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A B S T R A C T

We study production-ordering behaviour in a supply chain (SC) with disruption risks in recovery and post-
disruption periods and the influence of severe disruptions on production and distribution network design. A real-
life case-study of a disruption in a SC is considered and investigated with the help of discrete-event simulation
blended with network optimisation in anyLogistix. Two novel findings are presented. First, disruption-driven
changes in SC behaviour may result in backlog and delayed orders, the accumulation of which in the post-
disruption period we call “disruption tails”. The transition of these residues into the post-disruption period
causes post-disruption SC instability, resulting in further delivery delays and non-recovery of SC performance.
Second, a smooth transition from the contingency policy through a special “revival policy” to normal operations
mode partially mitigates the negative effects of disruption tails. The results show that isolated production and
distribution network design optimisation can lead to severe decreases in performance in the event of SC dis-
ruptions. Contingent recovery policies need to be applied during the disruption period along with a revival
policy in the post-disruption period to avoid disruption tails. These revival policies must be developed for the
transition from the recovery to the disruption-free operations mode. A revival policy is meant to mitigate the
negative impact of disruption tails and stabilise the ordering control policies and performance in the SC. Thus,
recovery policies should not be limited to the disruption period only. They should also consider the post-dis-
ruption period and be included in SC design decisions. The revival policy should be included in the SC resilience
framework.

1. Introduction

Design of production and distribution networks has been a promi-
nent research avenue over the past three decades. In the supply chain
(SC) framework, the tasks of production and distribution networks have
been integrated. These have formed the SC design research domain
(Chopra and Meindl, 2015; Dolgui and Proth, 2010). In the SC design
domain, recurrent operational risks and uncertainty of inventory and
demand have been typically analysed with the help of robust/sto-
chastic/fuzzy optimisation or simulation models.

Tang (2006), Chopra, Reinhardt, and Mohan (2007), Klibi, Martel,
and Guitouni (2010), Kumar and Tiwari (2013), Simchi-Levi et al.
(2015), Sokolov, Ivanov, Dolgui, and Pavlov (2016), Choi, Govindan,
Li, and Li (2017), Ivanov (2018a, 2018b), Dolgui, Ivanov, and Sokolov
(2018), Lücker, Seifert, and Biçer (2018), Ivanov, Dolgui, Sokolov, and
Ivanova (2017) suggest differentiating disruption risks and operational
risks in the SC. Disruption risks can be caused by natural or man-made

catastrophes, political crises, strikes, or legal disputes.
In regard to disruption risks, resilient production and distribution

network design has become an active research avenue over the last
decade (Gunasekaran, Subramanian, & Rahman, 2015; He, Alavifard,
Ivanov, & Jahani, 2018; Ho, Zheng, Yildiz, & Talluri, 2015; Jain,
Kumar, Soni, & Chandra, 2017; Kamalahmadi and Mellat-Parast, 2016;
Losada, Scaparra, & O’Hanley, 2012; Macdonald, Zobel, Melnyk, &
Griffis, 2018; Namdar, Li, Sawhney, & Pradhan, 2018; Raj et al., 2015;
Rezapour, Farahani, & Pourakbar, 2017; Sawik, 2018; Simangunsong,
Hendry, & Stevenson, 2012; Spiegler, Potter, Naim, & Towill, 2016;
Tukamuhabwa, Stevenson, Busby, & Zorzini, 2015). Since trends of
globalisation, outsourcing, efficiency principles, and specialisation have
been on the rise in SC management, SC vulnerabilities, and the risks
that a SC will be affected by a disturbance have correspondingly in-
creased.

Moreover, the ripple effect has been identified in literature as a
specific phenomenon in the disruption risk management framework
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(2018a, 2018b; Dolgui et al., 2018; Ivanov, 2017; Levner and Ptuskin,
2018; Liberatore, Scaparra, & Daskin, 2012; Mizgier, 2017; Pavlov,
Ivanov, Dolgui, & Sokolov, 2018; Scheibe and Blackhurst, 2018). The
ripple effect describes the disruption-based scope of changes in struc-
tural SC design and planning parameters and the impact of disruption
propagation on SC performance. As a consequence of disruption pro-
pagation, Ivanov and Rozhkov (2017) observed post-disruption in-
stability in the SC called ‘postponed redundancy’. ‘Postponed re-
dundancy’ describes the SC’s delayed reaction to disruption and
recovery actions as a consequence of production-ordering behaviour
that occurs during the disruption period. For example, disruption-
driven changes in SC behaviour may result in accumulated backlog and
delayed orders. The transition of these residues into the post-disruption
period destabilizes normal operations, resulting in further delivery
delays and non-recovery of SC performance (Ivanov and Rozhkov,
2017).

Even if considerable advancements have been achieved in the given
area, the resilient production and distribution network designs and the
production-ordering systems in the SC have been mostly considered in
isolation from each other. At the same time, decisions in each of these
two areas are interconnected. Closing this research gap, this study
considers production and distribution network design subject to dis-
ruption risk at both the proactive and reactive control stages. We study
production-ordering behaviour in a SC with disruption risks in the re-
covery and post-disruption periods and the influence of the ripple effect
on production and distribution network design. The methodology of
this paper is based on a real-life case-study with real company data that
is used for quantitative analysis of decisions on matching the produc-
tion and distribution network design with ripple effect considerations
from a disruption risk perspective. The objectives of the analysis are
twofold. First, it aims to show how production and distribution network
design decisions influence each other. Second, it aims to provide in-
sights about how SC managers can enhance SC resilience by im-
plementing proactive and reactive policies with integrated considera-
tion of production-ordering decisions in both recovery and post-
disruption periods.

The rest of this paper is organized as follows. In Section 2, a lit-
erature analysis is presented. Section 3 is devoted to the problem
statement and research methodology. In Section 4, a simulation model
is described. Experimental results are considered in Section 5, followed
by a discussion on managerial insights in Section 6. The paper is con-
cluded by summarizing the most important findings and outlining fu-
ture research avenues in Section 7.

2. State of the art

Over the last ten years, designing resilient SCs has been a focus of
research. Two policies have been developed to ensure SCs will be re-
silient to disruption and that effective action can be taken when dis-
ruption does occur: these policies are called proactive and reactive. An
agile reconfiguration approach, which uses diagraph modelling and
integer linear programming, was created by Constantino et al. (2012) to
ensure the resilience of the SC by considering supplier capacity re-
straints. A mixed-integer programming model, which accounted for
recovery costs in the objective function and included a fully reliable
backup supplier, was developed by Lim, Bassamboo, Chopra, and
Daskin (2013). To provide guidance for SC managers in choosing a
supplier portfolio, Dupont, Bernard, Hamdi, and Masmoudi (2018) used
mixed-integer linear programming, and created a model which ac-
counts for the SC managers’ risk sensitivity (i.e., risk aversion or loss
aversion).

While Dupont et al. (2018) utilized deterministic demand, a sto-
chastic programming model for guiding supplier selection and order
allocation according the risk of disruption was developed by Sawik
(2013). A second study by the same author contributed to the con-
ceptualisation of using a portfolio approach for managing SC disruption

(Sawik, 2017). Sawik’s studies also account for the risk sensitivity of the
SC manager. Khalili, Jolai, and Torabi (2017) made an analysis of the
integration of production-distribution planning in the SC, and suggested
a new indicator, which is based on restoring lost capacities, for SC
optimisation.

Studying resilience and severe SC disruptions through discrete-event
simulation, Carvalho, Barroso, Machado, Azevedo, and Cruz-Machado
(2012) analysed how a four stage SC behaved with several alternate
recovery strategies, which differed in both presence and absence of a
disturbance and a mitigation strategy, and what SC performance was
according to disruption dynamics. For determining lead-time rations
and the total costs of the SC, an ARENA-based simulation model was
created. Using “weeks of recovery” as amplification of the disruption,
Schmitt and Singh (2012) calculated the risk of disruption. The authors
satisfy demand in their proactive and reactive scenarios in three ways:
utilizing an alternate location in the network, obtaining material or
transport from other sources or routes, and maintaining reserves of
inventory throughout the SC.

Giannoccaro, Nair, and Choi (2018) investigated the relationship
between the scope of control (i.e., how much of its supply network a
buying firm should control) and SC performance using a complex
adaptive system approach. The results indicate that complexity nega-
tively affects SC performance, with a performance decrease depending
on the scope of control. Based on these findings, different control
strategies to mitigate the negative influence of complexity are for-
mulated.

Amiri-Aref, Klibi, and Babai (2018) studied a multi-period location-
inventory optimization problem in a multi-echelon SC characterized by
uncertain demand and multi-sourcing. The authors integrated in-
ventory planning decisions made under a reorder point order-up-to-
level (s, S) policy, with location-allocation design decisions to cope with
demand uncertainty. A two-stage stochastic mathematical model that
maximizes the total expected profit of the SC network is proposed. The
results show the efficiency of the linear approximation of the (s, S)
policy at the strategic level to produce robust design solutions under
uncertainty. Further insights from this study underline the sensitivity of
the design solution to the demand type and the impact of the inventory
holding costs and backorder costs, especially under non-stationary
processes. Paul and Rahman (2018) developed a recovery model con-
sidering sudden supply delays that affect retailers’ economic order
quantity model. They considered fuzzy demand and safety stock and
modelled a recovery plan generation that is activated immediately after
a sudden supply delay. There simulation model also considers a trade-
off between backorder and lost sales costs in the recovery plan.

Using anyLogistix software, a simulation of the dynamic behaviour
of a SC and the impact of disruption on its performance was developed
by Ivanov (2017). In this simulation, evidence of the ripple effect was
seen, and strategies, both proactive and reactive, were studied. The
results indicate that disruptions which occur upstream in the SC tend to
cause ripple effect when there is a single source policy in place: facil-
ities downstream of disruption risky elements of the SC should increase
safety stock in order to decrease the ripple effect towards the customers.
However, this stock increase should be carefully considered since when
disruption risky elements are not able to perform outbound operations,
then higher levels of safety stock will not mitigate the ripple effect. In
addition, the simulation showed that the ripple effect impacted service
level and order fulfilment more than the duration of the disruption,
which indicates that dual sourcing at SC bottlenecks and keeping high
inventory in facilities downstream from disruption risky elements is of
greater importance that hastily investing in a fast recovery. The results
of a study by Ivanov (2018a), concerning analysis of a multi-stage SC
with suppliers, factory, distributions centres, and customers, show a
time lag from the launch of recovery to the impact of that recovery on
reducing gaps in service level. This points to the fact that proactive SC
policies must be designed with the durations of disruption in mind.

Using AnyLogic to analyse a real example of a retail SC and
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considering product perishability, Ivanov and Rozhkov (2017) assessed
how ordering and production control policies impact performance
when there is a capacity disruption. The findings imply SC managers
should consider the effects of ‘postponed redundancy’ when analysing
the impact of redundant production-ordering system behaviour during
the disruption on SC performance in the post-disruption period, and
designing resilience into their SCs. Redundant behaviour of this kind
might include redundant production or deliveries to areas downstream
from the disruption, or redundant order allocation to upstream facilities
which have been disrupted. In addition, the authors developed and
tried out a coordinated production-ordering contingency policy during
and after the SC disruption in order to decrease the negative impacts of
‘postponed redundancy’. The results of a study by Trucco, Petrenj, and
Birkie (2017), which analysed and simulated an Italian FMCG SC, im-
plicate that coordinated control strategies should be developed in the
event of severe SC disruptions. These findings echo those of Schmitt,
Kumar, Stecke, Glover, and Ehlen (2017) and Ivanov and Rozhkov
(2017).

Chen, Ponsignon, Weixlgartner, and Ehm (2017) simulated the In-
fineon’s semiconductor SC to test its resilience. In the simulation model,
four types of sites, i.e., mirror site, hot site, warm site, and cold site, are
proposed to enable recovery in case of disruption. Those sites have
different levels of preparedness for producing specific products. From
cold site to mirror site, “the time to respond after a disruption gets
faster because it is ready to use with tools and technologies, etc. Hence
one may tend to demand a mirror site for their products. However the
limited capacity and expensive investment upfront pose barriers to
applying mirror site for all products” (Chen et al., 2017). A simulation
model was developed to assess the overall impacts of disruptions and
the performance trade-offs. Four disruptions scenarios, i.e., strikes, in-
frastructure destruction, industrial accident and long-term cyber-attack,
with different disruption lengths and severity were analysed. The si-
mulation was performed for scenarios characterized by different se-
verity in terms of capacity disruption, ranging from 40% (i.e., long-term
cyber-attack) to 100% (i.e., infrastructure disruption). The performance
impact was measured by fill rate recovery time, while the financial
performance was assessed according to the investment cost and In-
fineon cost (i.e., backorder costs, multiple costs at customer and cus-
tomer of customer at long disruptions, and sales loss). The simulations
in AnyLogic showed that “the mirror site has the fastest recovery at
extremely high expense. A hot site could be a good alternative for
mirror site, showing robust and excellent overall performance. Un-
expectedly, a warm site has also satisfying results, except for short-term
disruptions like strikes. Further beyond the anticipation, the cold site
exhibits some achievements, especially for shortening the recovery time
in long-term disruptions (e.g., infrastructure destruction).” (Chen et al.,
2017).

3. Case-study, problem statement and methodology

3.1. Case-study

The case-study is based on a company that produces non-perishable
products for four regional markets. Without loss of generality, a frag-
ment of the SC considered comprises four production plants and four
regional distribution centres (DCs). In each of the four regions, there is
a market, a plant, and a regional DC for a single aggregated product
(Fig. 1).

The former SC manager of the company decided to close the pro-
duction plant in region #1 because of a decrease in demand in this
region and high fixed costs (note that this region is still characterized by
the highest demand among all four regions) and to supply the DC in this
region from three other plants which are located quite far from this DC,
but incur lower fixed costs compared to the expensive production site in
region #1 (Fig. 2).

Fig. 1. Initial SC design structure.

Fig. 2. SC design structure after closing the plant in region #1.
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A couple of months after the plant closure, the DC in this region
crashed due to construction quality problems. A huge amount of juice
inventory was destroyed, and the disruption propagated into the mar-
kets. The new SC manager of this company is now responsible for re-
acting to this disruptive event. She first estimates the immediate impact
and time-to-recovery. On the day of the DC disruption, the experts es-
timate that the reconstruction of the DC will take about four months.
The new SC managers understand that a short-term and mid-term re-
covery policy is needed. She considers three options for contingent
recovery policies:

- Using the capacity of another factory owned by company which
produces similar products in region #1 where the DC crashed (The
technological process is quite similar, but some adaptations will be
needed);

- Using the capacity of other owned plants in neighbouring countries;
- Finding a subcontractor to supply market #1.

All three options cannot be activated immediately and require about
three weeks to activate. The analysis must be done subject to profit
maximisation, which is computed as the difference between revenue
from selling goods and total costs. Total costs include fixed facility
costs, transportation costs, inventory holding costs, production costs,
inbound and outbound processing costs, and penalties for non-fulfill-
ment of demand on time. The constraints include limited production
capacity, limited DC storage capacity, reorder points and target in-
ventory levels, service level, expected lead time, processing capacity at
the DCs, and available paths in the SC.

3.2. Methodology

3.2.1. Selection of the methodology
Because the problem statements concerning the ripple effect deal

with time-dependent settings which include dynamic inventory control,
transportation control, sourcing control and production control po-
licies, the simulation methodology for the given problem domain has
earned an important role in academic research (2018b; Ivanov, 2017,
2018a). In comparison to analytical closed form analysis, simulation
has the advantage that it can handle complex problem settings with
situational behaviour changes in the system over time. This is inevitable
in considering dynamic changes in the SC organisational and para-
metrical structures (Ivanov, Sokolov, & Kaeschel, 2010). In this study,
we use discrete-event simulation methods. For validation, network
optimisation with and without disruption consideration has been per-
formed in CPLEX using anyLogistix optimisation and simulation soft-
ware. The optimisation experiments allowed a determination of ag-
gregate annual throughputs which are used for validation of the
simulation results. The simulations in anyLogistix are run over the
optimisation results and include additional, time-dependant inventory,
production, transportation, and sourcing control policies which are
difficult to implement at the network optimisation level.

3.2.2. Data collection
The following data (but not limited to) has been collected at the

company:

• SC design: locations of SC elements (factories and DCs) and links in
between them
• Demand in the markets and its uncertainty
• Parameters of SC elements (e.g., production capacities, throughputs,
prices, costs)
• Operating policies of SC elements (e.g., inventory control policy,
production control policy, shipment control policy, sourcing control
policy).

This data was observed for a period of three years. Moreover, we
observed the actual sales and service level data following the disruption
at the DC described (Fig. 3).

Fig. 3 depicts the real sales and service level dynamics observed at a
retailer that was supplied in region #1 from the disrupted DC1, fol-
lowing the DC1 disruption in week #4 and subject to full sales recovery
in week #17. A drastic decrease can be observed in both sales and
service level dynamics. It is interesting to observe that service level
recovers as quickly as sales. The explanation is that the retailer adapted
its ordering policy and ordered much less than usual. This effect of
“postponed redundancy” reduction was previously described in litera-
ture (Ivanov and Rozhkov, 2017).

3.2.3. Experimental setting
The analysis in this study was comprised of the following experi-

ments:

1. Simulation experiment with a DC disruption in region #1 without
recovery policy.

2. Simulation experiments with four immediate recovery policies with
emergency sources.

For validation, a network optimisation model has been created in
CPLEX (see Appendix A). Both the network optimisation model and
simulation models are implemented in anyLogistix. In addition, analy-
tical computations with the help of standard inventory control models
have been made. For verification, the following methods have been
used: simulation run over network optimisation results, output data
analysis in the log files and testing with the help of deterministic de-
mand and lead time data. Moreover, replications and a warm up time
with some initial inventory have been applied for testing. The disrup-
tions have been scheduled in the middle of the simulation period in
order to avoid the ‘noise’ of the simulation experiment start. Variation
experiments to validate the simulation model have been performed. In
particular, mean and standard deviation of demand, safety stock, and
production capacity have been varied.

Fig. 3. Real sales and service level dynamics following the DC disruption.
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4. Simulation model

4.1. Control algorithms and assumptions

4.1.1. Demand generation
Demand in the markets is considered to be the aggregated demand

of all customers in this region. Demand data showed that it can be
considered normally distributed and characterized by a seasonal com-
ponent subject to four periods. The mean and standard deviation of
demand as well as the seasonal coefficients can be identified from
evaluating statistical demand data over the last three years. Since the
real company works on a weekly order placement basis, the demand
data is considered on a weekly basis as well.

4.1.2. Inventory control
A continuous review system is applied at the DCs. Backordering is

allowed so that no orders can be lost. For simplification, an average
lead time from DC to the market is considered assuming that all cus-
tomers within the region will be reached during this lead time.
According to demand generation algorithms, orders are placed at the
DCs (cf. Figs. 1 and 2). Subject to inventory-on-hand, safety stock, lead
times, reorder point and the target inventory, shipments to the markets
and replenishment from the factories is controlled.

4.1.3. Transportation control
Since, in reality, the company can use logistics service provider

capacities along with their own fleet, no transportation capacity lim-
itations are included. For the same reason and model simplification, no
further restrictions on transportation control policies, such as minimum
or maximum load or aggregation periods, are considered.

4.1.4. Production control
Each factory is considered a single stage continuous production

system with fixed production time and no setups. Production capacity is
limited by the unit production time. For example, a production time of
0.4 days for m3 means a maximum daily capacity of 2.5 m3 at a factory.
No further batching rules are considered for simplification of model and
result analysis.

4.1.5. Sourcing control
Multiple sourcing control with the preference “closest location” is

considered. The algorithm decides where to source the demand from
the paths “Markets – DCs” and “DCs – Factories” subject to closest fa-
cility location with available inventory. This holds true for both dis-
ruption-free and disrupted operation modes.

4.2. Key performance indicators

A set of key performance indicators (KPIs) has been established to
analyse the simulation results. The KPIs are classified into financial,
customer, and operational performance (Table 1).

Profit is equal to revenue minus the total costs (fixed facility,
transportation, inventory holding, production, inbound and outbound
processing, and penalties for delivery delays) (cf. Appendix A). Holding
costs for inventory are computed for each day, while transport is cal-
culated according costs per kilometer and the quantities of the ship-
ment. When the quantity demanded is greater than the quantity of the
shipment, then the total penalties are increased in proportion to the
costs of the penalty. In addition, the costs for inbound and outbound
processes are in proportion to the quantity of the process, while the
costs for manufacturing are in relation to the number of units produced
at all factories owned by the company and outsourced. The costs of
daily fixed operations and site closure or opening comprise the fixed
facility costs. The product unit is m3. While the basic unit of time is one
week, some parameters are calculated in days.

The probability that all orders from customers arriving in a set time

interval will be delivered from on hand stock is the α service level:
service level will not be impacted when a lack of stock delays deliveries.
The time taken for delivery from a DC to a customer is the lead time.
The ratio of orders which are delivered according to the “Expected lead
time” to total orders are the measure for the ELT (expected lead time)
service level. Every market has a set lead time, which is measured as the
time from order placement at a DC to receipt of the goods from the DC.

Arrived on time orders show the number of orders which are de-
livered within the expected lead time. This information updates
whenever delivery of an order is made on time. Likewise, arrived on
time orders show data on the quantity of orders in shipments received
by the DC and factory for each day. This is also updated with each new
incoming shipment, according to the set processing time of the facility.
The total number of orders received by the customer is also shown in
arrived orders (customers).

The sum of orders delayed and arrived on time comprise the data,
which is updated with each order.

Orders which have been received but not shipped, or the current
number of orders that have yet to be processed, are represented by the
current backlog orders, and updated each day when new orders are
received or lost, or a new shipment is sent or processed, according to
the processing time of the facility. The quantity of orders which do not
arrive within the expected lead time are represented by the delayed
orders, and updated whenever an order is delayed or dropped.

5. Experiments

5.1. Experimental setting

5.1.1. anyLogistix
Developed by AnyLogic Company, anyLogistix is a software for si-

mulation and optimisation. Using CPLEX as a basis, anyLogistix im-
plements the function of optimisation in a Network Optimisation
Module. anyLogistics also utilizes a simulation functionality, including
agents that can be customised in AnyLogic. Using anyLogistix, one can
perform stochastic, dynamic, variation, and comparison experiments
related to facility location planning, multi-stage and multi-period SC
design and planning, inventory control, transportation control, and
sourcing analysis. SC disruptions can be modelled using events and
state change diagrams.

5.1.2. Parameters
The experiments have been performed with the following para-

meters (Table 2).

5.2. Simulation experiment with the existing SC design without recovery
policy

In the first group of experiments, the simulations with the existing
SC design without a recovery policy were run. The simulation period

Table 1
Key performance indicators.

KPI group Performance indicators

Finance Profit
Revenue
Total costs

Customer Service level
Orders on time
Total number of arrived orders
Delayed orders

Operations Lead time
Inventory
Backlog orders
Capacity usage
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was one year, whereby DC1 disruption has been scheduled on April 1
and lasts until August 1. The simulation results are presented in Fig. 4.

Post-disruption instability in the SC has been observed as a con-
sequence of the production-ordering behaviour during the disruption
period. Service level reduction, backlog, and delayed orders can be
observed in Fig. 4 as consequences of the DC disruption that lasts from
day #91 until day #210. Because of the high number of delayed and
backlog orders built up during the disruption period, the service level
cannot recover to 100% even after the disruption recovery. The bottom
diagrams in Fig. 4 provide another explanation for this effect: the in-
ventory dynamics at the DCs experience backlogs. The existing capacity
is not sufficient to recover and return to a normal inventory system
operation. In addition, the left-hand diagram in the bottom part of the
dashboard in Fig. 4 shows that the number of backlog orders (the blue
line) and the delayed orders (the red line) continue increasing even
after DC1 recovers. Disruption also influences the lead time which
fluctuates during the disruption period and even after the capacity re-
covery. The explanation of these behaviours is the effect of so called
‘postponed redundancy’ (Ivanov and Rozhkov, 2017), i.e., the impact at
the post-disruption stage of the delayed and backlog orders accumu-
lated during the disruption period. The limited capacity in the SC
prevents compensation for this residue from the disruption period.

Within the capacity limits, the SC needs to serve both the delays/
backlog from the disruption period and new incoming orders which
results in new delays and backlogs.

5.3. Recovery policy experiments

Simulation experiments have been conducted with three recovery
policies, i.e.:

• back-up contractors
• capacity flexibility (capacities of the own plant in the same region)
• using capacity of other owned plants in neighbouring countries.

These emergency sources operate according to the following logic.
No initial inventory is available. Two days after the DC1 disruption, the
emergency sources start producing for market 1. The first deliveries to
market 1 arrive about 18–20 days after the disruption date.

In line with the study by Ivanov (2018a), we assume a time lag
between disruption and activation of the contingency policies, such as
subcontractor, owned factory capacity in region 1, and owned factories
abroad. The emergency sources therefore operate according to the
following logic: No initial inventory is available. Two days after the
DC1 disruption, the emergency sources start producing for market 1.
First deliveries to market 1 arrive about 18–20 days after the disruption
date.

The simulation experiments were run for all six combinations (all
backups are activated, different pairs of the backups are activated, and
the backups are activated individually). The better results in terms of
financial performance were achieved when all backups were activated.
These results are presented in Fig. 5.

It can be observed in Fig. 5 that the recovery policy positively in-
fluences all performance indicators. Increases in profit and service le-
vels as well as a reduction in backlog and lead time variability can be
observed. The inventory system performs stably (note that the diagram
does not represent inventory at the emergency sources in order to make
the results in Figs. 4 and 5 comparable).

Table 3 compares the SC performance in the disrupted modes with
and without recovery policies.

A comparison of Figs. 4 and 5 leads to the conclusion that the re-
covery policy helps to achieve better financial performance and higher
service levels. An interesting insight can be observed from the “In-
ventory-Backlog” diagram that depicts the DC inventories: the recovery
policy with backup sources stabilises the inventory control system
during the time of disruption, which happens in the period with higher
demand (cf. Table 2). Lead time variation has also been reduced.

5.4. Sensitivity analysis

Finally, we ran the same experiments in the disruption mode
without a recovery policy subject to higher standard deviation of de-
mand, and therefore, higher safety stocks. The new data is shown in
Table 4.

The results are presented in Fig. 6.
In comparing Fig. 6 with Fig. 4, a higher service level and lower lead

time variation can be observed. At the same time, the higher inventory
carrying costs result in profit reduction.

Table 5 compares SC performance in the disrupted modes with and
without recovery policies subject to the initial and changed datasets.

Table 5 provides evidence that higher demand variability is fa-
vourable for service level, lead time, and inventory system stabilisation.
However, it comes at the cost of higher inventory, which decreases
profits. This effect of the mutual impact of the demand variability and SC
resilience has been observed for the first time in this experiment.

Table 2
Experimental settings.

Parameter Values

Mean basis weekly demand in the market 1, in m3 6000
Mean basis weekly demand in the markets 2–4, in m3 4000
Order placement interval, in weeks 1
Number of periods 4
Period length, in months 3
Seasonal demand coefficients for four periods 0.75 – 1.25 –

1.0 – 1.0
Standard deviation of weekly demand, in m3 25% from the

mean
Expected lead time in the markets, in days 3
Lead time in between two SC stages within a region, in days 1
Mean lead time in between two SC stages from different regions,

in days
4

Standard deviation lead time between two SC stages from
different regions, in days

2

Reorder point at the DC1, the factories and emergency plants, in
m3

10,000

Target inventory level at the DC1, the factories and emergency
plants, in m3

20,000

Safety stock at the DC1, in m3 6000
Reorder point at the DCs 2–4, in m3 7000
Target inventory level at the DCs 2–4, in m3 14,000
Initial inventory at the DCs 2–4 and factories, in m3 10,000
Initial inventory at the DC1, in m3 20,000
DC maximum storage capacity, in m3 30,000
Production time for product unit, in days, in m3 0.001
Maximum production capacity at own factory, in m3 per period 90,000
Maximum production capacity at emergency sources, in m3 per

period
10,000

Unit price, in $ for m3 2000
Fixed facility costs, in $ per day 50,000
Transportation costs, in $ per km, per m3 0.3
Inventory holding costs at DCs and factories, in $ per day 10
Production costs at own factories, per product unit (m3), in $ 250
Emergency manufacturing costs at subcontractor and milk

producer, per product unit (m3), in $
500

Inbound processing costs at the DC, in $, per m3 150
Outbound processing costs at the DC, in $, per m3 100
Penalty for demand non-fulfillment, in $, per m3 5000
Recovery time after a disruption, in months 4
Time between the disruption and activating the contingency

policy such as subcontractor, milk producer capacity, and
own factories abroad, in days

20

Mean lead time to the market 1in the disruption period, in days 8
Standard deviation lead time to the market 1 in the disruption

period, in days
2
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5.5. Revival policy experiments

Simulation experiments have been conducted subject to the fol-
lowing three settings:

• without the contingent recovery policy
• with the contingent recovery policy, which implies the installation
of additional links in the SC from the factories to the market 1 (cf
Fig. 1 and Section 3.1). These links are activated after the DC1
disruption and function until DC1 recovers
• with the contingent recovery policy and an additional revival policy.

The revival policy includes such emergency sources as backup
contractors, capacity flexibility (capacities of own plant in region 1),
and using capacity of other owned plants in neighbouring countries. It
extends the recovery policy by using the additional capacities of sub-
contractors even in the post-disruption period until the production-or-
dering system stabilises.

A transportation order aggregation period of five days with an LTL
(less-than-truckload) control policy has been considered to enlarge the
scope of the investigation as compared to the cases with no further
restrictions on transportation policies in Sections 5.1–5.4.

The results are shown in Fig. 7.
Fig. 7 depicts the dynamics of order fulfillment following the dis-

ruption on day #91 and lasting until the DC1 recovery on day #213.
Delayed and backlogged orders occur when there is no contingent re-
covery policy in place and when there is such a policy in place, but
disruption tails still appear in the post-disruption period. The revival
policy helps to improve service levels and reduce the impacts of the
disruption tail in terms of delayed and backlogged orders in the post-

recovery period.
When observing Fig. 7, a reduction in the number of delayed orders

during the disruption period and an elimination of delayed orders after
the disruption recovery can be observed with the transition from no
contingent recovery policy, the introduction of a recovery policy, to the
usage of the revival policy. The revival policy stabilises the order ful-
fillment dynamics, resulting in a positive effect on service level. The
delayed orders accumulated over the disruption period do not influence SC
operations and performance since new contracting plants compensate for this
with the help of additional production capacity. This allows the SC to recover
faster as compared to the usage of a recovery policy only. This observation
provides evidence of disruption tail mitigation with the help of a revival
policy based on a production capacity increase in the post-disruption period.
It indicates the necessity of considering not only contingent recovery
policies, but also revival policies in the SC which may align normal op-
eration policy and deactivation of the contingency policies. On this
basis, we recommend including revival policy in the SC resilience fra-
mework (Fig. 8).

The disruption profile delineated in the work by Sheffi and Rice
(2005) includes eight phases: preparation actions, the disruptive event,
the first response, the initial impact, the full impact, the recovery pre-
parations, and the recovery and long term impact. Our experimental
results suggest the inclusion of revival policy into the SC resilience
framework if performance cannot be recovered fully after capacity re-
covery. The revival policy extends the SC resilience framework during
the transition from recovery to post-disruption. The rationale for in-
clusion of a revival policy into the SC resilience framework is the fact
that an immediate transition from the contingency plan during the
disruption and recovery period to the normal operations mode may by
complicated by disruption tails. In addition, for the companies

Fig. 4. Supply chain performance in the case of DC disruption and without a recovery policy.
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operating with forecast recovery dates, the inertness of decisions on
activation and deactivation of contingency plans frequently leads to
disruption tails. Disruption tails represent residue from the disruption
period, such as backlog and delayed orders, which may influence SC
operations and performance in the post-disruption mode. The revival
policy intends to mitigate the negative impact of these disruption tails
and stabilise the SC control policies and long term performance.

6. Managerial insights

In this study, we analysed the impact of disruption risk and the ripple
effect on the design of production and distribution networks in the SC. As
an example, we took a real-life case-study of a severe disruption at a DC.
Using simulation and optimisation, we compared SC performance in the
disruption-free mode and the disrupted SC with and without contingency
plans. We also analysed the impact of demand variability on SC perfor-
mance in terms of profits, service levels, and lead time.

The findings suggest that isolated production and distribution network
design optimisation can lead to severe performance decreases in the event
of disruptions in the SC. First, post-disruption instability in the SC, referred
to as ‘disruption tails’, was observed as a consequence of production-or-
dering behaviour during the disruption period. Dependencies between the
amount of backlog during the disruption period, the SC capacities, and
inventory dynamics control were observed. If a large backlog is built up
during the period of disruption and existing capacity is not sufficient to
recover and return to normal inventory system operation, the full re-
storation of the SC becomes impossible. In this setting, when backups do
not fully replace capacity during the disruption period, the development of
contingency inventory control policies can be considered. These policies
would apply to the period of disruption, and the period of transition to
recovery with the aim of reducing backlog and the number of delayed
orders and adjusting to disrupted SC capacities. Recovery policies should
not be limited in scope to the disruption period only, but should include
consideration of the post-disruption period.

Second, we observed that for markets with higher demand varia-
bility, SC resilience is higher in terms of longer survival time after the
disruption (expressed in terms of service level and sales during the
disruption period). This can be explained by higher safety stocks which
are typically held in the SC in the event of highly variable demands.

Fig. 5. Simulation results with recovery policies.

Table 3
SC performance in the disrupted modes with and without recovery policies.

Performance indicators Disrupted mode with
recovery

Disrupted mode without
recovery

Profit, $ 932,678,806.11 883,226,509,94
Service level α (at the end

of the year), %
99 94

Service level ELT (at the
end of the year), %

93 88

Inventory – Backlog, in m3 72,827.75 −28,727.55

Table 4
Experimental settings for the sensitivity analysis.

Parameter Values

Standard deviation of weekly demand, in m3 50% from the mean
Reorder point at the DC1, in m3 20,000
Target inventory level at the DC1, in m3 40,000
Safety stock at the DCs, in m3 12,000
Reorder point at the DCs 2–4, in m3 14,000
Target inventory level at the DCs 2–4, in m3 28,000
Initial inventory at the DCs 2–4 and factories, in m3 20,000
Initial inventory at the DC1, in m3 40,000
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However, this observation holds true only in the case of inventory di-
versification at different DCs in the SC. This effect of the mutual impact
of the degree of demand variation degree and SC resilience was observed
for the first time in this experiment.

We point out the necessity for specific policies for the transition
period, so called “revival policies”. An immediate deactivation of the
contingency plans after capacity recovery may result in the destabili-
sation of the inventory system and backlog. In many settings, recovery
policies must be run for certain periods of time, even after disruption
recovery, in order to ensure smooth revival of the control systems.
Specific changes in SC behaviour during the disruption period may
result in backlog and changed production, ordering, and inventory
control policies. This residue could bleed over into the post-disruption
period, destabilising the normal operations mode that is typically in
place after recovery: immediate deactivation of the contingency plan
and switching to a ‘normal’ operation plan after recovery can be in-
efficient. This observation indicates the necessity of considering not
only recovery, but also revival policies for the SC.

7. Conclusion

We studied the influence of disruption risk on production and dis-
tribution network design. A real-life case-study of a disruption at a DC
was considered and investigated with the help of discrete-event simu-
lation blended with network optimisation in anyLogistix. The findings
suggest that isolated production and distribution network design opti-
misation can lead to severe performance decreases in the case of dis-
ruptions in the SC. It is therefore argued that considerations of pro-
duction-ordering dynamics with disruptions must be taken into account
in production-distribution network design.

Two specific findings have been observed. First, when a high
backlog accumulates during the disruption period and there is limited
SC capacity, the inventory control system is prevented from returning
to normalcy even after full capacity is recovered. Second, immediate
deactivation of contingency plans after capacity recovery results in the
destabilisation of the inventory system and backlog. This observation
indicates the necessity of considering not only recovery, but also revival
policies in the SC. Contingent recovery policies need to be applied

Fig. 6. Simulation results for markets with higher demand variability and without recovery policy.

Table 5
SC performance comparison.

Performance indicators Disrupted mode with recovery Disrupted mode without recovery Disrupted mode without recovery and with higher demand
variability and safety stocks

Profit, $ 932,678,806.11 883,226,509,94 737,701,705.81
Service level α (at the end of the year),

%
99 94 99

Service level ELT (at the end of the
year), %

93 88 91

Inventory – Backlog, in m3 72,827.75 −28,727.55 60.950,31
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during the disruption period and revival policies in the post-disruption
period in order to avoid disruption tails. These revival policies need to
be developed for the transition from recovery to a disruption-free

operation mode. The recovery should also consider the post-disruption
period and be included in SC design decisions. The revival policy should
also be included in the SC resilience framework.

a) Order fulfillment dynamics without contingency and revival policy 

b) Order fulfillment dynamics with contingency policy 

c) Order fulfillment dynamics with contingency and revival policy 
Fig. 7. Order fulfillment dynamics.
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The findings of this study open new avenues for future research.
First, the interrelations between demand variability, safety stock, and
recovery policies need to be studied in more detail: the interrelation of
time for activating a recovery policy (i.e., time gap between the dis-
ruption occurring and a backup facility starting to supply), reorder
point adjustment, and safety stock control at the DCs.

Second, a detailed analysis is needed for the mutual interrelations
between disruption duration, backlogs, and SC capacities. More

specifically, the development of contingent inventory control policies can
be considered with the aim of reducing backlogs and adjusting to SC ca-
pacities during and after the disruption period. Third, revival policies re-
quire closer attention. The SC transition from a disrupted to a recovered
state is connected with a number of specific issues. Specific indicators
must be developed to analyse when the SC can be considered recovered.
An immediate deactivation of the contingency plan and switching to a
‘normal’ operation plan after recovery can be inefficient. Specific revival
policies for this transition period can be a promising research avenue in
the future.

Concerning the limitations of this study, it needs to be pointed out
that the findings are based upon a contextual case-study simulation
analysis which restricts insight generalization. At the same time, the SC
design structures and ordering policies considered are standard and
encountered in different industries. As such, the findings of this study
are generalizable and applicable to other cases, too. Further research
can include analysis of other industries and datasets. Moreover, ana-
lytical studies are needed to provide more generalisable theoretical
results and practical recommendations.
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Appendix A. . Optimisation model

Indices
f Actual demand index
α α-service level
r Period index, r T[1; ])
ST Standard deviation index
λ Market number, λ [1; ]
i Production facility number, i H[1; ]
j Distribution centre number, j G[1; ])
t Running time index
T Length of the planning horizon

Parameters
T Number of planning periods in planning horizon
G Number of DCs
H Number of factories
Λ Number of markets
D Mean weekly demand in a r-period, in units
q Mean basis demand, in units
k Seasonal demand coefficient in a r-period
δST Weekly demand standard deviation in a r-period
K Maximum production capacity per day, in units
B Maximum storage capacity at the DCs per day, in units
Lin Maximum inbound processing capacity at the DCs per day, in units
Lout Maximum outbound processing capacity at the DCs per day, in units
ξ Capacity reduction coefficient, in units
ch Unit inventory holding costs per day, in $
ctr Unit transportation costs per delivery, in $
cfix Fixed site costs, in $ per day
cman Own manufacturing costs, in $ per unit
csub Subcontracting manufacturing costs, in $ per unit
cin Inbound processing costs, in $ per unit
cout Outbound processing costs, in $ per unit
cdown Penalty for demand non-fulfillment, in $ per unit
p Unit price, in $

Variables
P Production quantity at the factory, in units per day

Fig. 8. The place of the revival policy in the supply chain resilience framework
(extended from Sheffi and Rice (2005)).
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S Selling quantity in the markets, in units
Xin Processed inbound quantity at the DC, in units per day
Xout Processed outbound quantity at the DC, in units per day
Q Shipment quantities in between the factory, DC, and the markets, in units per day
H Total inventory holding costs, in $
T Total transportation costs, in $
W Total processing costs, in $
F Total fixed costs, in $
M Total manufacturing costs, in $
U Total penalty for delayed delivery, in $
TC Total costs, in $
y Inventory in a r-period, in units
d Distance, in km (computed based on real routes)

Objective function

= = + + + + +max Profit Revenue TC p S H T W U M F where( · ) ( ), (1)

Demand constraints

Q dj t t

=D k q·r

=D D ·fr r r
ST

Shipment constraints

Q Xijt t
out

Q yjt jt

Capacity constraints

P K ·it it

Constraints on inventory holding and processing at the DCs

y B ·j j

+X Lt
out out

1

+X Lt
in in

1
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