

Journal Pre-proof

Discrete Scheduling and Critical Utilization

Oleg S. Pianykh , Sebastian Perez , Chengzhao “Richard” Zhang

PII: S0377-2217(23)00461-7
DOI: https://doi.org/10.1016/j.ejor.2023.06.010
Reference: EOR 18518

To appear in: European Journal of Operational Research

Received date: 19 June 2022
Accepted date: 4 June 2023

Please cite this article as: Oleg S. Pianykh , Sebastian Perez , Chengzhao “Richard” Zhang , Dis-
crete Scheduling and Critical Utilization, European Journal of Operational Research (2023), doi:
https://doi.org/10.1016/j.ejor.2023.06.010

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ejor.2023.06.010
https://doi.org/10.1016/j.ejor.2023.06.010

Highlights

 Discrete scheduling efficiency degrades hyperbolically as schedule utilization increases

 Concise expression for maximum schedule utilization can be found analytically

 For schedules with N slots, keeping √𝑁 slots open helps avoid worst delays

 Utilization-based decision-making helps schedulers avoid bottlenecking

Discrete Scheduling and Critical Utilization

Oleg S. Pianykh1*, Sebastian Perez2, Chengzhao “Richard” Zhang1

1Harvard Medical School, Massachusetts General Hospital,

25 New Chardon Street, #470, Boston, MA 02114, USA

2Department of Mathematics, Massachusetts Institute of Technology

77 Massachusetts Avenue, Cambridge, MA 02139, USA

* Corresponding author, email: opianykh@mgh.harvard.edu

Declarations of interest: none

Abstract

Efficient scheduling is essential for optimizing resource allocation and robust system performance in a

wide range of real-life applications. In most of these cases, the success of scheduling largely depends on

one’s ability to ensure that system resources can be utilized to their maximum capacity, yet without

overloading the system. In this work, we study the problem of critical utilization and efficient scheduling

by considering systems with discrete schedules, widely used in real-life workflows. Using an

implementation-based approach, we introduce discrete scheduling by developing its analytic equations,

which enables us to express the behavior of the scheduling metrics with respect to system utilization.

Using this result, we define critical resource utilization and solve for its exact value as a function of

schedule length. Finally, we compare our results with the equations from the classical queueing theory,

and discuss their applicability. Our findings have immediate practical implications in developing robust

schedules and controlling for optimal system performance.

Keywords

Scheduling, Utilization, Queueing

1 Introduction

Efficient and robust scheduling presents a well-known challenge in many practical areas from

engineering to healthcare to e-commerce (Blake, Carter, & Richardson, 1996), (López, García, Díaz, &

García, 2000), (Dhall & Liu, 1978), (Kumar, 2001), and becomes particularly demanding, when an

expensive resource - such as a complex device or an operating room - needs to be utilized to its full

capacity to justify the cost. However, as classical queueing theory suggests (Little, 1961), (Pollaczek,

1930), and practical experiences confirm (Brown, Gans, Mandelbaum, Sakov, & Shen, 2005) (Kc &

Terwiesch.), increasing resource utilization inevitably leads to higher wait times and more fragile,

bottlenecking workflows. In particular, working in a busy healthcare facility, we are constantly observing

faster-than-linear escalation of delays as hospital resource utilization increases (Figure 1). Knowing the

exact nature of this trend and its critical utilization threshold, responsible for escalating delays, presents

one of the most central problems of practical operations management.

Figure 1: Patient wait time W to schedule an appointment, and probability Pov of rescheduling to a later time, as

functions of scheduled resource utilization, in a busy outpatient healthcare facility. Individual dots correspond to

the actual observed values, smooth lines – to the resulting trends.

The problems of processing queues and delays have been extensively studied for more than a century

(Erlang, 1909), and classical queueing theory developed a number of useful theoretical models to

estimate waiting lines, times, and utilization (Cooper, 1981), (Kleinrock, 1975). However, these models

tend to rely on a rather continuous view of queueing, where the queue is formed by a random flow of

tasks, arriving to a busy server. This view does not fit well with many real-life problems, where the

principal challenge comes not from the dynamics of the arrival and service timing, but from the

complexity of assigning tasks to a limited number of predefined (scheduled) slots – such as assigning

patients to hospital rooms, or assigning airplanes to airport gates. Consequently, classical queueing

theory offers no advice on finding the optimal number of busy slots to avoid bottlenecking.

To investigate discrete slot-allocation problems more efficiently, more computational approaches have

been developed, solving sophisticated queueing problems numerically (Neuts M. F., 1973) (Klimko &

Neuts, 1973) (Neuts & Klimko, 1973) (Heimann & Neuts, 1973). This led to a wide range of scheduling

algorithms based on Markov chains (Neuts M. F., 1973) (Chan & Maa, 1978), dynamic programming

(LaGanga & Lawrence, 2012), convex steepest descent (Begen & Queyranne, 2011), Monte Carlo

(Punitha, 2018), integer linear programming (Zacharias & Yunes, Multimodularity in the Stochastic

Appointment Scheduling, 2019), discrete event simulation (DES) (Wainer, 2009), (Petrean, 1998), and

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization u

Pov

0

5

10

15

20

25

30

35

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization u

Wait time (days)

more (including healthcare scheduling, where numerical simulations were frequently used to optimize

emergency room utilization (Blake, Carter, & Richardson, 1996), patient no-shows (Zacharias & Pinedo,

Appointment Scheduling with No-Shows and Overbooking, 2014), and allocation of staff and resources

(Marchesi, Hamacher, & Fleck, 2020), (Huggins, Claudio, & Eduardo, 2014)). This extensive analysis of

numerical solvers also helped advance their theoretical grounds – including the proofs of multimodular

and convex optimization for scheduling cost functions (Zacharias & Yunes, Multimodularity in the

Stochastic Appointment Scheduling, 2019). However, by their very nature, numerical optimization

methods were focused on simulating very specific scenarios, making their findings hard to generalize.

Also, the ever-increasing complexity of computational equations and math made them prohibitevy

expensive for routine, real-life applications, and did not produce any interpretable guidance for the

scheduling practitioners.

As a result, in their comprehensive review of discrete scheduling methods in healthcare, (Cayirli & Veral,

2003) conclude that “discussions on implementation issues reveal how misleading it can be to view the

problem as a “pure optimization” problem”. Working in this field, we completely agree with this verdict:

we seriously lack approaches facilitating real-life scheduling decisions. Complex optimizers cannot be

run nor maintained in routine settings; complex logic cannot be followed by human schedulers and

facility administrators; complex probabilistic data may not be known, or may greatly vary over time,

invalidating its models. As a result, and especially in the areas with significant process variability (such as

healthcare), a true real-life scheduling solution must be optimizing day-to-day scheduling decisions –

rather than optimizing whatever is computationally possible.

To bridge this gap, we propose a new approach to discrete scheduling problems, and study it to develop

a practically-applicable solution.

2 Discrete scheduling problem and “one more task” approach

We define the problem of discrete scheduling as the problem of assigning tasks to a finite number N of

discrete schedule slots (scheduling cycle, such as a workday), as shown in Figure 2. The time window of

each slot is defined ahead of time, and remains constant – thus forming a preset scheduling grid (in

contrast with conventional “walk-in” task queueing). Tasks can be processed only if and when they are

assigned to the remaining open slots, one task per slot.

This definition significantly changes the problem-solving paradigm: while the main goal in “walk-in”

queueing is to process the tasks on time, the main goal in discrete scheduling is to find the time to

process. To solve this problem in the most correct, pragmatic way, we have to put ourselves in the

position of a scheduling manager, who was asked, at a random time, to accomodate one more task. At

this point, the manager is not already concerned with the previously-scheduled tasks, which cannot be

changed, even if scheduled for the future slots. Likewise, the manager is not concerned with any new

tasks which might (or might not) arrive later. The only real problem the manager has to solve is whether

accepting one more task is possible, and if so, whether this task will wreck operational havoc. The

scheduler needs a simple and reliable rule to make this decision.

Figure 2: Discrete scheduling problem, where arriving tasks have to be assigned to a limited number of processing

slots N. As the number of busy slots K increases, the new tasks will need to wait longer for the next open slot.

This new game-theory-like approach “freezes” the problem at a specific decision time, placing us in a

very interesting position, significantly different from the previous scheduling optimization research. We

do not need to know the temporal properties of the system, such as task arrival distribution, queueing

discipline, or distribution of the service times: at a single “frozen” time point, we are not solving for the

time

New task

O
p

en
 s

lo
t

O
1

arrival

wait i time slots for the next open slot

processing

Single scheduling cycle, one time unit total, N processing slots

B
u

sy
 s

lo
t

B
i

…

B
u

sy
 s

lo
t

B
1

i busy slots, i/N total time

… …

Ea
rl

ie
r

sl
o

t
E j

Ea
rl

ie
r

sl
o

t
E 1

B
u

sy
 s

lo
t

B
i+

1

B
u

sy
 s

lo
t

B
2

Decision to accept
one more task

 j earlier slots, j/N total time

Nearest available
open slot

entire scheduling template. Moreover (and most pragmatically), the temporal properties of the system

may not be known to the scheduler, may be too complex, and may significantly vary in time (for

instance, we do not know at the time of scheduling how much a patient will deviate from the prescribed

care path). Our scheduler, just like an average chess player, is concerned only with the current move,

and cannot think ten moves into the future.

Consequently, we need to assume that at least at the time of decision-making, (1) all tasks have equal

priority, (2) all open slots have equal availability, and (3) all tasks can be performed during their

scheduled times. The first two assumptions follow from the fact that we ignore the temporal flow of the

tasks. The third, although looking the most restrictive, reflects the underlying assumption of feasible

scheduling – otherwise, the schedule cannot be followed, and the process collapses to walk-in queueing,

so elaborated in the classical queueing theory.

Finally, the assumption of equal slot availability leads to assuming that all N slots have the same fixed

duration of 1/N time units (considering the duration of the entire schedule as a single time unit). This is

another assumption often rejected in complex scheduling models, trying to fine-tune slot durations to

specific task processing patterns. However, having same-size slots is critical to make them

interchangeable – which is much more important practically, than overoptimized slot durations. Thus,

unlike the “pure optimization” methods, we deliberately sacrifice optimality to achieve more realistic

scheduling – which is an absolute must, if we want to implement our solution. For example, note that

same-size slots are dominating healthcare scheduling.

Then what does our scheduler know? In complex, varying workflows we can count on only one bit of

ground truth: our scheduler does know, how many slots K have been already taken. This means that the

“one more task” acceptance will be decided by this number (or equivalently, by the number of open

slots N-K). That is, the task-accepting decision becomes a function of the schedule utilization u=K/N,

defined as the fraction of currently taken slots.

Thus, considering discrete task scheduling problem from the point of real-life decision-making, we state

two principal questions that must be answered by any pragmatic scheduling approach:

- Investigating how discrete scheduling processing efficiency depends on the schedule utilization

u=K/N, and based on this

- Determining the maximum utilization value, which should not be exceeded to avoid significant

system overload

In the following sections, we solve these two problems by developing mathematical equations for

discrete scheduling systems, deriving their analytical solutions, and using these solutions to propose an

upper bound on optimal system utilization.

3 Discrete Scheduling Equations

3.1 Scheduling metrics

To decide on adding “one more task” to a busy schedule, we consider a discrete schedule with N time

slots, where K≤N slots have been already allocated to previously assigned tasks, resulting in the current

system utilization of u=K/N. At this point, a new (K+1)st task presents at a random time and needs to be

scheduled in the remaining open slots.

Lacking any other knowledge on system properties or scheduler’s strategies, we choose to study the

best, most optimistic task assignment scenario – assigning the new task to the nearest open slot. Note

that we assume this only for the current, (K+1)st task. That is, we want to know how well the system will

perform if, running at utilization u, it schedules one more task in the most time-efficient way (Figure 2).

Applying the optimal strategy only to one single task presents another significant difference from the

previous research, but derives from the practical scheduling experience as well. In real life, what makes

scheduling decisions most challenging is the need to accommodate new, unexpected tasks. For example,

in a healthcare schedule most appointments might be allocated well in advance, with least disruption. It

is the addition of one more unexpected patient that will require decision-making, and can escalate

processing delays (the infamous “last straw” challenge).

To measure the feasibility and efficiency of this “one more task” assignment, we define two principal

metrics:

- Overload probability Pov(N,K) – the probability of not finding any open slot, when all slots after

the new task arrival are already taken, and

- Wait time W(N,K) – the time that the new task will have to wait for the next open slot

Both metrics can be viewed as scheduling cost functions, expressing scheduling efficiency as a function

of utilization. While using the wait time metric is very typical for queuing and scheduling problems,

including overload probability emphasizes the time-independent, discrete nature of slot assignment,

outlined earlier. In either case, we want to investigate the dependency of these two principal metrics on

the current system utilization u=K/N, and use this to define the critical system utilization value uc,

corresponding to the most rapid escalation of system bottlenecking.

3.2 Discrete scheduling equations

In discrete scheduling with equally-sized time slots, it is natural to measure time in slot durations.

Assuming that K≤N slots in the schedule are currently taken, let ωi denote the event when a new

arriving task had to wait for i busy slots (i≤K), and let P(ωi) denote the probability of this event.

For a task to wait for i slots, the task must either (1) arrive into a system where there are i occupied time

slots immediately after arrival and the (i+1)st time slot is unoccupied, or (2) arrive into a system with

exactly i time slots remaining, all of which are occupied (corresponding to the system overload event). In

the second case the new task cannot be taken and will have to wait at least i slot units until the schedule

ends, and new scheduled slots could be potentially allocated. We do not know, whether this can be

done, and working overtime may not be possible at all. But regardless of this, adding the new task right

after the scheduled time simply reflects the same optimistic assumption of processing the (K+1)st task as

early as possible, to estimate the lower bound on the costs. Note that this lower bound is also realistic –

for example, in many healthcare workflows arriving patients are never turned down, and will be taken

after all current patients are processed (Zacharias & Yunes, Multimodularity in the Stochastic

Appointment Scheduling, 2019).

Using this model, we can derive the equations for expected task wait W(N,K) and schedule overload

probability Pov(N,K). In the first case, when the new task is scheduled to the (i+1)st time slot, the task

should arrive with at least (i+1) time slots remaining in the schedule. This is possible if and only if the

task arrives anywhere during the first j slots (“earlier slots” in Figure 2), such that j+(i+1)≤N, or j≤N-

(i+1). With total slot count of N, the probability of arrival within the first N-(i+1) slots is
𝑁−(𝑖+1)

𝑁
.

Conditioning on this, one needs to find the probabilities of each of the next i time slots being occupied.

Since we know that the total number of occupied slots is K, the probability that the time slot

immediately after arrival is occupied is
𝐾

𝑁
, the one after it

𝐾−1

𝑁−1
, and so on until we reach

𝐾−(𝑖−1)

𝑁−(𝑖−1)
. The

probability that the (i+1)st time slot is open is then given by
𝑁−𝐾

𝑁−𝑖
, since there are (N-K) as of yet

unidentified free slots in the schedule, and (N-i) remaining possible locations for these slots in the

schedule. By independence, we multiply all these terms together, giving us the first term in (Eq. 1).

Similarly, in the second case, the task arrives with exactly i time slots remaining, which occurs with

probability
1

𝑁
. Conditioning on this, we have the same term denoting the probability that all remaining i

timeslots are all occupied, and there are no more slots left. This gives us the second “overload” term in

(Eq. 1).

𝑃(ω𝑖) = (
𝑁 − (𝑖 + 1)

𝑁
)(
𝐾

𝑁
⋅
𝐾 − 1

𝑁 − 1
⋅ … ⋅

𝐾 − (𝑖 − 1)

𝑁 − (𝑖 − 1)
) (
𝑁 − 𝐾

𝑁 − 𝑖
)

+
1

𝑁
(
𝐾

𝑁
⋅
𝐾 − 1

𝑁 − 1
⋅ … ⋅

𝐾 − (𝑖 − 1)

𝑁 − (𝑖 − 1)
)

 (Eq. 1)

Factoring and simplifying, we have

𝑃(𝜔𝑖) = (
𝐾 ⋅ 𝐾 − 1 ⋅ … ⋅ 𝐾 − (𝑖 − 1)

𝑁 ⋅ 𝑁 − 1 ⋅ … ⋅ 𝑁 − (𝑖 − 1)
) (
𝑁 − 1 − 𝑖

𝑁

𝑁 − 𝐾

𝑁 − 𝑖
+
1

𝑁
) =

=
1

𝑁
(

𝐾!

(𝐾 − 𝑖)!

(𝑁 − 𝑖)!

𝑁!
)(
(𝑁 − 1 − 𝑖)(𝑁 − 𝐾)

𝑁 − 𝑖
+ 1)

 (Eq. 2)

Consequently, the total probability of schedule overload is computed as the sum of all overload

probabilities over possible slot utilization values of K (second terms in (Eq. 1)):

𝑃𝑜𝑣(𝑁, 𝐾) =∑
1

𝑁
(

𝐾!

(𝐾 − 𝑖)!

(𝑁 − 𝑖)!

𝑁!
)

𝐾

𝑖=1

=
1

𝑁

𝐾!

𝑁!
∑
(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=1

 , (Eq. 3)

and the expected wait time for the new task is found as

𝑊(𝑁,𝐾) =∑𝑃

𝐾

𝑖=0

(𝜔𝑖) ⋅
𝑖

𝑁
=
1

𝑁2
𝐾!

𝑁!
∑(

(𝑁 − 1 − 𝑖)(𝑁 − 𝐾)

𝑁 − 𝑖
+ 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖, (Eq. 4)

In the Appendix (Theorem 1), we prove that the summations in (Eq. 3) and (Eq. 4) can be reduced to a

much shorter form:

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾

𝑁 − 𝐾 + 1
=
1

𝑁

𝑢

1 +
1
𝑁 − 𝑢

= 𝑃𝑜𝑣(𝑢), 𝑢 =
𝐾

𝑁
, 0 ≤ 𝑢 ≤ 1

 (Eq. 5)

𝑊(𝑁,𝐾) =
𝐾(𝑁2 + 𝑁 − 𝐾𝑁 − 1)

𝑁2(𝑁 − 𝐾 + 1)(𝑁 − 𝐾 + 2)
=
1

𝑁

𝑢(1 +
1
𝑁 +

1
𝑁2
− 𝑢)

(1 +
1
𝑁 − 𝑢)(1 +

2
𝑁 − 𝑢)

= 𝑊(𝑢)

𝑊(𝑢)
𝑁→∞
→ 𝑊𝑎(𝑢)=

1

𝑁

𝑢

(1+
2

𝑁
−𝑢)

 (Eq. 6)

This provides us with a very concise set of equations, describing two principal metrics of discrete

scheduling. Moreover, this important result enables us to express W(u) and Pov(u) as functions of system

utilization u. Although in discrete scheduling u can take only selected rational values u=K/N, our

equations enable us to study W(u) and Pov(u) as continuous functions of utilization u, to better

understand their trends and behavior.

The equations, illustrated by plots for W(u) and Pov(u) in Figure 3, lead to a few important observations.

Figure 3: Plots of schedule overload probability Pov(u) and expected task wait W(u) as functions of the system

utilization u, for several schedule sizes N. Note that both cost functions are finite at u=1: Pov(1)=1, and

W(1)=1/2+1/(2N). The dashed curve in W(u) plot represents Pollaczek–Khinchine formula WPKh(u) for N=10,

diverging to infinity as u approaches to 1.

First, both W(u) and Pov(u) behave as hyperbolas (see Corollary 1 and 2 in the Appendix), starting nearly

flat at u=0, but becoming increasingly vertical as u approaches to 1. This can be seen by considering the

first derivatives of these functions w.r.t utilization u:

𝑃𝑜𝑣
′ (0) =

1

𝑁 + 1
, 𝑃𝑜𝑣

′ (1) = 𝑁 + 1,

𝑊′(0) =
𝑁2 + 𝑁 − 1

𝑁(𝑁 + 1)(𝑁 + 2)

𝑁→∞
→

1

𝑁
 , 𝑊′(1) =

𝑁2 − 𝑁 − 2

4𝑁

𝑁→∞
→

𝑁

4
 ,

 (Eq. 7)

Note that this theoretical hyperbolic behavior matches the trends observed in many real-life data – such

as those presented in Figure 1. Furthermore, as (Eq. 7) suggests, hyperbolic behavior becomes

particularly pronounced as the number of slots N increases. In practical applications this means that

discrete scheduling systems, steady at low values of u, become progressively unstable as u approaches

to 1 (100%). This agrees with real-life experiences, when overcrowded processes break down not only

because they lead to escalating wait time, but also because finding an empty slot for a new task

becomes highly improbable (overload probability Pov(u=1)=1) – which often leads to increased errors,

stress and overburn, so visible in the human-driven environments.

Second, it is instructive to compare our equations to the classical queueing theory Pollaczek–Khinchine

formula 𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2+𝜆2𝑉

2(1−𝑢)
), where λ denotes the task arrival rate, and V - service time variance.

In our case of tasks fitting into the scheduled slots, we can assume V=0, λ=N, leading to

𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2 + 𝜆2𝑉

2(1 − 𝑢)
) =

1

𝑁

𝑢 (1 −
1
2𝑢)

1 − 𝑢
 , (Eq. 8)

bearing visible similarities with our W(u) and Wa(u) in (Eq. 6). However, although all these functions have

a hyperbolic trend w.r.t utilization u, discrete scheduling wait W(u) remains finite even when utilization

u approaches to 100% (see WPKh(u) plot in Figure 3):

𝑊(𝑁,𝐾 = 𝑁) = 𝑊(𝑢 = 1) =
1

2
+
1

2𝑁
 ,

thus asymptotically converging to ½ for large N (task arriving to a fully-scheduled system will have to

wait ½ day on average to get processed at the end). Undoubtedly, non-diverging, finite wait offers a

more realistic reflection of practical scheduling experience (Figure 1).

4 Critical utilization

4.1 Definition and equations

Critical utilization can be defined as the “last straw” utilization limit, when the cost of accepting one

more task becomes prohibitively high. Although hard to formalize theoretically, finding the most

appropriate critical utilization value presents one of the most central challenges in real-life operations

management. For example, one would always want to utilize the most expensive resource as fully as

possible, but avoid overcrowding and stress associated with overloads. Therefore, while it is clear that

approaching 100% utilization leads to fragile workflows with no cushions to absorb new work, no

solution has been offered to determine what exact threshold under 100% should not be exceeded.

As a result, utilization threshold is often estimated by various external indicators of system overload

(overcrowded waiting rooms, long waiting times, dropped calls, stress, and so on). However, these

indicators call for their own thresholds, equally elusive, and failing to generalize to a universal principle.

This challenge is only augmented by the hyperbolic nature of the principal utilization metrics that we

have discovered with (Eq. 5) and (Eq. 6). Sharing the same hyperbolic behavior, these functions and all

their derivatives are monotonically increasing with utilization u, perfectly reflecting escalating system

instability, but suggesting no specific point of “breakage”.

However, there is one particular property of hyperbolas which serves to our advantage – as can be seen

in Figure 3, especially for larger values of N. Starting nearly horizontally at u=0, hyperbolas become

more and more vertical as u approaches 1 (see (Eq. 7)). This L-shaped behavior is captured with a very

specific “turning point” of the sharpest change from the horizontal to the vertical trend. Mathematically,

this sharpest turn occurs when the curvature of the hyperbolic function reaches its maximum.

Figure 4: Left: Overload probability Pov(u) with maximum curvature points. Right: Corresponding curvature

functions. Note that as schedule size N increases, curvature peak becomes sharper and closer to 1.

In practical scheduling this means that accepting one more task at this point will produce the sharpest

turn into the escalating, “vertical” trend, which is exactly what any scheduler needs to avoid. Therefore,

we define critical utilization uc as the point of the maximum curvature in the utilization metric function –

Curvature maximum

when the metric and its underlying process experience the most abrupt shift into the overloaded

pattern (Figure 4).

Curvature analysis provides a universal mathematical framework, independent of the specific problem

and overload definitions. Moreover, this approach enabled us to derive the exact critical utilization

solutions for the two major metrics used in this study: Pov(u) and Wa(u) (asymptotic form of W(u)), as we

prove in the Appendix (Corollary 3):

𝑢𝑐 = 1 +
2

𝑁
− √

1

𝑁
+
2

𝑁2
= 1 −

1

√𝑁
+
2

𝑁
−

1

𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
) = 𝑢𝑐

𝑠𝑞𝑟𝑡 + 𝑂 (
1

𝑁
)

 (Eq. 9)

𝑢𝑐
𝑜𝑣 = 1 +

1

𝑁
− √

1

𝑁
+
1

𝑁2
= 1 −

1

√𝑁
+
1

𝑁
−

1

2𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
) = 𝑢𝑐

𝑠𝑞𝑟𝑡 + 𝑂 (
1

𝑁
)

𝑢𝑐
𝑠𝑞𝑟𝑡 = 1 −

1

√𝑁

 (Eq. 10)

Both critical utilization functions 𝑢𝑐
𝑜𝑣 and 𝑢𝑐 are shown in Figure 5, which also shows their asymptotic

approximation 𝑢𝑐
𝑠𝑞𝑟𝑡

. Figure 5 also includes the 𝑢𝑐
true curve – the curvature of the original W(u) function.

Direct application of curvature math to the W(u) in (Eq. 6) leads to a 12th degree equation, with no

analytically-tractable solution – the problem we overcame by introducing the Wa(u) function as an

asymptotic approximation to W(u) (see Corollary 2 in the Appendix). Yet interestingly enough, the

analytical solution for the critical curvature uc, that we have found from Wa(u), is virtually

indistinguishable from the true solution 𝑢𝑐
true, found numerically (see Figure 5). Consequently, the uc

formula from (Eq. 9) can be used as a very accurate substitute for 𝑢𝑐
true, at least for N≥10 shown in

Figure 5.

Figure 5: Discrete schedule critical utilization as function of the schedule size N. The 𝑢𝑐
𝑡𝑟𝑢𝑒 curve shows maximum

curvature of the original W(u) function, which has no analytical solution, and was found numerically.

𝑢𝑐
𝑠𝑞𝑟𝑡

= 1 −
1

√𝑁
 corresponds to the simple approximation, to which 𝑢𝑐

𝑡𝑟𝑢𝑒, 𝑢𝑐 , and 𝑢𝑐
𝑜𝑣 converge asymptotically.

One can also notice that both critical utilization solutions – 𝑢𝑐
𝑜𝑣 for Pov(u) and uc for Wa(u) – have very

similar expressions, coming only 1/N (one slot size) apart from each other ((Eq. 9), (Eq. 10)). This means

that despite two conceptually-different choices of scheduling metrics – time-based W(u) and availability-

based Pov(u) – they identify the same point of the scheduling process breakdown, a very unexpected

and interesting result.

Second, at the same “one slot” margin of error, both critical utilization values in (Eq. 9) and (Eq. 10)

converge to 𝑢𝑐
sqrt

= 1 −
1

√N
 . Since we defined utilization as the fraction of busy slots (u=K/N), this

leads to a very simple estimate of the critical busy slot count Kc:

𝐾𝑐 = 𝑁𝑢𝑐 = 𝑁(1 −
1

√N
) = 𝑁 − √𝑁

As Figure 5 demonstrates, 𝑢𝑐
sqrt

= 1 −
1

√N
 slightly underestimates 𝑢𝑐

𝑜𝑣 for Pov(u) and uc for Wa(u), thus

setting a “safe” threshold on utilization, not to be exceeded. This short and elegant result – “keep at

least √𝑁 slots open to avoid schedule breakdown” - provides a concise, universal, and practical guidance

𝑢𝑐
𝑡𝑟𝑢𝑒 ≈ 𝑢𝑐

Asymptotic 𝑢𝑐
𝑠𝑞𝑟𝑡

for managing discrete schedules of any size N. Moreover, using the time-based interpretation provided

by the W(u) function, we can rephrase this result as “keep at least √𝑁 slot time open to avoid schedule

breakdown” – which becomes more applicable for the processes where utilization is measured in the

resource busy time, rather than slots. This “time-availability equivalence” of the critical utilization value

can be seen as one of the most fundamental properties of discrete scheduling, independent of the

scheduling metric.

Finally, as schedule size N increases, critical utilization uc approaches to 1, which means that schedules

with shorter slots are generally more immune to overloads. This can be intuitively true – “one more

task” is easier to accept when the task duration is getting shorter – but has its own disadvantage, very

visible in Figure 4 and (Eq. 7). Large values of N result in sharper curvature change, and more vertical

escalation of delays after exceeding the critical uc point. Thus, going beyond critical utilization for large

schedule sizes N will have more devastating effects on the process stability and operations.

4.2 Extension to queueing theory

The idea of using maximum curvature to identify the point of critical change is general enough to be

applied to any process with L-shaped cost function (convex and monotonically increasing in our case).

Moreover, recognizing inherent similarities between discrete scheduling and queueing theory

equations, it becomes natural to apply the same concept to find the critical utilization of the latter.

To do so, we consider the original Pollaczek–Khinchine formula (first equation in (Eq. 8)). Although

developed for a very different case (M/G/1 “walk in” queue with Poisson arrivals), Pollaczek–Khinchine

formula produces a similar hyperbolic wait time trend, and leads to the same practical question of

determining the critical utilization value. We were still able to derive the exact expression for the

Pollaczek–Khinchine critical utilization as well, as proven in the Appendix (see Corollary 4, (Eq. 28)).

𝑢𝑐
𝑃𝐾ℎ = 1 − √

(1 + 𝜆2𝑉)2

1 + 4𝜆2

4

 (Eq. 11)

First, it is interesting to observe, that queueing critical utilization 𝑢𝑐
𝑃𝐾ℎ decreases as processing time

variability V grows. Not only this supports a well-known observation that high processing variability

“kills” any organized processing, but now provides a numerical way to control for the variability value, to

ensure safe utilization limits.

Second, using Pollaczek–Khinchine result to approximate our discrete scheduling by setting λ=N, V=0,

yields

𝑢𝑐
𝑃𝐾ℎ = 1 − √

1

1 + 4𝑁2

4

= 1 −
1

√4
4
√𝑁

+
1

16√4
4
𝑁2√𝑁

+ 𝑂 (
1

𝑁4√𝑁
) (Eq. 12)

That is, as N increases, critical utilization 𝑢𝑐
𝑃𝐾ℎ for the queued task wait tends to 1 as 1 −

1

√4
4
√𝑁

, which is

very similar, but faster compared to 𝑢𝑐 = 1 −
1

√𝑁
 in the case of discrete scheduling ((Eq. 9), (Eq. 10),

Figure 5).

Critical utilization for
Pollaczek–Khinchine

Figure 6: Comparing critical utilization 𝑢𝑐
𝑃𝐾ℎ found for the queueing theory wait function (Pollaczek–Khinchine

equation, dashed line) to our critical utilization for discrete scheduling wait uc .

Higher critical utilization values found in queueing, 𝑢𝑐
𝑃𝐾ℎ > 𝑢𝑐 nicely correspond to our intuition: in

general, queueing is a more robust process compared to discrete scheduling. In the case of discrete

scheduling, tasks have to be fitted into slots, or some of the server future slots may be already assigned,

thus reducing overall processing capacity, and making the discrete systems easier to overwhelm.

However, discrete scheduling is a more predictable and “satisfying” form of processing from the task

(customer) perspective, when it is much more appreciated to get service at a guaranteed time, rather

than wait for it in a line. This certainly justifies widespread use of scheduling in real-life operations.

5 Limitations

Our “one more task” approach was developed by deliberately ignoring any temporal pattern or strategy

in scheduling the previous K tasks – otherwise, if these tasks were allocated in some optimal way, this

could have made the scheduling of the next (K+1)st task more possible and more optimal. However,

more optimal scheduling can be achieved only when (1) more knowledge about the process properties is

readily available, (2) this knowledge does not change, (3) one has enough mathematical expertise and

computing power to process this information with a model, and (4) the resulting optimal schedule can

be executed with minimal disruptions. Unfortunately, none of the above can be guaranteed in most

real-life scheduling processes, healthcare included.

Consequently, we had to consider the lower (optimistic) bound on the scheduling costs W and Pov,

meaning that our critical utilization formula corresponds to the upper (optimistic) bound. This implies

that in reality system bottlenecking can develop even for the lower utilization values, and our upper

bound should be treated as the value that should not be exceeded.

We also had to assume that our schedule is feasible (tasks fit into slots), and the slots are equally-sized –

borrowing the latter from healthcare scheduling. Although this does not invalidate our approach and

critical utilization definition, our principal equations will need to be adjusted to reflect a specific slot

time distribution. Still, we have to note that schedules with different slot times are less common,

especially in processes with scheduling alterations: different slot sizes make swapping task assignments

impossible. The ability to have modifiable schedules is essential for many practical areas (such as

healthcare, where patients often need to cancel or reschedule their appointments), which calls for

same-slot-size schedules, making them very ubiquitous (Rosenthal & Pianykh, 2021).

Finally, we used λ=N, V=0 as a simple means to reveal the intrinsic similarity between the classical

queueing theory (Pollaczek–Khinchine result) and our discrete scheduling equations. This was done only

to compare the two results using reasonably close settings. One should still bear in mind, that Pollaczek–

Khinchine was derived under a different set of assumptions (such as Poisson task arrivals), and for a

different processing model (queueing).

6 Conclusion

The problem of discrete schedules and their utilization limits represents the most important challenge in

real-life applications, but has been given very little treatment in the previous operational research.

Therefore, in our work we studied discrete scheduling through the lens of real-life scheduling decision-

making, using mathematical analysis to discover practically-applicable scheduling decision rules.

The first major contribution of our analysis was in deriving closed-form analytical expressions for Pov(u)

and Wa(u), which in turn made possible the study of their hyperbolic behavior and limits. This work led

to our second principal contribution: proposing a new definition for the critical system utilization

threshold uc, as the point at which system performance experiences the most abrupt change from the

stable to the escalating pattern. As a result, we were able to solve for the exact analytical expression for

uc, and demonstrate its asymptotical 1 −
1

√N
 behavior. This yielded a reliable, easy-to-use practical

estimate to control for scheduling system overload. Keeping √𝑁 slots open provides a remarkably

simple rule for many scheduling processes, be it a small physician office, or a large hospital with many

inpatient beds, or a shared supercomputer CPU time, or seats in a large stadium.

Finally, the principal novelty of our work is largely based on our “one more task” approach, where we

consider the reality of the scheduling decision-making process, which leads to a concise, closed-form

analytical solution on maximum utilization threshold. This result has a very clear practical meaning and

can be used to develop efficient scheduling guidelines. Knowing robust scheduling bounds and heuristics

is critical in many fields, and can help with developing better operational strategies.

7 Acknowledgements

We would like to thank Drs. James Brink, Daniel Rosenthal, and Michael Gee from Massachusetts

General Hospital, Department of Imaging, for their constant support in developing operational

improvements, and finding the optimal workflow solutions.

8 Appendix: Proofs

In this appendix, we provide the formal proofs for all key results presented in this work.

Some proofs will be using the following geometric progression summation formulas:

∑𝑞𝑖𝑖

𝐾

𝑖=0

=
1 − 𝑞𝐾+1

1 − 𝑞
 𝑞 ≠ 1 (Eq. 13)

∑𝑞𝑖𝑖

𝐾

𝑖=0

=
𝐾𝑞𝐾+2 − (𝐾 + 1)𝑞𝐾+1 + 𝑞

(1 − 𝑞)2
 (Eq. 14)

∑𝑞𝑖𝑖2
𝐾

𝑖=0

=
−𝐾2𝑞𝐾+3 + (2𝐾2 + 2𝐾 − 1)𝑞𝐾+2 − (𝐾 + 1)2𝑞𝐾+1 + 𝑞2 + 𝑞

(1 − 𝑞)3
 (Eq. 15)

The first sum represents a geometric progression, and the other two can be derived from it by taking

first and second derivatives w.r.t progression factor q. Therefore, treating these results as well-known

(see 0.112, 0.113, and 0.114 in (Gradshteĭn & Ryzhik, 2007)), we omit their proofs here.

We will also use a standard definition of the “polynomial coefficient” operator [𝑥𝑖]: 𝑔(𝑥), returning the

coefficient gi for the power term xi in polynomial (power series) g(x):

[𝑥𝑖]: 𝑔(𝑥) = [𝑥𝑖]: {∑𝑔𝑗𝑥
𝑗

𝑗=0

} = 𝑔𝑖 (Eq. 16)

In particular, by definition of binomial coefficient,

[𝑥𝑖]: (1 + 𝑥)𝑚 = (
𝑚

𝑖
) (Eq. 17)

With these baseline results in mind, our proofs start with the following

Lemma 1 (“binomial summation”):

For any non-negative integer numbers N and K, K≤N

𝑆0 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
)

𝐾

𝑖=1

= (
𝑁

𝑁 − 𝐾 + 1
) (Eq. 18)

𝑆1 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
) 𝑖

𝐾

𝑖=0

= (
𝑁 + 1

𝑁 − 𝐾 + 2
) (Eq. 19)

𝑆2 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
) 𝑖2

𝐾

𝑖=0

= (
𝑁 + 1

𝑁 − 𝐾 + 3
) + (

𝑁 + 2

𝑁 − 𝐾 + 3
) (Eq. 20)

Proof:

Considering the sum for any non-negative integer power p, and using the definition of binomial

coefficient, we rewrite

𝑆𝑝 =∑(
𝑁 − 𝑖

𝐾 − 𝑖
) 𝑖𝑝

𝐾

𝑖=0

=∑(
𝑁 − 𝑖

𝑁 − 𝐾
) 𝑖𝑝

𝐾

𝑖=0

Using (Eq. 17)

𝑆𝑝 =∑(
𝑁 − 𝑖

𝑁 − 𝐾
) 𝑖𝑝

𝐾

𝑖=0

=∑[𝑥𝑁−𝐾]: (1 + 𝑥)𝑁−𝑖 𝑖𝑝
𝐾

𝑖=0

= [𝑥𝑁−𝐾]: {(1 + 𝑥)𝑁∑(1+ 𝑥)−𝑖𝑖𝑝
𝐾

𝑖=0

}

Note that for the three choices of p=0, 1, 2 that we have to prove, the expression under summation

directly corresponds to the sums in (Eq. 13), (Eq. 14), and (Eq. 15) for q=(1+x)-1. For example, the most

complex case of p=2 leads to

𝑆2 =∑(
𝑁 − 𝑖

𝑁 − 𝐾
) 𝑖2

𝐾

𝑖=0

= [𝑥𝑁−𝐾]: {(1 + 𝑥)𝑁∑(1 + 𝑥)−𝑖𝑖2
𝐾

𝑖=0

} = [𝑥𝑁−𝐾]:

{

(1 + 𝑥)𝑁

−𝐾2

(1 + 𝑥)𝐾+3
+
(2𝐾2 + 2𝐾 − 1)
(1 + 𝑥)𝐾+2

−
(𝐾 + 1)2

(1 + 𝑥)𝐾+1
+

1
(1 + 𝑥)2

+
1

(1 + 𝑥)

(1 −
1

(1 + 𝑥)
)
3

}

=

[𝑥𝑁−𝐾]:

{
(1 + 𝑥)𝑁

𝑥3
(
−𝐾2

(1 + 𝑥)𝐾
+
(2𝐾2 + 2𝐾 − 1)

(1 + 𝑥)𝐾−1
−
(𝐾 + 1)2

(1 + 𝑥)𝐾−2
+ (1 + 𝑥) + (1 + 𝑥)2)}

Moving x3 under the coefficient operator, and observing that only the last two terms under the curly

brackets have powers higher than N-K+3, we conclude:

𝑆2 = [𝑥
𝑁−𝐾+3]: {−𝐾2(1 + 𝑥)𝑁−𝐾 + (2𝐾2 + 2𝐾 − 1)(1 + 𝑥)𝑁−𝐾+1 − (𝐾 + 1)2(1 + 𝑥)𝑁−𝐾+2

+ (1 + 𝑥)𝑁+1 + (1 + 𝑥)𝑁+2} = [𝑥𝑁−𝐾+3]: {(1 + 𝑥)𝑁+1 + (1 + 𝑥)𝑁+2}

= (
𝑁 + 1

𝑁 − 𝐾 + 3
) + (

𝑁 + 2

𝑁 − 𝐾 + 3
)

The equations for S0 and S1 are proven in the same exact way using (Eq. 13) and (Eq. 14) respectively,

therefore we omit their derivations here for brevity.

q.e.d.

Theorem 1 (“discrete scheduling”):

The expected overload probability Pov(N,K) and wait time W(N,K) for discrete schedule with N slots (K of

which are busy) can be found as

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾!

𝑁!
∑
(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=1

 =
1

𝑁

𝐾

𝑁 − 𝐾 + 1
, (Eq. 21)

𝑊(𝑁,𝐾) =
1

𝑁2
𝐾!

𝑁!
∑(

𝑁 − (𝑖 + 1)

𝑁 − 𝑖
(𝑁 − 𝐾) + 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖

=
𝐾(𝑁2 + 𝑁 − 𝐾𝑁 − 1)

𝑁2(𝑁 − 𝐾 + 1)(𝑁 − 𝐾 + 2)
,

 (Eq. 22)

Proof:

Converting the factorials under the sum into a binomial coefficient for Pov(N,K) yields

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!
∑(

𝑁 − 𝑖

𝐾 − 𝑖
)

𝐾

𝑖=1

Using the first equation (Eq. 18) from Lemma 1

𝑃𝑜𝑣(𝑁, 𝐾) =
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!
∑(

𝑁 − 𝑖

𝐾 − 𝑖
)

𝐾

𝑖=1

 =
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!
(

𝑁

𝑁 −𝐾 + 1
)

=
1

𝑁

𝐾! (𝑁 − 𝐾)!

𝑁!

𝑁!

(𝑁 − 𝐾 + 1)! (𝐾 − 1)!
=
1

𝑁

𝐾

𝑁 −𝐾 + 1

thus proving the equation for Pov(N,K).

Following the same approach for W(N,K):

𝑊(𝑁,𝐾) =
𝑁 − 𝐾

𝑁2
𝐾!

𝑁!
∑(

𝑁 − (𝑖 + 1)

𝑁 − 𝑖
(𝑁 − 𝐾) + 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖

=
𝑁 − 𝐾

𝑁2
𝐾!

𝑁!
∑
(𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖

𝑁 − 𝑖

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖 =

=
𝑁 − 𝐾

𝑁2
𝐾!

𝑁!
∑((𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖)

(𝑁 − 1 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖 =

=
𝑁 − 𝐾

𝑁2
𝐾! (𝑁 − 𝐾 − 1)!

𝑁!
∑((𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖)𝑖

𝐾

𝑖=0

 (
𝑁 − 1 − 𝑖

𝐾 − 𝑖
)

Simplifying the first factor under the summation as

(𝑁 − 1 − 𝑖)(𝑁 − 𝐾) + 𝑁 − 𝑖 = 𝑁2 −𝑁𝐾 + 𝐾 − 𝑖(𝑁 − 𝐾 + 1)

we rewrite W(N,K) as

𝑊(𝑁,𝐾) =
𝑁 − 𝐾

𝑁2
𝐾! (𝑁 − 𝐾 − 1)!

𝑁!

× {(𝑁2 −𝑁𝐾 + 𝐾)∑(
𝑁 − 1 − 𝑖

𝐾 − 𝑖
) 𝑖

𝐾

𝑖=0

 − (𝑁 − 𝐾 + 1)∑(
𝑁 − 1 − 𝑖

𝐾 − 𝑖
) 𝑖2

𝐾

𝑖=0

}

The two summations in this formula can be computed using our equations from Lemma 1 (replacing N

by N-1), leading to

𝑊(𝑁,𝐾) =
𝑁 − 𝐾

𝑁2
𝐾! (𝑁 − 𝐾 − 1)!

𝑁!

× {(𝑁2 −𝑁𝐾 +𝐾) (
𝑁

𝑁 −𝐾 + 1
) − (𝑁 − 𝐾 + 1)((

𝑁 + 1

𝑁 − 𝐾 + 3
) + (

𝑁 + 2

𝑁 − 𝐾 + 3
))}

Now, similarly to Pov(N,K), we expand binomial coefficients into factorials, and reduce the factorials

arriving to the final result:

𝑊(𝑁,𝐾) =
1

𝑁2
𝐾!

𝑁!
∑(

𝑁 − (𝑖 + 1)

𝑁 − 𝑖
(𝑁 − 𝐾) + 1)

(𝑁 − 𝑖)!

(𝐾 − 𝑖)!

𝐾

𝑖=0

 𝑖 =
𝐾(𝑁2 +𝑁 − 𝐾𝑁 − 1)

𝑁2(𝑁 − 𝐾 + 1)(𝑁 − 𝐾 + 2)

q.e.d.

Corollary 1 (“utilization equations”):

Rewriting (Eq. 21) and (Eq. 22) as functions of the system utilization u=K/N results in

𝑃𝑜𝑣(𝑢) =
1

𝑁

𝑢

1 +
1
𝑁
− 𝑢

=
𝜀𝑢

1 + 𝜀 − 𝑢
, 𝜀 =

1

𝑁
∈ (0,1], 𝑢 ∈ [0,1],

 (Eq. 23)

𝑊(𝑢) =
1

𝑁

𝑢

1 +
1
𝑁
− 𝑢

=
1

𝑁

𝑢(1 +
1
𝑁
+
1
𝑁2
− 𝑢)

(1 +
1
𝑁
− 𝑢)(1 +

2
𝑁
− 𝑢)

=
𝜀𝑢(1 + 𝜀 + 𝜀2 − 𝑢)

(1 + 𝜀 − 𝑢)(1 + 2𝜀 − 𝑢)
 (Eq. 24)

In particular, note that Pov(0)=0 (no overload for completely open schedule), and Pov(1)=1 (full overload

for schedule with no open slots), which certainly corresponds to our intuition.

Now we demonstrate that the formula for W(N,K) can be efficiently approximated with a more simple

expression, to which it also converges for the large values of N:

Corollary 2 (“asymptotic W”):

Rewriting (Eq. 21) and (Eq. 22) as functions of the system utilization u=K/N results in

𝑊(𝑢) =
𝜀𝑢(1 + 𝜀 + 𝜀2 − 𝑢)

(1 + 𝜀 − 𝑢)(1 + 2𝜀 − 𝑢)

𝑁→∞
→ 𝑊𝑎(𝑢) =

𝜀𝑢

 1 + 2𝜀 − 𝑢
, 𝜀 =

1

𝑁
 (Eq. 25)

|𝑊(𝑢) −𝑊𝑎(𝑢)| ≤
1

2𝑁
 for 𝑢 ∈ [0,1]

Proof:

As N increases, ε tends to 0, therefore one can neglect the highest order 𝜀2 term in the numerator,

which reduces W(u) to the expression for Wa(u). Note that 𝑊(𝑢) = 𝑊𝑎(𝑢) (1 +
𝜀2

 (1+𝜀−𝑢)
), where

𝜀2

 (1+𝜀−𝑢)
≤ 𝜀 =

1

𝑁
 for any 𝑢 ∈ [0,1]. Since 𝑊𝑎(𝑢) ≤ 𝑊𝑎(1) =

1

2
, this leads to |𝑊(𝑢) −𝑊𝑎(𝑢)| ≤

1

2𝑁
.

q.e.d.

Figure 7: Comparing W(u) (solid lines) and its asymptotic approximation Wa(u) (dashed lines) for different schedule

sizes N. As one can see, for N beyond 10 the two curves become practically identical.

As a result, one can use Wa(u) as a very tight approximation to the original W(u) function (Figure 7); and

both overload probability Pov(u) and wait time W(u) can be seen as having hyperbolic behavior w.r.t.

system utilization u.

To obtain analytical solutions for the critical curvature value, we need to solve for the curvature extrema

points, which we accomplish with the following lemma:

Lemma 2 (“hyperbolic curvature”):

Function 𝑓(𝑢) =
𝑎

𝑏−𝑢
+ 𝑑(1 − 𝑢), 𝑎, 𝑏 > 0, 𝑢 < 𝑏 has curvature

𝑘(𝑢) =
2𝑎(𝑏 − 𝑢)3

[(−𝑑(𝑏 − 𝑢)2 + 𝑎)2 + (𝑏 − 𝑢)4]3/2

which attains its maximum value at 𝑢𝑐 = 𝑏 − √
𝑎2

𝑑2+1

4

Proof:

Using the definition of curvature 𝑘(𝑢) =
𝑓′′

(1+(𝑓′)2)3/2
, we compute the derivatives:

𝑓′(𝑢) =
𝑎

(𝑏−𝑢)2
− 𝑑, 𝑓′′(𝑢) =

2𝑎

(𝑏−𝑢)3

leading to

𝑘(𝑢) =
𝑓′′

(1 + (𝑓′)2)
3
2

=

2𝑎
(𝑏 − 𝑢)3

(1 + (
−𝑑(𝑏 − 𝑢)2 + 𝑎
(𝑏 − 𝑢)2

)
2

)

3/2
=

2𝑎(𝑏 − 𝑢)3

((−𝑑(𝑏 − 𝑢)2 + 𝑎)2 + (𝑏 − 𝑢)4)3/2

=
2𝑎𝑡3

((−𝑑𝑡2 + 𝑎)2 + 𝑡4)3/2
= 𝑘(𝑡), 𝑡 = 𝑏 − 𝑢 > 0

To find the maximum point, we set the derivative 𝑘′(𝑡) = 0, yielding the following equation:

6𝑎𝑡2[(−𝑑𝑡2 + 𝑎)2 + 𝑡4]−3/2 =
5

2
2𝑎𝑡3[2(−𝑑𝑡2 + 𝑎)(−2𝑑𝑡) + 4𝑡3][(−𝑑𝑡2 + 𝑎)2 + 𝑡4]−5/2

which for t>0 simplifies to

𝑡4(𝑑2 + 1) = 𝑎2, 𝑡 = 𝑏 − 𝑢 > 0,

yielding the only possible solution for 𝑢 < 𝑏

 𝑡𝑐 = √
𝑎2

𝑑2+1

4
= 𝑏 − 𝑢𝑐,

Under the assumption 𝑎, 𝑏 > 0, 𝑢 < 𝑏 this corresponds to the maximum point of k(u).

q.e.d

Corollary 3 (“critical utilization in discrete scheduling”):

Critical utilization values for overload probability and asymptotic wait in discrete scheduling are

𝑢𝑐 = 1 +
2

𝑁
− √

1

𝑁
+
2

𝑁2
= 1 −

1

√𝑁
+
2

𝑁
−

1

𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
) = 1 −

1

√𝑁
+ 𝑂 (

1

𝑁
)

 (Eq. 26)

𝑢𝑐
𝑜𝑣 = 1 +

1

𝑁
− √

1

𝑁
+
1

𝑁2
= 1 −

1

√𝑁
+
1

𝑁
−

1

2𝑁√𝑁
+ 𝑂 (

1

𝑁2√𝑁
)

= 1 −
1

√𝑁
+ 𝑂 (

1

𝑁
)

 (Eq. 27)

Proof:

The proof follows directly from our definition of critical utilization and Lemma 2, since in the case of

asymptotic Wa(u) we have

𝑊𝑎(𝑢) =
1

𝑁

𝑢

1 +
2
𝑁
− 𝑢

= −
1

𝑁
+

1
𝑁
(1 +

2
𝑁
)

1 +
2
𝑁
− 𝑢

The first constant term has no effect on curvature, and the second corresponds to

𝑎 =
1

𝑁
(1 +

2

𝑁
) =

1

𝑁
+
2

𝑁2
, 𝑏 = 1 +

2

𝑁
, 𝑑 = 0

in Lemma 2, yielding

𝑢𝑐 = 1 +
2

𝑁
−√

1

𝑁
+
2

𝑁2
= 1 +

2

𝑁
−
1

√𝑁
(1 +

2

𝑁
)

1
2
= 1 +

2

𝑁
−
1

√𝑁
{1 +

1

𝑁
+ 𝑂 (

1

𝑁2
)}

= 1 −
1

√𝑁
+
2

𝑁
−

1

𝑁√𝑁
+𝑂 (

1

𝑁2√𝑁
)

The result for 𝑃𝑜𝑣(𝑢) is proven in the same way.

q.e.d.

It is interesting to observe that both critical utilizations, 𝑢𝑐
𝑜𝑣 and 𝑢𝑐 , although derived from two

different cost functions, result in very similar values, converging asymptotically to 1 −
1

√𝑁
 .

Corollary 4 (“critical utilization of queueing”):

Critical utilization of Pollaczek–Khinchine formula

𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2 + 𝜆2𝑉

2(1 − 𝑢)
)

can be found as 𝑢𝑐
𝑃𝐾ℎ = 1 − √

(1+𝜆2𝑉)2

1+4𝜆2

4

Proof:

𝑊𝑃𝐾ℎ(𝑢) =
1

𝜆
(𝑢 +

𝑢2 + 𝜆2𝑉

2(1 − 𝑢)
) = −

1

2𝜆
 (1 − 𝑢) +

1 + 𝜆2𝑉

2𝜆(1 − 𝑢)

Therefore, we can apply Lemma 2, using

𝑎 =
1 + 𝜆2𝑉

2𝜆
, 𝑏 = 1, 𝑑 = −

1

2𝜆

resulting in

𝑢𝑐
𝑃𝐾ℎ = 1 − √

𝑎2

𝑑2 + 1

4

= 1 − √
(1 + 𝜆2𝑉)2

1 + 4𝜆2

4

= 1 −
√1 + 𝜆2𝑉

√1 + 4𝜆2
4 (Eq. 28)

q.e.d

In particular, setting parameters V=0, λ=N as an approximation to our discrete scheduling scenario leads

to

𝑢𝑐
𝑃𝐾ℎ = 1 − √

1

1 + 4𝑁2

4

One can easily demonstrate (by substituting 𝑥 =
1

√𝑁
, and expanding as Taylor series at x=0) that

𝑢𝑐
𝑃𝐾ℎ = 1 − √

1

1 + 4𝑁2

4

= 1 −
1

√4
4
√𝑁

+
1

16√4
4
𝑁2√𝑁

+ 𝑂 (
1

𝑁4√𝑁
) (Eq. 29)

That is, as N increases, critical utilization 𝑢𝑐
𝑃𝐾ℎ for the queueing wait time converges to 1 as 1 −

1

√4
4
√𝑁

,

which is very similar, but faster compared to 𝑢𝑐 = 1 −
1

√𝑁
 in the case of discrete scheduling.

9 References

Begen, M. A., & Queyranne, M. (2011). Appointment scheduling with discrete random durations.

Mathematics of Operations Research, 240-257.

Blake, J. T., Carter, M. W., & Richardson, S. (1996). An Analysis of Emergency Room Wait Time Issues via

Computer Simulation. INFOR: Information Systems and Operational Research, 34(4), 263-273.

Brown, L. D., Gans, N., Mandelbaum, A., Sakov, A., & Shen, H. (2005). Statistical Analysis of a Telephone

Call Center. Journal of the American Statistical Association, 100 (469), 36-50.

Cayirli, T., & Veral, E. (2003). Outpatient scheduling in healthcare: A review of literature. Production and

Operations Management, 519–549.

Chan, W., & Maa, D. (1978). The GI/Geom/N Queue In Discrete Time. INFOR. Information systems and

operational research, 232-252.

Cooper, R. B. (1981). Introduction to Queueing Theory. New York: North-Holland.

Dhall, S. K., & Liu, C. L. (1978, January-February). On a Real-Time Scheduling Problem. Operations

Research, 26(1), 127-140.

Erlang, A. K. (1909). The theory of probabilities and telephone conversations. Nyt Tidsskrift for

Matematik , 33-40.

Gradshteĭn, I., & Ryzhik, I. (2007). Table of integrals, series, and products. Amsterdam: Elsevier.

Heimann, D., & Neuts, M. (1973). The single server queue in discrete time-numerical analysis IV. Naval

Research Logistics Quarterly, 753-766.

Huggins, A., Claudio, D., & Eduardo, P. (2014). Improving Resource Utilization in a Cancer Clinic: An

Optimization Model. Proceedings of the 2014 Industrial and Systems Engineering Research

Conference, (p. 1444).

Kc, D., & Terwiesch., C. (n.d.). Impact of Workload on Service Time and Patient Safety: An Econometric

Analysis of Hospital Operations. Management Science, 55(2009), 1486–1498.

Kleinrock, L. (1975). Queueing Systems Volume 1: Theory. New York, NY: Wiley.

Klimko, E., & Neuts, M. (1973). The single server queue in discrete time-numerical analysis II. Naval

Research Logistics Quarterly, 305-319.

Kumar, S. (2001). Analytical and metaheuristic solutions for emerging scheduling problems in e-

commerce and robotics. The University of Texas at Dallas, Naveen Jindal School of Management.

ProQuest Dissertations Publishing.

LaGanga, L., & Lawrence, S. (2012). Appointment Overbooking in Health Care Clinics to Improve Patient

Service and Clinic Performance. Production and Operations Management, 874-888.

Little, J. D. (1961, May-June). A Proof for the Queuing Formula: L= λ W. Operations Research, 9(3), 383-

387.

López, J. M., García, M., Díaz, J. L., & García, D. F. (2000). Worst-Case Utilization Bound for EDF

Scheduling on Real-Time Multiprocessor Systems. Proceedings 12th Euromicro Conference on

Real-Time Systems, (pp. 25-33).

Marchesi, J. F., Hamacher, S., & Fleck, J. L. (2020). A stochastic programming approach to the physician

staffing and scheduling problem. Computers & Industrial Engineering, 142.

Neuts, M. F. (1973). The single server queue in discrete time-numerical analysis I. Naval Research

Logistics Quarterly, 297-304.

Neuts, M., & Klimko, E. (1973). The single server queue in discrete time-numerical analysis III. Naval

Research Logistics Quarterly, 557-567.

Petrean, A. L. (1998). Application of the Queueing Theory to Discrete Event Simulation. Buletinul ştiinţific

al Universitatii Baia Mare, Seria B, Fascicola matematică-informatică, 14(1), 81-88.

Pollaczek, F. (1930). Über eine Aufgabe der Wahrscheinlichkeitstheorie. I. Mathematische Zeitschrift, 32,

64-100.

Punitha, S. (2018). Design and evaluation of traffic delays in toll plaza using combination of queueing

and simulation. Journal of physics, 1139(1), 1-9.

Rosenthal, D., & Pianykh, O. (2021). Efficient Radiology: How to Optimize Radiology Operations. Springer

International Publishing.

Wainer, G. A. (2009). Discrete Event Modeling and Simulation: A Practitioner's Approach. Boca Raton:

CRC Press.

Zacharias, C., & Pinedo, M. (2014). Appointment Scheduling with No-Shows and Overbooking.

Production and Operations Management, 23(5), 788-801.

Zacharias, C., & Yunes, T. (2019). Multimodularity in the Stochastic Appointment Scheduling.

Management Science, 744-763.

