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A B S T R A C T

With a drive towards achieving an integrated energy system, there is a need for holistic and scalable building
modelling approaches for the commercial building stock. Existing grey-box modelling approaches often fail
to produce a generalised network structure, which limits the suitability of models for different applications.
Furthermore, existing feature assessment frameworks provide limited opportunities to quantify the potential
of model characteristics in terms of flexibility, scalability and interoperability. Considering the diversity of the
possible characterisation approaches, this study aims to define and assess a set of basic and derived features for
reduced-order grey-box models through a generalisable framework that would act as a decision support tool
for the identification of appropriate model characteristics. This research proposes an integrated methodology
to test and evaluate model features, namely, scalability, flexibility, and interoperability for reduced-order
grey-box models and formulates test-cases with the available commercial reference buildings published by the
Department of Energy of the United States. The model scalability errors lie between 3.42% and 4.35% that
indicates the suitability of implementing a zone level model for model predictions at the whole building level.
The model flexibility error decreased from 5.73% to 4.78% when considering a trade-off between accuracy
and complexity. These frameworks produce scalable and flexible models that facilitate urban energy modelling
of building stocks and subsequent evaluation of retrofit strategies. Furthermore, the devised models aid the
implementation of heat demand reduction scenarios in a building cluster to achieve an integrated energy
system.
1. Introduction

The built environment accounts for over one-third of global final
energy consumption and nearly 40% of total direct and indirect CO2
emissions [1]. The associated energy demand continues to rise, mainly
driven by improved access to energy in developing countries, greater
ownership and use of energy-consuming devices, and rapid growth of
building floor area. Energy-related CO2 emissions from buildings have
experienced a gradual increase in recent years after flattening between
2013 and 2016 [2]. Direct and indirect emissions from electricity and
commercial heat used in buildings rose to an all time high of 10 GtCO2
in 2019 [1]. Several factors, including growing energy demand for
heating and cooling with rising air-conditioner ownership and extreme
weather events, have been instrumental in this rise [3].

Buildings often involve complex interconnected systems that de-
pend on several dynamic factors, for instance, weather and occupancy.
Furthermore, building system optimisation can require balancing of
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contradictory objectives based on energy efficiency and overall perfor-
mance [4]. Building Energy Performance Simulation (BEPS) tools offer
a suitable platform to conduct performance-based analysis and optimi-
sation that takes into account the complex model inter-dependencies,
internal and external inputs as well as the associated performance
objectives. BEPS tools have been extensively used over different stages
of the building life cycle, ranging from design to post-construction
operation stages [5]. While these tools take into account the multi-
tude of complex inter dependencies, the generated models are often
non-scalable and non-generalisable [6]. Moreover, model development
using BEPS tools is resource intensive; models require geometric and
non-geometric building data. This would be impractical when dealing
with individual buildings on a large scale [7]. Moreover, the devel-
oped models would be computationally expensive as each individual
building differs in terms of structural parameters and the nature of
operation [8].
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List of Abbreviations

ANOVA ANalayis Of VAriance
BEPS Building Energy Performance Simulation
CTSM Continuous Time Stochastic modelling
CVRMSE Coefficient of Variation Root Mean Square

Error
DOE Department of Energy
GOF Goodness Of Fit
HVAC Heating, Ventilation and Air Conditioning
IWEC International Weather Energy Calculation
KPI Key Performance Indicator
MAPE Mean Absolute Percentage Error
MLE Maximum Likelihood Estimation
NMBE Normalised Mean Bias Error
PHDR Peak Heat Demand Reduction
RC Resistance Capacitance

List of Symbols

𝐴𝑒 Effective window area in m2

𝐶𝑒 External heat capacity in kWh/◦C
𝐶𝑖 Internal heat capacity in kWh/◦C
𝑃ℎ Radiator flux in kW
𝑃𝑠 Solar radiation flux in W/m2

𝑅2 Coefficient of Determination
𝑅𝑒𝑎 Thermal resistance between building enve-

lope and ambience in ◦C/kW
𝑅𝑖𝑒 Thermal resistance between internal envi-

ronment and building envelope in ◦C/kW
𝑇𝑎 Ambient temperature in ◦C
𝑇𝑒 External temperature state in ◦C
𝑇𝑖 Internal temperature state in ◦C

It is of paramount importance to identify and develop modelling
pproaches that are scalable and offer flexibility in model design. Such
pproaches would facilitate the evaluation of energy efficiency mea-
ures at individual or urban building level. Furthermore, the modelling
pproach should offer opportunities for evaluating energy optimisation
cenarios when considering control or smart grid applications. Grey-box
odelling is one such approach that represents the actual behaviour

f the system and delivers the advantages of data-driven and physi-
al modelling approaches. The grey-box approach inherits the model
escription of physical modelling approaches and the computational
fficiency of data-driven modelling approaches [9].

While grey-box building energy models have been widely imple-
ented, the applicability of these models has often been specific to
articular applications and stakeholders [10]. Furthermore, scalability
f these models is limited by the network order that defines the level of
omplexity incorporated in the devised model [6]. Reduced-order grey-
ox models can counter these drawbacks through achieving a trade-off
etween the network order and the desired accuracy [11]. There is
need for a generalisable framework that systematically defines and

valuates the potential of the grey-box model features for various ap-
lications. Such framework would produce scalable and flexible models
hat address the challenges posed by individual, dynamic simulation
odels.

One of the most significant features when modelling a building stock
s the scalability of the devised model, which relates to a model’s ability
o represent extended system variables, for instance, when modelling
rban building stocks [12]. As the size of the problem can signif-
cantly grow depending on the analysed system, it becomes crucial
2

to handle the growing amount of data while retaining the required
characteristics of different subsystems. A limited number of studies
exist in literature that focus on defining the scalability potential of
a particular energy modelling approach (Table E.1). Heo, Augenbroe,
Graziano, Muehleisen and Guzowski devised a scalable methodology
for large scale building improvement using normative energy models
at the individual and aggregate building levels [13]. Although the
devised methodology is scalable, the research does not account for
the scalability potential of normative energy models. Another recent
study by Manfren and Nastasi devised an integrated methodology to
validate and monitor the building energy performance of a residential
building. The authors linked parametric performance analysis to model
calibration using inverse modelling. However, the study fails to account
for the scalability of the analysis technique and the possibility to
scale models from an individual building to building clusters for large
scale performance assessment [14]. Heidarinejad, Mattise, Dahlhausen,
Sharma, Benne, Macumber et al. formulated urban-scale reduced-order
building energy models using highly influential thermal variables in
a white-box modelling process [15]. Although the results provide an
essential overview of scalability, none of these studies exclusively
devise an assessment framework to measure scalability of the employed
modelling approach, which is crucial to devise urban building stock
models.

Another significant model feature is the flexibility associated with
the modelling approach, which relates to a model’s ability to incor-
porate modified design variables with as less effort as possible, for
instance, when integrating grey-box networks with district heating
networks [16]. This feature allows the energy modeller to introduce
perturbations in the original model to determine how the energy and
cost performance are affected by various energy efficiency measures.
Previous studies devised several tool sets to perform optimisation, sen-
sitivity analysis, and uncertainty analysis for evaluation of the optimal
energy efficiency solution (Table E.1). These tool sets often require
numerous simulations and huge computational resources [17]. A com-
parison usually overlooked in these studies involves the flexibility
potential of the deployed modelling approach, which aims to define
a generic model that is flexible to design variations [18]. For instance,
reduced-order grey-box energy models provide more flexibility (com-
pared to black-box models) in optimising the building operation when
implementing different design scenarios. Bourdeau, Zhai, Nefzaoui,
Guo and Chatellier evaluated the flexibility of data-driven techniques
for modelling and forecasting building energy consumption [19]. An-
other recent publication dealt with the flexibility of building energy
modelling approaches for energy performance prediction [20]. Both
these studies concluded that hybrid modelling approaches (grey-box
models) provide significantly more flexibility than data-driven mod-
elling yet a comprehensive framework to assess the model flexibility
still remains absent.

The building stock remains noticeably disconnected in terms of en-
ergy transactions due to the existing differences in individual building
characteristics and their nature of operation [21]. Advanced integrated
approaches are required to model the transaction of energy services
(e.g., prosumers) between different buildings in the stock [22]. This
could facilitate intelligent trade-offs between comfort/quality of service
and consumption [23]. The interoperability feature defines the inte-
gration process (Table E.1) and is pertinent to buildings rather than
a particular modelling approach. Reduced-order grey-box models facil-
itate the evaluation of the interoperability potential through the use
of grey-box parameters (thermal resistance and thermal capacitance).
As opposed to white-box and black-box modelling approaches, grey-
box model parameters directly define the heat storage characteristics
of the building, which determine the thermal energy transfer potential
of the building cluster. Razmara, Bharati, Shahbakhti, Paudyal and
Robinett proposed a bi-level optimisation framework to transact en-
ergy between commercial buildings and distribution grids [24]. The

optimisation framework involved a dynamic model for buildings and
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operational models for distribution grids. However, the study did not
account for the interoperability potential of each individual building.
Beil, Hiskens and Backhaus discussed the role of buildings for serving
the grid through demand response and ancillary services [25]. The
study dealt with the interaction between the individual building and
the grid, which could be extended to account for any building to build-
ing interactions. Previous research mostly accounts for interactions
between the building cluster and the power grid; building to building
interactions are often not taken into account. Building to building
interactions are essential to achieve an integrated energy system and
thereby, enhance the overall efficiency of the system [26]. To address
these challenges, there is a need for an interoperability framework that
provides guidelines to decide whether or not a particular building will
be suited for system integration scenarios.

Owing to the above arguments, this study aims to address following
significant gaps in knowledge associated with building energy mod-
elling through the implementation of reduced-order grey-box energy
models:

1. The first gap relates to model scalability issues as buildings
differ in their individual characteristics and the implemented
modelling approach becomes irreproducible for other buildings.
White-box and black-box modelling approaches provide limited
scalability when modelling individual buildings or urban build-
ing stocks. On the other hand, grey-box models eventually retain
their original structure and facilitate the development of scalable
models.

2. The second gap concerns model flexibility issues that address
the building model operation or execution after the introduction
of any perturbations. Furthermore, previous flexibility assess-
ment frameworks usually focus on either white-box or black-box
approaches. While white-box models are complex and computa-
tionally inefficient, black-box models require extensive historical
data and perform poorly when the input data are outside the
bounds of the training set. Grey-box models facilitate an inte-
grated implementation to represent a building using physical
relationships and statistical data treatment.

3. The third and final gap focuses on the lack of an integrated mod-
elling approach for the optimised operation of a building cluster
(interoperability) while addressing the underlying modelling ap-
proach. Although previous studies have addressed these gaps
individually in brief, a consolidated framework to construct an
overall understanding is still absent. Grey-box models facilitate
swift integration of thermal network models with other energy
systems, for instance, district heating networks.

This research proposes an integrated methodology to test and eval-
ate model features, namely, scalability, flexibility and interoperability
or reduced-order grey-box models. These features are instrumental in
he development of an appropriate model as per a defined problem.
he approach introduces novelty in defining, testing and evaluating
he model features to produce scalable and flexible models. When
onsidering the scalability feature, this study proposes a zonal approach
o propagate the building level dynamics at various modelling scales.
he approach assesses zone model scalability relative to existing mul-
iple zones. For flexibility, the proposed approach assesses the effect of
esign perturbations on the grey-box modelling approach. For interop-
rability, the study proposes a framework to evaluate how significantly
ndividual buildings can participate and enhance the interoperability
etween buildings.

This integrated approach formulates assessment frameworks to ex-
mine the respective set of features. Furthermore, the methodology
ddresses the generalisation issues of grey-box networks. The paper
stablishes the significance of grey-box model features through data
nalytics and experimental simulations. As the devised approach is gen-
ralisable, the application could be extended to any test case scenario
3

rrespective of country, building type or available data. The assessment
of model features enhances the effectiveness of a particular energy
model that represents the optimal fit for a certain purpose or situation.

The paper consists of the following sections: Section 2 describes the
devised overarching methodology to test and evaluate model features.
Section 3 details sub-methodologies that outline individual assessment
frameworks for different features and introduces different case studies
to implement the devised methodology. Section 4 lists the interpreta-
tion of the results and the associated limitations. Section 5 describes
the conclusion and future work.

2. Overarching methodology for feature assessment

The devised methodology proposes a generalisable assessment
framework to evaluate reduced-order grey-box model features and
thereby, identify a balance between complexity and accuracy for var-
ious applications (Fig. 1). The framework deals with an integrated
analysis of different domains in defining and evaluating the model
features such as scalability, flexibility and interoperability. One of the
significant features of the framework is the use of heat demand patterns
as a pre-assessment criterion, which forms a part of the ‘‘Data analysis’’
procedure in the ‘‘Grey-box model development’’ process. It has been
well established that individual building dynamics closely relate to the
heat demand patterns for any building stock [27]. Furthermore, these
patterns depend on the local climate, heat transfer through the building
envelope, daily operations and the occupancy schedules.

The assessment framework proposes a five step process to define the
scalability, flexibility and interoperability potentials of reduced-order
grey-box models as outlined below.

1. Model feature definition identifies all the plausible definitions of
respective features using previous literature, technical reports,
expert views and model requirements.

2. Data collection identifies and collects the required data for grey-
box model development and model feature testing processes.

3. Grey-box model formulation develops the grey-box network to
assess the respective feature.

4. Model feature testing identifies the required set of experiments
to assess individual features.

5. The Key Performance Indicator (KPI) identification associates
the performance measures to each test feature, which indirectly
measures the potential of the respective feature.

2.1. Model feature definition

This procedure defines the derived features to be tested under the
devised assessment framework. Model feature definitions are extracted
from previous studies, technical reports, expert views and model re-
quirements [28].

2.2. Data collection

Data collection refers to a standardised procedure for collecting data
pertinent to building stock modelling. Although this study identifies a
set of variables to carry out the assessment task, it is worthwhile to
note that the variable set might change depending on the user and
the type of the devised grey-box model. Furthermore, any additional
variables will only enrich the grey-box model with further information.
The devised approach categorises the variables into two sets, namely,
mandatory and optional variables. The mandatory variables comprise
weather variables, building site information, building physical param-
eters and building operation variables. The optional variables include
building renovation history and Heating, Ventilation and Air Condi-
tioning (HVAC) system information. While mandatory variables decide
the initial order (complexity) of the grey-box network, the optional
variables enrich the dynamics of the formulated grey-box structure.

Further details about the variable sets are outlined in Table 1.
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Fig. 1. Overarching feature assessment methodology to test model features of reduced-order grey-box models.
Table 1
Data variable classification as mandatory and optional variables required for grey-box development and the feature assessment
procedure. These variable sets could be acquired through measurements using databases such as TABULA that consist of the
building stock information at the urban level [29]. Another source of data collection could be reference buildings such as
U.S. Department of Energy (DOE) commercial reference buildings [30].

Mandatory Variables

Variable Type Variable Units Source

Weather Ambient Temperature ◦C IWEC File
Global Solar Radiation kWh/m2

Wind Speed m/s

Building Site Information Location -
No. of Buildings -
Building Type -

Building Physical Parameters No. of Floors - Design Plans
Interior Floor Area m2

Window Area m2

No. of Zones -

Building Operation Variables Heat Demand Profiles kW Measurement Sensors
Internal Temperature Profiles ◦C
Building Space Use % Design Plans

Optional Variables

Renovation History Fabric Renovation - Retrofit Reports

HVAC System Embedded HVAC System - Design Plans
Ventilation System -
2.2.1. Mandatory variables
The mandatory variable set comprise the following variables that

are instrumental in the identification of the basic structure of any
grey-box model.

Weather Variables: These variables mainly constitute ambient tem-
perature, global solar radiation and wind speed. Weather variables
mainly act as inputs to the grey-box model and do not play any role in
grey-box model identification. Weather information is easily available
for any major location in the world in the form of International Weather
Energy Calculation (IWEC) [31].

Building Site Information: The site information mainly includes
the location, number of buildings in the neighbourhood and building
type. The number of buildings is only relevant when implementing
energy management scenarios in an interconnected building cluster.
Although these variables do not affect the model formulation process,
4

these variables aid the identification of the required complexity in
representing individual buildings or a cluster of buildings. For instance,
when buildings are connected via a district heating network, similar
types of buildings could be represented through a grey-box network
with similar complexities.

Building Physical Parameters: These variables consist of gross
interior floor area, number of floors, window to wall ratio (WWR), and
number of zones.

1. The gross interior floor area (m2) is defined as the total interior
floor area of a building’s space, measured from the inside surface
of the exterior walls or from the interior surface of walls in
common with adjoining buildings. The floor area, number of
floors and heat demand profiles are used to validate the network
order.
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2. Number of floors is used together with the floor area to model
the heat flow dynamics inside any building. For instance, a high
rise office building might consume more energy although each
floor represents a similar demand usage profile with limited
complexity [27].

3. The WWR (%) parameter influences the network order from two
aspects. When windows are a part of the building envelope, the
network complexity reduces as a result of reduction in the num-
ber of capacitance in the network. Furthermore, a large number
of windows inside any building reduces the heterogeneity in
temperature profiles, thus, reducing the complexity in the grey
box network. This parameter represents an approximate value of
the window to wall ratio existing in the building envelope and
hence, the methodology does not use the exact values in any
calculations.

4. Number of zones provide an approximation of existing zones to
facilitate the process of network order identification. The spaces
inside a commercial building are often divided into zones for op-
timised utilisation of HVAC systems. A single zone represents an
area possessing similar thermal characteristics; the knowledge of
this parameter simplifies the development of grey-box models.

Building Operation Variables: These variables form the most cru-
ial variable set and constitute building heat demand patterns, internal
emperature profiles and building space use.

1. Building heat demand (kW) and indoor temperature profiles
(◦C) usually reflect the ongoing activities inside any building.
These profiles, defined on an hourly timestamp, capture the link
between demand patterns and network order.

2. Building space use (%) specifies the individual proportions of
spaces used for various functions (for instance, offices, storage
and toilets).

.2.2. Optional variables
The optional variable set consists of the following variables and

nriches the grey-box network with added information when available.
Renovation History: This variable lists all the past retrofits ap-

lied to the building and relates to the increased heterogeneity in the
uilding envelope. As any fabric related renovation alters the building
ynamics, this information could identify any required modifications
n the structure of the formulated grey-box model. Simply changing the
etwork parameter values might lead to unrealistic description of the
rey box network.
HVAC System Information: This variable mainly constitutes of

nformation regarding the existing ventilation strategies and the pres-
nce of embedded heating or cooling systems in the building fabric.
hese factors alter the building dynamics, thus, increasing the com-
lexity associated with the grey-box model. While ventilation causes
eat transfer due to the movement of conditioned air across different
paces, embedded HVAC systems alter the dynamics of the building by
ncreasing the heat capacity associated with the area where the systems
re installed.

.3. Grey-box model development

This process identifies the structure of grey-box models (RC net-
orks). A typical resistance capacitance (RC) network represents the
ynamics of the building assuming a steady-state heat transfer across
he building envelope. Such networks have seen wide implementation
or a number of optimisation and control studies [32]. The RC net-
orks use resistance parameters to represent the thermal resistance
nd capacitance parameters to represent the heat storing capacity of
he building envelope. Grey-box model development comprises four
equential steps, namely, data analysis, order identification, parameter
stimation and model validation (Fig. 2). These processes are outlined
5

elow and are further illustrated under each sub-methodology.
2.3.1. Data analysis
The data analysis procedure involves an initial statistical analysis of

building heat demand patterns to describe any existing patterns in the
respective profiles. This step is crucial in the generation of generalised
reduced-order grey-box models and represents a novel process in the
proposed methodology. As the demand profiles only give an indication
of the network order, the profile variations need to be established using
tests of statistical significance such as ANalayis Of VAriance (ANOVA).
This technique could be used to infer whether means of two or more
groups are significantly different from each other [33]. This technique
compares the means of different samples to identify the impact of one
or more factors. Furthermore, the ANOVA procedure could be enhanced
through additional available information that reflects possible correla-
tions with the factors under investigation. For this particular research,
a cluster of buildings represents the different groups in ANOVA. Each
sample constitutes one single day. ANOVA is formulated using the
following set of equations.

𝑁𝑢𝑙𝑙𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻𝑜 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘 (1)

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻𝐴 ∶ 𝜇𝑘 ≠ 𝜇𝑚 (2)

where (𝜇1, 𝜇2, . . . .𝜇𝑘) represent individual group means, 𝑘 represents
the number of a group and 𝜇𝑚 represents the group mean when
(𝜇1 = 𝜇2....= 𝜇𝑘−1). When comparing different demand profiles, ANOVA
would establish the existence of any variations. The alternate hypothe-
sis suggests that there are at least two group means that are statistically
significantly different from each other. ANOVA usually involves the
calculation of F-test statistic that represents the ratio of two quantities
expected to be roughly equal under the null hypothesis. Large F- test
values signify the variability in group means is large compared to the
within group variability, which is essential to reject the null hypothesis.
F-test values are used in conjunction with p-values to establish the
significance. For instance, A large F-test value with a small 𝑝-value
(less than the defined significance levels) represents a rejected null
hypothesis.

2.3.2. Order identification
The order identification procedure outlines the underlying structure

of the grey-box network. This process uses a generalised methodology
devised by the authors in a previous publication [27]. The methodology
considers thermal zoning of spaces inside the building where each
thermal zone possesses similar characteristics and can be represented
using a similar RC network. The order identification procedure uses the
results of ANOVA analysis from the data analysis procedure using the
following set of rules.

1. Gather the ANOVA results from the data analysis procedure.
Check for individual building heat demand patterns to identify
whether a lumped parameter model is sufficient to represent the
building dynamics.

2. Normalise the heat demand patterns using floor area. Identify
buildings with relatively high values of normalised heat demand
and assign separate RC network branches for exterior walls and
interior mass.

3. Identify any recurring heat demand fluctuation in hourly pro-
files. If yes, assign a separate thermal zone, else end the identi-
fication procedure.

This process could be further enriched with available data regarding
the past retrofits and existing HVAC systems. For instance, radiant
heating or cooling systems alter the heat capacity of the floor, which
might require another RC branch for appropriate representation of the
building dynamics. Similarly, fabric renovation of only one side of the
building might require a separate RC branch to represent the associated

wall dynamics.
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Fig. 2. Grey-box model development to identify the model network order for individual buildings.
2.3.3. Parameter estimation
Parameter estimation (or model calibration) procedure involves

the estimation of network parameters, namely, thermal resistance and
thermal capacitance and the associated time constants (Fig. 3). Al-
though there exist several parameter estimation procedures, this study
implements the parameter estimation procedure using Continuous Time
Stochastic modelling (CTSM) in R programming language that uses the
Maximum Likelihood Estimation (MLE) and automates the estimation
procedure [34]. By using a continuous time formulation of the dynam-
ics and discrete time measurements, the tool bridges the gap between
physical and statistical modelling. It is possible to generate both pure
simulation and k-step prediction estimates of the states and the outputs,
filtered estimates of the states and, for nonlinear models, smoothed
estimates of the states.

2.3.4. Model validation
This procedure acts as a measure of the goodness of fit for the

model. This procedure further checks if a model satisfies the assump-
tions and provides reasonable estimates from a physical point of view.
Error KPIs give an indication of the suitability of the model and aid
in understanding the effects not properly described by the model.
This study validates the model using KPIs identified in Section 2.5 to
find errors in the prediction of internal temperature profiles and heat
demand patterns as these form a fundamental part of the state equation.

2.4. Model feature testing

The model feature testing procedure identifies the required ex-
perimentation to test each individual model feature (scalability, flex-
ibility and interoperability) on the basis of two crucial processes,
namely, Analyse and Specify (Fig. 4). These processes identify sub-
methodologies for feature testing which then combine with the overar-
ching methodology to lay out a framework for feature assessment. This
section first describes a general implementation of the feature testing
procedure, which is then modified and structured for each individual
feature. The Analyse and Specify processes follow a general set of
guidelines as outlined in [35] for test case generation. These guidelines
have been modified to account for various scenarios in the building
simulation domain.

The Analyse process comprises a set of four sub-processes that aim
to analyse the test feature under consideration (Fig. 4 and Table 2). The
first sub-process includes the analysis of test feature that defines the
model feature using previous literature (Section 2.1). The second sub-
process involves the analysis of test subject, i.e. the building cluster to
identify and associate the building parameters and activities. The third
sub-process analyses the underlying modelling approach (grey-box net-
works) that represents the building dynamics. The last sub-process
analyses the testing procedures that could be used to specify and
quantify the model feature.

The Specify process comprises a set of four sub-processes that aim
to specify the testing scenarios for buildings under consideration (Fig. 4
and Table 3). The first sub-process identifies a high level scenario
and various sub-scenarios to be tested for the considered modelling
6

approach. The second sub-process defines the input data required to
carry out the testing scenarios (Section 2.2). The third sub-process lays
out the sequence of testing activities for variations in the testing model.
The last sub-process involves the validation of testing results against set
standards, for instance, ASHRAE Guideline 14.

The feature testing process stands out in itself and is crucial in
the identification of sub-methodologies for testing various features as
highlighted in Section 3. Within the BEPS domain and on account of
testing grey-box model features, the test guidelines provide insights
into the implementation of experimental testing procedure for each
feature. The individual feature assessment sub-methodologies indicate
how the testing process could be modified to account for different types
of features.

2.5. KPI identification

The KPI identification process is the last procedure of the overarch-
ing methodology and identifies a set of performance measures for each
individual feature. These metrics assess the performance of the reduced-
order grey-box modelling approach and further evaluate each feature
in terms of the model suitability. KPIs are valuable not only to describe
a specific characteristic but also facilitate a comparison with other
model traits designed for similar scopes [36]. The majority of BEPS
studies define KPIs for assessing building energy performance [37].
These KPIs often include energy consumed, CO2 emissions, efficiency,
energy cost and building comfort. Few studies define KPIs associated
with the modelling approach that mainly include various definitions of
accuracy for the energy calibration procedure [38].

This study implements the following list of KPIs that include a
combination of the aforementioned categories (building energy perfor-
mance KPIs and model calibration KPIs). The list of significant KPIs
depends on the feature to be tested, which is highlighted under each
feature assessment sub-methodology. It is worthwhile to mention that
the following KPI list is selective and different combinations of KPIs
could be used to measure the model feature under consideration.

1. Normalised Mean Bias Error (NMBE) metric represents the nor-
malised average of errors of a sample space.

2. Coefficient of Variation Root Mean Square Error (CVRMSE) es-
tablishes the variability of the errors between measured and
simulated values. As per the ASHRAE Guideline 14, CVRMSE
values of less than 25% represents an acceptable model fit.
ASHRAE Guideline 14 defines well-accepted criteria to measure
the accuracy of energy simulations [39] (Table D.1).

3. Mean Absolute Percentage Error (MAPE) measures the absolute
size of the error in terms of percentage. It represents the average
of the absolute percentage errors of forecasts.

4. Coefficient of Determination or 𝑅2 metric determines the close-
ness of the simulated values to the regression line of the mea-
sured values.

5. Goodness Of Fit (GOF) metric defines the overall fit of the
devised model using a combination of other metrics, namely,

CVRMSE and NMBE.
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Fig. 3. Parameter estimation procedure using CTSM-R to identify the thermal resistance and thermal capacitance values.
Fig. 4. Model feature testing implementation process to identify the required experimentation for individual features.
Table 2
Analyse process to identify the experiments for model feature testing.

Sub-process Description Input Output

Analyse test feature Model test feature definition to understand,
verify and validate the requirements

Test feature definitions from literature Understanding of requirements, constraints
and an overview of how to test in general

Analyse the building Building description to identify the
associated parameters and building activities

Building related inputs (physical as well as
operational)

Understanding of the dynamics to derive
tests for the building

Analyse grey-box energy model Grey-box model to represent the heat
energy dynamics

Grey-box model Understanding of testing strategy to assess
the associated complexity

Analyse type of testing Testing type analysis to specify and quantify
the model feature

Requirement specification and grey-box
energy model

Understanding the type of testing to prepare
an appropriate design strategy
6. Thermal Resistance Capacitance (RC) parameters of a grey-box
model define the building dynamics. While the thermal ca-
pacitance (C, J/K) value indicates the heat storing capacity
of a building’s mass, the thermal resistance (R, K/W) controls
the response of a building when subjected to a temperature
change [40]. These parameters are estimated using the state-
space equations for the formulated RC networks as defined in
Section 2.3.3.
7

A high thermal mass (C value) would result in a more stable
environment, which will be resistant to changing temperatures.
The multiplication of these two parameters results in time con-
stant, which is calculated for the building as a whole. The higher
the time constant, the longer it will take to alter the internal
conditions irrespective of excitation source (sudden weather
events or the building system).
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Table 3
Specify process to identify the experiments for model feature testing.

Sub-process Description Input Output

Specify test scenario Specify a high level scenario and various
sub-scenarios for testing

Requirement specification and grey-box
energy model

A set of test scenarios

Specify input data Specify different sets of input data to be
used in testing (simulated and measured)

Requirement specification and building
physical and operational inputs

Different sets of input data

Specify test sequence Specify a sequence of testing activities for
each scenario/variation in the energy model

Requirement specification, grey-box energy
model and building physical and
operational inputs

Different sets of test sequences

Specify validation Specify baselines and boundary levels to
validate results against set standards

A set of test scenarios A complete set of test cases
7. Peak Heat Demand Reduction (PHDR) has been extensively used
as a performance metric for demand alteration measures. PHDR
metric represents the percentage decrease in the peak heat de-
mand of a building or a group of buildings to provide re-
quired comfort levels. With the appropriate application of con-
trol strategies, the peak heat demand could be reduced to a
high extent. This indicator is used to analyse the maximum
heat demand of a system in comparison with the average heat
demand [40].

3. Sub-methodologies for model feature assessment

The sub-methodologies section formulates individual assessment
frameworks for the considered model features. The devised
sub-methodologies follow a similar procedure to the overarching
methodology while taking into account specific feature definitions,
data requirements, generalised grey-box model generation, specific
feature testing procedures and appropriate KPI assignments. A distinct
characteristic of these sub-methodologies lies in the identification of
the feature testing process using the generalised structure as illustrated
in Section 2.4. Each sub-methodology further includes a case study
formulated using the U.S DOE commercial reference buildings in order
to enhance the comprehensibility of each framework. These reference
buildings comprise 16 building types that represent approximately
70% of the commercial buildings in the United States across 16 lo-
cations, and correspond to all U.S. climate zones. These buildings
are available as EnergyPlus models that are representative of realistic
building characteristics and construction practices [30]. EnergyPlus is
a whole building simulation program widely used to model the energy
consumption and water use in buildings.

The DOE reference building EnergyPlus models provide the data
required for grey-box model order identification and model parame-
terisation (Fig. 5). The grey-box model order identification procedure
uses mandatory and optional variables, defined in Sections 2.2.1 and
2.2.2, which are extracted from the EnergyPlus input IDF files of DOE
reference buildings. The IDF files contain the information regarding
building physical parameters, building space usage and HVAC systems.
Building operation variables are obtained through energy simulations
using IDF files in EnergyPlus (v 7.2). The outputs of these simulations
provide heat demand and internal temperature profiles of the reference
building buildings. The network parameterisation procedure uses these
variables to identify the parameters of the formulated grey-box model.
In the case of the representative example of DOE reference buildings,
the EnergyPlus simulation solely focuses on the generation of indoor
temperature profiles and space head demand. When the real-time build-
ing monitoring data is available, the grey-box models could be directly
calibrated and hence, these EnergyPlus models would no longer be
required.

Each reference building corresponds to varied uses of the interior
space (Fig. 6, Figs. A.1 and A.2). For instance, standalone retail DOE
reference building comprises core retail space, front retail space and
back storage where core retail space represents 69.8% of the total
space use inside the buildings (Fig. 6(a)). These spaces act as separate
8

thermal zones; each zone represents a similar profile of the underlying
building dynamics. While some reference buildings such as standalone
retail, strip mall, quick service restaurant, small office etc. have a
simplified homogeneous building space use, other reference buildings
such as primary school, hospital, large hotel etc. are more complex and
have a heterogeneous building space use. An initial ANOVA analysis
classifies these reference buildings on the basis of existing variations in
the daily heat demand profile of each reference building (Table 4). The
ANOVA test establishes whether the daily variations in heat demand
are statistically significant or not. The significance levels are used in
each individual representative case studies (Sections 3.1.1, 3.2.1 and
3.3.1) to aid the model identification procedure of the reduced-order
model. Fig. 6 illustrates the zone floor use of six reference buildings.
The zone floor use of the other twelve reference buildings is included
in Appendix A.

3.1. Sub-methodology for scalability assessment

The sub-methodology for the scalability feature outlines a scalability
assessment framework and follows a five step process similar to the
proposed overarching methodology (Fig. 7). The first step defines scal-
ability using previous literature [15]. The second step formulates the
list of variables required to carry out the scalability assessment task.
The third step involves the development of the grey-box model using
the procedure as outlined in Section 2.3. The fourth step focuses on
the scalability testing procedure, which uses the Analyse and Specify
processes (Fig. 4).

The type of experimentation required to assess scalability involves
multi-level modelling that assesses the relevance of individual zone
models in representing various zones inside a building. After an ini-
tial analysis of the scalability definitions, one significant requirement
would be to associate scalability with grey-box modelling at different
levels, initiating with the simplest zone and then identifying the model
suitability for representation of multiple zones, the whole building and
building clusters. Depending on the complexity of individual zones, the
Analyse process determines the initial order of the grey-box model,
which would further be updated depending on the complexity of in-
dividual zones and buildings under consideration. Based on the above
outlined processes, this process identifies a bottom-up energy modelling
analysis as the testing strategy.

The Specify process defines the modelling levels to be tested. Grey-
box models differ in their respective structures based on the underlying
dynamics. Moreover, the grey-box network order is dependent on the
number and type of existing zones inside the building. Different mod-
elling levels correspond to different boundaries of dynamics existing
in the building and are selected to identify thermal zones with similar
dynamics. The Specify process identifies the following test scenarios to
implement the multi-level modelling.

1. Zonal modelling: This modelling level forms the baseline model,
which is used to compare the model prediction results with other
modelling levels. Zonal modelling level represents a single zone
volume inside the building. This zone volume corresponds to
the floor area with the highest proportion of space usage for a

particular building function.
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Fig. 5. Process workflow illustrating the use of DOE reference building EnergyPlus models for grey-box model identification and model parameterisation.
Table 4
DOE commercial building reference buildings demonstrating the proposed feature assessment frameworks. The significance
level represents the level of variations in the heat demand profile of the reference building.

Building Type Floor Areat
(m2)

Number of
Floors

ANOVA Test
p-values
(Daily Variations, 𝛼 = 0.10)

Significance
level

Large Office 46,320 12 0.091 Significant
Medium Office 4,982 3 0.291 Not Significant
Small Office 511 1 0.323 Not Significant
Warehouse 4835 1 0.545 Not Significant
Stand-alone Retail 2,319 1 0.433 Not Significant
Strip Mall 2,090 1 0.159 Not Significant
Primary School 6,871 1 0.025 Significant
Secondary School 19,592 2 0.085 Significant
Supermarket 4,181 1 0.027 Significant
Quick Service Restaurant 232 1 0.191 Not Significant
Full Service Restaurant 5,500 1 0.103 Not Significant
Hospital 511 5 0.055 Significant
Outpatient Health Care 3,804 3 0.069 Significant
Small Hotel 4,013 4 0.156 Not Significant
Large Hotel 11,345 6 0.071 Significant
Midrise Apartment 3,135 4 0.661 Not Significant
2. Multi-zone modelling: This modelling level forms the next phase
of the test sequence where the identified zonal grey-box model
represents multiple zones inside the same building. Different
zonal grey-box networks have the same structure but different
network parameters. This sequence updates the model parame-
ters based on the heat dynamics of the respective zones.

3. Whole building modelling: This test sequence further updates
the zone model to represent the heat dynamics at the whole
building level. The whole building modelling level aggregates
the zone level building operational parameters to update the
network parameters.

4. Building cluster modelling: This is the last test sequence that
assesses scalability based on two aspects. The first aspect deals
with the identification of the cluster of buildings that repre-
sent a similar variation in heat demand profiles. The ANOVA
technique analyses the significance of variations as described in
Section 2.3.1. The second aspect assesses the suitability of the
identified whole building grey-box model in representing similar
building clusters.

The last step of the scalability assessment framework identifies a
suitable list of KPIs from the list described in Section 2.5. The KPIs
9

for assessing scalability include CVRMSE, NMBE, MAPE, 𝑅2 and GOF.
The multi-level modelling results are compared against these metrics
to establish the scalability potential.

3.1.1. Scalability assessment of DOE commercial reference buildings
To demonstrate the application of the devised scalability frame-

work, this study analyses four DOE reference buildings, namely, small
office, medium office, full service restaurant and quick service restau-
rant as these buildings belong to the non-significant category of vari-
ations in the daily heat demand profile (Table 4). The DOE reference
buildings provide the data for grey-box model order identification and
network parameterisation (Fig. 5).

Small office reference building comprises mainly two types of office
spaces, a core space and an unconditioned attic (Fig. 6(e)). Medium
office reference building consists of two types of office spaces, a core
space and a conditioned plenum (Fig. 6(f)). Both these reference build-
ings consists of two separate thermal zones. Both full service (Fig. 6(d))
and quick service (Fig. 6(c)) restaurant reference buildings comprises a
dining area, a kitchen area and an unconditioned attic. While the dining
area for the full service restaurant is approximately three times of the
kitchen area, the dining and kitchen areas represent equal proportions
of the building space use for the quick service restaurant.
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Fig. 6. Proportion of individual space use (% of total area) of the investigated DOE reference buildings: (a) Standalone retail space use with core retail function as the largest
proportion amongst all. (b) Strip mall space use with major proportion occupied by small stores. (c) Quick service restaurant space use with equal proportions dedicated to dining
and kitchen area. (d) Full service restaurant space use with larger proportion dedicated to the dining area. (e) Small office space use with major proportion dedicated to offices.
(f) Medium office space use with major proportion representing the plenum space to facilitate air circulation.
Scalability is first assessed for the small office DOE reference build-
ing. To demonstrate the applicability for building stock modelling,
the framework extends the modelling process to include the medium
office DOE reference building. After the identification of the scalability
definition, the data collection process extracts the required inputs from
the EnergyPlus model of the small office. The crucial data inputs
include the following variables [27].

1. 𝑇𝑎 Outside Dry Bulb Temperature in ◦C.
2. 𝐺𝑠 Global Solar Irradiation in kW∕m2.
3. 𝑇𝑖 Internal Temperature Profiles in ◦C.
4. 𝑃ℎ DOE reference building Space Heat Demand in kW.
5. Zone Floor Area in %.

These variables are extracted from the EnergyPlus output file af-
ter carrying out an initial simulation over a four week period for
the city of San Francisco. The grey-box model development process
uses these variables to identify the grey-box network for the small
office DOE reference building (Fig. 2). When implementing the grey-
box model development process, the data analysis step outlines the
ANOVA test results. Corresponding to a significance level of 0.10, the
variations are found to be non-existent in the heat demand profile of
10
small office (𝑝-value = 0.323, Table 4). The non-significant ANOVA
results indicate that the demand profile is stable across the entire day
without any existing fluctuations. The order identification step suggests
a lumped parameter model would be sufficient to represent the small-
office building dynamics. Heat demand fluctuations can be directly
linked to a space inside the building that needs to be assigned a separate
special thermal zone, thereby requiring a new RC branch altogether.
Corresponding to a floor area of 511 m2 (more than half of which is
unconditioned), normalising the demand with respect to the floor area
yields high demand levels per m2 of space use. Henceforth, separate
RC network branches are assigned to exterior walls and interior mass.
As the demand fluctuations are deemed insignificant by the ANOVA
test, a second order grey-box model would be sufficient to represent
the building dynamics (Fig. 8). Furthermore, the building does not have
any embedded heating system and has a homogeneous fabric installed
all throughout the building envelope. The parameter estimation step
uses CTSM-R to parameterise the identified second order grey-box
model and predict the internal temperature profiles (Fig. 3). The model
validation step involves the use of identified KPIs (discussed below)
to indicate the suitability of the model. The testing period starts from
15/01/2020 and ends on 14/02/2020 as this period comprise extreme
cold temperatures.
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Fig. 7. Scalability assessment framework (sub-methodology) to identify zone, building and stock level scalability of reduced-order grey-box models.
Fig. 8. The implemented second order network for the small office DOE reference building. 𝑇𝑖, 𝑇𝑒 and 𝑇𝑎 represent the states of the internal, special zone, heater, exterior and
ambient elements in the network. 𝑅𝑖𝑒 and 𝑅𝑒𝑎 represent the thermal resistances of the network. 𝐶𝑖 and 𝐶𝑒 represent the thermal capacities of the network. 𝜙ℎ and 𝜙𝑠 are the
heater and solar radiation flux elements. 𝐴𝑤 represents the effective window area.
The small office DOE reference building comprises five zones (zone
1 to zone 5); each of which is simulated individually to obtain the in-
ternal temperature profiles. The simulation process considers the zone
1 office grey-box network as the baseline model to compare against
other zone (zone 2 to zone 5) grey-box model predictions (Fig. 9). The
set-point temperatures vary among different zones in the building. It is
worthwhile to mention that individual zone models involve a similar
second order grey-box network (with updated parameters). Zone 1
represents the first office category of the small office space use. As
evident from the DOE archetype and grey-box temperature profiles, a
second order model is able to trace the dynamics of the zone with a
CVRMSE of 3.65%. The corresponding values of NMBE, MAPE and R2

are 1.92%, 2.65% and 0.95 respectively. These test case implementa-
tion uses these metric values as the baseline to compare other zone
predictions. Zone 2 belongs to the similar office category and the model
predictions correspond to slightly higher KPI values when compared to
zone 1 KPIs (Table 5). The R2 values are similar for both zones. When a
similar zone 1 office grey-box model with updated parameters predicts
the internal temperature profiles of zone 3 and zone 4, the KPIs again
11
experience an increase in individual values indicating more complex
zone dynamics. Zone 5, which represents the core space, observes KPI
values between those of zones 1–2 and zones 3–4. The multi-level
modelling process further implements the zone 1 office grey-box model
at the whole building level. To obtain the internal temperature profile
at the building level, the simulation process averages the temperatures
of individual zones. When considering the second-order model for the
whole building, the KPI values average out in between zone 1 and zone
4. This clearly indicates the suitability of implementing a zone level
model for model predictions at the whole building level.

To demonstrate the applicability of the framework for building
stock modelling, the modelling process extends the identified grey-
box model to represent a medium office, which has a similar zone
volume. A combined ANOVA test of small office and medium office
reference buildings establishes that these reference buildings belong
to the same group. The test statistics (F-value of 1.77 and 𝑝-value of
0.243) corresponding to a significance level of 0.10 nullifies the test
hypotheses and hence, a similar grey-box model is used to predict
the internal temperature profile for the medium office DOE archetype
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Fig. 9. DOE archetype and grey-box internal temperature profiles at the whole building level and respective zone level for the small office DOE archetype over a four week period.
Fig. 10. DOE archetype and grey-box internal temperature profiles for the small office and medium office DOE archetypes at the whole building level over a four week period.
Table 5
KPI values for the small office DOE reference building to assess the scalability of formulated model.

KPI Zones Small office building Medium office building

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

NMBE 1.92 2.33 2.81 2.95 2.44 2.59 3.47
CVRMSE 3.65 3.94 4.12 4.23 3.42 3.68 4.35
MAPE 2.65 2.79 3.44 3.52 2.61 2.83 3.22
R2 0.95 0.95 0.92 0.92 0.94 0.94 0.91
(Fig. 10) over the similar four week period. The KPI values are only
slightly higher than small office archetype prediction KPIs indicating
12
that the second order network is able to trace the dynamics of the
medium office reference building.
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The scalability assessment is further extended to include full service
and quick service restaurant reference buildings (Appendix B). It is
worthwhile to mention that although the third order network reduces
the prediction errors for both full service and quick service, the reduced
CVRMSE values could be considered insignificant when compared to
the CVRMSE values for the second order model (Table B.1).

3.2. Sub-methodology for flexibility assessment

The sub-methodology for the flexibility feature outlines a flexibility
assessment framework and follows a five step process similar to the
proposed overarching methodology (Fig. 11). The first step defines
flexibility using previous literature [20]. The second step formulates
the list of variables required to carry out the scalability assessment
task. The third step involves the development of the grey-box model
using the procedure as outlined in Section 2.3. The fourth step fo-
cuses on the flexibility testing procedure, which uses the Analyse and
Specify processes (Fig. 4). Feature testing is a crucial step in the
flexibility assessment framework as this process develops the required
experimentation to test and evaluate flexibility.

The type of experimentation required to assess flexibility involves
design variation modelling that assesses the relevance of the formulated
grey-box model to accommodate variations introduced in the building
design. After an initial analysis of the flexibility definitions, one sig-
nificant requirement for the grey-box network would be to inherit the
operational characteristics of the modified building. While considering
the inherent regularities of the observed data, it is crucial for the
testing process to ensure a balance between the model complexity and
the required scope. The process requires weather variables (outside
dry bulb temperature and global solar irradiation), building physical
parameters (zone volume and floor area) and building operational
parameters (internal temperature profiles and space heat demand).
Based on the building dynamics and the intended scope of application,
the Analyse process determines the initial order of the grey-box model,
which would further be updated depending on the perturbations intro-
duced in the building design. Possible design variations might include
fabric enhancements, improved accuracy of HVAC systems or other
perturbations that directly affect the building heat dynamics.

The Specify process defines the test sequences for design variation
modelling. As any perturbations in the system will directly affect
the grey-box network parameters, the test sequence design considers
a trade-off analysis to avoid the over-fitting of models. The Specify
process identifies the following test scenarios to implement the design
variation modelling. These test scenarios are selected based on the stan-
dardised modelling procedure of identifying a basecase of a building
and implementing a parametric analysis to test several design varia-
tions. Furthermore, these scenarios represent corresponding changes in
the grey-box network due to the introduced design variations.

1. Basecase building design: This test sequence focuses on an indi-
vidual building to identify a basecase design. The baseline model
is crucial to discern the impacts of the variations in building
design. This sequence defines the initial complexity of the model
based on the building function.

2. Variations in building design: This test sequence sets out dif-
ferent scenarios for variations in building design. The scenarios
could act as plausible retrofits to improve the building energy
efficiency. Any design variation will have a direct effect on the
grey-box network order and network parameters.

3. Grey-box model variations: This test sequence translates the
variations in building design to the building grey-box model. The
sequence broadly focuses on two network aspects, namely, net-
work order and network parameters. The network order evalu-
ates the flexibility in terms of complexity and identifies whether
the current model is flexible enough to represent the pertur-
bations. Network parameters evaluate flexibility in terms of
updating the current model parameters with as little effort as
13

possible.
4. Trade-off analysis: This is the last test sequence that establishes
the significance of model flexibility using a trade-off analysis
between model complexity and required scope. A good fit of
model predictions to empirical data does not necessarily provide
an indication of model validity. If the model is flexible enough
to fit a large proportion of potential empirical outcomes, finding
a good fit becomes less meaningful. Furthermore, increased flex-
ibility introduces higher uncertainty in the parameter estimates
as higher model order increases the number of model param-
eters. Hence, this test sequence identifies an optimal network
order to balance the uncertainty and systematic errors in model
predictions.

The last step of the flexibility assessment framework identifies a
suitable list of KPIs from the list described in Section 2.5. The KPIs for
assessing flexibility include CVRMSE, NMBE, 𝑅2 and GOF. The design
variation modelling results are compared against these metrics to assess
the flexibility potential.

3.2.1. Flexibility assessment of DOE commercial reference buildings
To demonstrate the applicability of the devised flexibility frame-

work, this study analyses two DOE reference buildings, namely, strip
mall and standalone retail reference buildings as these belong to the
non-significant category of variations in the daily heat demand profile
(Table 4). The DOE reference buildings provide the data for grey-box
model order identification and network parameterisation (Fig. 5). The
strip mall mainly comprises small and large stores, where small stores
occupy two-thirds of the total mall space. The standalone retail building
comprises core retail space, front retail space and back storage, where
core retail space represent approximately 70% of the total space use.

After the identification of the flexibility definition, the data collec-
tion process extracts the required inputs from the EnergyPlus model of
the strip mall and standalone retail building. The crucial data inputs
include the following variables [27].

1. 𝑇𝑎 Outside Dry Bulb Temperature in ◦C.
2. 𝐺𝑠 Global Solar Irradiation in kW∕m2.
3. 𝑇𝑖 Internal Temperature Profiles in ◦C.
4. 𝑃ℎ DOE reference building space heat demand in kW.
5. Roof and wall insulation thickness in m.
6. Window U-values in W/m2K.

Grey-box model development process follows a similar procedure
as outlined in the scalability assessment framework. Corresponding to
p-test values of 0.159 and 0.4433, the ANOVA test establishes that heat
demand variations are not significant for the strip mall and standalone
retail reference buildings. Hence, a lumped parameter model would
effectively represent the dynamics of these buildings. However, owing
to the presence of slightly varying zone volume uses, it would be
ideal to assign separate networks for zones representing the majority
of building space use. Therefore, the selected reference test cases
are assigned an initial second order network to predict the internal
temperature profiles. The parameter estimation step uses a similar
CTSM-R procedure to parameterise the model and predict the internal
temperature profiles. The model validation step uses the identified KPIs
to indicate suitability of each model. The testing period starts from
14/01/2020 and ends on 13/02/2020 for the city of San Francisco as
this period comprises extreme cold temperatures.

Flexibility assessment involves design variation modelling that in-
troduces perturbations in the base case model. The first test reference
building is the strip mall, which is simulated in EnergyPlus initially
to obtain the base case results. The construction elements in the base
case model follow ASHRAE 90.1-1989 standards that specify values
of roof insulation thickness, wall insulation thickness and window U-
factor as 0.0857 m, 0.0507 m and 6.88 W/m2K. To introduce variations
in building design, these parameters are updated to ASHRAE 90.1-2004

construction standards. The new values of roof insulation thickness,
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Fig. 11. Flexibility assessment framework (sub-methodology) to identify the trade-off between complexity and accuracy for reduced-order grey-box models.
Fig. 12. DOE archetype and grey-box internal temperature profiles for the strip mall DOE archetype at the whole building level before and after the introduction of design
perturbations over a four week period.
wall insulation thickness and window U-factor are 0.1246 m, 0.0532
m and 5.835 W/m2K. These new values could act as plausible retrofits
for old energy inefficient buildings.

Design variation modelling process uses a similar grey-box network
to trace the modified building dynamics. As evident from the DOE
archetype and grey-box internal temperature profiles before and af-
ter the model perturbations, a second order model effectively traces
the original and modified building dynamics of the strip mall DOE
archetype (Fig. 12). The values of NMBE, CVRMSE and GOF experience
a slight decrease after the design variations are introduced in the
base case model of the strip mall (Table 6). This can be attributed to
the fact that enhancement in fabric design (improved wall and roof
insulation) stabilises the building dynamics (peak heat demand levels
are significantly reduced). It is worthwhile to mention that the second
order model is unable to trace the timestamps when the strip mall is
14
initially excited before any perturbations are introduced (Fig. 12). This
suggests that a third order model might be a better fit for this reference
building. However, when considering a trade off between model com-
plexity and accuracy, the improvement in the grey-box model accuracy
(decreased CVRMSE of 4.78%) is not significant enough to introduce
another state variable in the original model. Also, these errors at the
excitation timestamps are almost non-existent in the DOE archetype
and grey-box temperature profiles of the reference building after the
design perturbations are introduced (Fig. 12).

A similar process is repeated to assess the grey-box model flexibility
of the standalone retail DOE reference building (Appendix C). The
results indicate that base case model of standalone retail reference
building might benefit from an enhanced network complexity. How-
ever, an increased model order would not have a significant impact on
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Table 6
KPI values for the strip mall and standalone retail DOE reference buildings to assess the flexibility of the formulated model.

KPI Strip Mall Building Standalone Retail Building

Before perturbation After perturbation Before perturbation After perturbation

NMBE 4.55 3.63 3.86 2.21
CVRMSE 5.73 4.61 4.47 3.04
GOF 0.05 0.04 0.04 0.03
R2 0.77 0.86 0.87 0.82
the accuracy of the formulated model for the after perturbation scenario
(Fig. C.1).

3.3. Sub-methodology for interoperability assessment

The sub-methodology for the interoperability feature outlines an
interoperability assessment framework and follows a five step process
similar to the proposed overarching methodology (Fig. 13). The first
step defines interoperability using previous literature [22]. The second
step formulates the list of variables required to carry out the inter-
operability assessment task. The third step involves the development
of the grey-box model using the procedure as outlined in Section 2.3.
The fourth step focuses on the interoperability testing procedure, which
uses the Analyse and Specify processes (Fig. 4). Feature testing is
a crucial step in the interoperability assessment framework as this
process develops the required experimentation to test and evaluate
interoperability.

The type of experimentation required to assess interoperability
involves scenario optimisation modelling that assesses the interoper-
ability potential of a community of buildings using grey-box models.
The interoperability feature is more associated with building clusters
rather than the employed modelling approach. However, this feature
demonstrates how grey-box models would facilitate the interoperability
characterisation process, and thereby, illustrates a crucial modelling
characteristic of these models. An initial analysis of the interoperability
definition indicates that there is a need to characterise individual
buildings in a cluster using model parameters and building function.
The process requires weather variables (outside dry bulb tempera-
ture and global solar irradiation), building physical parameters (floor
area), model parameters and building operational parameters (internal
temperature profiles and space heat demand). Based on the building
dynamics, the Analyse process determines the optimal order of the
grey-box model for individual buildings in the cluster. As interop-
erability deals with the optimisation of building systems, a possible
testing strategy would involve scenario optimisation modelling that
aims to reduce the heat demand variations of the building cluster on
an aggregate basis.

The Specify process defines the test sequences for scenario optimisa-
tion modelling, which facilitates individual building level integration.
Variations in heat demand among a community of buildings will allow
for demand balancing that can lead to a drop in the overall heat
demand. The Specify process identifies the following test scenarios
to implement the scenario optimisation modelling. These scenarios
are selected so as to reduce the overall heat demand of the system.
Henceforth, the test scenarios need to identify and characterise the
buildings based on pre-defined building metrics. The characterisation
facilitates the optimisation of the overall heat demand in the building
cluster.

1. Building cluster: This test sequence lists individual building in
a cluster, estimates grey-box parameters and performs an initial
ANOVA analysis using the heat demand profiles.

2. Heat demand characterisation: This sequence characterises the
buildings on the basis of heat demand profiles. The demand
profiles are a direct indication of the kind of ongoing activities
inside a building. The characterisation leads to two categories,
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namely, buildings with a variable demand pattern and build-
ings with a stable demand pattern. Buildings with similar de-
mand profiles provide limited opportunities to implement any
kind of demand scenario optimisation. Furthermore, buildings
with cyclic demand patterns would facilitate demand balancing
alterations.

3. C-value characterisation: This test sequence derives a relative
characterisation of individual buildings on the basis of grey-
box model parameters. The C-value affects the response time
of the building’s thermal mass when subjected to a change in
operational parameters (for instance, temperature). A relatively
high value of C increases the response time of building mass
to excitation from the mechanical systems. The time constant
indicates the response time of the building’s interior to a tem-
perature difference between indoor and ambient environment.
The devised categories include buildings with a high C-value and
buildings with a low C-value (high and low values represent a
relative comparison).

4. Heat demand alteration scenarios: This is the last test sequence
that identifies demand alteration scenarios based on the afore-
mentioned characterisations. Heat demand alterations are easier
to implement in a building with a high value of C coupled with
low variations in heat demand. A high C building experiences
a delayed response and thus will maintain the required comfort
conditions even when the temperature is not within the accept-
able limits. Moreover, the low demand fluctuations allow the
building to jump back to the desired temperature range without
increasing the overall demand. This sequence identifies the time
instances when peaks occur in heat demand profiles. Building
with high variations in heat demand provide such instances and
therefore, any control measures in other buildings should be
introduced at these timestamps.

The last step of the interoperability assessment framework identifies
a suitable list of KPIs from the list described in Section 2.5. The KPIs for
assessing interoperability include CVRMSE, RC parameters and PHDR.
The scenario optimisation modelling results are compared against these
metrics to assess the interoperability potential.

3.3.1. Interoperability assessment of DOE commercial reference buildings
To demonstrate the applicability of the devised interoperability

framework, this study analyses four DOE reference buildings, namely,
primary school, midrise apartment, small hotel and supermarket. The
DOE reference buildings provide the data for grey-box model order
identification and network parameterisation (Fig. 5). Two of these
reference buildings (primary school and supermarket) belong to the
significant category of variations in the daily heat demand profile
(Table 4). The other two reference buildings (midrise apartment and
small hotel) belong to the non-significant category of variations in
the daily heat demand profile (Table 4). While midrise apartment
and small hotel reference buildings represent simplified building use
(Figs. A.1(d) and A.1(c)), primary school and supermarket reference
buildings represent dynamic use of the building space (Figs. A.1(a)
and A.1(e)). It is important to note that the interoperability feature is
specifically assessed for an individual building or a group of buildings
using grey-box model parameters rather than for an individual model.

After the identification of the interoperability definition, the data

collection extracts the required inputs from the EnergyPlus model of
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Fig. 13. Interoperability assessment framework (sub-methodology) to formulate load reduction scenarios using reduced-order grey-box models.
Fig. 14. Daily heat demand profile for primary school, mid-rise apartment, small hotel and supermarket DOE reference buildings for possible interoperability characterisation.
the primary school, midrise apartment, small hotel and supermar-
ket reference buildings. The crucial data inputs include the following
variables [27]:

1. 𝑇𝑎 Outside Dry Bulb Temperature in ◦C.
2. 𝐺𝑠 Global Solar Irradiation in kW∕m2.
3. 𝑇𝑖 Internal Temperature Profiles in ◦C.
4. 𝑃 DOE reference building space heat demand in kW.
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ℎ

Grey-box model development follows a similar procedure as out-
lined in the scalability and flexibility assessment frameworks. Corre-
sponding to p-test values of 0.025 and 0.027, the ANOVA test estab-
lishes that heat demand variations are significant for the primary school
and supermarket reference buildings. The heat demand variations are
found to be non-significant for midrise apartment and small hotel
reference buildings (p-values of 0.661 and 0.156). While a third order
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Fig. 15. Daily heat demand profile for the midrise apartment DOE reference building before and after the introduction of demand alteration scenarios. The heat demand fluctuations
represent time instants when the set-point temperature is varied.
model is assigned to the primary school and supermarket reference
buildings, a second order model is used to represent the midrise apart-
ment and small hotel reference buildings. It should be noted that
grey-box model identification is not crucial to assessing interoperability
as only the model parameters are required. These parameters yield
similar overall aggregated values when considering various orders of
the grey-box network. The parameter estimation step uses CTSM-R to
identify the network parameters. The testing period involves a single
day (14/01/2020) during which the heat demand profiles are recorded
on an hourly basis for San Francisco city. This day is representative of
a midweek day with cold temperatures.

Interoperability assessment involves scenario optimisation mod-
elling that introduces demand alteration scenarios in the considered
building cluster (primary school, midrise apartment, small hotel and
supermarket). The building cluster undergoes a characterisation process
on the basis of heat demand and network C-values. When comparing
the variation in heat demand over 24 h between different reference
buildings, primary school and supermarket are found to possess large
variations in heat demand compared to midrise apartment and small
hotel (Fig. 14). Furthermore, the demand variations between midrise
apartment and small hotel are found to be insignificant. This indi-
cates that the means of both test groups are the same and similar
variations exist in the profiles. As such, demand alteration scenar-
ios could not be implemented between midrise apartment and small
hotel and the interoperability potential between these buildings is
not significant. However, a high demand balancing potential exists
between primary school or supermarket and midrise apartment. Simi-
larly, demand alterations could also be achieved with the small hotel
building.

Further building characterisation involves network C-values as these
directly affect the response time of the building’s thermal mass. A
relatively high value of C increases the response time of building’s
mass. Owing to this explanation, midrise apartment has the highest
response time closely followed by the supermarket (Table 7). Small
hotel and primary school reference buildings have a low response time.
Buildings with relatively larger C value respond slower to changes in
temperature and thus maintain the required comfort conditions even
when the setpoint temperature is lower than required. Additionally,
the low demand fluctuation allows the building to achieve the setpoint
temperature without increasing the overall heat demand. Therefore,
midrise apartment provides more opportunities for the implementation
of heat demand alterations.

As the overall aim is to reduce the peak systems demand, demand
alteration measures are usually applied during the time instance of
peaks occurring in the heat demand. The primary school and super-
market reference buildings provide these instances as these buildings
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have high variations in heat demand profiles. Based on the above
observations, a simulation experiment is conducted using the grey-
box models to simulate the hourly heat demand and determine the
building response when subjected to a step change in temperature.
Simulations are performed using a second order network for the midrise
apartment with a corresponding CVRMSE of 4.33% for internal temper-
ature predictions. The setpoint temperature of the midrise apartment
is assumed to be 21.1 ◦C. The step changes in setpoint temperature
are introduced at 07:00 (until 08:00) and 19:00 (until 20:00) for the
midrise apartment. The peak heat demand occurs at these timestamps
in the heat demand profiles of primary school and supermarket. At
07:00, the modification of the setpoint temperature to 20.1 ◦C reduces
the corresponding heat demand from 56 kW to 44 kW (Fig. 15). The
high C-value of the midrise apartment delays the heat transfer from the
walls, thereby, maintaining the desired comfort conditions. When the
setpoint is restored back to the original value, the heat demand in the
next hour increases from 54 kW to 60 kW. Although these modifications
result in an increased demand at the next timestamp, the overall peak
demand of the system reduces by 10% during that hour (PHDR = 10%).
A similar phenomenon is experienced at 19H:00 when the temperature
setpoint is again reduced by 1 ◦C, which yields a PHDR of 6% during
that hour (Fig. 15). It is worthwhile to mention that these setpoint
temperature modifications introduce fluctuations in the heat demand
profile of the midrise apartment building. However, the system peak
heat demand reduces at the same time when the building cluster is
considered to function together.

The DOE reference building case studies highlight the importance
of feature assessment in building energy performance modelling. The
devised feature assessment frameworks lay out a foundation to define,
assess and evaluate three crucial features of reduced-order grey-box
energy models. The feature assessment will eventually facilitate the
possibilities of scaling up networks, the evaluation of numerous design
scenarios and the integration of individual building level components
with other energy systems.

4. Discussions

The BEPS domain has experienced a significant increase in the
number of underlying modelling techniques and approaches over the
past few years. These devised techniques use different variants of the
established white-box, grey-box and black-box models. Considering
the overall spectra of the modelling techniques, it becomes crucial
to evaluate the characteristics that identify model applicability and
suitability for a specific application. This research defines an inte-
grated framework to assess reduced-order grey-box model features. The
highlights of the framework involve generalised grey-box model devel-
opment and feature testing processes that identify the experimentation
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Table 7
Thermal capacitance and time constant values of the selected DOE reference buildings to assess the interoperability of the formulated cluster.

DOE Archetype Thermal Capacitance (kWh/◦ C) Time Constant (h) Hourly Variations in Heat Demand

Midrise Apartment 75.24 101.25 Not Significant
Small Hotel 32.55 39.04 Not Significant
Primary School 27.19 44.05 Significant
Supermarket 72.08 103.79 Significant
requirements to assess the scalability, flexibility and interoperability of
grey-box networks. The devised DOE reference building case studies
provide an effective and a holistic overview of the respective fea-
ture potential of each building using pre-defined KPIs. Although the
proposed approach lays out a strong foundation for model feature
assessment, there are certain challenges associated with the feature
testing procedures of scalability, flexibility and interoperability.

When implementing multi-level modelling to assess the scalability
feature, the test building loses a few dynamics upon the aggregation of
the zone level dynamics to obtain the building level profiles. Although
these dynamics could be revived through an additional state variable,
this eventually increases the complexity of the existing grey-box net-
work. As such, the process requires a trade-off analysis to identify the
significance of increased model complexity over accuracy. For buildings
with a simplified zone volume use (office building), a zone model
would yield accurate results at the whole building level. However, a
similar scenario might not be observed for a building with varied zone
volume use (hospital), which suggests the non-scalable nature of these
buildings.

When implementing design scenario modelling to assess flexibility,
one significant challenge with grey-box models is to address the issue
of over fitting the model parameters. A good fit of model predictions
to the measured data is often considered for validating the model.
However, it should be noted that if a model is flexible enough to
fit several design scenarios, identification of a good fit becomes less
meaningful. With enhanced building dynamics, the associated grey-
box model need to be compensated with additional complexity at the
same level. Furthermore, the accessibility of these design scenarios
could be enhanced through a grey-box model parameter database that
corresponds to the introduced design variations.

When implementing scenario optimisation modelling to assess in-
teroperability, the type of buildings in the considered building cluster
define the demand alteration scenarios. It is crucial to identify a set
of buildings that have varied building operation for interoperability to
actually work. Furthermore, time constant is as crucial as the C-value
but is often overlooked when assessing the building’s thermal mass.
For instance, a low thermal mass building with low conductance would
respond more quickly to internal heat gains than a high thermal mass
building with higher conductance although both buildings represent a
similar time constant.

Another limitation concerns the demonstration cases using the DOE
reference buildings. Although the DOE reference buildings represent
reasonably realistic building characteristics and nature of operation,
the use of simulated heat demand profiles is closer to an almost ideal
building function. As commercial buildings often differ in their day
to day operations, these profiles do not represent the entire system
dynamics. Furthermore, although this study focuses mainly on heating
loads, the developed grey-box networks could also be used to estimate
the cooling loads. These networks combine a dynamic simulation of
heating as well as cooling loads (both expressed in terms of thermal
power). Forecasting of cooling loads would use a similar set of energy
balance equations as for the heating loads [41]. Another limitation
relates to the version updates of the EnergyPlus software specific to the
considered case study. Any major shifts could potentially cause issues
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with reproducibility.
5. Conclusions and future work

Buildings could play an instrumental role towards achieving an
integrated energy system. Building to grid and building to building in-
tegration possesses enormous potential to enable consumer and energy-
related benefits. To facilitate this integration, there is a need for holistic
and scalable building modelling approaches to model the commercial
building stock. This study proposes a framework to evaluate the scala-
bility, flexibility and interoperability associated with grey-box models
through the assessment of the building energy model accuracy and
complexity. Grey-box model scalability could directly be linked to the
building space use (floor area dedicated to a specific building func-
tion). The grey-box model flexibility results provide clear distinction
between model accuracy and the desired complexity when introducing
perturbations in the base model. Interoperability results indicate that
it is possible to reduce the system peak demand in a building cluster
using grey-box model parameters.

The developed framework allows rapid and accurate creation of
grey-box building energy models at various modelling levels. The re-
sults of this study could support the current need for the assessment
of consumption patterns of the commercial building stock. The de-
vised grey-box model development approach entails a generic model
structure and provides additional flexibility in terms of modelling the
design variations. When analysing buildings with varied nature of
operation, it becomes crucial to associate key performance indicators
that determine the effects of variations in model design. The devised
flexibility assessment framework could be implemented to study the
post-retrofit heat consumption patterns at the individual building as
well as the district scale. The generalised model structures facilitate
component modelling for larger and complex energy systems. Energy
modellers and practitioners could use these grey-box models to enhance
their understanding of system parameters that lead to significant er-
rors in energy predictions. The devised approach further aids demand
management in buildings through the use of HVAC and water heating
systems.

The control systems for energy-related components often fail to
deliver an optimal energy operation within residential and commercial
buildings. This can be attributed to the disintegrated nature of building
operation and building control systems both within and outside the
building envelope. Furthermore, even with sophisticated energy mod-
elling approaches, deployed control strategies and dispatch of loads
are still rudimentary and are neither cost effective nor scalable. The
interoperability framework using building grey-box model parameters
enables building to building integration and interoperability. The in-
teroperability framework facilitates the evaluation of individual build-
ing’s ability to participate in the energy integration process. Building
managers and grid operators could achieve significant reductions in
peak heat demand as buildings and industrial energy use/consumption
drive system peak demand. Ultimately, interoperable buildings should
enhance the deployment of distributed generation.

Future work could integrate the quantification of uncertainties in
building energy systems due to uncertain design parameters (network
parameters) or inherent uncertain parameters (weather). When consid-
ering grey-box building energy models, uncertainty propagation usually
involves the implementation of inverse quantification techniques to
associate confidence intervals with network parameters. Integration of
an uncertainty framework would enhance the value of this research.
Future work could further involve the use of real-time buildings to test
the devised feature assessment frameworks for scalability, flexibility
and interoperability. Moreover, model validation could be improved

using ANSI/RESNET Standard 1201-2016 for calibration methods.
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Fig. A.1. Proportion of individual space use (% of total area) of the investigated DOE reference buildings: (a) Primary school space use with majority of the space dedicated to
classrooms, categorised as big and small. (b) Secondary school with majority of the space dedicated to classrooms and gym. (c) Small hotel space use with majority of the space
dedicated to guestrooms divided into two categories. (d) Midrise apartment space use with six categories of apartment categorised on the basis of orientation. (e) Supermarket
space use with the majority of the space dedicated to sales area and, (f) Warehouse space use with majority of the space use dedicated to bulk storage.
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Appendix A. Description of the building cluster

The building cluster consists of 16 commercial prototype building
models published by the U.S. Department of Energy. These models are
instrumental in the development of commercial building codes and
standards. The 16 reference building types represent a majority of the
commercial buildings (70%) in the U.S. across different climate zones.
Each reference building represents a different zone volume use in terms
of the total floor area. The corresponding EnergyPlus models provide
a consistent baseline for comparison to evaluate the existing building
energy performance.

The zone floor use of six reference buildings is illustrated in Sec-
tion 3. Figs. A.1 and A.2 illustrate the zone floor use of the remain-
ing twelve reference buildings. Except the warehouse, other reference
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Fig. A.2. Proportion of individual space use (% of total area) of the investigated DOE reference buildings: (a) Hospital space use representative of varied building functions. (b)
Outpatient healthcare space use with major proportion dedicated to offices and exam rooms. (c) Large office space use with majority portion dedicated to plenum and core areas
and. (d) Large hotel space use with rooms representing the majority.
Fig. B.1. DOE archetype and grey-box internal temperature profiles at the whole building level and respective zone level for the full service restaurant DOE archetype over a four
week period.
buildings represent multi-zone floor use with at least four different
zones.

Appendix B. Scalability assessment of DOE commercial reference
buildings

The scalability assessment is further extended to include full service
and quick service restaurant reference buildings. These two reference
20
buildings mainly comprise dining and kitchen areas as two separate
zones with temperature profile variations only slightly comparable
to both office reference buildings (Fig. B.2). A second-order model
represents different zones and predicts the individual zone internal tem-
perature profiles inside the full service restaurant reference building. As
evident from the individual zone temperature profiles, the identified
model is able to trace the internal dynamics of the respective zones
although with reduced accuracy levels (Fig. B.1).
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Fig. B.2. DOE archetype and grey-box internal temperature profiles for the full service and quick service restaurant DOE archetypes at the whole building level over a four week
period.
Fig. B.3. Higher order model DOE archetype and grey-box internal temperature profiles for the full service and quick service restaurant DOE archetypes at the whole building
level over a four week period.
Table B.1
KPI values for the full service and quick service restaurant DOE archetypes to assess the scalability of formulated model.

KPI Zones Full Service Restaurant Building Quick Service Restaurant Building

Zone: Dining Zone: Kitchen

NMBE −3.31 2.56 2.59 −2.83

CVRMSE 5.13 4.72 4.95 5.22
MAPE 3.78 2.88 2.83 3.57
R2 0.85 0.94 0.87 0.82
The KPI values (except R2) are higher for the dining zone when
compared to the kitchen zone. Furthermore, the model under predicts
(negative NMBE value of 3.31%) the zone temperatures for the dining
zone (Table B.1). A higher R2 for kitchen zone indicates that the
second order network traces the dynamics of kitchen in a slightly better
manner when compared to the dining zone. At the whole building
level, the observed KPI values lie between the KPIs for the dining
and kitchen zones. When a similar order network represents the quick
21
service restaurant, the accuracy levels further experience a decline
(high errors).

To enhance the prediction accuracy, we added an additional state
variable to the second order grey-box network of full service and quick
service restaurant. As evident from the DOE archetype and grey-box
temperature profiles, a third order network improves the prediction
accuracy of the model (Fig. B.3). The corresponding CVRMSE values
of internal temperature predictions are found to be 3.88% and 4.12%
for the full service and quick service restaurant DOE reference buildings
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Fig. C.1. DOE archetype and grey-box internal temperature profiles for the standalone retail DOE archetype at the whole building level before and after the introduction of design
perturbations over a four week period.
Table D.1
Acceptable accuracy limits as per the ASHRAE Guideline 14 for monthly and hourly resolutions.

Granularity of Data Coefficient of Variation Root Mean Square Error (CVRMSE) Normalised Mean Bias Error (NMBE)

Monthly 15% 5%
Hourly 30% 10%
Table E.1
Literature review of model feature assessment frameworks to identify definitions of scalability, flexibility and interoperability. The distinct characteristics are
defined in line with [42].

Previous
Literature

Model feature Modelling scale Distinct characteristic

Scalab. Flexib. Interop. Individual
Building

Building
Clusters

[28] ✓ ✓ Broad scalability definition for large
energy systems

[43] ✓ ✓ Integration of BIM and building
simulation

[44] ✓ ✓ ✓ Scalability and flexibility definitions
for grey-box models

[12,15] ✓ ✓ ✓ Reduced-order model implementation
at urban level

[20] ✓ ✓ ✓ Comparison of modelling approaches;
Advantages of hybrid approaches

[19] ✓ ✓ Flexibility assessment of black-box
models

[22] ✓ ✓ Broad interoperability definition

[21,24] ✓ ✓ Integration with the distribution grid

[45,46] ✓ ✓ Demand shifting using district
heating networks

[25] ✓ ✓ Optimisation using HVAC systems
respectively. Although the third order network reduces the prediction
errors, the reduced CVRMSE values could be considered insignificant
when compared to the CVRMSE values for the second order model.
Furthermore, a GOF test value of 0.237 indicates that there is no
significant improvement in the dynamics of the third order model.

Appendix C. Flexibility assessment of DOE commercial reference
buildings

The flexibility assessment procedure is repeated to assess the grey-
box model flexibility of the standalone retail DOE reference building.
22
As evident from the DOE archetype and grey-box internal temperature
profile before and after perturbations, a second-order model effectively
traces the dynamics of the standalone retail building (Fig. C.1). The
KPIs for the temperature profile predictions are also well within limits
for before and after scenarios (Table 6). To further evaluate the model
at the excitation timestamps, we calculated the CVRMSE KPI values
for hourly heat demand predictions considering both scenarios. The
CVRMSE values (hourly heat demand) are found to be 18.4% and
7.1% for before perturbation and after perturbation scenarios. Although
these values are within the ASHRAE 14 guidelines limits, we further
investigated using a third order network to represent the base case
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model (before perturbation scenario) of the standalone retail reference
building. While the base case model CVRMSE value for hourly heat
demand predictions steeply declined to 9.7%, the CVRMSE for the after
perturbation model experienced an insignificant decrease to 6.3% in
the prediction of hourly heat demand. This strongly suggests that the
base case model might benefit from an enhanced network complexity.
However, an increased model order would not have a significant impact
on the accuracy of the formulated model for the after perturbation
scenario.

Appendix D. ASHRAE guideline 14 accuracy limits

See Table D.1.

Appendix E. Previous literature that defines model features in the
BEPS domain

See Table E.1.
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