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Highlights 

 We model the spread of an epidemic in its early stage using the network-based approach. 
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 We compare the network-based approach with the equation-based approach using simulation. 

 The empirical data of spread of Covid-19 from eight countries is considered for validation. 

 Partial curve mapping is used to compare simulated results with the empirical data. 

 The network-based approach matches the empirical data better than the equation-based 

approach. 

 

 

 

Predicting the outbreak of epidemics using a network-based approach 

Abstract 

The spread of epidemics is a common societal problem across the world. Can operational research be 

used to predict such outbreaks? While equation-based approaches are used to model the trajectory of 

epidemics, can a network-based approach also be used? This paper presents an innovative application 

of epidemic modelling through the design of both approaches and compares between the two. The 

network-based approach proposed in this paper allows implementing heterogeneity at the level of 

individuals and incorporates flexibility in the variety of situations the model can be applied to. In 

contrast to the equation-based approach, the network-based approach can address the role of 

individual differences, network properties, and patterns of social contacts responsible for the spread of 

epidemics but are much more complex to implement. In this paper, we simulated the spread of 

infection at the beginning of Covid-19 (Coronavirus disease 2019) using both approaches. The results 

are showcased using empirical data for eight countries. Sophisticated measures, including partial 

curve mapping, are used to compare the simulated results with the actual number of infections. We 

find that the plots generated by the network-based approach match the empirical data better than the 

equation-based approach. While both approaches can be used to predict the spread of infections, we 

conclusively show that the proposed network-based approach is better suited with its ability to model 

the spread of epidemics at the level of an individual. Hence, this can be a model of choice for 

epidemiologists who are interested to model the spread of an epidemic.  

Keywords 

OR in medicine; Covid-19 pandemic; Epidemic model; Networks; Simulation.   
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The outbreak of infectious diseases like SARS, H1N1, and Ebola have been frequent occurrences in 

recent years. What has been uncommon till the outbreak of Covid-19 (Coronavirus disease 2019) is 

the scale and magnitude of its spread. Covid-19, which emerged first in December 2019 in Wuhan, 

China, has affected millions and has caused damage to life and livelihood worldwide. Understanding 

the spread of infection in a complex system such as society is difficult and accurate forecasting of an 

epidemic is particularly challenging (Hofman et al., 2017; Jasny & Stone, 2017). It is important to 

model the early spread of an epidemic since such a model enables us to understand the scale, and is 

necessary for estimating the facilities required to control the spread of disease in the future (Lotfi et 

al., 2022; J. W. Taylor & Taylor, 2023). In this context, it is also noted that the growth pattern of this 

infection varied across the countries (Wilinski & Szwarc, 2021). As shown in Figure 1, during 

December 2019 to February 2020, Covid-19 began as an epidemic in China and started spreading to 

other parts of the world through Europe. 

 

Figure 1. Spread of Covid-19 at the beginning of the epidemic across the globe 

Given the catastrophic impact of Covid-19 and the relevance of operational research to address global 

health issues using its problem-solving techniques (Silal, 2021), it is logical to ask how we can use the 

innovative applications of operational research to fight the spread of such an epidemic? In this paper, 

our first research question is: 

RQ1: How can we realistically model the spread of the infection at the onset of an epidemic? 

There are existing approaches to study the spread of infectious diseases. However, these approaches 

either focus on a specific region (Renardy et al., 2020) or a country (Alrasheed et al., 2020) and are 

limited by their assumptions. For example, well-known epidemic models often make assumptions 

such as fixed transmission rate of infection which do not hold in the current context (J. T. Chang & 

Kaplan, 2023). There are studies that analyse the spread of epidemics across multiple countries 

(Appadu et al., 2021) but they primarily rely on techniques that forecast macro-level outcomes rather 
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than micro-level interactions. This creates a research gap and provides a scope for creating a bottom-

up approach that can be applied to study macro-level outcomes based on micro-level interactions and 

which can be tested for multiple scenarios through simulations (Gupta et al., 2021; Ma & Nakamori, 

2005). We fulfil the gap in this paper by first implementing a top-down equation-based approach to 

model the spread of an epidemic using homogenous parameters values at an aggregate population 

level. Then we propose a bottom-up network-based approach using heterogeneous values of 

parameters at an individual level. The parameters used to describe the contagiousness of the epidemic 

and the mechanism of its spread are discussed in detail. This leads us to our next research question: 

RQ2: What would be the impact of varying the parameters of interest in the equation- and 

network-based approaches on the predicted trajectory of the epidemic?    

In modelling the spread of epidemics, multiple input parameters are used. The choice of the value of 

these parameters, such as the size of the population, the fraction of infected individuals at the 

beginning, basic reproductive number to describe the contagiousness of the epidemic, and the type of 

underlying contact network structure, play a vital role in determining its spread. In this regard, we 

performed simulations using the equation- and the network-based approaches and studied the effect of 

varying the parameters of interest. We observed the changes in the predicted trajectory of number of 

infections in response to the variation of the values of parameters for each approach. In our third 

research question we ask: 

RQ3: How can we determine the best fit model based on a comparison between the trajectory of 

the spread of infections? 

To determine the best fit model, we compared the results of the equation- and network-based 

approaches using empirical data from different countries. For this purpose, we first collected data 

about the trajectory of newly infected cases for eight countries. These countries are compared using 

relevant country-level attributes. We formulated a dissimilarity index to assess the similarities 

between the countries. We used this knowledge to determine if the Covid-19 infections of countries 

which are similar or dissimilar in terms of their dissimilarity index followed the same pattern for their 

spread of the epidemic. These countries are further grouped into four clusters based on the visual 

similarity between their trajectory of newly infected cases. To determine the extent of this visual 

similarity, we used quantitative measures to compare the trajectory of newly infected cases under 

various scenarios. We compared the similarity between the patterns of the curves using partial curve 

mapping (Jekel et al., 2019). A model is considered best fit if it matched the empirical data 

consistently based on the proposed measures. We found that the trajectories generated by the network-

based approach matched the empirical data more closely than the equation-based approach. 

This paper contributes to the development and implementation of a novel network-based approach 

and compares its performance with that of the equation-based approach under different scenarios. We 
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contribute by modelling heterogeneity at the level of an individual in the proposed network-based 

approach. Second, we incorporate flexibility by running simulations with different contact network 

structures, different values of parameters describing the infection, and individual attributes. Third, we 

simulate different scenarios and compare the results with empirical data for eight countries. Apart 

from contributing to the development of a novel network-based approach, the findings from our 

research help us identify the spread of infections at the initial stage of an epidemic.  

The rest of this paper is structured as follows. Section 2 describes the literature review. The following 

methodology section describes the assumptions and the techniques of simulation for both the 

equation- and the network-based approaches. The fourth section is dedicated to the description of data 

used in implementing the simulations using various parameters. Section 5 reports the results and 

compares them with empirical data. Section 6 discusses the implications and limitations of this study. 

Finally, section 7 summarizes the contribution of this study and concludes the paper. 

2. Literature review 

Epidemic models are widely used across multiple disciplines (Adly et al., 2020; Bozzani et al., 2021; 

Camacho et al., 2020), but are less explored in operational research (Pazoki & Samarghandi, 2021; 

Yaesoubi & Cohen, 2011). Data-driven research using techniques of operational research is relevant 

for the study of the outbreak of Covid-19, and as such operational researchers are now focussing on 

ways to fight the epidemic (Choi, 2021; Farahani et al., 2023). Existing epidemic models have been 

used to forecast aggregate outcomes like the number of infections (Nikolopoulos et al., 2021). The 

methods employed by the existing models can be grouped under mathematical, computational, and 

machine learning approaches. Mathematical models that are easier to understand and require low 

computational power are dominant (Duan et al., 2015), whereas advanced machine learning models 

have been gaining popularity in recent years.  

Mathematical models are the earliest approaches used in epidemic modelling. They are well-

established and have been used for modelling the spread of Covid-19, and many other infectious 

diseases (Brauer et al., 2019; Capasso, 2008; Grave et al., 2021; Martcheva, 2015). Forecasting 

methods such as time-series, ARIMA, exponential smoothing have been used as well and ARIMA has 

often outperformed the others (Petropoulos & Makridakis, 2020). However, forecasting the spread of 

infection in a society can be challenging without observing the system's evolution. Under 

mathematical models, the most commonly used method is ordinary differential equations (ODEs). 

Such models have been in great demand since the outbreak of Covid-19 (Grave et al., 2021; 

Martcheva, 2015). However, such models are limited by their consideration of variations over time 

and not space and homogenous treatment of individuals. To address the variation between individuals, 

these models divide the population into subgroups based on the individual's age, infectivity, and 

occupation (Duan et al., 2015) but are limited in their capability to represent the spread of infection in 
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detail. Finally, these models are also highly dependent on model assumptions and fitting techniques 

(Alahmadi et al., 2020; Vytla et al., 2021) and so they do not reveal the dynamic dependency of 

parameters on the epidemic (Masum et al., 2022). For example, these models assume a fixed rate of 

transmission of an infection which is seldom the case in reality (Chang & Kaplan, 2023). Thus, 

although equation-based approaches are the natural choice of researchers to capture macro-level 

dynamics of an epidemic at a low computational cost, these models may not be the best choice to 

understand how the infection spreads. Machine learning models are gaining popularity in recent years. 

A study (Ribeiro et al., 2020), that focussed on comparing the performance of a mathematical model 

based on ARIMA with a machine learning model based on support vector machines, found the 

machine learning counterpart to have higher accuracy (Masum et al., 2022). Extant studies have 

demonstrated the superiority of deep learning techniques such as recurrent neural networks in 

accurately predicting the spread of infection. However, they do not reveal the transmission 

mechanism of an infection (Alahmadi et al., 2020).  

We may look at another set of methods that may be better in exploring the dynamics behind the 

spread of infection. Computational models that explore the spread of infection at a micro-level are 

increasingly used to study epidemic outbreaks (Duan et al., 2015). Such models like the 

metapopulation model provide a detailed representation of realities (Duan et al., 2015). This model 

has the advantage of describing the spread of infection spatially across regions. However, it assumes 

well-mixed, homogenous subpopulations and is limited in explaining the spread of infection. On the 

other hand, agent-based models are a promising and well-known bottom-up approach under 

computational models that model each individual or agent in a population and their interactions 

defined by some rules. They can incorporate the heterogeneity at the level of individuals and their 

interactions through micro-level analysis. These models delineate the stochastic nature of the spread 

of infection (Duan et al., 2015). However, they are much more complex to understand and implement. 

Under the computational approach, there exists another type known as network-based approaches, 

which can handle heterogeneity at the individual level and can model the spread of infection in a 

population (Duan et al., 2015; Kiss et al., 2017). Compared to mathematical models, a network-based 

approach can represent the heterogeneous environment in which an infection spreads by controlling 

the parameters of nodes and links. Using simulations, these models can explore how the infection 

spreads and how the network evolves over time. However, most of them consider unweighted 

networks, thereby losing sight of the interaction patterns (Duan et al., 2015). Therefore, the 

classification of extant studies based on a single dimension (i.e., method of analysis) is not 

straightforward. Some recent studies (Du et al., 2021; Hunter et al., 2020; Miranda et al., 2021) have 

combined and contrasted multiple methods by proposing hybrid models.  

Epidemic models can also be further classified based on whether they have used commercial software 

(Aggarwal et al., 2020), custom-built simulation tools (Appadu et al., 2021), or standardized 
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techniques (Alenezi et al., 2021) for implementation. However, irrespective of their choice of 

software, they generally lack a flexible model that can be used to model various scenarios by selecting 

different underlying contact network structures. In this regard, a hybrid simulation modelling 

approach (Brailsford et al., 2019)  may be useful. The underlying epidemic model that is used in most 

of these studies divides the population into compartments. The standard compartmental model (Brauer 

et al., 2019; Capasso, 2008; Kermack & McKendrick, 1927; Martcheva, 2015; Treibert, 2021) i.e., 

Susceptible-Infected-Removed (SIR) assumes that individuals in the population under study can be 

categorized into one of the compartments S, I, or R. There are many variations to the standard 

compartmental model based on the number and description of compartments. However, all rely on the 

premise of dividing the population into compartments and studying the transitions between them. The 

models used to study epidemics can also be classified into deterministic models (Alenezi et al., 2021; 

Shapiro et al., 2021) and stochastic models (Yaesoubi & Cohen, 2011; Zhang et al., 2020). 

Deterministic models such as those based on ODEs are top-down and primarily focused on macro-

level analysis. They are useful for predicting aggregate outcomes but do not provide insights about 

how the infection is transmitted from one individual to another. Stochastic approaches, such as the 

network-based approach, are bottom-up. They are less common but are better suited to realistically 

capture the transmission of an infectious disease (Zhang et al., 2020). The literature on epidemic 

models is vast (Lu & Borgonovo, 2023) with high-quality papers getting published on a variety of 

research problems associated with the Covid-19 pandemic (Farahani et al., 2023). Our study aims to 

address the inherent gaps in the literature by developing a network-based approach that effectively 

captures heterogeneity at the level of individuals and can be broadly applied across various situations. 

Table 1 provides a glimpse of existing methods, some key references, the key contributions, gaps in 

existing studies, and explains how the current research aims to fill those gaps. 

Table 1. A glimpse of extant literature on epidemic models 

Methods of 

Analysis  

Key Reference Key Contribution Gap Contribution of Current Research 

 

Forecasting  

(Ding et al., 

2021) 

Provides long-term prediction and analysis 

of epidemic dynamics 

Study is specific to South 

Africa 

It models the spread of infection by 

considering variations over time and 

space for micro-level interactions. It 

incorporates heterogeneity at the 

level of network, infection, and 

individuals. It adds flexibility in the 

choice of input parameters, including 

the selection of the underlying 

network structure. It allows a 

comparison of the simulated outcome 

of model scenarios with empirical 

data for multiple countries using 

sophisticated measures in an 

uncertain situation like the beginning 

(Appadu et al., 

2021) 

Conducts multi-country analysis using 

forecasting methods 

Does not focus on micro-level 

interactions  

ODEs (Gebremeskel 

et al., 2021) 

Studies a compartmental epidemic model 

with sensitivity analysis 

Study is specific to Ethiopia 

 

Agent-

based 

 

(Ajelli et al., 

2010) 

Compares agent-based and metapopulation 

stochastic model for a pandemic event in 

Italy 

Difficulty in gathering datasets 

for most regions of the world 

  Proposes agent-based modelling using 

computational simulation of the pandemic 

in Australia 

Does not explicitly model the 

underlying contact network 

 

Network-

(Alrasheed et 

al., 2020) 

Provides a contact network-based approach 

that captures realistic social dynamics  

Model is specific to Saudi 

Arabia 
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based (Renardy et al., 

2020) 

Proposes a network based on synthetic 

population and models of disease 

progression 

The underlying contact 

network is static  

of an epidemic when limited 

information is available. 

 

3. Methodology 

In this section we discuss a standard SIER compartmental model for studying the spread of epidemics 

using an equation-based approach. In our study, we select SEIR over SIR because there exists an 

incubation period for Covid-19. Our choice of SEIR over SIR is further strengthened by the results of 

a recent study (Alenezi et al., 2021) that showed SEIR is better suited than SIR to predict infections 

for Covid-19. This discussion is followed up by the design and implementation of the proposed 

network-based approach. 

3.1. Studying the spread of the epidemic using the equation-based approach 

Although there can be many variations of the equation-based approach (Basnarkov, 2021; Gwizdałła, 

2020), we study a representation that retains the properties of an ODE and can be compared with the 

network-based approach. The equation-based approach is defined below: 

On day t, S(t), E(t), I(t), and R(t) denote the number of people in susceptible, exposed, infected and 

recovered states respectively. Those in state R are infected earlier and are assumed to have either 

recovered or died. If   denotes the size of the population, then on any given day t, 

   ( )   ( )   ( )   ( )               (1)        

The rate at which S transitions to E by coming in contact with infected individuals is denoted as β, the 

rate at which E transitions to I after spending an incubation period is denoted as  , and the rate at 

which I transitions to R depending on the number of days an individual can spread the disease before 

either recovery or death is denoted as γ. The following relationships can be used to define   and  .  

   
 

                 
        (2) 

   
 

                                                        
   (3) 

The basic reproductive number    that denotes the total number of individuals an infected person 

infects can be defined as: 

R₀ = β / γ         (4) 

The value of β, can be derived from R₀ and  . The SEIR model is expressed by the following ODEs 

(Please refer to Appendix A for further details): 

                         (5) 
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                             (6) 

                         (7) 

                     (8) 

3.2. Simulation of the equation-based approach 

To simulate the equation-based approach described in the previous section we choose a variety of 

parameters. The output is sensitive to the choice of input parameters. The equation-based approach 

accepts the size of the population  , the number of infected I (0) and exposed E (0) at the beginning, 

incubation period 1/  , number of days an infected person can spread the disease    γ and the basic 

reproductive number   . The equation-based approach is top-down and assumes individuals in a 

population are homogenous and interactions are implicit (Edoh & Maccarthy, 2018). In general, 

ODEs are used to model the spread of epidemics in the equation-based approach, and the results are 

deterministic. The equation-based approach is simple to use but have its limitations. It is sensitive to 

the choice of parameters determining the probability of infection and the heterogeneity of the 

population. Except for few studies (Gwizdałła, 2020; Miranda et al., 2021), this approach fails to 

address any difference arising from the underlying contact structure. In this study we compare two 

different models that use separate values of    under the equation-based approach and have the same 

initial conditions.  

3.3. Studying the spread of the epidemic using the network-based approach 

The spread of an epidemic in a networked environment is shown in Figure 2. This figure illustrates a 

simple network with nine individuals represented by the nodes and connected by the links. On day 1, 

node 1 represents an infectious individual, and its two neighbouring nodes 2 and 3 that are exposed. 

The rest of the individuals in the network, denoted as nodes 4 to 9, who are not in direct contact with 

the infectious node, are susceptible to infections in future. On day 2, one of the exposed neighbours, 

i.e., node 2 becomes infectious and its neighbouring node 4 is now exposed. With the progress of 

time, the disease spreads through the network. An infected individual either dies or recovers and 

becomes disconnected from the network like node 1 on day 3. 

 

Figure 2. Transmission of infections during an epidemic on a network 

The following paragraphs elaborate how the transmission of the epidemic is modelled realistically in 

the network-based approach. The process consists of describing the model assumptions, defining the 

model parameters, creating the contact network, configuring the parameters, and implementing the 

                  



9 
 

logic for updating the network. Although the network-based approach is similar to the homogenous 

compartmental models, it considers an individual to be different from others in their ability to 

withstand the virus. It is assumed that this variation arises from the difference in the level of immunity 

and exposure to the virus. The spread of infection in a connected network environment is described at 

the level of the network, individual nodes, and links.  

The network level parameters are taken as inputs from the user at the beginning of the simulation. 

These parameters include the number of nodes ( ), the type of network ( ), days to gain recovery 

(  ), load reduction factor (  )  and the fraction of nodes that are considered infected ( ). The 

parameters may include network characteristics such as degree distribution and the probability of link 

formation depending on the type of network. The attributes of an individual    in the network are 

represented by node level parameters. These parameters correspond to viral load (   ), immunity 

level (   ), upper limit of viral load (     ) and days infected (  ). A link represents the contact 

between two individuals   and j. The characteristics of the link is captured by the link level 

parameters. In this model,           is the only link level parameter. The value of           is set 

between 0 to 1 at the time of network configuration and is directly proportional to the probability of 

transmission of infection between the connecting nodes. The           is a normalized value based on 

the nature of contact between the connecting nodes. Appendix B provides further details about the 

assumptions of the network-based approach. The membership of an individual node to one of the four 

compartments is based on the relationships summarized in the following table. 

Table 2. Relationships defining the membership of a node to a compartment 

Compartment Description 

                                       

                                                   

                                                VULi 

                                                                          

Note: The value of    ,    and VULi is normalized between 0 to 1 

It must be noted that in the proposed approach, an individual getting sick may get re-infected even 

after recovery depending on the value of node level attributes and their relationship. 

 

3.4. Simulation of the network-based approach 

In this paper, the network-based approach is simulated using synthetic contact networks. The 

proposed model is stochastic. The initial conditions set at the beginning of the simulation play an 

important role in determining the spread of the epidemic. The network-level parameters are set to 

values that are taken as inputs from the user. The link-level parameters are randomly assigned based 

on an algorithm following a uniform distribution within a pre-defined range. A combination of user 

input and algorithm-based assignment is used to set the initial values of the node level parameters. In 
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case of the node level parameters, a minimum threshold value of immunity,       and the upper limit 

of viral load       , are taken as user inputs. The individual values of    ,     and VULi are 

randomly assigned to each node by the algorithm following a uniform distribution. In this study, we 

compare between two different models under the network-based approach by varying only the contact 

network structure and keeping the remaining input parameters unchanged. The simulation runs in a 

loop such that at each iteration, the logic to update the network is executed once. In the first stage, the 

algorithm creates the underlying contact network structure and configures its properties as specified 

by the user. The algorithm iterates over each node and link to set the attributes at this stage. The 

second stage starts by accepting the duration to simulate the spread of disease as an input from the 

user. The logic for updating the network (Please refer to Appendix C for details) in order to simulate 

the spread of the epidemic executes within a loop. The user can simulate the spread over successive 

periods to observe how the network evolves with time.  

3.5. Difference between the two approaches 

To conclude the discussion on methodology, we present a summary of the differences between the 

two approaches used in this study.  

Table 3. Differences between the equation-based approach and the network-based approach 

Characteristics Equation-based Network-based 

 Complexity Simple Complex 

 Availability of dynamic model Common Rare 

 Execution time per run* 

(N=10000) 

Fast  

(Few seconds) 

Slow   

(Few minutes to several hours) 

Application Homogenous population Heterogenous population 

Network structure  Not explicit Can support any type 

Individual level attributes Not applicable Can support any attribute 

Nature of output Deterministic Stochastic 

Number of inputs Few Many 

Number of test-cases Relatively smaller Relatively larger 

Note: * The execution time is dependent on the processing capability of the platform where the model is executed 

The comparison between the two approaches reveals that the choice of the approach depends on 

multiple factors. Both approaches can be used to model the spread of an epidemic. The equation-

based approach works on a macro level and is simpler, faster, and easier to implement. On the other 

hand, the network-based approach works at an individual level and is preferable for studying a 

heterogeneous population. In modelling the spread of an epidemic, the nature of the contact network 

plays an important role, and this can be investigated using the network-based approach.   

4. Numerical experimentation 

4.1. Data consolidation and pre-processing 
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In the proposed network-based approach the network structure can be generated using synthetic 

generators or by accepting inputs to define any specific network structure from the user. There are 

several software packages available for network generation, analysis and visualization (Camacho et 

al., 2020). However, the choice of the programming tool based on suitable criteria (Fumagalli et al., 

2019) is important to build the simulation model. In this study, the Python programming language is 

used to create, simulate, and analyse the network-based and equation-based approaches. To create and 

manipulate networks we used the NetworkX package (Hagberg et al., 2008). This package allows the 

creation of a network from scratch as well as by using synthetic generators. The synthetic generators 

are library functions defined under the package that accepts predefined inputs and returns network 

structure based on those inputs. The integrate library under scipy.integrate (SciPy Documentation: 

Scipy.Integrate.Odeint, 2020) is used for defining and solving equation-based approaches in Python. 

Similarly, other libraries in Python are used for feature selection and for calculating additional 

measures to compare the similarity between curves. The code used for modelling and analysis is 

written and executed on the Google Colaboratory cloud servers (Google, 2018, 2021). Appendix D 

provides details about the choice of software, hardware and synthetic generators that are used in 

implementing the simulations.  

The initial value of the parameters used in the network-based approach can also be set using default 

parameters or can be taken as user input. Similarly, to run the simulation using the equation-based 

approach, the initial values of the parameters need to be set. The implementation of the network-based 

approach requires data for network generation and the values of various parameters. We searched 

open-access public datasets on Covid-19, and the dataset used by (Appel et al., 2020) is found to be 

suitable for validation of the two approaches. This dataset shows the number of individuals infected 

by Covid-19 for various countries across the world. It also contains country-wise data on development 

index, demographics, health conditions, hospital facilities, etc. We have denoted the date on which the 

number of newly infected cases in a country reached 20 at the beginning of the spread of Covid-19. 

The choice of 8 different countries is made from different regions of the world. Please refer to 

Appendix E for details on the choice of these countries. The daily number of newly infected cases is 

considered for 60 days starting from the beginning of the epidemic for Australia (AUS), South Korea 

(KOR), Germany (DEU), Iran (IRN), Spain (ESP), Switzerland (CHE), India (IND) and United States 

(US). Although there exist studies (Wilinski & Szwarc, 2021) with a longer duration of analysis, we 

have chosen 60 days for this study as we are interested in predicting the spread of newly infected 

cases at the beginning of an epidemic. The choice is consistent with earlier studies (Appadu et al., 

2021) on short, medium, and long-term predictions of an infectious disease. The choice of 60 days is 

also important as the contact network underlying the population may change beyond this time. We 

calculated a moving average of the data with an interval of 3 days to remove anomalies due to missing 

values and human errors. The data is then normalized within a range from 0 to 1 to compare the 
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patterns in the outbreak trajectories. Based on similarity in patterns we divided the countries into four 

groups, as shown in Figure 3.  

 

Figure 3. Similarity in newly infected cases of Covid-19 for different countries 

4.2. Similarity between countries in terms of country level attributes 

We calculated a dissimilarity index to compare between countries. Using extant literature (Atalan, 

2020; Kadi & Khelfaoui, 2020; Zádori et al., 2020) we identified various attributes that are considered 

responsible for the spread of Covid-19. The relevant country-level attributes included size of 

population, density of population, median age of population, gross domestic product per capita, 

cardiovascular death rate, prevalence of diabetes, number of hospital beds per thousand people, life 

expectancy, human development index, and average stringency index. To decide about the attributes 

for calculating the dissimilarity index, we implemented a feature selection process. In this process, we 

computed the correlation between all the attributes and removed correlated ones based on a threshold 

correlation value. The process is repeated for different threshold values. At a threshold of 0.65 

representing moderate correlation, we found that all attributes other than the size of the population 

and stringency index were dropped. The stringency index is a composite measure of a government's 

response at the country level to control the spread of Covid-19 with a value from 0 to 100 (Hale et al., 

2021). Please refer to Appendix F for further details on the calculation of the dissimilarity index.  

A lower value of this index depicts greater similarity between countries. According to the calculated 

value of this index, AUS is most similar to DEU and CHE, with values 0.06 and 0.08, respectively. 

However, their trajectories for newly infected cases of Covid-19 shown in Figure 3 does not match. 

On a similar note, DEU is most similar to CHE and KOR, with the dissimilarity index value of 0.13 

and 0.15 respectively, but their trajectories do not match. Thus, the country-level attributes such as the 

size of the population and stringency index can be used to group countries together although the 

pattern of the spread of newly infected cases remains dissimilar.  
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4.3. Data for simulations of the equation-based approach 

The input parameters in the case of the equation- and the network-based approaches are not the same. 

This poses a challenge in selecting the input parameters for the simulation. We selected the same 

values during the simulation of both approaches for the common input parameters. In contrast, the 

values of the remaining parameters are selected based on earlier studies. Previous studies (Burda, 

2020; Alenezi et al., 2021) have shown that the value of    plays an interesting role in the spread of 

an epidemic. In this study, we varied the value of    as mentioned in Section 3.2 to generate two 

scenarios under the equation-based approach and observed the outcomes. These two scenarios 

corresponded to the value of    = 15 and 2.5 respectively. The value of    is varied because earlier 

studies (Burda, 2020; Renardy et al., 2020) on Covid-19 have used values around 2.5. However, 

Covid-19 has some strains that are highly infectious and so a value of 15 is more appropriate to model 

the spread of highly infectious disease like measles (S. L. Chang et al., 2020). Since the equation-

based approach is deterministic, the simulation is executed once for each scenario with the choice of 

initial parameters as shown in Table 4. To begin the simulation, we entered the population size   of 

10000, the number of initial infections I(0) as 20 and number of exposed initially, E(0) as 400. The 

value of the remaining parameters for the equation-based approach is selected as shown in Table 4.  

Table 4. The parameters used for simulation of the equation-based approach 

Parameter Value References 

Incubation period, 1/   5 (Burda, 2020; Renardy et al., 2020)  

Number of days an infected person can spread 

the disease,   γ 

10 (Burda, 2020) 

Basic reproductive number,    15, 2.5 (Chang, Piraveenan, et al., 2020; Burda, 2020),  

Table 5 shows a comparison between the two model scenarios. In summary, model scenarios A1 and 

A2 are equation-based approaches that have the same choice of initial parameters except the value of 

the parameter of interest   . 

Table 5. Choice of initial parameters of the two models using the equation-based approach 

Highly Contagious Model A1 Moderately Contagious Model A2 

   ( )   ( )   ( )   ( ) = 10000 

  = 1 / 5 

   γ = 10  

   = 15 

  =    * γ = 1.5  

S0, E0, I0, R0 = N-420, 400, 20, 0 

   ( )   ( )   ( )   ( ) = 10000 

  = 1 / 5 

   γ = 10  

   = 2.5 

  =    * γ = 0.25  

S0, E0, I0, R0 = N-420, 400, 20, 0 

4.4. Data for simulations of the network-based approach 
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To simulate the spread of Covid-19 at the country level, we assumed there are multiple clusters of a 

population where the disease spreads. In this study, we consider 10 such clusters with a size of 1000 

where the infection begins. Earlier studies have used similar initial sizes of clusters (Basnarkov, 2021; 

Kim et al., 2021). The total size of the population is 10000. It is kept the same at the beginning of 

simulations for each scenario under the equation- and network-based approaches to prevent the size of 

the network (Gwizdałła, 2020) from affecting the result. It is also assumed that the number of infected 

individuals in each cluster at the beginning of the simulation is 2. It corresponded to our choice of 20 

newly infected cases as the beginning of the spread of Covid-19. In addition, the clusters are assumed 

to be in different locations of a country, and separated from each other. Thus, each cluster is 

represented by a separate network, and it is assumed that the contact networks across the different 

clusters are of the same type. The simulation is repeated 10 times with the same initial conditions to 

mimic the spread of the disease. The nature of the underlying contact network in a country is not 

known and so we simulated two distinct types of contact network structure. It considered them as two 

different scenarios under the network-based approach. The choice of contact network types used in 

the simulation is consistent with earlier studies (Dong et al., 2019; Edoh & Maccarthy, 2018; 

Gwizdałła, 2020; Jorritsma et al., 2020; Kim et al., 2021). The choice of the values of input 

parameters helped to create two different types of networks and the small-world network-based 

approach is labelled as B1 and the preferential attachment network-based approach is labelled as B2. 

Table 6 shows a comparison between the two models based on different underlying contact network 

structure. Please refer to Appendix G for details on the type of network structures used. 

Table 6. Properties of the two models using the network-based approach 

Model Type of Network Parameter Value Links Average Degree 

Small-world network-

based approach B1 

Newman–Watts–Strogatz 

small-world graph: NWSG 

Size 1000 10000 20 

K 10   

Probability of link creation 1   

Preferential 

attachment network-

based approach B2 

Barabási–Albert 

preferential attachment 

model.: BAG 

Size 1000 9900 19.8 

Number of links to 

preferentially attach 

10   

Note: The value of K is such that each node is joined with its K nearest neighbours forming a ring topology 

 

In a nutshell, model scenarios B1 and B2 are network-based approaches that differ in the underlying 

network structure. After creating the synthetic networks for the two scenarios, the values of the 

parameters that are fixed at the beginning of the simulation are shown in Table 7. 

Table 7. Values of various parameters 

Parameter Value 

Fraction infected,   0.002 
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Load reduction,    0.05 

Number of days to gain recovery,    20 

Minimum threshold of immunity,        0.5 

Minimum threshold of upper limit of viral load,         0.7 

Duration of simulation, t (in days) 60 

Note: The simulation is repeated 10 times for given initial conditions 

 

The value of   is set to 0.002 so that at the beginning of the simulation any 2 nodes in the network of 

1000 nodes are infectious. The choice of this value is based on the fact that in a networked 

environment, it is better to presume that the infection starts spreading when the number of infected is 

more than one. A larger value is not considered as we studied the spread of the epidemic in its early 

stage. The choice of the value of   , and    are based on guidance (NCIRD, 2021) indicating that the 

time to recovery from Covid-19 even for critical adult patients is within 20 days. The minimum 

threshold value of immunity is kept at 0.5. The minimum threshold of the upper limit of viral load is 

kept above the minimum immunity threshold at 0.7. During each run of the simulation, the viral load 

of nodes is updated 60 times to mimic the growth of the Covid-19 infection over 60 days. 

5. Results  

In this section we report the impact of varying the parameters of interest on the number of infections. 

First, we plot the outcome of the equation- and network-based approaches with the given choice of 

parameters. We demonstrate the effect of varying the parameter    for the equation-based approach 

and show the results as the highly contagious equation-based approach A1 and the moderately 

contagious equation-based approach A2 respectively. Next, we present the results of the two different 

scenarios obtained by varying the type of the underlying network in the network-based approach and 

denote them as the small-world network-based approach B1 and the preferential attachment network-

based approach B2 respectively. In the subsequent sections, we compare the results of these models 

with the empirical data using different measures in order to determine the models with the best fit.  

5.1. Outcome of the approaches 

5.1.1. Equation-based approach 

Figure 4 shows the variation of infections for highly contagious equation-based approach A1 and the 

moderately contagious equation-based approach A2, by varying the value of    and keeping all other 

parameters constant. In the plots, the x-axis denotes the day in progression of infection and the y-axis 

denotes the number of newly infected individuals on that day normalized between 0 to 1.  
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Figure 4. Simulation results for models A1 and A2 using the equation-based approach 

 

In Figure 4, models A1 and A2 are obtained using the values of    = 15, and 2.5 respectively. It is 

observed that with a decrease in the value of    the curve shifts to the right and the epidemic 

continues beyond the time period of 60 days. On the other hand, for a higher value of    the epidemic 

reaches its peak and dies down faster. Although, it may seem counter-intuitive that reducing the 

transmission rate is key to controlling the disease based on sensitivity analysis performed on the value 

of    in an earlier study (Gebremeskel et al., 2021), our result points to an interesting aspect of 

epidemic models. While    = 2.5 is in the range of values used in earlier studies (Burda, 2020; 

Renardy et al., 2020) on Covid-19,    = 15 corresponds to the spread of highly infectious disease like 

measles (S. L. Chang et al., 2020). It is interesting to note that given a population of 10000, the 

equation-based approach reaches a saturation point in which majority of the population gets infected 

and is subsequently removed earlier due to a higher value of   .  

5.1.2. Network-based approach 

The network-based approach models the spread of epidemic realistically by incorporating the 

characteristics of the entire population, disease at the level of an individual, and underlying contact 

network structure through user-defined input parameters. To demonstrate how this approach can be 

applied to various situations, we vary the underlying contact network structures keeping all other 

input parameters constant. We plot the results of the simulation using the small-world network-based 

approach B1 and the preferential attachment network-based approach B2, as shown in Figure 5. The 

plots show how the spread of the epidemic varies with the underlying contact network structure.  
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Figure 5. Simulation results based for models B1 and B2 using the network-based approach 

 

In order to investigate the sensitivity of the output of the proposed model with respect to other input 

parameters, we vary the value of        between 0.5 to 0.9 for each of the above scenarios. In the 

preferential-attachment based model B2, we observe no significant difference. However, some 

changes are observed for the small-world network-based approach B1.  

5.2. Comparison between the trajectory of the outbreak and actual infections 

In order to compare between the outputs corresponding to the approaches and identify to what extent 

the outputs match the data corresponding to the eight different countries, a number of similarity 

measures are used. These include comparing the peak, calculating the error based on sum-of-squares 

based difference, and correlation between the slope of the curves. Furthermore, sophisticated 

measures like partial curve mapping, dynamic time warping, and curve length approach are used.  

5.2.1. Comparison based on peak 

To compare the simulation results with the empirical data, we first compare the day when the peak is 

reached. The comparison is made by identifying the day on which the maximum normalized value of 

the newly infected case is registered over the period of 60 days for each country. Please refer to 

Appendix H for details on how the actual number of cases are normalized and the peak is calculated 

for each country. It is observed that model B2 exactly matches KOR in terms of the day on which the 

peak is reached. We also find that the highly contagious model A1 matches AUS with a difference of 

1 day and the small-world network-based approach B1 matches ESP and CHE with a difference of 1 

and 3 days, respectively. In terms of predicting when the peak is reached, the network-based 

approaches (model B1 and model B2) yield better results for the given dataset. One limitation of 

matching the peak is that while the peak of the trajectory of newly infected cases for a scenario and 

country may match, the pattern of their growth and decline may be different.  

5.2.2. Comparison based on sum-of-square based difference 

To further compare between trajectories, we calculate the sum-of-squares-based difference between 

the normalized values corresponding to data points for 60 days for each of the 32 pairs, i.e., a 
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combination of the 4 model scenarios and 8 countries. Table 8 provides a snapshot of the calculation 

of the difference between the normalized values corresponding to the 4 scenarios and AUS for the 

first 14 days. The detailed table with calculation for all countries is shown in Appendix I. 

Table 8. Calculation of the sum-of-square based difference corresponding to AUS 

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A1 0.00 0.02 0.02 0.04 0.06 0.09 0.13 0.18 0.26 0.35 0.45 0.56 0.68 0.78 

A2 0.00 0.04 0.04 0.07 0.10 0.12 0.14 0.16 0.18 0.19 0.21 0.23 0.25 0.27 

B1 0.09 0.30 0.28 0.43 0.53 0.61 0.63 0.68 0.70 0.71 0.71 0.72 0.75 0.78 

B2 0.11 0.30 0.30 0.49 0.64 0.76 0.82 0.83 0.85 0.88 0.95 0.99 1.00 1.00 

AUS 0.02 0.01 0.01 0.02 0.04 0.07 0.09 0.11 0.13 0.18 0.23 0.30 0.38 0.74 

(A1-AUS) ^2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.09 0.00 

(A2-AUS) ^2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.22 

(B1-AUS) ^2 0.00 0.09 0.07 0.17 0.23 0.29 0.29 0.32 0.32 0.28 0.23 0.18 0.14 0.00 

(B2-AUS) ^2 0.01 0.08 0.08 0.22 0.36 0.47 0.53 0.51 0.51 0.49 0.52 0.48 0.38 0.07 

Note: All values are rounded to two decimal places 

In Table 8, the value 0.00 for the cell corresponding to the row (A1-AUS) ^2 and column 1 denotes 

the square of the difference between the normalized values of model A1 and AUS on day 1. Although 

not shown in Table 8, this calculation is repeated for AUS for 60 days. Similarly, it is repeated for the 

other 7 countries for 60 days as well. Finally, the sum of the differences for each scenario-country pair 

is taken, and a similarity score is calculated to identify the best fit. The sum-of-square of difference is 

divided by the maximum possible sum, i.e., 60, as the difference at a particular cell can take a 

maximum value of 1 to calculate the score. The result which is a number between 0 to 1 is a measure 

of the difference. It is subtracted from 1 and multiplied by 100 to obtain a percentage value to convert 

the result to a similarity score. 

                   *  (                                 )+      

In this way we obtain a similarity score for each model-country pair and identify the model which fits 

a country best. Table 9 provides a snapshot of the scores for the 8 countries corresponding to each of 

the models.  

Table 9. Similarity scores using the sum-of-square based difference 

Model-Country Sum of Square of 

Differences 

Normalized 

Difference 

Similarity Score 

A1 - AUS 1.72 0.03 97.13 

A2 - AUS 25.07 0.42 58.21 

B1 - AUS 9.31 0.16 84.48 

B2 - AUS 6.07 0.10 89.88 

A1 - KOR 5.24 0.09 91.27 

A2 - KOR 25.26 0.42 57.91 
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B1 - KOR 11.64 0.19 80.59 

B2 - KOR 2.18 0.04 96.36 

A1 - DEU 13.14 0.22 78.11 

A2 - DEU 5.68 0.09 90.53 

B1 - DEU 11.74 0.20 80.43 

B2 - DEU 24.60 0.41 59.00 

A1 - IRN 11.95 0.20 80.09 

A2 - IRN 4.41 0.07 92.64 

B1 - IRN 11.86 0.20 80.23 

B2 - IRN 19.65 0.33 67.24 

A1 - ESP 8.60 0.14 85.67 

A2 - ESP 8.41 0.14 85.98 

B1 - ESP 7.99 0.13 86.68 

B2 - ESP 20.54 0.34 65.77 

A1 - CHE 2.91 0.05 95.14 

A2 - CHE 14.30 0.24 76.17 

B1 - CHE 3.84 0.06 93.60 

B2 - CHE 15.12 0.25 74.81 

A1 - IND 19.10 0.32 68.16 

A2 - IND 9.39 0.16 84.36 

B1 - IND 24.55 0.41 59.08 

B2 - IND 21.09 0.35 64.85 

A1 - US 25.45 0.42 57.58 

A2 - US 5.56 0.09 90.73 

B1 - US 28.57 0.48 52.39 

B2 - US 29.18 0.49 51.36 

Note: All values are rounded to two decimal places 

 

From Table 9 we find that the highly contagious equation-based approach A1 matches AUS and 

model B2 matches KOR the best with a score of 97.13 and 96.36, respectively. This measure using 

sum-of-square of difference, despite being simple to use, has its limitations. It is not reliable as it can 

provide a high score even when the model's output does not match the empirical data visually, as in 

the case of IND and US. For example, if we calculate the score for a model that predicts all newly 

infected cases from day 1 to day 60 as zero, the similarity score obtained is 85.85 for AUS and 88.23 

for KOR. Similarly, the trajectory of model A2 does not match IND and US when inspected visually, 

but has a high similarity score of 84.36 and 90.73, respectively.  

5.2.3. Comparison based on correlation between slopes 
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To quantify the similarity between the plots we examine the correlation between the corresponding 

slope of each curve. The correlations between the slope of the curves of selected countries and models 

are presented in Table 10.  

Table 10. Correlation between the slope of curves for country-model pairs 

Country Model A1 Model A2 Model B1 Model B2 

AUS 0.43 -0.08 0.08 0.15 

KOR 0.38 0.00 0.12 0.58 

DEU -0.06 0.25 0.16 -0.14 

IRN 0.02 0.22 0.07 0.00 

ESP 0.05 0.23 0.19 -0.24 

CHE 0.29 0.06 0.21 0.01 

IND -0.21 -0.33 -0.19 -0.07 

US -0.28 0.26 -0.28 -0.05 

 

It is observed from Table 10 that the value of correlation for the country-model pairs is low and may 

not be suitable to identify the best fit. If we take a cut-off of 0.5, only the (KOR, model B2) pair is 

above the cut-off.  

5.2.4. Comparison based on additional measures 

The measures discussed so far have their limitations and this leads us to search for additional 

similarity measures between curves. Jekel et al., (2019) have identified five such measures, PCM 

(partial curve mapping), area method, DF (discrete Fréchet) distance, CL (curve length), and DTW 

(dynamic time warping). These measures use a combination of distance, area, and arc length to 

measure the similarity between curves and can be used to identify the best fit.  

The PCM method calculates the similarity based on arc length and the area between the shorter and 

longer curve. The area method, on the other hand, finds the mismatch between curves based on the 

area determined by constructing quadrilaterals between the curves. The DF method is another 

measure of similarity based on a walking dog analogy. The CL method calculates deviations between 

the corresponding values of points on both curves that are compared. Similarly, the DTW method 

calculates the distance between each point of both the curves that are compared. However, it 

determines the optimal path with the smallest cumulative distance to measure the similarity between 

curves. Compared to the similarity measures based on peak, sum-of-square-based distance, and 

correlation between slopes discussed in the previous section, the additional measures based on 

features of a curve are likely to be more reliable. Appendix J provides further details about the 
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additional measures. In each of these similarity measures, a smaller value is considered better. We 

calculate the value for each of the 5 measures for the 32 model-country pairs, as shown in Table 11. 

Table 11. Calculated values of the additional measures of similarity 

Measure Model/ Country AUS KOR DEU IRN ESP CHE IND US 

PCM A1 4.15 5.35 7.44 9.73 5.25 3.82 23.22 23.23 

A2 27.37 28.93 8.02 7.46 10.88 16.32 6.63 3.20 

B1 6.25 8.35 5.71 9.20 4.12 3.04 20.39 18.49 

B2 4.37 3.01 11.03 12.47 8.70 8.10 31.33 32.56 

DF A1 0.38 0.67 0.87 0.83 0.77 0.66 0.98 1.00 

A2 0.99 0.95 0.62 0.50 0.79 0.85 0.61 0.54 

B1 0.82 0.90 0.76 0.66 0.68 0.61 1.00 0.95 

B2 0.73 0.59 0.98 0.99 0.91 0.83 1.00 1.00 

AREA A1 8.12 12.52 23.82 23.39 19.50 10.54 27.84 33.65 

A2 31.62 33.82 14.20 11.77 16.82 23.06 21.05 14.93 

B1 19.79 20.70 23.30 24.90 17.40 10.15 34.07 38.02 

B2 12.55 7.53 35.40 30.72 31.58 26.01 30.56 37.13 

CL A1 2.15 2.86 3.97 5.04 2.80 2.09 7.18 7.07 

A2 4.97 5.15 3.48 2.64 4.03 3.81 3.13 2.33 

B1 2.47 2.91 2.79 3.88 2.31 1.60 5.90 5.56 

B2 3.13 1.95 6.61 7.96 5.11 4.84 9.78 9.97 

DTW A1 8.13 12.53 23.93 23.55 19.58 10.58 28.33 34.05 

A2 32.02 34.24 14.49 12.02 17.16 23.44 21.14 14.94 

B1 19.84 20.75 23.47 25.11 17.53 10.24 34.61 38.48 

B2 12.61 7.71 35.58 30.94 31.72 26.11 31.11 37.60 

Table 11 tells us which scenario fits the country best for a given measure. It is clear from the values 

that the highly contagious equation-based model A1 fits AUS the best when PCM is considered. The 

best fit between the model and the country can be identified for each measure. It is found during the 

analysis that not all values of the measures are acceptable for the comparison. For example, in case of 

IND, although a simple visual inspection reveals that none of the models match reality, Table 11 

shows moderately contagious model A2 as the best fit when DF is used as the measure.  

5.2.5. Best fit approach based on the measures 

Table 12 summarizes the best fit between the trajectory of newly infected cases corresponding to the 4 

models and the 8 countries studied in this paper. The curves are compared in terms of the similarity 

measures that are reliable, as discussed in the previous sections. The best fit is considered if the 

similarity measure meets the cut-off. 

Table 12. Comparison between the scenarios to determine best fit for each measure 

Measure (cut-off) Equation-based Approach Network-based Approach 

Model A1 A2 B1 B2 
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Peak (<= 3 days) AUS - ESP, CHE KOR 

Correlation (> 0.5) - - - KOR 

PCM (<= 5) AUS US ESP, CHE KOR 

DF (<=0.6) AUS IRN, US - KOR 

Area (<= 10) AUS - - KOR 

CL (<= 2.5) AUS US ESP, CHE KOR 

DTW (<= 10) AUS - - KOR 

 

It is observed that in terms of the similarity measures with given cut-offs, the models considered 

under the network-based approach are better in predicting the pattern of newly infected cases in KOR, 

ESP, and CHE. On the other hand, the models considered under the equation-based approach are 

better in predicting the infection for AUS, US, and IRN. A closer inspection reveals that the network-

based approach is more consistent in its performance as model B2 matches KOR across all the 

measures. Similarly, the small-world network-based approach B1 matches ESP and CHE for 

measures using Peak, PCM, and CL, whereas models A1 and A2 under the equation-based approach 

are less consistent in matching countries. It shows that underlying contact network structure may play 

an important role in the mechanism behind the spread of infection. The findings are encouraging from 

an academic and practical point of view since it suggests that well-informed decisions can be made in 

future crises by engaging appropriate modelling approach depending on the specific context.  

6. Implications and limitations of research 

6.1. Academic implications 

The study in this paper has several implications. As for academic implications, this study 

distinguishes itself by implementing and comparing two contrasting epidemic approaches, using the 

top-down equation-based approach and the bottom-up network-based approach. Most of the earlier 

studies have focused on either of the two approaches. However, we believe in this study a comparison 

between the two approaches better explains why the network-based approach is needed. Second, 

while some earlier researchers have used multi-country data, they have used top-down approaches for 

analysis. This study demonstrates the application of the network-based approach and compares the 

results with the empirical data for 8 countries from different regions of the world. Third, in this study 

we introduce the comparison of the trajectory of curves based on eight different measures. While 

literature pertaining to material models have used the measures, PCM, DF, Area, CL, and DTW for 

comparing between curves, they are new to the literature on epidemic modelling. Finally, we 

introduce heterogeneity in the choice of networks, infection parameters, and individual-level 

attributes, which are unique and have not been addressed in earlier studies, to the best of our 

knowledge. 

6.2. Practical implications 
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The findings of this paper have practical implications as well. First, the proposed network-based 

approach can help policymakers and health service providers identify the disease's spread at its initial 

stage and plan accordingly. Second, being a bottom-up individual-based approach, it can be 

customized to identify individuals who are most vulnerable to contracting the disease and can be used 

for the early detection of clusters of severe cases. It can benefit authorities who can customize this 

approach to impose localised restrictions. They can also use this approach to prioritize who would be 

vaccinated first, not just based on age but also based on the overall vulnerability of an individual to an 

infectious disease. Finally, although this study has utilized the two most relevant types of networks as 

underlying contact network structures, the proposed network-based simulation can also generate a 

wide variety of network structures. We recommend that the practitioner should be aware of the 

variation in underlying contact network structure while considering the different model scenarios. 

Although, we do not have sufficient information to suggest whether a particular country has the same 

type of network structure as another, the close match between the model scenarios B2 and KOR is 

particularly encouraging. It is interesting to note that an earlier study investigating the underlying 

contact network structure in a population using sample from KOR had shown it to be indeed scale-

free (Kim et al., 2021). In future, if data of a more realistic network structure is available, practitioners 

can use this approach to create a network based on its properties to study the spread of infections 

during an epidemic. 

6.3. Limitations of proposed approach 

The network-based approach proposed in this study also has a set of limitations. First, scaling up the 

network-based approach is expensive in terms of time and space. This study has executed the 

proposed approach using limited processing capacity by dividing the population into 10 clusters and 

simulating these clusters separately. A state-of-the-art distributed simulation approach (S. J. Taylor, 

2019) can be used to address this limitation.  Second, it uses a network that has a semi-static nature. 

As a result, the analysis period of this study is fixed at 60 days, within which the network allows only 

deletion of nodes and links. Future research can include the option to add new individuals to the 

contact network due to birth and emigration by adding nodes and links to the given network at 

specific time intervals. Third, in this study we do not consider vaccinated individuals since the study 

is focused on the early period of Covid-19 when the possibility of vaccinated individuals did not arise. 

However, the proposed network-based approach can be modified to incorporate immunity acquired 

through vaccination by manipulating the value of the node level attribute    , that determines the 

immunity of a node.  

Since neither the equation- or the network-based approaches are found to be superior for modelling all 

possible scenarios, another direction for future researchers could be to create a hybrid approach that 

switches between the equation- and network-based approaches. The switching can be based on a 

specific country or an available scenario to capture the advantages of both approaches.  
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7. Conclusion 

A global catastrophe like Covid-19 necessitated the study of epidemics using operational research 

techniques. Researchers and policymakers are interested in knowing the mechanism behind the 

transmission of an epidemic and investigating its relationship with patterns of social interaction. It is 

important to apply the network-based approach to anticipate the trajectory at the beginning of the 

outbreak for a country. The network-based approach allows modelling the heterogeneity among 

individuals and interaction patterns not addressed by the equation-based approach. Unlike the 

traditional well-mixed compartmental models, the network-based approach does not assume the 

population to be homogenous even within a compartment. In this paper, the individuals are not only 

distinguished by their level of infection denoted by the concept of viral load but also by their level of 

immunity and the upper limit of the viral load that they can withstand. A complex yet realistic 

relationship that is conceptualized while developing the proposed approach helps to determine 

whether an individual infects others, recovers, or is removed from the network. In future, the network-

based approach can be used to model policy interventions, such as lockdown, social distancing, and 

vaccination, by manipulating the node and link-level parameters of the network.  

Operational research is called the 'science of better' (Mingers, 2007; Nikolopoulos, 2021). 

Consequently, researchers working on epidemic models use operational research techniques to search 

for a better model. However, a single model may not be relevant in all contexts. Some papers have 

reported accurate forecasts employing several time-series, epidemiological, machine learning, and 

deep learning methods (Nikolopoulos et al., 2021; Petropoulos & Makridakis, 2020). A closer 

inspection reveals that models based on macro-level analysis are not directly comparable and may be 

complementary to methods based on micro-level analysis. Macro-level analyses are simpler, faster, 

and suitable for specific practical use like what-if scenarios. 

In contrast, micro-level analyses are far more complex and slower to execute but more relevant in 

accommodating individual differences. Researchers find methods with accurate predictions useful. 

Some may additionally need a flexible model to study an epidemic's emerging behaviour, which can 

be applied to various situations and yet can capture micro-level details realistically. This paper aims 

not to perform an exhaustive numerical comparison of these methods but to provide a viable 

alternative of a flexible and realistic approach to model epidemics, that the researchers may prefer 

under some situations. It highlights that researchers may prefer one approach over another depending 

on the context. Operational research, with its bouquet of techniques, can lead the way in epidemic 

modeling, where different approaches can co-exist and can be a part of a decision support toolkit for 

epidemic modeling. 
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