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A B S T R A C T

Modeling and simulation are a powerful and effective problem-solving methodology to study how complex real-
world systems behave over time. In the literature, many authors have indicated that discrete event simulation,
agent-based simulation, and system dynamics are the primary and most important simulation techniques to aid
industrial engineers in making decisions. Given this context, this paper is expected to be an introductory guide,
especially for novice simulation modelers willing to work with hybrid simulation, by providing knowledge and
insight about the primary simulation methods in industrial engineering. This paper is expected to support the
decision about which simulation technique best suits the system being studied. For that, a systematic literature
review was conducted based on pre-defined search criteria. After applying the filters and including some re-
levant papers published in the field, a total of 145 papers were selected. Some of the analysis performed in this
study include, for each simulation method, the number of publications over the years and a list of the top 10
sources, countries, and authors according to the number of publications. Besides that, a brief history is provided
and the definition of the three primary techniques is discussed, as well as the main characteristics of each
technique, such as modeling steps, elements, conceptual modeling tools used, software, inputs and outputs,
programming languages, advantages, disadvantages, and application areas. Simulation modelers can use this
paper as a quick reference to the primary simulation techniques in order to identify the best tool for a specific
simulation project in the field of industrial engineering and related areas.

1. Introduction and background

The modeling and simulation (M&S) field includes the methods,
tools, and techniques used to represent, experiment, and study complex
systems. The M&S tools and techniques have advanced in the past
decades and have been increasingly applied in more challenging areas
(Ören, 2010).

Models are simplified abstractions to represent a system for some
specific goal and are used to test theories and to explore their im-
plications and contradictions (Balci, 2001, 2003). Simulation is one
particular approach to study models or to experiment with a model
based on numerous goals (Balci, 2003; White & Ingalls, 2015).

Simulation models are computer representations of how the real world
system operates at some level of aggregation. Modeling and simulation
are frequently more useful to promote knowledge and valuable un-
derstanding about the system and the problem structure than to provide
accurate predictions and exact answers (Eldabi, Paul, & Taylor, 1999;
Winz, Brierley, & Trowsdale, 2009). The definition of modeling and
simulation can be found in Maria (1997); White and Ingalls (2009,
2015, 2016).

Simulation is frequently the most time-effective and cost-effective,
and every so often the only means of detecting causal effects, stipu-
lating critical parameter estimates and clarifying how processes develop
over time (Garson, 2009). Simulation allows people to analyze systems
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optimization prior to implementation. In general, simulation is a more
suitable methodology to investigate complex problems, especially when
the problem cannot be formulated in mathematical terms (Barton,
Nelson, & Xie, 2013; Huanhuan, Yuelin, & Meilin, 2013). Simulation
modeling technique is (a) a widely used art, (b) a key approach to
characterize complex process configurations and constraints, and (c)
used to study how the system behaves under uncertainty and different
scenarios (Jeon & Kim, 2016; Kaur & Mittal, 2014).

According to Goldsman (2007), simulation is the most useful tool in
the industrial engineering, operations research, and management sci-
ence fields. Although originally simulation was mainly used by in-
dustrial engineers, recently the tool has been applied in a large set of
domains, ranging from biology and ecology to psychology and an-
thropology; from economics and education to public administration,
policy design, engineering and medicine; from urban planning to
military planning; and several other areas (Figueredo & Aickelin, 2011;
Ören, 2005a; Scholl, 2001). Ören (2005a, 2007, 2009, 2011) provided a
great discussion on the different meanings the term simulation can
have, in its areas of domain, its different contributions, its challenges,
and its different goals as a tool for training, decision support, under-
standing, learning, and entertainment. Different stakeholders may use
simulation for different purposes (Ören, 2005b).

Many modeling and simulation methods exist and a list of several of
the methods can be found in Diallo, Gore, Padilla, and Lynch (2015).
Some of these methods are predominantly used in a specific domain, as
is the case of Monte Carlo simulation in the field of finance and eco-
nomics or computational fluid dynamics (CFD) in the field of aerospace
engineering. Besides, some methods, such as Monte Carlo simulation
and discrete event simulation, are applied to modeling systems and
processes, while other methods, such as CFD and finite element analysis
(FEA), are applied to modeling products and prototypes. With respect to
simulation methods applied to modeling systems and processes, despite
the wide range of simulation applications, there are currently three
methods that can be considered important and suitable for widespread
applications in industrial engineering and related areas (Carley, 2009;
Goh & Ali, 2016; Jahangirian, Eldabi, Naseer, Stergioulas, & Young,
2010; Weidmann, Maisenbacher, Kasperek, & Maurer, 2015). They are:
system dynamics (SD), discrete event simulation (DES) and agent-based
simulation (ABS). SD and DES are more traditional approaches,
whereas ABS is relatively new. SD is usually used at high abstraction
levels, whereas ABS can be used across all levels and DES better deals
with low to middle abstraction levels. According to Brailsford, Carter,
and Jacobson (2017), for many years DES and Monte Carlo simulation
were the only methods that researchers and practitioners would think
when discussing simulation. The authors highlighted that for many
years the Journal of Simulation and the Winter Simulation Conference
focused mainly in DES, but this has completely changed. Now, both the
journal and the conference welcomes not only papers related to DES,
but also papers related to ABS and SD (Brailsford et al., 2017).

For novice modelers, a quick and general introduction to simulation
can be found in papers of the Winter Simulation Conference, entitled
“Introduction to Simulation” and/or “Introduction to Modeling and
Simulation”. Banks (1999, 2000) discussed the basic concepts and de-
finitions of simulation, as well as the advantages and disadvantages of
the technique. He also provided a simple example of a simulation done
by hand. Ingalls (2001, 2002, 2008, 2011, 2013) also talked about the
basic concepts related to simulation, but he also discussed the main
steps of a simulation project and he walked the readers through a de-
tailed example about how discrete-event simulation works. The ex-
ample is applied to a drive-through window process at a fast food res-
taurant. Similarly, White and Ingalls (2009, 2015, 2016) walked the
readers through a detailed call center simulation example. In addition
to the basic definitions, the advantages, and the disadvantages of the
simulation technique, Carson (2003, 2005) provided the readers with
the main steps of a simulation project and with information about when
one should use simulation. Although more than ten years have elapsed

since Carson’s papers and, consequently, the problems tackled by si-
mulation have changed, the definition of when to use simulation still
prevails. Goldsman (2007) also gave an introductory simulation tu-
torial, but in his paper, he focused on the statistical aspects of a si-
mulation project, such as random numbers generation, input analysis,
output analysis, and comparison of systems. For an introduction to
specifically input modeling, it is suggested to check the paper by Biller
and Gunes (2010), who discussed three cases when standard input
models may not represent the available data adequately. The previous
introductory tutorials are easy to understand. However, it is important
noting that the tutorials are mainly focused on discrete-event simula-
tion. For a tutorial on agent-based modeling and simulation, one can
check Macal and North (2005, 2006, 2007, 2010, 2011, 2013, 2014);
Weimer, Miller, and Hill (2016), who provided information about when
to use agent-based modeling and simulation, the current applications of
this method, some examples, general definitions, and the structure of
this method. For a simple tutorial on system dynamics, one can check
Brailsford (2008); Kunc (2016). However, the first provided the main
tools and data requirements, with an application focused in healthcare,
and the second provided general definitions, with an application fo-
cused on system dynamics as a behavioral method. Kunc (2017) also
gave an overview of system dynamics, but he focused on discussing how
SD can be used as a soft and also a hard method for modeling.

SD is a top-down approach grounded in differential equations sys-
tems and feedback loops. The SD model is made up of cause and effect
loops, stocks, flows, and auxiliary variables that are inter-connected
(Sterman, 2000). Unlike SD models that advance time continuously,
pure DES models advance time from one event to another in discrete
time steps, while the transition between states in ABS models can be
implemented in either fixed or variable time steps. These two ways of
implementation in ABS models are called synchronous and asynchro-
nous, respectively. In the synchronous case, the decision is made every
time step. In the asynchronous case, the time delay is recalculated every
time an agent enters a new state, which may reduce the computational
power needs.

Usually, DES models take a process view of the world, i.e., the
system is considered as a list of events to be processed or a flow chart
and the entities and mobile resources flow through the processes (Goh
& Ali, 2016). By default, entities and resources are not able to interact
with each other and they do not display adaptive behaviors. ABS is a
bottom-up approach focused on the design of heterogeneous individual
agents, the adaptive decisions and actions they perform, the rules that
they follow and the emergent behavior that arises from their interac-
tions (Borshchev, 2013; Dubiel & Tsimhoni, 2005).

Different problems and contexts may demand different simulation
methods depending on the research goals, available data, and the
nature of the system being modeled (Borshchev, 2013; Lättilä,
Hilletofth, & Lin, 2010). Even though it is possible to model most real-
life systems using one of the aforementioned simulation techniques, the
increasing level of complexity often requires substantial improvisation
in the selected approach (Swinerd & McNaught, 2012). Therefore, it
may be advantageous to integrate two or more simulation methods in
order to develop simpler, more natural and more efficient models. The
combination of two or more simulation approaches leads to what is
called hybrid (or multi-method) simulation model. According to Eldabi
et al. (2016), hybrid simulation can provide a better understanding of
complex systems because researchers can investigate the problem from
different dimensions and perspectives. Hybrid simulation is also im-
portant because, as highlighted by Zeigler and Ören (1986), the simu-
lation project usually has multiple objectives, multiple levels of ag-
gregation, and multiple levels of behavior and structure, which can only
be adequately represented by combining different simulation methods
together. Some examples of the possible use of multi-method can be
found in Borshchev (2013) and Eldabi et al. (2016), such as: using
system dynamics inside an agent; using agents as entities of a DES
model; using process flow inside an agent; among others.
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Table 1 shows a brief comparison of the number of papers published
for each primary modeling and simulation technique individually and
combined, as well as the papers describing hybrid or multi-method
modeling and simulation in general. In this table, it is also possible to
check when the first paper on each topic was published. We decided to
include the word ‘modeling’ in the keywords for two reasons: first, si-
mulation is often referred as computer modeling, and second, con-
ceptual modeling is usually the first step in a simulation project and,
hence, modeling and simulation are frequently used together. We re-
cognize that Table 1 might contain papers not directly related to SD,
DES, and ABS, but we believe it gives a good idea about the beginning
of the methods and the researchers’ interest on them.

The previous discussion leads to two fundamental questions: (1)
when should one use SD, DES, ABS or a combination of these methods?,
and (2) what methods are most appropriate to be used together?
Although they look like simple questions (or at least they should be),
these decision choices seem to be frequently made based on an un-
known or implicit user preference (Koelling & Schwandt, 2005). Each
method has its strengths and weaknesses (Rahmandad & Sterman,
2008). Therefore, every modeler and researcher willing to work with
hybrid simulation must be able to effectively choose among those
methods, based on the project purpose, the data availability and the
characteristics of the system of interest. Also, in order to choose the
correct methods, it is important to know the characteristics, ad-
vantages, and limitations of each method.

This work is an attempt to provide simulation researchers and
practitioners with an easy, quick and practical way of gaining knowl-
edge and information about the three primary simulation methods in
industrial engineering and, hence, a means to support the decision
making of what is(are) the most suitable simulation method(s) to be
used in a specific simulation project. Therefore, the main objective of
this paper is to offer an introductory guide on discrete event simulation,
agent-based simulation, and system dynamics. We hope that the find-
ings of our analysis will be beneficial to the community of simulation
academics and practitioners within various sectors and industries. This
paper is also a partial response to the future work proposed by
Jahangirian et al. (2010), who suggested researchers to perform a
comparison of various simulation techniques.

To the best of our knowledge, there is not yet any paper published
providing a general overview and comparison of all three primary si-
mulation techniques in industrial engineering. The works that we have
found so far usually fall in one of the following five groups: (1) a spe-
cific review on the three primary simulation methods in a particular
field without application; (2) a general review that encompasses only
one or two of the three primary simulation methods; (3) a specific re-
view on only two of the three methods in a particular domain; (4) an
application of two or three of the methods combined; or, (5) a review of

simulation studies in a specific field, without discussing the simulation
methods in detail.

As examples of work in group 1, we cite: Jahangirian et al. (2010),
where the simulation methods applied in manufacturing and business
were reviewed; Jeon and Kim (2016) who have performed a survey of
simulation techniques used in production planning and control; and,
Dessouky and Roberts (1997) who reviewed the main combined si-
mulation languages being used at that time, but did not classify the
languages into the three primary methods addressed in this paper.

In group 2, we found: Huanhuan et al. (2013), where they proposed
a framework for integrating discrete event simulation with agent-based
modeling; Lättilä et al. (2010), who have provided a comparison among
ABS and SD, and discussed five different situations where it would be
useful to combine these methods; and, Rahmandad and Sterman (2008)
who provided a discussion on when to use ABS and when to use SD.

In group 3, there are: Tako and Robinson (2012), where they have
reviewed the application of DES and SD in logistics and supply chain;
El-Gafy and Abdelhamid (2008) who have contrasted the use of DES
and SD as tools for lean construction work; Garson (2009) who has
reviewed the current developments in social science using ABS, SD,
network and spatial models; Kleijnen (2005) who has reviewed dif-
ferent simulation methods applied in supply chain management, in-
cluding DES and SD; and, Ashworth and Carley (2007) who conducted a
review on ABS and SD addressing organizational theory and modeling.

In group 4 we have: ElBanhawy et al. (2013), who have integrated
ABS and DES to simulate electrical vehicles population in metropolitan
areas; Rabelo, Eskandari, Shaalan, and Helal (2007) who have proposed
an approach that integrates SD and DES to model the service and
manufacturing activities of the global supply chain of a construction
corporation; Goh and Ali (2016) who proposed a hybrid simulation
framework consisting of ABS, DES and SD, to facilitate integration of
safety management considerations into construction planning; Lee,
Cho, Kim, and Kim (2002) who proposed a combined discrete-con-
tinuous architecture for simulating supply chain; and, Wang, Brême,
and Moon (2014) who proposed a new integrated lifecycle assessment
approach using ABS, SD and DES.

Finally, in group 5 we have: Aboueljinane, Sahin, and Jemai (2013),
who discussed the decisions, the performance measures, the input data
used, and the dispatching rules applied in simulation studies in the field
of emergency medical service; Gul and Guneri (2015), who discussed
the goals, the performance measures, the data gathering method used,
and the software used in simulation studies in the field of emergency
department during normal and disaster conditions; and, Alrabghi and
Tiwari (2015), who discussed the decision variables, the optimization
method, the simulation and optimization software used, and the
maintenance strategy applied in simulation studies in the field of
maintenance systems. Gul and Guneri (2015) mentioned the simulation

Table 1
Number of papers published and the first year of publication on the main simulation techniques.

Keywordsa Total number of papers First year of publication

(“System Dynamic* modeling” OR “System* Dynamic* simulation”) 1099 1970
(“Discrete event modeling” OR “Discrete event simulation”) 7210 1974
(“Agent-based modeling” OR “Agent-based simulation”) 2370 1997
((“System* dynamic*”) AND (“Discrete event”) AND (“Simulation” OR “Modeling”)) 184 1977
((“System* dynamic*”) AND (“Agent-based”) AND (“Simulation” OR “Modeling”)) 146 2001
((“Discrete event”) AND (“Agent-based”) AND (“Simulation” OR “Modeling”)) 150 1997
((“System* dynamic*”) AND (“Discrete event”) AND (“Agent-based”) AND (“Simulation” OR “Modeling”)) 20 2003
(“Hybrid simulation” OR “Multimethod simulation” OR “Multimethod modeling” OR “Hybrid modeling”) 2048 1964

Database: Scopus.
Date of search: first half of June/2016.
Search fields: Topic (Title, abstract and keyword).
Language: English.
Subject: Engineering, Decisions Sciences, and Business, Management and Accounting.
Type of document: Article, Article in Press, Conference Paper, Conference Review and Review.

a Search criteria.
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method being used in the studies as well: about 95% of the studies used
DES or DES in combination with another method and the remaining 5%
used ABS or ABS in combination with other method. Similarly, Alrabghi
and Tiwari (2015) also aimed to discuss the simulation method used in
the studies. However, 68% of the studies used DES and 19% did not
disclose the method used, which gave only 14% of the studies selected
using a different method.

This paper is divided into five sections. In section 1, we provided a
brief background of the area and the context that led to this work. The
second section describes the methodology adopted for the systematic
literature review. Next, we provide a summary of the results of the
literature search. The fourth section provides a discussion of the char-
acteristics of each method and a comparison among them. Finally,
concluding remarks and further research in the simulation field are
presented.

2. Material and methods: Systematic literature review
methodology

The systematic review was carried out using the Scopus® citation
database. This choice was justified as Scopus® is one of the largest and
main multidisciplinary databases, including approximately 15,000
peer-reviewed journals (Franceschini, Maisano, & Mastrogiacomo,
2014; Jahangirian et al., 2010). The search was performed in the first
half of June 2016. The method adopted during the review is depicted in
Fig. 1.

The readers should be aware of three important notes. First, this
paper was not meant to be a full bibliographical survey on simulation
methods. Instead, the goal was to provide simulation modelers with an
introductory guide about the three main simulation methods in in-
dustrial engineering and related fields. Second, only the DES, SD and
ABS methods are being discussed in detail in this paper. There are other
simulation methods available, such as Monte Carlo simulation, dis-
tributed and parallel simulation, game-theory simulation, neural net-
work simulation, CFD, FEA, and so on. The choice of the three methods
was based on the importance in the field of industrial engineering and

wide range of applications, as mentioned in section 1. Third, due to the
large number of available databases and publications in the field, per-
forming the search in different databases and analyzing all the results
would be impractical in a timely manner. Therefore, the authors chose
the database based on its size and relevance to the field, as discussed
above, and the authors selected the publications to be included in this
paper based on a pre-defined selection criterion, as discussed below.
Despite the considerable number of papers included in this guide, it is
possible that some important papers may have been missed. To mini-
mize this drawback, a list of some important resources is provided to
the readers at the end of this paper. After years of work in the field of
discrete-event simulation, the authors of this paper have recently
started working with other simulation techniques. While performing
different literature search in the area, the authors noticed that there
was a lack of review in the literature with respect to some simulation
approaches, such as agent-based, system dynamics, or a combination of
approaches.

An initial search was performed in the Scopus® database to define
the most appropriate keywords to address the research objective. Next,
a second search based on the defined search criteria was performed.
Given that our aim was to compare the three most used and important
simulation methods in industrial engineering, other simulation ap-
proaches such as Monte Carlo simulation was not included in the final
search.

Some general filters were applied in an attempt to improve the
search results for the target audience of this paper. These filters can be
seen in Fig. 1 and include: (i) inclusion of papers written in English
only, (ii) inclusion of research areas related to Engineering, Business
and Decision Sciences only, and (iii) inclusion of articles published in
peer-reviewed journals, conferences or reviews. The authors ordered
the papers from the most cited to the least cited, as a possible criterion
of the quality and importance of a publication (Ahlgren & Waltman,
2014). Then, a screening process of the abstracts was performed. A total
of 489 abstracts were read by the authors. Due to time constraints, the
15 most relevant papers according to the objective of this study from
each of the 7 keyword groups were selected. This means that papers

Fig. 1. The literature review methodology.

A.P. Galvão Scheidegger et al. Computers & Industrial Engineering 124 (2018) 474–492

477



who discussed only the application, but not any characteristics of the
method were not selected. As a result, a total of 105 papers were se-
lected. Then, the full-text screening process was started in order to
capture the intended information. While performing the literature
analysis, the most relevant works cited in the papers were also identi-
fied by the authors. Additionally, some papers suggested by colleagues
and reviewers as relevant to the field were also included, as well as
some interesting books and papers known to the authors. Thus, an
additional 30 papers were selected to be part of this literature review.
So, a total of 145 papers formed the basis for this literature review, as
can be seen in the References section. The list of the original 105 papers
selected through the systematic review can be obtained by contacting
the corresponding author.

3. Results

In this section we present a summary of the results of the biblio-
metric analysis performed.

From Fig. 2, we observe that discrete event simulation and system
dynamics publications arose in the same period (in the mid-1970s),
while agent-based simulation is a more recent topic that started to
arouse interest of academics in the mid-to-late 1990s.

We notice that although DES and SD have appeared in the same
period, DES is a much more popular topic with a higher number of
publications through all these years. In spite of being a more recent
topic, we can also perceive that ABS is already more popular than SD.

Due to the sharp increase in interest in ABS, it can be projected that
within the next 10 years ABS will be a method as popular as DES. The
accentuated growth of ABS may also explain the decrease in the number
of DES and SD publications from 2014 to 2015, by showing that aca-
demics are currently placing more effort on ABS studies.

Fig. 3 shows the top 10 countries according to the number of papers
published, per simulation method. According to this chart, the United
States, followed by China, are the countries that have the highest
number of publications in all three methods. SD is the method where
the difference in the number of publications is smaller, but even in this

case, the publications from the United States are almost twice as many
as from China.

It is also interesting to note that countries such as the United
Kingdom, Germany, Canada and Netherlands, appear in the top 10 in
all three methods; while France, Italy, Australia and Japan appear in
two of the three methods and other countries, like India and South
Korea, appear in only one method.

From Fig. 4, we observe that there is not a researcher that shows up
as a top 10 publisher in all three methods. In fact, there is no author in
common in any of the areas, which indicates that the top 10 authors are
very specialized and may not devote themselves to hybrid studies.
Moreover, we also note that the top 10 authors in DES published around
three times the number of papers produced by the top 10 ABS authors,
who in turn published around two times the number of papers produced
by the top 10 SD authors.

Fig. 5 presents the top 10 sources according to the number of papers
published, per simulation method. As we can see, the Winter Simulation
Conference (WSC) is the main conference of the field, showing up as a
top 10 source in all three methods and being in the first position in the
number of DES papers. We also note a common problem of scientific
databases for bibliometric studies that differentiate two sources (or
authors, for example), if the names are written in a different way. This
can be observed in the WSC for the DES method.

On the other hand, journals that are very relevant to the area, such
as Simulation and European Journal of Operational Research, do not
appear as a top 10 journal for all methods. The journal Simulation
appears only for the DES papers, while the European Journal of
Operational Research appears for both DES and SD papers, but not for
ABS. Another journal that also appears as a top 10 in DES and SD papers
is the International Journal of Production Research.

It is also worth noting that the first position of the top 10 sources in
SD papers is a specialized journal, entitled System Dynamics Review.
The WSC is the only conference that appears in the top 10 sources for
SD method, while at least one more conference, besides WSC, appears
for DES and ABS methods.

Fig. 6 shows the top 10 subjects according to the number of papers,
per simulation method. As expected, Engineering occupies the first
position in all three methods, followed by Computer Science in second
or third position. We notice that most of the subjects are common to all
methods, with very few subjects appearing in only one or two methods.
Examples include Earth and Planetary Sciences using DES method and
Energy using ABS and SD methods.

4. Discussion

4.1. Some papers dedicated to simulation history

In 2017, the Winter Simulation Conference, one of the main con-
ferences in the field of simulation, celebrated 50 years of history. As a
result, many papers discussing the history of simulation, as well as the

Fig. 2. Number of papers per year, per simulation method.

Fig. 3. Top 10 countries according to the number of papers, per simulation
method.

Fig. 4. Top 10 authors according to the number of papers, per simulation
method.
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history of the conference were published in the 2017 WSC edition.
For a detailed history of the WSC, one can read Alexopoulos, Joines

and Kuhl (2017); Barton, Joines, et al. (2017); Sargent (2017a); Sargent
and Roth (2017); Schriber, Reitman, Ockene, & Hixson (2017). Schriber
et al. (2017) discussed the origins of the conference from 1967 to 1974
and the different names originally adopted. Sargent and Roth (2017)
discussed the period of 1975 to 1982, which included the collapse of
the conference in 1975 and the changes made to ensure the continuity
of the conference from 1976 onwards. Sargent (2017a) gave an over-
view about the WSC from 1983 to 1992, its attendance, the number of
papers published, and the keynote speakers and topics. It was during
this period that the Ph.D. colloquium was initiated at the conference.
Barton, Joines, et al. (2017) discussed the developments during the
period of 1993 and 2007 when a lot of progress was made in terms of
tracks, the conference website, the proceedings, and attendance. Fi-
nally, Alexopoulos et al. (2017) discussed the last ten years of the
conference and the recent developments.

Roberts and Pegden (2017) provided a discussion on the 60 years of
simulation and how the world-views changed from event to activities,
to process, to object-oriented. The authors also briefly discussed the
system dynamics and agent-based simulation methods, their origins,
and the software available for each of the methods. Sargent (2017b)
discussed the evolution of discrete event simulation from 1961 to 2017.
The author described his first contact with simulation and how the field
developed with respect to technology, software, books, journals, and

professional societies, to gain the scientific respect in the 1990s.
For software history, one should read Nance and Overstreet (2017),

who provided a list of software dedicated to simulation and their
number of years in the market. The authors also discussed the language
and environments used in the software, as well as the method sup-
ported. Alexopoulos and Kelton (2017); Cheng (2017) discussed the
history of output analysis and input modeling, respectively. Barton,
Nakayama, et al. (2017) presented the history of simulation experi-
ments designs, variance reduction techniques, and rare event simula-
tion, with focus on the early years. For a list and discussion on two
seminal papers about simulation and other eight award-winning papers
on different topics of the simulation field one can read Nelson (2004).

4.2. Discrete event modeling and simulation

4.2.1. History
Discrete event simulation emerged between the decades of 1950 and

1960 around the same time as system dynamics (as previously indicated
in the bibliometric analysis). It was initially applied in the Operations
Research and Industrial Engineering areas and subsequently applied to
other areas (Hollocks, 2006; Karnon et al., 2012). Goldsman et al.
(2010) provided a history of DES in terms of important people, places,
and events that contributed to the progress of the method.

The first discrete event simulation models were developed using
low-level programming languages (Jenkins & Rice, 2009). Software

Fig. 5. Top 10 sources according to the number of papers, per simulation method.
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packages focusing on DES were developed subsequently (Pidd, 2004).
The first software implementation of discrete event simulation was in-
troduced in 1961 by the International Business Machines Corporation
(IBM) engineer Geoffrey Gordons, named General Purpose Simulation
System (GPSS) or originally Gordon’s Programmable Simulation System
(Borshchev, 2013; Ross, Ulieru, Gorod, 2014).

However, until 1990–2000, simulation was a very expensive and
specialized tool, used mainly by large companies (Kelton, Sadowski, &
Zupick, 2015). Discrete event simulation followed the evolution of
computer development (Robinson, 2005). DES has begun to mature in
the early 1990s, along with the emergence of graphical user interfaces
in simulation software and facilitated by the introduction of personal
computers (Banks, Carson, Nelson, & Nicol, 2013). Besides that, other
improvements in the method, such as animation tool, ease of use and
integration with other software packages, led simulation to become a
standard tool in many companies, including small ones (Kelton et al.,
2015). In the past 15 years, the most important developments in DES
have included: interactive visual modeling, distributed simulation, in-
tegration with other software, optimization, virtual reality, simulation
applied to service sectors and the use of the World Wide Web
(Robinson, 2005). DES still expanded accompanying the evolution of
software technology and making the models more accessible to decision
makers (Harrell, Ghosh, & Bowden, 2004). Nowadays, DES is supported
by a larger number of software tools, including modern versions of

GPSS (Borshchev, 2013).

4.2.2. Definition
Discrete event simulation is by far the most common simulation

method applied to manufacturing systems (Rabelo, Helal, Jones, & Min,
2005), but it also covers technical and service applications (Weidmann
et al., 2015). It has been increasingly employed to aid decision-making
(Pereira, Montevechi, Miranda & Friend, 2015) and it is a method
concerned with the modeling of systems that can be represented by a
series of discrete events with passive entities flowing through it. The
entities have a number of attributes and can be connected to resources,
so they can be processed during an event if the necessary resources are
available (El-Gafy & Abdelhamid, 2008; Greasley, 2009; Weidmann
et al., 2015). The simulation typically maintains data structures of state
variables, an event queue of forthcoming timestamped events, and a
global clock that indicates the progress of the simulation. The simula-
tion advances by processing the next event in the event list. When an
event is processed, the value of one or more state variables may change
and new events may be added to the event list (Hybinette, Kraemer,
Xiong, Matthews, & Ahmed, 2006). The simulation analyst is re-
sponsible for discerning among the state variables the ones that re-
produce the system behavior, the events that alter those state variables,
and the proper logic to represent this process (Rabelo et al., 2005).

Despite being a static representation, the DES inputs can be

Fig. 6. Top 10 subjects according to the number of papers, per simulation method.
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Table 2
Summary of DES characteristics.

Main concept The system is frequently modeled as a process, that is, a sequence of operations performed across entities and resources (Borshchev,
2013, Greasley, 2009, Macal & North, 2005, Rabelo et al., 2007).

Goal To replicate the system’s structure to investigate its results under a different number of situations (Greasley, 2009).
Application areas Due to the diversity of applications, it is difficult to list all the areas in which DES has been applied. Some examples are: manufacturing

systems (e.g. production planning, routing, and scheduling), project management, logistics, supply chain, distribution network,
transport and traffic systems, construction, inventory management, healthcare sector, military applications, queueing systems (e.g. bank
teller), computer systems (e.g. multiple tasks served by a central processing unit (CPU)), communication systems (e.g. message transfer
via multiple servers) and in several other service areas (e.g. government offices, hotels, restaurants and educational institutions).
Source: Banks et al. (2013), Borshchev and Filippov (2004), Hillier and Lieberman (2010), Rabelo et al. (2005).

Modeling requirements Not found
Modeling steps A comparison of eight main DES modeling phase-structure is provided in Montevechi, Pereira, da Silva, Miranda, & Scheidegger (2015).

According to this comparison, DES usually encompasses three big phases: conception, implementation, and analysis. The conceptual
phase unfolds in 8 smaller steps: (i) real system definition, (ii) problem formulation, (iii) requirements specification, (iv) building the
conceptual model, (v) conceptual model validation, (vi) architectures and design specifications, (vii) data documentation, and, (viii)
collection and modeling of input data. The implementation phase consists of 4 smaller steps: (i) building computer sub-models, (ii)
building the computer model, (iii) computer model verification, and (iv) computer model validation. The analysis phase is divided into 6
steps: (i) design, conduct, and analysis of experiments, (ii) data analysis or interpretation, (iii) data documentation up to date, (iv)
conclusions and recommendations, (v) presentation of results, and (vi) implementation in the real system.

Model clock Discrete-time: the model advances chronologically based on the sequence of events in the event list. First, an initial event is placed in the
event list. Then, the simulation run starts by executing this event and by proceeding as an infinite loop that is advanced only when an
event occurs (i.e., executes the current most imminent event). The simulation run ends whenever there is no other event to be executed
in the event list or whenever a specific event forces the end (Behdani, 2012, Borshchev, 2013).

Abstraction level Low-level abstraction: each object in the system is individually represented by an entity or resource (Borshchev, 2013).
Object behavior Passive: the entities have no behavior of their own, they just carry their data.

Source: Borshchev (2013), Borshchev and Filippov (2004).
Main elements or components 1. Source blocks: generate entities and inject them into the process.

2. Entities: represent clients, patients, documents, parts, products, pallets, vehicles, and projects, i.e., everything that is waiting for a
service or to be processed.
3. Resources: represent staff, doctors, operators, workers, servers, vehicles, and equipment, i.e. everything that is used to provide a
service, transport or process some entity.
4. Queues: represent entities that are waiting for a service or to be processed.
5. Sink blocks: remove entities from the model.
Source: Borshchev (2013), Borshchev and Filippov (2004), Greasley (2009).

Main inputs 1. Service time or delays: the deterministic or stochastic time spent to provide a service or to process some entity.
2. Inter-arrival time: the time interval between entities arrivals.
3. Number of entities per arrival.
4. Operations: process branches, splitting, combining, seizing or releasing resources.
5. Attributes: characteristics of each entity or resource, such as cost, size, age, product type, working shift, etc.
6. Timer: a clock that fires an operation.
Source: Borshchev (2013), Borshchev and Filippov (2004), Greasley (2009).

Main outputs 1. Utilization of resources.
2. Time spent in the system.
3. Waiting times.
3. Queue lengths.
5. System throughput.
6. Bottlenecks.
7. Costs (processing cost, idle cost, among others).
Source: Borshchev (2013).

Conceptual modeling tools Business Process Modeling (BPM), Activity Cycle Diagram (ACD), process flow diagram, component list, flowcharts, control flow graph,
IDEF-SIM, Soft System Methodology (SSM) applied to DES, and Discrete Event Systems Specification (DEVS).
Source: Borshchev (2013), Chwif, Paul, and Barretto (2006), Cota, Fritz, and Sargent (1994), El-Gafy and Abdelhamid (2008), Kotiadis
and Robinson (2008), Montevechi et al. (2010), Pereira et al. (2015), Robinson (2017), Ross et al. (2014), Ryan and Heavey (2006),
Zeigler (2003), Zeigler, Praehofer, and Kim (2000).
Robinson (2017) provided a tutorial on conceptual modeling for discrete-event simulation.

Simulation software Various free and commercial software are available and they have powerful graphical and animation facilities to clarify behavior or
results. The list provided in this table is by no means complete; but it is intended to give the readers a quick access to some options
available. Some of them are: Simio®, ProModel®, Arena®, AnyLogic®, FlexSim®, SimEvents®, Simul8®, ExtendSim®, SimProcess®,
AutoMod®, Enterprise Dynamics®, JaamSim®, EZStrobe®, Simscript®, SimPy, and NS-3. From the previous list, the first 12 software offer
drag and drop interface to the users as well as graphical animation, while the last 4 software work mainly with command line structure.
Source: Borshchev and Filippov (2004), Dubiel and Tsimhoni (2005), El-Gafy and Abdelhamid (2008), Swain (2017), Weidmann et al.
(2015).

Programming language There is no agreement on language for specifying discrete event models and compatibility is not planned by software developers yet.
However, few examples of specialized languages can be cited, such as Stroboscope, GPSS, GASP, Simscript, and Simula.
Source: Borshchev (2013), El-Gafy and Abdelhamid (2008), Ho and Cassandras (1983).

Validation and verification procedures Sargent (2011) offers a verification and validation list that includes: animation, comparison to other models, degenerate tests, event
validity, extreme condition tests, face validity, historical data validation, historical methods, internal validity, multistage validation,
operational graphics, parameter variability - sensitivity analysis, predictive validation, traces, and Turing tests.

(continued on next page)
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randomized to examine the impacts of different changes in the system
(Ross et al., 2014). DES is usually represented by flowcharts, which
makes it at the same time a straightforward and valuable performance
analysis tool to pinpoint process bottlenecks and to collect performance
measurements of either an existing or new system (Ross et al., 2014). In
order to allow for performance analysis, a DES model calls for detailed
and precise information on how the system worked previously or
educated approximations on the future system’s characteristics (El-Gafy
& Abdelhamid, 2008).

Table 2 presents a summary of the main DES characteristics.

4.3. Agent-based modeling and simulation

4.3.1. History
ABS is a relatively new and novel simulation technique that has

been continuing to grow in popularity. ABS continues to grow quickly
in terms of problem applications as well as in different domains (Kasaie
& Kelton, 2015). It is a more recent modeling and simulation method
than System Dynamics and Discrete Event Simulation. The method is
also known as individual-based simulation models (IBMs) and it has its
roots in computer science, and more specifically, in object-oriented
modeling (Borshchev, 2013).

The use of ABS for research and management has been growing
rapidly in a number of areas. The remarkable growth of ABS publica-
tions started around 1990 due to the capability of this simulation ap-
proach to easily and efficiently represent problems that other conven-
tional approaches could not address (Railsback, Lytinen, & Jackson,
2006; Wu, Kefan, Hua, Shi, & Olson, 2010). However, it was only in the
early 2000s that ABS arrived as the third powerful modeling paradigm
(Borshchev, 2013). As we saw in Section 3, our bibliometric analysis is
in line with this statement. The first publications in ABS appeared in
1997, but it was only in the early 2000s that we observed a growth in
the number of papers.

The growth in the use of the method was also a result of the
availability and access to a high number of and the quality of software

platforms that made it feasible to build and use agent-based simulation
applications (Luke, Cioffi-Revilla, Panait, Sullivan, & Balan, 2005;
Railsback et al., 2006). ABS models are computationally more de-
manding compared to SD and DES (Borshchev, 2013). The interest and
advances in the ABS method coincided with the advances in modeling
technology, namely, object-oriented modeling, Unified Modeling Lan-
guage (UML) and statecharts, coupled with the rapid growth in the
availability of CPU power, memory, and distributed computing. How-
ever, at the same time, ABS progress was still hindered by computa-
tional power and software availability. Researchers in many fields, such
as biology, ecology, economics, political science, and sociology, do not
possess sufficient training in software skills related to developing and
using comprehensive ABS models, which limits the current usage level
of ABS (Railsback et al., 2006).

Despite the current general accepted usefulness of ABS to represent
human behavior, the method has still some ways to go to become one of
the mainstream simulation methods in Operations Research and
Management Science (Siebers & Onggo, 2014). On the other hand, the
method is already flourishing in other areas, such as Economics,
Biology, and Social Science, where complex ABS models have been
developed to capture detailed behaviors from problems in those areas.
In general, the use of ABS was steadily increasing in all disciplines
(Devillers, Devillers, Decourtye, & Aupinel, 2010). Although many
studies have been conducted, the development of practical and em-
pirical agent-based models is still overlooked (Kim & Kim, 2010).

Since 2000 several conferences dedicated to ABS have been hosted
and several distinguished conferences have opened tracks concentrating
specifically on this simulation approach (Dubiel & Tsimhoni, 2005).

4.3.2. Definition
Agent-based Simulation is a very efficacious modeling and simula-

tion technique that allows the representation of very complex and dy-
namic systems composed of autonomous, heterogeneous and possibly
intelligent entities that interact to attain some goal (Bandini, Manzoni,
& Vizzari, 2009; Dubiel & Tsimhoni, 2005; Kim & Kim, 2010; Macal &

Table 2 (continued)

Advantages Among the advantages of DES, we can cite:
1. Unlike artificial intelligence and mathematical optimization, it does not demand many simplifying assumptions.
2. It is a flexible tool with a wide range of applications.
3. It can describe the most complex systems, at different level of details while including stochastic elements that cannot be easily

described by other analytical models.
4. It allows analysts to track the status of individual entities and resources.
5. Since the model advances in discrete time steps, the time elapsed between two events is ignored, which makes DES models be quick.
6. It is capable to model distinctive entities with heterogeneous characteristics.
7. It is preferred, compared to ABS and SD, when the system contains a high degree of uncertainty or many stochastic processes.
8. It can replicate the real system by collecting data on process flows, process times and demand patterns and, therefore, it provides a

useful estimation of real system performance under different scenarios.
9. It is able to model queuing behavior, which is an important feature when examining the service level performance of a business

system.
Source: Behdani (2012), Hybinette et al. (2006), Macal and North (2005), Rabelo et al. (2005), Wakeland et al. (2004).

Disadvantages Among the disadvantages of DES, we can cite:
1. Representing or mimicking social behavior in DES models is complicated and demanding.
2. It is not an appropriate approach for modeling movements and decision making. Routing logic must be implemented in the DES
servers, as entities or resources cannot actively make decisions.
3. Since DES model proceeds in discrete time steps, representing entities’ real-time decision is very challenging.
4. It is not the best approach for modeling more complex integrated systems, being more suitable for strategic and operational
investigations, where the dynamicity of the system is limited and few options are presented, but detailed examination is essential.
5. It requires some statistical background to make sense of the resultant estimates and to recognize the differences between causality and
correlation among the variables and the output measures. When modeling large-scale systems, this task may not be straightforward.
6. It does not take into account stability estimates in the neighborhood of the decision variables. Therefore, the results of the model must
be carefully evaluated in systems where small changes in the decision variables can lead to unexpected large changes in the results.
7. It requires data availability and accuracy. Consequently, it may not be applicable to investigate many business level decisions of
companies, where data is not available or accurate.
8. It is not suitable to simulate continuous dynamic behavior.
9. It is not capable to adapt its structure at runtime, which makes it useful only when the governing rules in the flowchart blocks are
known in advance.
Source: Behdani (2012), Borshchev and Filippov (2004), Dubiel and Tsimhoni (2005), Kim and Kim (2010), Rabelo et al. (2007), Rabelo
et al. (2005).

Classification/types of models Not found
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North, 2005; Ören & Yilmaz, 2012; Wu et al., 2010). ABS is a useful tool
for representing knowledge and information processing, such as rea-
soning, planning, and deciding (Yilmaz & Ören, 2007). The entities are
represented as individuals, referred to as agents. These entities interact
with each other and with their environment according to rules, re-
sulting in an emergent system behavior as time and space evolve
(Higgins et al., 2010; Kasaie & Kelton, 2015; Swinerd & McNaught,
2012). The environment is part of the system occupied by one or more
agents (Logan & Theodoropoulos, 2001).

The behavior of the agents at discrete points in time can be re-
presented through statecharts diagram. This behavior can be both re-
active when an agent responds to an event, or proactive when an agent
pursues a goal or actively makes a decision (Ross et al., 2014). The
agent’s state changes over time and during the transition from one state
to another an action may be performed, dictated by some decision or
behavioral rule (Esmaeili, Vancheri, & Giordano, 2010; Siebers &
Onggo, 2014).

In many cases, the internal dynamics of the agent can be captured
using system dynamics or discrete event approach. Likewise, the dy-
namics of the environment where the agents live are often modeled
using traditional simulation methods. In these cases, a flow diagram or
a process flowchart can be placed inside an agent and that is why many
agent-based models are, in fact, multi-method (or hybrid) models
(Borshchev, 2013).

ABS is uniquely characterized by the decentralized representation of
the system through agents and their environment(s) (Kasaie & Kelton,
2015). The decentralized bottom-up approach enables the modeler to
describe a system from the perspective of its constituent units (agents)
even when the modeler may not know how the system behaves as a
whole and what are the key variables and dependencies between them,
as long as he/she has some insight into how the objects behave in-
dividually (Borshchev, 2013). The multi-level nature of ABS models
enables explicit definition of various interventions at the individual
level, as well as at the population level, providing a powerful experi-
mental platform to study the system’s behavior.

Applications of ABS range from small, sophisticated and detailed
academic models to large-scale decision support systems, involving
studies from modeling agent behavior in the stock market and supply
chains, to predicting the spread of epidemics and the threat of bio-
warfare, from modeling consumer behavior to understanding the fall of
ancient civilizations, from military applications to web-based agent
behavior (Ghasem-Aghaee & Ören, 2007; Macal & North, 2005).

Table 3 presents a summary of the main ABS characteristics.

4.4. System dynamics modeling and simulation

4.4.1. History
System dynamics (SD) is a popular simulation paradigm and its

principles are extensively established and recognized by simulation
practitioners and researchers (Lättilä et al., 2010). SD is recognized as a
system thinking methodology (Rabelo et al., 2005). At first, system
dynamics was mainly identified as a computer simulation approach
(Wolstenholme, 1999).

The origin of system dynamics can be traced back to 1956 and the
work of Forrester at the Massachusetts Institute of Technology (Ahmad
& Simonovic, 2000). SD has a long history and evolution, which can be
found in detail in several papers (Angerhofer & Angelides, 2000; Baines
& Harrison, 1999; Behdani, 2012; Lättilä et al., 2010; Swinerd &
McNaught, 2012; Winz et al., 2009).

Forrester (1958) introduced his ideas in Industrial Dynamics, and
launched his thoughts as a ‘major breakthrough for decision makers’.
Applications of the method spread into the social sciences area, and as a
consequence, Forrester re-named the technique ‘System Dynamics’. He
considered SD to reflect a universal applicability to any situation that
could be modeled as a ‘system’ that combines people and/or machines.
In fact, Forrester (1969) viewed SD as an approach to corporate policy

design and to understand and solve top management problems. SD is
not a data-dependent technique and is very suitable for qualitative and
continuous parameters in management decisions (Winz et al., 2009).

Numerous simulation studies have been developed using system
dynamics and the increase in complexity and uncertainty has promoted
an increase in the use of flexible simulation tools that SD provides
(Winz et al., 2009). Since the early conception by Forrester, the SD field
has greatly advanced and its application has been expanded to several
areas (Angerhofer & Angelides, 2000; Baines & Harrison, 1999).

4.4.2. Definition
System dynamics is a methodology for analyzing and solving com-

plex problems with a focus on policy analysis and design. As any si-
mulation methodology, SD lets us investigate how the system behaves
and how the system responds to different situations over time
(Angerhofer & Angelides, 2000; Behdani, 2012; Swinerd & McNaught,
2012; Wang et al., 2014; Winz et al., 2009). SD is used to model and
simulate a system from a higher system-level viewpoint (Angerhofer &
Angelides, 2000), describing human systems in terms of feedback and
delays. It is useful for identifying the important variables and causal
linkages in a system, and for structuring many aspects of model de-
velopment (Macal & North, 2005).

SD is characterized by stocks, representing the items moving in the
system (e.g., knowledge, people, or money), and flows, representing the
interconnections between the stocks. In addition, the causal diagram
depicting the stocks and flows also shows the causal variables that in-
fluence the flows and any delays associated with those variables. The
power of this paradigm is in its ability to abstract from the effect of a
single entity and focus on the aggregate effect. Thus, the effect of dif-
ferent strategies and configurations of the system can be investigated
(Rabelo et al., 2005; Ross et al., 2014; Swinerd & McNaught, 2012;
Wang et al., 2014).

The central concept is that all the objects in a system interact
through causal relationships. These relationships come about through
feedback loops, where a change in one variable affects other variables
over time; these variables, in turn, affect the original variable, and so
on. More specifically, SD acknowledges that the dynamic behavior of
the system arises from the feedback and cause-and-effect loops, and as
such, SD takes a systems thinking view to represent the system (Rabelo
et al., 2005).

The creation of a dynamic model of a system requires the identifi-
cation of the causal relationships that form the system’s feedback loops
(Forrester, 1961). Feedback loops can be either positive or negative
based on the direction of influence a parameter has on another. A po-
sitive loop is a series of causal relationships that reinforces behavior
towards a particular goal in the system. In contrast to a self-reinforcing
positive loop, a negative loop is a sequence of interactions that causes
the system to behave contrary to a specific goal. A causal loop diagram
consists of a set of interconnected feedback loops represented by system
variables interconnected by arrows. Whether the causal interaction
between the system variables is positive or negative can be determined
by the form of the arrows (Rabelo et al., 2005; Swinerd & McNaught,
2012).

SD model is based on ordinary differential equations and their nu-
merical solution over time. First the differential equations that govern
the system are specified, then the values of the parameters are ap-
proximated or collected from real data, and, finally, the time trajec-
tories of the interesting factors are estimated and presented (Wakeland,
Gallaher, Macovsky, & Aktipis, 2004). Once dynamical systems mod-
eling has identified specific frontiers of criticality, specific scenarios can
be simulated to understand potential responses of the value chain to (i)
drive the system to a new state of equilibrium, or to (ii) permit the
system continued function within bounds of normality. These applica-
tions are particularly valuable when someone wants to investigate or
propose improvements to value chain resiliency (Higgins et al., 2010).

Table 4 presents a summary of the main SD characteristics.
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Table 3
Summary of ABS characteristics.

Main concept Behavioral patterns are replicated by representing individual actors that interact with each other in a dynamic adaptive system and by
manipulating them in order to study how micro-level behavior of individuals can result in a macro-level group behavior.
Source: Garcia (2005), Huanhuan et al. (2013).

Goal To investigate how entities or agents interact with each other to achieve specific goals and to analyze the individuals’ and the system’s
emergent behavior.
Source: Garcia (2005), Huanhuan et al. (2013).

Application areas ABS is commonly used in social and biological sciences, economics and engineering. Studies include: pedestrian movements, comprising
destination choice, route choice model, and collision avoidance; evacuation and disaster scenarios; population dynamics; human social
interaction; diffusion of innovations; organizational strategy; knowledge and information flows; animal behavior; predator prey models;
ecosystems, urban systems; traffic-flow systems; land use; politics; homeland security; computer network security; civil violence;
cooperation and communication within supply chain; cultural issues; disease spread; electronic commerce; energy; environmental
chemistry and toxicology; bio molecular models; behavioral and evolutionary game theory; housing market dynamics; consumer market
analysis; advertisement effectiveness; military planning; battlefield models; and, healthcare interactions.
Source: Antonini, Bierlaire, and Weber (2006), Bobashev, Goedecke, Yu and Epstein (2007), Borshchev and Filippov (2004), Bouanan,
Zacharewicz, and Vallespir (2016), Brailsford and Schmidt (2003), Devillers et al. (2010), Dubiel and Tsimhoni (2005), Esmaeili et al.
(2010), Garcia (2005), Huanhuan et al. (2013), Hybinette et al. (2006), Kasaie and Kelton (2015), Lättilä et al. (2010), Luke et al.
(2005), Ören and Yilmaz (2009), Siebers and Onggo (2014), Wakeland et al. (2004).

Modeling requirements ABS modeling entails knowledge about the individuals’ behaviors and expressing them in terms of rules that dictate how the individuals
act and interact with/within the environment. These behavioral interactions are usually better described by “what-if” scenarios depicted
in the form of statecharts than analytically (Garcia, 2005).

Modeling steps Similar to DES, there are different steps proposed by different authors. So, here, we provide an ordered summary of the steps found in
the literature. They are: (i) define the research question; (ii) abstraction of the real system to a specific expertise domain through
knowledge gathering; (iii) the process of “agentification”, i.e. theory operationalization through conceptual mapping technique; (iv)
conceptual model validation; (v) specification, that includes agent specification, environmental specification, rules establishment,
measurement/ data recording specification, scenarios/ experiments specification, and run-time specification; (vi) implementation that
involves building the computational model; (vii) verification and validation of the computational model; and, (viii) modification, if
needed; (ix) experimentation where different scenarios are executed; and (x) analysis of the results by the simulation expert in
conjunction with the domain expert (case-study partners or decision-makers).
Source: Figueredo and Aickelin (2011), Garcia (2005), Long and Zhang (2014), Siebers and Onggo (2014).The various specifications do
not need to be followed in sequential order, as it is sometimes required to return to some of them for further refinement as the model is
developed (Garcia, 2005).

Model clock Most ABS models work in discrete time. However, as previously mentioned, it is often common to represent an agent internal dynamics
or a dynamic environment by differential equations. In this case, ABS will also work in continuous time.
Source: Antonini et al. (2006), Borshchev (2013).

Abstraction level ABS does not assume a particular abstraction level (Borshchev, 2013). According to the goal of the study, ABS models can assume a more
detailed level or a more aggregate level. However, defining the scope and boundary of the model and the inclusion or exclusion of a
specific level of detail is a very difficult task (Kasaie & Kelton, 2015).

Object behavior The agent can be: (i) proactive, by proactively making decisions and controlling its future and actions in order to attain specific goals;
(ii) reactive, by observing its environment and responding to changes that happen on it; and (iii) passive, which does not present any
behavior on its own. However, there are some academic disagreements on the characteristics of an agent, especially with respect to its
passiveness.
Source: Borshchev (2013), Lättilä et al. (2010).

Main elements or components 1. Agents: they are the units of analysis, the individuals that interact with each other or with their environment and populate the
simulation environment. They can be: firms, research labs, markets, people, insects and other organisms. There is a lot of discussion on
what properties an object must have to be considered as an agent (Lättilä et al., 2010). However, as proposed by Borshchev (2013), there
is a belief that even a passive object can be considered as an agent depending on the goal of the simulation study.
2. States: they may represent any individual characteristics that change according to some rules or time (e.g. age, mood, interest, etc.)
and they define the individuals’ actions and reactions.
3. Environment: the boundaries within which the agents will interact. The boundaries are usually spatial but can also be temporal.
Source: Garcia (2005), Logan and Theodoropoulos (2001), Luke et al. (2005).

Main inputs 1. Number of individuals or population size.
2. Connections: the links between individuals (e.g. mom to son, neighbors, etc.). They can be spatial, temporal, relationship or any other
type of connection.
3. Agent rules of behavior and environment rules: agent movement, agent interactions and state transitions are defined by the behavior
rules of the agents and by the environment rules (e.g. places may not accept children, places that open only after some time of the day,
etc.).
4. Parameters, such as contact rate, probability of infection, etc.
5. Time, space and communication information of agents.
Source: Borshchev (2013), Garcia (2005), Luke et al. (2005).

Main outputs 1. Time of occurrence of an event or state.
2. Frequency of occurrence of an event or state.
3. Number of individuals in a specific state at the end of the simulation.
4. Cost of a specific control alternative.
5. Number of individuals that moved outside or inside the environment.
Source: Borshchev (2013).

Conceptual modeling tools Unified Modeling Language (UML), including class diagrams, instance diagrams, especially statechart diagrams, Agent-Object-
Relationship (AOR) diagrams, Cognitive Mapping, and Business Process Modeling (BPM).
Source: Borshchev (2013), Esmaeili et al. (2010), Garcia (2005), Kim and Kim (2010), Siebers and Onggo (2014), Wagner and Tulba
(2003).

(continued on next page)
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4.5. Comparison of the three methods

Table 5 was created based on the previous discussion. It summarizes
the main characteristics and differences among the three simulation
methods and it aims to facilitate the comparison among those

techniques.
By conducting this study, it was possible to understand that each

method serves a particular range of abstraction levels. Discrete event
modeling with the underlying process-centric approach supports
medium and medium-low levels of abstraction. Agent-based models can

Table 3 (continued)

Simulation software Currently, there are several software products available for modeling ABS (Garcia, 2005). However, some of them require a lot of coding
while others are more graphical tools with limited capabilities. In essence, the number of professional ABS software is still limited when
compared to the number of DES software products.
Some examples of available ABS software are: NetLogo®, Ascape®, RePast®, Objective-C Swarm®, Java Swarm®, MASON® (Java),
AnyLogic®, StarLogo®, EXODUS packages, AutoMod®, SIMCON, SIGMA, ExtendSim®, and Vensim®.
Source: Borshchev (2013), Borshchev and Filippov (2004), Dubiel and Tsimhoni (2005), Garcia (2005), Kim and Kim (2010), Luke et al.
(2005), Macal and North (2007), Railsback et al. (2006), Wakeland et al. (2004), Wu et al. (2010).Some of these software, such as
AutoMod® and Vensim®, were initially developed for DES or SD, but they can also be used to build ABS models. Furthermore, some
packages are very specialized and intended to yield only a particular type of model (Dubiel & Tsimhoni, 2005).

Programming language There are no standard languages for ABS (Borshchev, 2013). However, the most commonly used languages are: Java and Jade, followed
by C++, Common Lisp, Python, and Smalltalk.
Since many ABS software are written in Java, a relatively slow language, sometimes they can be more time-consuming than DES
software.
Source: Borshchev and Filippov (2004), Devillers et al. (2010), Gianni (2008), Long and Zhang (2014), Macal and North (2007).

Validation and verification procedures – Subjective validation of the model results compared to the expected results of the real system.
– Verification of the model through animation observation: visually check whether the agents’ decisions and movements properly
represent the reality.
Source: Dubiel and Tsimhoni (2005).

Advantages 1. ABS can be easily and flexibly applied to model complex systems where different components interact among themselves, such as
systems comprising human behaviors.
2. It is a great method to investigate adaptive systems and how they evolve over time.
3. Unlike most traditional models, ABS is a powerful tool to understand the effects of unexpected events, such as accidents and
breakdowns.
4. ABS allows investigation of emergent phenomena.
5. ABS is a valuable tool to investigate non-linear behavior, e.g., when learning occurs. Therefore, ABS can be effortlessly used to
represent systems where individuals exhibit non-Markovian or path-dependent or temporal correlated behavior.
6. ABS is extremely useful to model social networks and it allows for easily differentiating between temporal and physical spaces.
7. Depending on the model objective, ABS can be easier to implement than other analytic models. As such, ABS is better applied to
model systems described by “what-if” scenarios, than those described by rate equations.
8. It does not require a deep understanding of differential equations, statistics, or integrals.
9. It allows for modeling systems where there is only information available about how individuals behave, but there is no knowledge
about aggregate behavior and global interdependencies.
10. It can guide decision-makers’ instinct by allowing them to virtually analyze interaction among agents and emergent behavior, thus,
improving decision-making.
11. ABS can incorporate genetic algorithms, neural networks, and other machine learning techniques.
12. Unlike other modeling approaches, ABS allows for entering randomness into the appropriate decision level of the model, as opposed
to inserting noise at arbitrary levels.
13. In general, it is simple to maintain and adapt ABS models, as changes can usually be made at local levels, instead of global levels.
Source: Behdani (2012), Bonabeau (2002), Borshchev and Filippov (2004), Devillers et al. (2010), Dubiel and Tsimhoni (2005), Garcia
(2005), Kasaie and Kelton (2015), Lättilä et al. (2010), Siebers and Onggo (2014), Wakeland et al. (2004), Wu et al. (2010).

Disadvantages 1. Agents are usually influenced by their social context or by what others around them do, but these interactions are not always easily
modeled to imitate reality. ABS usually encompasses modeling of soft factors, such as subjective decisions and psychological factors,
which are hard to quantify and estimate.
2. The results of ABS should be mainly understood at the qualitative level, that is, ABS should be more used to understand how emergent
behavior arises than to try to predict them. However, with improvements in calibration tools (such as the Calibration Experiment
available in AnyLogic®) prediction may be more successful.
3. ABS looks at a system not only at the aggregate level but also at the individual level and simulating the behavior of individual agents
can be computationally intensive and time-consuming. Even with technological developments, ABS may still require a lot of time to
model large systems. So, speed versus software functionality is still a tradeoff.
4. There is still a few professional user-friendly software. So, to apply ABS one may still have to possess computer-programming
knowledge and expertise.
5. It requires different types of information, such as social contacts, and, economic and geographical data, which are usually not
available in real-world applications or, at least, are not accurate. This may require specialized calibration techniques.
6. Sometimes, it is necessary to use modelers’ personal assumptions and mechanisms for specifying agents’ behavior and interactions
without explicit validation.
7. Understanding the resultant behavior of multiple agents can be very difficult. Therefore, verification and validation of the model is a
complex task and it requires a meticulous approach.
8. Parameter changes in ABS models can lead to further complications due to non-linearity, giving rise to chaotic results. Again,
validation of this type of behavior is troublesome.
9. Modeling mistakes can occur due to the vague definition of errors in ABS applications.
10. For modeling routine and deterministic processes, ABS may require more effort than other methods.
11. Finally, more a limitation on the ABS field than a disadvantage of the method itself are: (a) the elaboration of a common curriculum
or a standard modeling protocol for developing, analyzing and teaching ABS models is still in its early stage; (b) there is a gap between
traditional simulation principles, mostly developed for DES, and existing ABS practice, which often leads to a lack of justification for
choosing ABS models over simpler modeling paradigms; and, (c) a predisposition of ABS modelers to develop in depth models despite
the compromise between transparency of results, difficulty of analysis and computational power required.
Source: Bobashev et al. (2007), Bonabeau (2002), Devillers et al. (2010), Garcia (2005), Higgins et al. (2010), Kasaie and Kelton (2015),
Ross et al. (2014).

Classification/types of models Not found
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Table 4
Summary of SD characteristics.

Main concept SD maps a problem onto a generic feedback structure that can help understanding of the underlying causes of the system’s behavior
(Angerhofer & Angelides, 2000).

Goal To improve the system understanding with the development of a tool to analyze the causal relationships, to examine different actions
and strategies, and to experiment different concepts (Winz et al., 2009).

Application areas Some examples of the diversity of SD applications are: mathematics, physics, engineering, servomechanisms (e.g. control systems view),
cybernetics (e.g. organizational/human systems structuring for problem solving), manufacturing, agriculture, resources modeling at a
global level, supply chain (e.g. inventory decision and policy development, time compression, demand amplification, supply chain
reengineering, supply chain design and integration, international supply chain management, stock management, participative business
modeling, transportation policy), system monitoring, healthcare (e.g. epidemiology), decision-making (e.g. business decision modeling),
corporate planning and policy design, economic behavior, public management and policy (e.g. water management, reservoir operations
for flood management), biological and medical modeling, energy and the environment, theory development in the natural and social
sciences, complex non-linear dynamics, software engineering, economics, ecology, innovation diffusions, work force management,
software development, competition, markets.
Source: Ahmad and Simonovic (2000), Angerhofer and Angelides (2000), Baines and Harrison (1999), Behdani (2012), Borshchev and
Filippov (2004), Brailsford et al. (2012), Dangerfield (2016), El-Gafy and Abdelhamid (2008), Figueredo and Aickelin (2011), Higgins
et al. (2010), Hybinette et al. (2006), Jeon and Kim (2016), Lättilä et al. (2010), Rabelo et al. (2005), Winz et al. (2009), Wu et al.
(2010).

Modeling requirements SD modeling requires specific knowledge by modelers because engine includes numerical solver for differential, algebraic, and mixed
equations.

Modeling steps Based on the literature we could identify the main steps for a system dynamics model development. These steps are: (i) to define the
purpose (goal) of the system, (ii) to specify the system boundaries, (iii) to identify key variables of the system, (iv) to describe behavior
of the key variables, (v) to identify stocks and flows in the system, (vi) to map system structure into modeling tool or system
conceptualization (initial model), (vii) data collection, quantification, and development of simulation model (model parameterization),
(viii) to run the model, (ix) model testing through various experiments, (x) implementation of findings, (xi) to disseminate the results
and insights.
Source: Ahmad and Simonovic (2000), Angerhofer and Angelides (2000), Brailsford and Schmidt (2003), Haghani, Lee, and Byun
(2003), Wolstenholme (1999).

Model clock Handling of time is continuous in most cases. Delays are usually represented by exponential distribution, and deterministic delays are
special cases.
Source: Behdani (2012), Jeon and Kim (2016).

Abstraction level High abstraction level and it is positioned as a strategic modeling methodology.
Source: Borshchev (2013).

Object behavior Usually, the average aggregate behavior is considered, that is, agents are considered to be homogeneous and possess similar
characteristics.
Source: Behdani (2012).

Main elements or components 1. Stocks: represent anything that accumulates or drains.
2. Inflows: represent activities that fill stocks.
3. Outflows: represent activities that drain stocks.
4. Links or connectors: represent the interactions between variables and convey information between one component to another. Arrows
are usually used as symbols in the software to characterize the connectors and the direction of the arrows designates the causal
relationship.
5. Converters: transform input into output.
6. Time delay functions: provide delays between the measuring and acting in that measurement.
7. Shadow: it is simply a copy of a variable or parameter used in different causal loops.
Source: Ahmad and Simonovic (2000), Lättilä et al. (2010), Ross et al. (2014), Wolstenholme (1999).

Main inputs 1. Operations.
2. Connections between the operations.
3. Auxiliary variables: they serve as inputs to the feedback loop structures.
4. Variables and parameters: characteristics of the stocks and flows (inflow and outflow).
5. Timer: a clock that fires an operation.
6. Loop types: designate the causal relationship or feedback type, whether it is negative or positive.
Source: Borshchev (2013).

Main outputs 1. Utilization of resources.
2. Time spent in the system.
3. Waiting times.
4. Variable analysis.
5. System throughput.
Source: Borshchev (2013).

Conceptual modeling tools Stock-and-flow Diagram, Causal Loop Diagram, Flowchart, Hexagons, Archetypal Structure, Influence Diagram.
Source: Ahmad and Simonovic (2000), Behdani (2012), Dangerfield (2016), El-Gafy and Abdelhamid (2008), Greasley (2009), Haghani
et al. (2003), Ho and Cassandras (1983), Koelling & Schwandt (2005), Rabelo et al. (2007), Rabelo et al. (2005), Winz et al. (2009),
Wolstenholme (1999), Wu et al. (2010).

Simulation software STELLA®, Vensim® PLE, Powersim, and AnyLogic®.
Source: Ahmad and Simonovic (2000), Baines and Harrison (1999), Borshchev and Filippov (2004), Lättilä et al. (2010), Wakeland et al.
(2004), Wu et al. (2010).

Programming language Java and Dynamo.
Source: Borshchev and Filippov (2004), Haghani et al. (2003).

Validation and verification procedures Face validation and three classes of tests are suggested: structure tests, behavior tests, and policy implication tests. Structure tests are
used to evaluate how accurate the model structure matches the real world structure. Behavior tests are used to evaluate whether the
model results adequately represent the behavior of the real world. Policy implication tests are used to investigate if the model
consistently predicts how the system reacts to policies changes.
Source: El-Gafy and Abdelhamid (2008), Winz et al. (2009).

Advantages 1. It allows for investigating the aggregate effects, instead of focusing on single entities.
2. It enables experimenting the effects of different interventions on the system, focusing on policies and system structure.
3. It is usually easily understood due to its continuous characteristics and, as such, it can efficiently represent problems of manufacturing
systems.

(continued on next page)
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vary from very detailed level, where agents represent physical objects,
to highly abstract level, where agents are competing companies or
governments. System dynamics operates at high abstraction level and is
mostly used for strategic modeling (Borshchev, 2013).

It is worth highlighting some interesting points of the comparison
presented in Table 5. Each simulation method also has a specific or-
ientation. DES method focuses on modeling the system in detail (pro-
cess-oriented), works at discrete times, and has specific elements such
as source blocks, entities, resources, queues, and sink blocks. ABS
method focuses on modeling the entities and interactions between them
(individual-oriented), it handles continuous or discrete times, and it
includes elements such as agents, states, and environment. SD method
focuses on modeling the system observables (system-oriented), it deals
with continuous time, and it comprises of elements such as source,
inflow/outflow, sink, stocks, flows, connectors, converters, and delays.

With respect to the conceptual modeling tools used, it is an inter-
esting fact that in each simulation method specific tools are adopted to
develop the conceptual model. Only one conceptual modeling tech-
nique was found to be used in two simulation methods: Business
Process Modeling (BPM), which is used in applications of DES and ABS.
The same happens when analyzing the software tools used in each

simulation method. AnyLogic® is the only one found that works across
all three simulation methods. AutoMod® was found in applications of
DES and ABS, but not SD. Vensim® was used in studies of ABS and SD,
but not in DES studies.

One very important point to be considered by simulation modelers
is the modeling steps. With this study, it was possible to identify the
most common sequence of steps for each of the simulation methods.
Basically, all three methods follow the same general idea, however, the
distinguishing feature is the level of detail that is applied by modelers in
each step. Three main phases were identified: conception, im-
plementation, and analysis. In the conceptual phase, the modelers de-
fine the problem, the project goal, the research question, the specifi-
cation, and all the system and problem boundaries. From there, they
build the conceptual model, using a chosen conceptual modeling tool.
Next, they conduct the validation of the conceptual model and docu-
ment all the information. Finally, still in the conceptual phase, they
collect the data needed to build the computational model. In the im-
plementation phase, the computational model is developed based on
the validated conceptual model. Then, the modelers need to verify and
validate the computational model in order to obtain the necessary in-
ferences. From this point, the modelers can plan the execution of

Table 4 (continued)

4. It explains the underlying behavior by giving an understanding of the system structure.
5. It is able to keep track of cause-effect relations between the system elements and to capture the impact of situations where an element
causes changes in other components of the system.
6. It is able to account for feedback loops, time delays, and non-linearity.
7. It provides a holistic view of the system by integrating many components and subsystems.
8. It provides a dynamic picture of the cause-effect interactions among the components of the system.
9. It usually does not require a large amount of data.
10. It offers an easy way to build a simulation model, it requires reduced execution time by facilitating rapid prototyping, and it reduces
programming effort.
11. It provides more transparency in dealing with real-world complications.
12. It promotes the integration between hard and soft system components, that is, it takes advantage of computers and their processing
and data manipulation capabilities, as well as of people and their creative thinking skills. As consequence, it allows a more in-depth and
meticulous analysis.
13. It is user-friendly and it usually allows for modeling quickly and successfully.
14. Whenever needed, it is usually simple to make changes in the model with respect to the type of data and its structure. Modeling is
very intuitive and interactive.
15. It can be used in a large number of applications, being very flexible (multi-disciplinary projects, cross-scalar, modular object-
oriented models).
16. It facilitates the performance of sensitivity analysis and the testing of assumptions.
17. It allows modeling and simulating management decisions and strategies in long-term, complex and uncertain settings.
18. It facilitates the participation of all stakeholders, it builds consensus among them and it improves the understanding of the system.
Source: Ahmad and Simonovic (2000), Dangerfield (2016), El-Gafy and Abdelhamid (2008), Greasley (2009), Higgins et al. (2010), Jeon
and Kim (2016), Koelling & Schwandt (2005), Rabelo et al. (2007), Rabelo et al. (2005), Ross et al. (2014), Tako and Robinson (2012),
Winz et al. (2009), Wolstenholme (1999), Wu et al. (2010).

Disadvantages 1. Modeling low-level and detailed systems is not simple because SD uses aggregate items and high-level components.
2. Since it uses a considerable amount of differential equations, the user must have an understanding of underlying mathematics.
3. Gathering the right team is important to achieve good modeling results and it requires considerable skill.
4. It has been proven not effective in modeling operational decisions in manufacturing settings.
5. It is incapable of modeling heterogeneous entities in complex systems.
6. The causal loop, although useful, does not bring deep understanding about all feedback loops in a complex system.
7. It is usually not the preferred method by managers, due to the frequent use of mathematical equations.
8. Although it requires a little amount of data, models are frequently not valuable due to lack of data.
9. It is hard to produce sophisticated, but simple models at an appropriate level of aggregation in time and space while maintaining its
usefulness.
10. It does not give exact results as solutions, due to the intrinsic uncertainties.
11. The recommendations may be deeply influenced by subjectivity.
12. The quality of the results may be impaired by inappropriate problem boundary and goals definition.
13. The models are sometimes centered on non-verified mental models.
14. Sometimes the model is built independently by simulation experts and may seem complicated to stakeholders and managers.
Source: Baines and Harrison (1999), Behdani (2012), Borshchev (2013), Jeon and Kim (2016), Rabelo et al. (2005), Ross et al. (2014),
Winz et al. (2009), Wolstenholme (1999).

Classification/types of models System dynamics can be divided into 3 types depending on the flow of dynamic behaviors over time: exogenous dynamics, endogenous
dynamics, and mixed system dynamics.
Source: Haghani et al. (2003)
Other classifications divide SD models into: qualitative/conceptual and quantitative/numerical.
Qualitative modeling increases the conceptual understanding of the system through the use of causal loop diagrams, while quantitative
modeling provides an investigation and visualization tool to simulate the results of different interventions through the use of stock-and-
flow models. Quantitative modeling requires explicitly stating the assumptions adopted in modeling the system and identifying possible
issues due to uncertainties about the system structure and due to lack of data.
Source: Winz et al. (2009).
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Table 5
Comparison of the three main simulation methods.

DES ABS SD

Key concept The simulation system changes only at discrete
points in time, according to an event list.

The simulation system changes the action or
interactions of agents mainly at discrete points
in time. It can also occur continuously.

The simulation system changes continuously, in
countless points in time: smooth and steady
changes.

Orientation Process-oriented: the focus is on modeling the
system in detail.

Individual-oriented: the focus is on modeling
the entities and interactions between them.

System-oriented: the focus is on modeling the
system observables.

Model Discrete event model: to represent process flow
chart.
a. Entities: objects that move through the
system.
b. Event: the process that causes one or more
state variables to be modified and through
which the entities pass.
c. Resource: required objects to trigger events.

1. Low-level model: discrete time-based agent
interaction, decision-making.
2. High-level model: multi-agents’ network.
a. Autonomous agents: self-directed objects.
b. Rules: that agents follow to achieve their
objectives.

1. Open loop model: feedback loop.
2. Stock and flows model.
a. Stocks: basic stores of objects (= quantities).
b. Flows: the movement of objects between stocks
in the system (= time period).
c. Delays: delays between the measuring and then
acting on that measurement.

Modeling methodology Operational-tactical-level modeling.
Physical process: each object in the system is
represented by an entity or a resource unit.
Entities are passive: they do not exhibit
behavior; they just carry data.
Time delays: stochastic delay or deterministic
delay.

Statechart inside agents modeling.
It is usually a multi-method modeling, where SD
and DES can be used inside the agents to
represent an individual decision making or
process.
Agents are usually active and exhibit behavior.
Time delays: stochastic delay or deterministic
delay.

Strategic-level modeling.
Stocks: products, items, jobs.
Flows: purchase decision trends or patterns.
Time delays: the delay parameter usually uses an
exponential distribution and deterministic delays
are special constructs.

Building blocks Event diagram, process flowchart diagrams. Individual agents and their decisions, statechart
diagrams.

Equations, feedback-loops, stock and flow
diagrams.

System structure Fixed. Flexible. Fixed.
Structure type Mainly homogenized, but sometimes

heterogeneous entities.
Heterogeneous entities. Homogenized entities, all entities are assumed to

have similar features.
Application Type Problem-solving. Exploring. Problem-solving.
Handling of time The system being modeled can be continuous or

discrete, but the model only considers the state
changes at discrete time.

Mainly discrete, but can also be continuous. Continuous.

Mathematical
formalization of the
system

Event, activity, and process. Agent and environment. Stock and flow.

Experimentation By changing the processes structure. By changing the agents’ rules (internal/
interaction rules).

By changing the system structure.

Conceptual modeling
technique

Business Process Modeling (BPM), Activity
Cycle Diagram (ACD), flowcharts, IDEF-SIM,
Soft System Methodology (SSM) applied to DES,
and Discrete Event Systems Specification
(DEVS).

Unified Modeling Language (UML), including
class diagrams and instance diagrams, but
especially statechart diagrams, Agent-Object-
Relationship (AOR) diagrams, Cognitive
Mapping, and Business Process Modeling
(BPM).

Stock-and-flow diagram, Causal Loop Diagram,
Flowchart, Hexagons, Archetypal Structure,
Influence Diagram.

Software tools Simio®, ProModel®, Arena®, Anylogic®,
FlexSim®, SimEvents®, Simul8®, ExtendSim®,
SimProcess®, AutoMod®, Enterprise Dynamics®,
JaamSim®, EZStrobe®, Simscript®, SimPy, and
NS-3

NetLogo®, Ascape®, RePast®, Objective-C
Swarm®, Java Swarm®, MASON® (Java),
AnyLogic®, StarLogo®, EXODUS packages,
AutoMod®, SIMCON, SIGMA, ExtendSim®, and,
Vensim®.

iThink/Stella®, Vensim® PLE, Powersim, and
Anylogic®.

Application areas Manufacturing systems (e.g. production
planning, routing, and scheduling), project
management, logistics, supply chain,
distribution network, transport and traffic
systems, construction, inventory management,
healthcare sector, military applications,
queueing systems (e.g. bank teller), computer
systems (e.g. multiple tasks served by CPU),
communication systems (e.g. message transfer
via multiple servers) and in several other
service areas (e.g. government offices, hotels,
restaurants and educational institutions).

Pedestrian movements; evacuation and disaster
scenarios; population dynamics; human social
interaction; diffusion of innovations;
organizational strategy; knowledge and
information flows; animal behavior; predator
prey models; urban systems; traffic-flow
systems; land use; politics; homeland security;
computer network security; civil violence;
cooperation and communication within supply
chain; cultural issues; disease spread;
environmental chemistry and toxicology; bio
molecular models; behavioral and evolutionary
game theory; housing market dynamics;
consumer market analysis; advertisement
effectiveness; military planning; battlefield
models; and, healthcare interactions.

Mathematics, physics, engineering, software
engineering, servomechanisms (control systems
view), ecology, cybernetics (organizational/
human systems structuring for problem solving),
manufacturing, agriculture, modeling resources,
supply chain, monitoring system, healthcare (e.g.
epidemiology), corporate planning and policy
design, public management and policy (e.g. water
management, reservoir operations for flood
management), biological and medical modeling,
energy and the environment, theory development
in the natural and social sciences, complex non-
linear dynamics.

Source: Ahmad and Simonovic (2000), Angerhofer and Angelides (2000), Antonini et al. (2006), Baines and Harrison (1999), Banks et al. (2013), Behdani (2012),
Bobashev et al. (2007), Borshchev (2013), Borshchev and Filippov (2004), Bouanan et al. (2016), Brailsford et al. (2012), Brailsford and Schmidt (2003), Chwif et al.
(2006), Dangerfield (2016), Devillers et al. (2010), Dubiel and Tsimhoni (2005), El-Gafy and Abdelhamid (2008), Esmaeili et al. (2010), Figueredo and Aickelin
(2011), Garcia (2005), Goh and Ali (2016), Greasley (2009), Haghani et al. (2003), Higgins et al. (2010), Hillier and Lieberman (2010), Ho and Cassandras (1983),
Huanhuan et al. (2013), Hybinette et al. (2006), Jeon and Kim (2016), Kasaie and Kelton (2015), Kim and Kim (2010), Koelling & Schwandt (2005), Lättilä et al.
(2010), Luke et al. (2005), Montevechi et al. (2010), Pereira et al. (2015), Rabelo et al. (2007), Rabelo et al. (2005), Railsback et al. (2006), Ross et al. (2014), Ryan
and Heavey (2006), Siebers and Onggo (2014), Swain (2017), Wagner and Tulba (2003), Wakeland et al. (2004), Wang et al. (2014), Weidmann et al. (2015), Winz
et al. (2009), Wolstenholme (1999), Wu et al. (2010), Zeigler et al. (2000).
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experiments. Whenever needed, the modelers may go back to the
conceptual phase to review the conceptual model. However, if the
conceptual phase is carefully executed, the need for review should be
very low. Finally, in the analysis phase, modelers run the computational
model and perform the analysis. Reports from the results of the simu-
lation study are elaborated and shared with stakeholders. These reports
are evaluated and, then, the stakeholders can decide whether the re-
commendations from the simulation study will be implemented in the
real system or not. The implementation in the real system is not part of
the simulation study. However, a new simulation project may be
needed to evaluate the new changes implemented in the system.

Ultimately, an analysis of the application areas was performed. As
shown in Table 5, there are several types of applications in which the
three simulation methods are used. There are some similar areas, such
as manufacturing systems, healthcare sector, transport and traffic sys-
tems, market analysis, supply chain, military applications and planning,
and some services areas. However, it is important to note that even
though these different simulation methods may be used in the same
application area, the focus of the analysis and the level of details are
usually different, as explained earlier. On the other hand, some appli-
cations are specific to a single simulation method. For example, human
social interaction, evacuation and disaster scenarios, pedestrian move-
ments, etc. are often specific applications found only in ABS studies.
Project management is usually a specific application of DES, while
mathematics, physics, and agriculture are applications found pre-
dominantly in SD studies.

4.6. Other resources available

As previously discussed, although a systematic review was

conducted in this manuscript, the main goal was to provide simulation
modelers with an introductory guide, instead of a complete systematic
review or bibliographic survey on simulation methods. The downside of
this guide is that some important papers may not have been included.
To alleviate this problem, Table 6 provides a list of other important
resources available to simulation modelers, as well as some important
contributors to this research domain. Along similar lines, this list is by
no means complete; rather it is intended to give the readers a quick
access to other available resources. Another list of conferences, jour-
nals, and research centers in the field of simulation can be found in
Diallo et al. (2015).

5. Conclusions

In this paper, we provided a review of the literature published on
the three primary simulation techniques in industrial engineering and
related areas: discrete event, agent-based, and system dynamics. The
methodology adopted to perform the review was presented in section 2,
as along with the database and the search criteria adopted.

We first showed that SD and DES have more than 40 years of his-
tory, while ABS is a more recent technique with circa 20 years. Studies
applying two of the main techniques in conjunction appeared relatively
in the same period that the techniques were developed, with the longest
period between the first technique publication and the first hybrid
publication using the same technique being seven years, relative to the
combination of SD and DES. Although studies with the three techniques
together appeared about six years after the first publication of ABS, the
number of publications on all three methods together is still very small
(only 20 papers explicitly cite the three methods together in the
Scopus® database).

Table 6
Other important resources available to the readers and some important contributors to the field.

Some conferences, group meetings, or simulation journals Some books in the field Some important
contributors to the
field

Some conferences or group meetings
– Winter Simulation Conference (WSC)
– Summer Simulation Multi-Conference (SummerSim)
– Spring Simulation Multi-Conference
– AnyLogic Conference
– Simio User-Group Meeting
– Institute of Industrial and Systems Engineers Conference (IISE Annual
Conference & Expo)

– INFORMS Annual Meeting
Some simulation journals

– Simulation Modeling Practice and Theory (Elsevier): https://
www.journals.elsevier.com/simulation-modeling-practice-and-theory

– Journal of Simulation (Palgrave McMillan): https://
www.palgrave.com/gp/journal/41273

– Journal of Simulation (Taylor & Francis): https://
www.tandfonline.com/loi/tjsm20

– Simulation (SAGE): http://journals.sagepub.com/home/sim
– European Journal of Operational Research (Elsevier): https://
www.journals.elsevier.com/european-journal-of-operational-research/

– Computers & Industrial Engineering (Elsevier): https://
www.journals.elsevier.com/computers-and-industrial-engineering

– International Journal of Simulation and Process Modeling
(InderScience):
http://www.inderscience.com/jhome.php?jcode=IJSPM

– Computers & Operations Research (Elsevier): https://
www.journals.elsevier.com/computers-and-operations-research

– Computers & Mathematics with Applications (Elsevier): https://
www.journals.elsevier.com/computers-and-mathematics-with-
applications/

– International Journal of Simulation Modeling (DAAAM Int.): http://
www.ijsimm.com/

– Simulation in Healthcare (Wolters Kluwer): https://journals.lww.com/
simulationinhealthcare/pages/default.aspx

– Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice (Banks, J.)

– Simulation Modeling and Analysis (Law, A. M.)
– Design and Analysis of Simulation Experiments (Kleijnen, J.P.C.)
– Stochastic Modeling: Analysis and Simulation (Nelson, B.L.)
– Conceptual Modeling for Discrete-Event Simulation (edited by
Robinson, S., Brooks, R., Kotiadis, K., and van der Zee, D.)

– Principles of Modeling and Simulation: A Multidisciplinary
Approach (edited by Sokolowski, J.A., and Banks, C.M.)

– Theory of Modeling and Simulation (Zeigler, B.P., Praehofer, H., and
Kim, T.G.)

– Guide to Modeling and Simulation of Systems of Systems (Zeigler,
B.P., and Sarjoughian, H.S.)

– Simulation and Model-Based Methodologies: An Integrative View
(edited by Ören, T.I., Zeigler, B.P., and Elzas, M.S.)

– Agent-Directed Simulation and Systems Engineering (edited by
Yilmaz, L., and Ören, T.)

– Discrete Optimization via Simulation (Hong, L.J., and Nelson, B.L.)
– Simulation with Arena (Kelton, W.D., Sadowski, R.P., and Zupick,
N.B.)

– Simulation Modeling with SIMIO: a Workbook (Joines, J.A., and
Roberts, S.D.)

– The Big Book of Simulation Modeling: Multimethod Modeling with
Anylogic 6 (Borshchev, A.)

– Introduction to System Dynamics and Vensim Software (Sapiri, H.,
Zulkepli, J., Ahmad, N., Abidin, N.Z., and Hawari, N.N.)

– Agent-Based and Individual-Based Modeling: A Practical
Introduction (Railsback, S.F.)

– Monte-Carlo Simulation-Based Statistical Modeling (Chen, D., and
Chen, J.D)

– Explorations in Monte Carlo Methods (Shonkwiler, R.W., and
Mendivil, F.)

– Averill M. Law
– Barry L. Nelson
– Bernard P. Zeigler
– Charles M. Macal
– David M. Goldsman
– Gabriel Wainer
– Jack P. C. Kleijnen
– Jeffrey Smith
– Jerry Banks
– Jie Xu
– K. Preston White
– L. Jeff Hong
– Levent Yilmaz
– Luis Rabelo
– Michael J. North
– Parastu Kasaie
– Richard E. Nance
– Ricki G, Ingalls
– Robert G. Sargent
– Russel R. Barton
– Sally Brailsford
– Scott E. Page
– Stewart Robinson
– Thomas J. Schriber
– Tuncer Ören
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Next, we discussed the first results of our review, which en-
compassed the history of the number of papers published on each
technique separately and a list of the top-10 countries, authors, sources,
and subjects publishing about the techniques. The most popular tech-
nique, with respect to the number of papers, is undoubtedly DES, fol-
lowed by ABS with less than 50% the number of papers when compared
to DES. The United States is unquestioningly the country that develops
and publishes more research in all three simulation techniques, fol-
lowed distantly by China. Analyzing the top-10 authors, we noted that
there is no single author with a large number of publications in more
than one technique. This reinforces what we observed earlier, that there
is still a large opportunity for exploration of multimethod studies using
SD, DES, and ABS at the same time. It seems that multimethod works
have been developed more by industry and practitioners, than by re-
searchers, which was also indicated by Borshchev (2013).

Subsequently, the history, definition and main characteristics of
each technique were discussed separately and in detail. Finally, in the
last part, a comparison of the three techniques was provided.

The relevance of this work lies in that, to the best of our knowledge,
there is not any paper published providing a general overview and
comparison of all three primary simulation techniques. So, this work
can be seen as an easier, more complete and accessible means for
academics and practitioners to learn about and compare the primary
simulation techniques.

As expected contributions of this work to the field, we can cite: (i) to
support the decision making about the method that is more suitable for
different simulation projects and contexts; (ii) to encourage researchers
and practitioners of a specific simulation method to consider and start
applying other simulation techniques when they are more appropriate;
(iii) to encourage the use of a multimethod approach; (iv) to provide an
overview on simulation for novice simulation modelers; and, (v) to
launch the development of a simulation knowledge database by doc-
umenting the main characteristics of each simulation technique.
Finally, we expect this paper to be used as a guide in simulation projects
and to improve the quality of simulation projects by a better selection of
the simulation method.

As future work, we propose to perform a deeper systematic review
that includes more papers and to gather other important characteristics
of simulation techniques, besides the ones discussed here. As mentioned
before, our intention is to develop an extensive knowledge database on
simulation, so we greatly welcome any suggestions of characteristics
and important facts for each simulation technique individually or for
comparison purposes.
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