 3: Plots of schedule overload probability Po,(U) and expected task wait W(U) as functions of the system
utilization u, for several schedule sizes N. Note that both cost functions are finite at u=1: Pq(1)=1, and

W(1)=1/2+1/(2N). The dashed curve in W(u) plot represents Pollaczek—Khinchine formula Wpkn(u) for N=10,

diverging to infinity as u approaches to 1.

First, both W(u) and Pq(u) behave as hyperbolas (see Corollary 1 and 2 in the Appendix), starting nearly
flat at u=0, but becoming increasingly vertical as U approaches to 1. This can be seen by considering the

first derivatives of these functions w.r.t utilization u:

1
Py, (0) = NTT P,(1)=N+1,
(Eq. 7)
W) = N*+N -1 1 W,(l)_Nz—N—Z N
" N(N+1)(N+2) Noo N’ - 4N N-oo 4 '

Note that this theoretical hyperbolic behavior matches the trends observed in many real-life data — such
as those presented in Figure 1. Furthermore, as (Eq. 7) suggests, hyperbolic behavior becomes
particularly pronounced as the number of slots N increases. In practical applications this means that
discrete scheduling systems, steady at low values of U, become progressively unstable as U approaches
to 1 (100%). This agrees with real-life experiences, when overcrowded processes break down not only

because they lead to escalating wait time, but also because finding an empty slot for a new task
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becomes highly improbable (overload probability Poy(U=1)=1 ) — which often leads to increased errors,

stress and overburn, so visible in the human-driven environments.

Second, it is instructive to compare our equations to the classical queueing theory Pollaczek—Khinchine

u?+A%v
2(1-u)

1 . Co .
formula Wpgp (w) = n (u + ), where 4 denotes the task arrival rate, and V - service time variance.

In our case of tasks fitting into the scheduled slots, we can assume V=0, A=N, leading to

1

1 u? + A2V 1u(1—7u)

Wegn(w) == u+ =— ) (Eq. 8)
picn () A( 20—-uw)) N 1-u

bearing visible similarities with our W(u) and Wa(u) in (Eqg. 6). However, although all these functions have

a hyperbolic trend w.r.t utilization u, discrete scheduling wait W(u) remains finite even when utilization

U approaches to 100% (see Wpkn(U) plot in Figure 3):

1 1
WIN,K=N)=Wu=1)==+—,
( )=W=1) =5+
thus asymptotically converging to % for large N (task arriving to a fully-scheduled system will have to
wait % day on average to get processed at the end). Undoubtedly, non-diverging, finite wait offers a

more realistic reflection of practical scheduling experience (Figure 1).

4 Critical utilization

4.1 Definitionand equations

Critical utilization can be defined as the “last straw” utilization limit, when the cost of accepting one
more task becomes prohibitively high. Although hard to formalize theoretically, finding the most
appropriate critical utilization value presents one of the most central challenges in real-life operations
management. For example, one would always want to utilize the most expensive resource as fully as
possible, but avoid overcrowding and stress associated with overloads. Therefore, while it is clear that
approaching 100% utilization leads to fragile workflows with no cushions to absorb new work, no

solution has been offered to determine what exact threshold under 100% should not be exceeded.
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As a result, utilization threshold is often estimated by various external indicators of system overload
(overcrowded waiting rooms, long waiting times, dropped calls, stress, and so on). However, these
indicators call for their own thresholds, equally elusive, and failing to generalize to a universal principle.
This challenge is only augmented by the hyperbolic nature of the principal utilization metrics that we
have discovered with (Eqg. 5) and (Eqg. 6). Sharing the same hyperbolic behavior, these functions and all
their derivatives are monotonically increasing with utilization u, perfectly reflecting escalating system

instability, but suggesting no specific point of “breakage”.

However, there is one particular property of hyperbolas which serves to our advantage — as can be seen
in Figure 3, especially for larger values of N. Starting nearly horizontally at u=0, hyperbolas become
more and more vertical as U approaches 1 (see (Eq. 7)). This L-shaped behavior is captured with a very
specific “turning point” of the sharpest change from the horizontal to the vertical trend. Mathematically,

this sharpest turn occurs when the curvature of the hyperbolic function reaches its maximum.

Overload probability Pov(u) for different values of N

N=10
N=20
N=50
N=100
N=200

= Curvature maximum

0 01 02 03 04 05 06 07 08

alo oo T

k(u)

Pov(u) curvature k for different values of N

N=10
N=20
N=50
N=100
N=200

Figure 4: Left: Overload probability Po,(U) with maximum curvature points. Right: Corresponding curvature

functions. Note that as schedule size N increases, curvature peak becomes sharper and closer to 1.

In practical scheduling this means that accepting one more task at this point will produce the sharpest
turn into the escalating, “vertical” trend, which is exactly what any scheduler needs to avoid. Therefore,

we define critical utilization Uc as the point of the maximum curvature in the utilization metric function —
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when the metric and its underlying process experience the most abrupt shift into the overloaded

pattern (Figure 4).

Curvature analysis provides a universal mathematical framework, independent of the specific problem
and overload definitions. Moreover, this approach enabled us to derive the exact critical utilization
solutions for the two major metrics used in this study: Poy(U) and Wa(u) (asymptotic form of W(u)), as we

prove in the Appendix (Corollary 3):

ST I R R +0( ! ) Sq”+0(1)

u, = —_—— —_ _— = —_——_— —_—— =Uu —_

‘ N NN VN N NYN  C\NN T F N £0.9)
P UL LI L2 y +0( ! )—sq”+0()

Y TITNT UNTNET T UN TN NN \weyn) N

1

sqrt __ 1—

¢ VN

Both critical utilization functions u2" and u, are shown in Figure 5, which also shows their asymptotic
approximation uﬁq”. Figure 5 also includes the utf® curve — the curvature of the original W(u) function.
Direct application of curvature math to the W(u) in (Eq. 6) leads to a 12" degree equation, with no
analytically-tractable solution — the problem we overcame by introducing the W,(u) function as an
asymptotic approximation to W(u) (see Corollary 2 in the Appendix). Yet interestingly enough, the
analytical solution for the critical curvature U, that we have found from Wa(u), is virtually
indistinguishable from the true solution ut"¢, found numerically (see Figure 5). Consequently, the Uc

formula from (Eq. 9) can be used as a very accurate substitute for ulf¢, at least for N>10 shown in

Figure 5.
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One can also notice that both critical utilization solutions — u2" for Po(u) and U for Wa(u) — have very
similar expressions, coming only 1/N (one slot size) apart from each other ((Eq. 9), (Eg. 10)). This means
that despite two conceptually-different choices of scheduling metrics — time-based W(u) and availability-
based Py (u) —they identify the same point of the scheduling process breakdown, a very unexpected

and interesting result.

Second, at the same “one slot” margin of error, both critical utilization values in (Eq. 9) and (Eqg. 10)
converge to uiqrt =1- \/iﬁ . Since we defined utilization as the fraction of busy slots ( u=K/N ), this

leads to a very simple estimate of the critical busy slot count K¢:

Ke=Nu=N(1-%)= N-VN

As Figure 5 demonstrates, u}3™" = 1 — \/iﬁ slightly underestimates u2¥ for Po,(U) and uc for Wa(u), thus

setting a “safe” threshold on utilization, not to be exceeded. This short and elegant result — “keep at

least VN slots open to avoid schedule breakdown” - provides a concise, universal, and practical guidance
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for managing discrete schedules of any size N. Moreover, using the time-based interpretation provided
by the W(u) function, we can rephrase this result as “keep at least VN slot time open to avoid schedule
breakdown” — which becomes more applicable for the processes where utilization is measured in the
resource busy time, rather than slots. This “time-availability equivalence” of the critical utilization value
can be seen as one of the most fundamental properties of discrete scheduling, independent of the

scheduling metric.

Finally, as schedule size N increases, critical utilization Uc approaches to 1, which means that schedules
with shorter slots are generally more immune to overloads. This can be intuitively true — “one more
task” is easier to accept when the task duration is getting shorter — but has its own disadvantage, very
visible in Figure 4 and (Eq. 7). Large values of N result in sharper curvature change, and more vertical
escalation of delays after exceeding the critical U point. Thus, going beyond critical utilization for large

schedule sizes N will have more devastating effects on the process stability and operations.

4.2 Extension to queueing theory

The idea of using maximum curvature to identify the point of critical change is general enough to be
applied to any process with L-shaped cost function (convex and monotonically increasing in our case).
Moreover, recognizing inherent similarities between discrete scheduling and queueing theory

equations, it becomes natural to apply the same concept to find the critical utilization of the latter.

To do so, we consider the original Pollaczek—Khinchine formula (first equation in (Eq. 8)). Although
developed for a very different case (M/G/1 “walk in” queue with Poisson arrivals), Pollaczek—Khinchine
formula produces a similar hyperbolic wait time trend, and leads to the same practical question of
determining the critical utilization value. We were still able to derive the exact expression for the

Pollaczek—Khinchine critical utilization as well, as proven in the Appendix (see Corollary 4, (Eq. 28)).

b _ 4 | (L A2V

uf (Eq. 11)

First, it is interesting to observe, that queueing critical utilization u2X" decreases as processing time

variability V grows. Not only this supports a well-known observation that high processing variability
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“kills” any organized processing, but now provides a numerical way to control for the variability value, to

ensure safe utilization limits.

Second, using Pollaczek—Khinchine result to approximate our discrete scheduling by setting A=N, V=0,

yields

uPKh = 1 —

That is, as N increases, critical utilization uth for the queued task waittendstolas 1 —

1
—_—=1- + +0
1+ 4N? V4VN  16V4N2\VN

1 1 ( 1 ) (£q. 12)
— q'
N4/N

ﬁ, which is

very similar, but faster comparedto u, =1 — izv in the case of discrete scheduling ((Eq. 9), (Eq. 10),

Figure 5).
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Figure 6: Comparing critical utilization ufX" found for the queueing theory wait function (Pollaczek—Khinchine

equation, dashed line) to our critical utilization for discrete scheduling wait U .

Higher critical utilization values found in queueing, ufX" > u_ nicely correspond to our intuition: in
general, queueing is a more robust process compared to discrete scheduling. In the case of discrete
scheduling, tasks have to be fitted into slots, or some of the server future slots may be already assigned,
thus reducing overall processing capacity, and making the discrete systems easier to overwhelm.
However, discrete scheduling is a more predictable and “satisfying” form of processing from the task
(customer) perspective, when it is much more appreciated to get service at a guaranteed time, rather

than wait for it in a line. This certainly justifies widespread use of scheduling in real-life operations.

5 Limitations

Our “one more task” approach was developed by deliberately ignoring any temporal pattern or strategy
in scheduling the previous K tasks — otherwise, if these tasks were allocated in some optimal way, this
could have made the scheduling of the next (K+1)* task more possible and more optimal. However,
more optimal scheduling can be achieved only when (1) more knowledge about the process properties is
readily available, (2) this knowledge does not change, (3) one has enough mathematical expertise and
computing power to process this information with a model, and (4) the resulting optimal schedule can
be executed with minimal disruptions. Unfortunately, none of the above can be guaranteed in most

real-life scheduling processes, healthcare included.

Consequently, we had to consider the lower (optimistic) bound on the scheduling costs W and Py,
meaning that our critical utilization formula corresponds to the upper (optimistic) bound. This implies
that in reality system bottlenecking can develop even for the lower utilization values, and our upper

bound should be treated as the value that should not be exceeded.

We also had to assume that our schedule is feasible (tasks fit into slots), and the slots are equally-sized —
borrowing the latter from healthcare scheduling. Although this does not invalidate our approach and
critical utilization definition, our principal equations will need to be adjusted to reflect a specific slot
time distribution. Still, we have to note that schedules with different slot times are less common,

especially in processes with scheduling alterations: different slot sizes make swapping task assignments
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impossible. The ability to have modifiable schedules is essential for many practical areas (such as
healthcare, where patients often need to cancel or reschedule their appointments), which calls for

same-slot-size schedules, making them very ubiquitous (Rosenthal & Pianykh, 2021).

Finally, we used 2=N, V=0 as a simple means to reveal the intrinsic similarity between the classical
qgueueing theory (Pollaczek—Khinchine result) and our discrete scheduling equations. This was done only
to compare the two results using reasonably close settings. One should still bear in mind, that Pollaczek—
Khinchine was derived under a different set of assumptions (such as Poisson task arrivals), and for a

different processing model (queueing).

6 Conclusion

The problem of discrete schedules and their utilization limits represents the most important challenge in
real-life applications, but has been given very little treatment in the previous operational research.
Therefore, in our work we studied discrete scheduling through the lens of real-life scheduling decision-

making, using mathematical analysis to discover practically-applicable scheduling decision rules.

The first major contribution of our analysis was in deriving closed-form analytical expressions for Po,(u)
and W,(u), which in turn made possible the study of their hyperbolic behavior and limits. This work led
to our second principal contribution: proposing a new definition for the critical system utilization
threshold uc, as the point at which system performance experiences the most abrupt change from the
stable to the escalating pattern. As a result, we were able to solve for the exact analytical expression for
1

N behavior. This yielded a reliable, easy-to-use practical

estimate to control for scheduling system overload. Keeping VN slots open provides a remarkably

Uc, and demonstrate its asymptotical 1 —

simple rule for many scheduling processes, be it a small physician office, or a large hospital with many

inpatient beds, or a shared supercomputer CPU time, or seats in a large stadium.

Finally, the principal novelty of our work is largely based on our “one more task” approach, where we
consider the reality of the scheduling decision-making process, which leads to a concise, closed-form
analytical solution on maximum utilization threshold. This result has a very clear practical meaning and
can be used to develop efficient scheduling guidelines. Knowing robust scheduling bounds and heuristics

is critical in many fields, and can help with developing better operational strategies.
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8 Appendix: Proofs

In this appendix, we provide the formal proofs for all key results presented in this work.

Some proofs will be using the following geometric progression summation formulas:

K 1 — gk+1
=9 +1 £q. 13
q 1—¢q q (Eq. 13)
i=0
K
qll B KqK+2 _ (K + 1)qK+1 + q (E 14)
= —a q.
e 1-9
K qiiz__KZqK+3+(2K2+2K_1)qK+2_(K+1)2qK+1+q2+q o 15)
= — q.
L (1-q)

The first sum represents a geometric progression, and the other two can be derived from it by taking
first and second derivatives w.r.t progression factor ¢. Therefore, treating these results as well-known

(see 0.112,0.113, and 0.114 in (Gradshtein & Ryzhik, 2007)), we omit their proofs here.

We will also use a standard definition of the “polynomial coefficient” operator [xi]: g(x), returning the

coefficient g; for the power term X' in polynomial (power series) g(X):
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[x']: g(x) = [x']: Zgjxj = g (Eq. 16)
=0

In particular, by definition of binomial coefficient,

[x]: (1 + )™ = (T:l) (Eq. 17)

With these baseline results in mind, our proofs start with the following
Lemma 1 (“binomial summation”):

For any non-negative integer numbers N and K, K<N

K
N —i N
SO:Z(K—L‘)=(N—K+1) (Fa- 18)
i=1
K
N—iy N 41
Sl:Z:(K—i)‘:(N—IHZ) (Eq. 19)
i=0
K
Ny N+1 N +2
SZ:Z(K—i)l =(N—K+3)+(N—K+3> (Eq. 20)
i=0

Proof:

Considering the sum for any non-negative integer power p, and using the definition of binomial

coefficient, we rewrite
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K K
S (N—i),p_ (N—l)p
P k—i)b" = N—k)*
i=0 i=0

Using (Eqg. 17)

K
K K
N-—i . .
S, = P =) XN K1+ )N P = [xN‘K]:{(l +0N > (1+ x)“ip}
She-s >

Note that for the three choices of p=0, 1, 2 that we have to prove, the expression under summation
directly corresponds to the sums in (Eq. 13), (Eq. 14), and (Eq. 15) for g=(1+x)™. For example, the most

complex case of p=2 leads to

. K
S, = z (ICI__;{) i2 = [xN‘K]:{(l +x)N;(1 +x)‘ii2} = [xNK];

—K? +(21<2+21<—1)_(1(+1)2Jr 1 + 1
x),\,(l+x)"”r3 (1 + x)k+2 QI+x51 " (1+x)?2 (1+x)

(-wt)

1+

[xN=K]:

L+08 T (A+0KT (1 +x)k2

{(1 + x)N( —K? (2K?+2K-1) (K+1)?
x3

+(1+x)+(1 +x)2>}

Moving X% under the coefficient operator, and observing that only the last two terms under the curly

brackets have powers higher than N-K+3, we conclude:

S, = [xN KB {=K2A + OV K + (2K? + 2K — DA + )V — (K + 1)2(1 + x)N K2
+ @+ 0N+ @+ 0N = VLA + )N+ (1 + )V

_( N+1 )+( N+2 )
" \N-K+3 N—-K+3
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The equations for Sp and S; are proven in the same exact way using (Eq. 13) and (Eq. 14) respectively,

therefore we omit their derivations here for brevity.

g.e.d.

Theorem 1 (“discrete scheduling”):

The expected overload probability Py (N,K) and wait time W(N,K) for discrete schedule with N slots (K of

which are busy) can be found as

KN -D! 1 K

Foe(N.K) = w1, JK=D! - NN-K+1 (a-21)
i=
LK (N=(+1) W = D!
! - (@ -
=0 (Eq. 22)

_ K(N*+N—-KN-1)
 N2(N—K+1)(N—K+2)

Proof:

Converting the factorials under the sum into a binomial coefficient for Poy(N,K) yields
TKIN ~ K)ls /N — i
'(N - K)! —i
o) = SOOI (1

N! L\K—i
i=1

Using the first equation (Eq. 18) from Lemma 1

K

_1KI(N—K)IN0(N—iy _ 1KI(N—K)! N
P""(N’K)_N N! ;<K—i)_ﬁ N! (N—K+1)
_1KI(N=K)! N! 1 K

N N (N—K+D!I(K-1)! NN-K+1

thus proving the equation for Po,(N,K).
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Following the same approach for W(N,K):

K
N— KK~ (N 1 N — i)l
WN,K) == MZ<#(N K)+1)EK_3!1'
i=0
_N-KkK (N—1—l)(N K +N- iV =D
—i (K — l)'

_N- KK'

= Z((N—l—t)(N K)+N—z)M

i)!

_N-KKI(N-K—1)! N—1-i
7 ( ] )Z((N 1-— L)(N—K)+N—i)i( K_il)

i=0

Simplifying the first factor under the summation as
(N-1-)D(N—-K)+N—-i=N?-NK+K—i(N—K+1)
we rewrite W(N,K) as

N—KK!(N—-K-1)!
N2 N!

x{(NZ—NK+K)ZKO(N;i )l—(N K“)Z( _1_> }

W(N,K) =

The two summations in this formula can be computed using our equations from Lemma 1 (replacing N
by N-1), leading to

N—KK!(N—K—1)!
N2 N!

x{(NZ—NK+K)<N_II\£+1) —(N—K+1)<(N1X;.1|.3)+(1v1j1ti3>>}

Now, similarly to Po(N,K), we expand binomial coefficients into factorials, and reduce the factorials

W(N,K) =

arriving to the final result:
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(N-D!  K(N?*+N-KN-1)
K—-—0!'" N2(N-K+ D(N—K +2)

—._l(N—K)+1)

Corollary 1 (“utilization equations”):

Rewriting (Eq. 21) and (Eq. 22) as functions of the system utilization U=K/N results in

P _ 1 u _ cu _1 01 0.1
Ov(u)_ﬁ 1 _1+€_uﬁ E_NE(:]; ue[l]; (Eq. 23)
1+N—u
1 u(1+1+ L u) (1 2 _y)
u NNz cu(l+e+¢e“—u
W) =~ = Al - (£q. 24)

"N, 1 2 T (l4+e—w(1+2e—
1+y-u Na+g-wa+g-w @te-wl+ze-w

In particular, note that Py (0)=0 (no overload for completely open schedule), and Po(1)=1 (full overload

for schedule with no open slots), which certainly corresponds to our intuition.

Now we demonstrate that the formula for W(N,K) can be efficiently approximated with a more simple

expression, to which it also converges for the large values of N:
Corollary 2 (“asymptotic W”):

Rewriting (Eq. 21) and (Eq. 22) as functions of the system utilization u=K/N results in

cu(l+e+e?—u) su 1
T Ute—w(l+2e—u) now AWTIT 0w TN (Eq. 25)
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(W) — W (w)| < % for u €[0,1]

Proof:

As N increases, ¢ tends to 0, therefore one can neglect the highest order €2 term in the numerator,

which reduces W(u) to the expression for W,(u). Note that W (u) = W, (u) (1 + ), where

£2
(1+e-u)
&2

(1+&e-u)

<e= %for anyu € [0,1]. Since W, (u) < W,(1) = %, this leads to |W (u) — W, (uw)| < %

g.e.d.

Wait time W(u) for different values of N

05 ]
N=10 i
N=20 :
N=50 '
0.4+ N=100 !
N=200 /
0.3F
e
=
0.2 1
1
1
1
:
04 f I
1
1
|
1
0 = == ——T I
0 01 02 03 04 05 06 07 08 09 1

u

Figure 7: Comparing W(u) (solid lines) and its asymptotic approximation W,(u) (dashed lines) for different schedule

sizes N. As one can see, for N beyond 10 the two curves become practically identical.

As a result, one can use W,(U) as a very tight approximation to the original W(u) function (Figure 7); and
both overload probability Po.(u) and wait time W(u) can be seen as having hyperbolic behavior w.r.t.

system utilization u.
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To obtain analytical solutions for the critical curvature value, we need to solve for the curvature extrema

points, which we accomplish with the following lemma:
Lemma 2 (“hyperbolic curvature”):

Function f(u) = ﬁ +d(1—u), ab>0, u<b hascurvature

2a(b —u)?3

KW = (=0 + 2 + b =)

. L . 4| a?
which attains its maximum valueat u, =b — /m

Proof:

Using the definition of curvature k(u) = we compute the derivatives:

fr
(3

, . a " _ 2a
f (u) T (b-uw)? d, f (u) T (b-u)d

leading to
2a
kwy=— — = w? _ 2a(b - u)?
1+ (Fy2)2 (1 + (—d((l;)— u))22+ a)2>3/2 (=d(b —w? + a)? + (b —u)*)3/2
—-u

3 2at3
T (A + a)? + tY)3/2

= k(t), t=b—u>0

To find the maximum point, we set the derivative k'(t) = 0, yielding the following equation:
5

6at?[(—dt? + a)? + t*]73/% = §2at3[2(—dt2 + a)(—2dt) + 4t3][(—dt? + a)? + t*]75/2

which for t>0 simplifies to
t*(d*+1)=a? t=b—-u>0,

yielding the only possible solution foru < b
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4 a2
d2+1

t, = =b—u,

Under the assumption a,b > 0,u < b this corresponds to the maximum point of k(u).

g.ed

Corollary 3 (“critical utilization in discrete scheduling”):

Critical utilization values for overload probability and asymptotic wait in discrete scheduling are

I CINN U T T Y
u. = —_—— —_ _—= e p— —_—— = —_— f—
SN W T Y v YW T w0

ov 1+1 1+1 1 1+ 1+0(1)
u = —_—— —_ _— £ Se— e —
¢ N N N2 VN N 2NN N2+/N.
1 1
_ 1__+0(_) (Eq. 27)
VN N

Proof:

The proof follows directly from our definition of critical utilization and Lemma 2, since in the case of

asymptotic Wa(u) we have
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W, () 1 u
d\U) = =——
N 2 2
1+ N u + N u
The first constant term has no effect on curvature, and the second corresponds to

2

—1(1+2)—1 2 =142, d=o0
=NV TN) TN TN I VA
in Lemma 2, yielding
1
_q4 2 b =14 1(1+2)E—1+ 1{1+1+0< )}
Ye = [ VAN A Y NTUNU TN TNz
—1 1 +2 1 +0< 1 )
VN N NVN N2JN

The result for P,,,(u) is proven in the same way.
g.e.d.

It is interesting to observe that both critical utilizations, u2” and u, , although derived from two
L
Nk

different cost functions, result in very similar values, converging asymptoticallyto 1 —

Corollary 4 (“critical utilization of queueing”):

Critical utilization of Pollaczek—Khinchine formula

1 u? + 22y
Wpgn () = Tlut 20-w

4[(1+22V)2
can be found as ufk" = 1 — ’( 1+4,12)
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Proof:
w ()_1 +u2+/12V 3 1(1 )+ 1+ 22V
Pkn) =\ T 20— ) T T Y T Y T aa—w
Therefore, we can apply Lemma 2, using
1 + A%V p=1 d= 1
Y Y
resulting in
KR “[(1 4 22V)? " V1+ 22V (£q. 28)
u = =1- —=1-— .
¢ 1+ 422 Vit 422
g.ed

In particular, setting parameters V=0, A=N as an approximation to our discrete scheduling scenario leads

to

PKh 4 1
=1 |——
te 1 +4N?

. N 1
One can easily demonstrate (by substituting x = —

=, and expanding as Taylor series at x=0) that

1 1 1 1
uEKh=1—4—2=1—4 F— +0(_) (Eq. 29)
1+ 4N V4JN  163/4N2JN N4/N
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That is, as N increases, critical utilization ugKh for the queueing wait time convergesto 1as 1 — T

which is very similar, but faster comparedto u, =1 — \/iﬁ in the case of discrete scheduling.
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