
Journal Pre-proof

Discrete-Continuous Dynamic Simulation of Plantwide Batch Process
Systems in MATLAB

Franz D. Bähner Oscar A. Prado-Rubio Jakob K. Huusom

PII: S0263-8762(20)30132-5

DOI: https://doi.org/doi:10.1016/j.cherd.2020.03.030

Reference: CHERD 4050

To appear in: Chemical Engineering Research and Design

Received Date: 16 January 2020

Revised Date: 27 March 2020

Accepted Date: 30 March 2020

Please cite this article as: Franz D. Bähner, Oscar A. Prado-Rubio, Jakob K. Huusom,
Discrete-Continuous Dynamic Simulation of Plantwide Batch Process Systems in MATLAB,
<![CDATA[Chemical Engineering Research and Design]]> (2020),
doi: https://doi.org/10.1016/j.cherd.2020.03.030

This is a PDF file of an article that has undergone enhancements after acceptance, such as
the addition of a cover page and metadata, and formatting for readability, but it is not yet the
definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early
visibility of the article. Please note that, during the production process, errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2020 Published by Elsevier.

https://doi.org/doi:10.1016/j.cherd.2020.03.030
https://doi.org/10.1016/j.cherd.2020.03.030

Page 1 of 42

Jo
ur

na
l P

re
-p

ro
of

Page 2 of 42

Jo
ur

na
l P

re
-p

ro
of

Highlights

• Modelling batch process systems w. shared resources in MATLAB/Simulink/StateFlow
• Visual cycle time analysis of different cleaning-in-place strategies
• Hybrid formalism which allows inclusion of continuous dynamics

Page 3 of 42

Jo
ur

na
l P

re
-p

ro
of

Discrete-Continuous Dynamic Simulation of Plantwide1

Batch Process Systems in MATLAB2

Franz D. Bähnera, Oscar A. Prado-Rubiob, Jakob K. Huusoma,∗
3

aProcess and Systems Engineering Center (PROSYS), Department of Chemical and4

Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark5

bDepartamento de Ingenieŕıa Qúımica, Universidad Nacional de Colombia, Campus La6

Nubia Manizales, Caldas, Colombia7

Abstract8

Batch chemical and biochemical plants play an important role in the

process industries. They are characterised by hybrid (continuous &

discrete) dynamics as well as complex sequences and decision logic in the

case of shared resources. This is challenging from a modelling and

simulation perspective, both in terms of numerical algorithms as well as

implementability and scalability/maintainability within software

environments. In this work it is shown that it is possible to model complex

plantwide batch processes at reasonably high performance, accuracy, and

practicability in MATLAB/Simulink using the StateFlow toolbox. To this

end, useful implementation guidelines are presented, and a complex

example batch process is modelled. As focus lies on the implementability of

complex batch control logic, the model is limited to mass balances. The

simulation results are evaluated and carefully visualised, indicating the

MATLAB’s capabilities for analysis of such systems.

Keywords: Batch Process Systems, Process Modelling, Hybrid System,9

MATLAB Simulink StateFlow, Cycle Time Analysis10

∗Corresponding author
Email address: jkh@kt.dtu.dk (Jakob K. Huusom)

Preprint submitted to Chemical Engineering Research & Design March 26, 2020

Page 4 of 42

Jo
ur

na
l P

re
-p

ro
of

1. Introduction11

Batch processes play an important role in the production of speciality12

chemicals and pharmaceuticals (Croughan et al. (2015); Edgar (2004)).13

Compared to continuous processes, they suffer from a number of14

performance shortcomings (Teoh et al. (2016)). These include practical15

limitations originating from operational (scheduling) complexity which can16

lead to low equipment utilisation (Amaran et al. (2016)). Furthermore,17

energy- as well as material integration of batch processes may require18

advanced scheduling methods (Fernández et al. (2012)) or intermediate19

storages (causing additional operational and/or capital expenditure).20

This complexity may be seen as a good argument for the use of process21

simulation in order to improve existing processes or design new ones (Foo &22

Elyas (2017)). Simulation of batch process systems is challenging compared23

to continuous processes as they ordinarily exhibit pronounced continuous24

and discrete dynamics. Discrete events occur as elements of the sequential25

batch control logic, whereas continuously integrated state space models are26

usually needed to describe to underlying physiochemical processes.27

Furthermore, Baldea & Harjunkoski (2014) point out the ”inherently28

non-stationary nature, the non-linearity of their models, and the dynamic29

complexity that arises from the potential need to coordinate multiple units30

and stages that operate in parallel”.31

In industry, continuous and discrete system domains of batch process32

systems are ordinarily regarded in a separated approach: the scheduling33

domain is optimised in discrete-event manner (or an alike abstraction which34

focusses on material flows). Unit operation models may be based on35

mechanistic or data-driven continuously integrated models; dynamic36

plantwide phenomena are then omitted. Today, discrete-event simulation37

may be regarded a standard method as a number of software vendors cater38

to this market (for example ExtendSim®, SchedulePro®, INOSIM®,39

Simio®, and AnyLogic®). By means of manual optimisation or40

2

Page 5 of 42

Jo
ur

na
l P

re
-p

ro
of

evolutionary algorithms they facilitate optimal equipment utilisation as well41

as efficient conduction of engineering projects.42

The concurrent simulation of continuous and discrete system-elements43

(hybrid systems) on plantwide level is not yet a standard method. In44

industry, in many cases, the merits of integrating these layers into one45

simulation may not justify the added complexity. However, as Baldea &46

Harjunkoski (2014) or Costandy et al. (2018) point out, the integration of47

scheduling and control is an important area of research. This concerns48

especially processes where time constants of the continuous subsystems are49

so large that time-scale separation errors become relevant. Furthermore,50

advances have been made in data-driven modelling. This may facilitate the51

identification of complex reaction kinetics (Galvanauskas et al. (2018)),52

thereby enabling the inclusion of such detailed effects also in plantwide53

studies. In combination with abundant computation power - for instance54

through cloud solutions - this renders the computation of rigorous hybrid55

(here continuous-discrete) models feasible where it previously may not have56

been. Finally, benchmark models are invaluable as a driver of research57

progress and dissemination. To the best of the authors’ knowledge, a58

rigorous continuous-discrete model of a complex batch process system in an59

academically accessible environment which enables the execution of60

advanced methods is not documented in open literature. (A good example61

for a continuous production plant is the re-implementation of the Tennessee62

Eastman Benchmark Problem by Bathelt et al. (2015)).63

Concluding, there are several reasons which render continuous-discrete64

simulation of batch process systems an important topic of research. This65

article specifically examines MATLAB Simulink’s capabilities for simulating66

complex plantwide batch process systems. It promotes using the67

StateFlow® toolbox (MathWorks (2019b)) in order to graphically program68

state charts (Harel (1987)). The use of StateFlow in modelling hybrid69

systems is not new (Simeonova (2008); Sahbani & Pascal (2000)), but an70

3

Page 6 of 42

Jo
ur

na
l P

re
-p

ro
of

implementation which is comparable in terms of complexity with the71

example plant presented in the article at hand is, to the best of the authors’72

knowledge, not documented in open literature. Creating and maintaining73

complex plantwide models is a challenging task and much focus in the74

following is dedicated to handling this challenge in the MATLAB which,75

unlike the discrete-event simulators listed in the above, has not been76

specifically designed for this. On the other hand, it offers several77

advantages such as flexibility as well as the inclusion of data analysis and78

model building into one environment - which furthermore enables facile79

implementation of advanced methods.80

The article is structured as follows: section 2 gives an overview of81

important classes of dynamic models as well as computational approaches82

of simulating them. This is followed by section 3, which entails a step-wise83

modelling framework. In the course of this, the article specifically discusses84

how to address the structural challenges that arise when modelling complex85

batch process systems in MATLAB/Simulink/StateFlow. Finally, the86

simulation results of an exemplary process are presented in section 4. This87

includes careful visualisation of the simulation results. The eligibility of the88

software environment for these types of simulation studies, implementation89

and computation challenges, and finally future work are discussed in section90

5. Hereafter, the work is concluded.91

2. Computation Approaches to Systems with Hybrid Dynamics92

This section gives an overview of the discrete-event related part of the93

dynamic systems classified in table 1. Here, GDEVS refers to the94

(generalized discrete event specification) framework (Giambiasi & Carmona95

(2006)). In hybrid systems, discrete events occur not only in the form of96

(predictable) timers, but as a consequence of implicit, iterative algorithms97

such as numerical solutions to systems of differential equations. This is98

computationally challenging, and especially in optimisation studies with99

4

Page 7 of 42

Jo
ur

na
l P

re
-p

ro
of

large computational overhead it is thus essential that the modeller finds the100

appropriate level of abstraction.101

2.1. Discrete-Event Systems102

In many instances it may be sufficient to neglect the continuous103

elements which greatly reduces the computational burden. Examples of this104

are discrete-event model based material flow analyses. They fit well the105

ambition to model with a purpose (Daoutidis et al. (2018)): the evolution of106

a tank level between full and empty is not usually essential for optimising a107

plant schedule. As long as the flow itself is predictable enough to know the108

points-in-time of full/empty, there is no information loss if a discrete-event109

model is chosen.110

These models have largely been developed within the operations research111

community and are frequently used in discrete parts manufacturing, traffic112

studies, or supply chain optimisation (Bangsow (2012)). There exist two113

computation paradigms (Law & Kelton (2000)): the next-event time114

advance and the fixed-increment time advance clock update. If occurrence115

of the next event can be predicted in advance, next-event time advance is116

favourable. A fixed-increment time advance algorithm not only takes117

unnecessary steps, it also induces discretization error that scales with the118

fundamental step size unless all events are strictly multiples of the chosen119

sampling rate - this can be somewhat amended by using a variable-step120

solver. Systems for which the clock value of the next event can be121

computed in a straightforward manner are especially systems of timed122

automata (Alur & Dill (1994)) as well as multi-rate timed automata (Alur123

et al. (2000); Geist et al. (2008)). They allow discrete approximations of124

systems comprising mass flows, storage tanks, and time-based operations in125

batch production plants.126

5

Page 8 of 42

Jo
ur

na
l P

re
-p

ro
of

2.1.1. Discrete-Rate Simulation127

Discrete-event models have been developed outside of the process128

systems engineering domain, yet they are applied successfully for problems129

arising within it (Petrides et al. (2014); Amaran et al. (2016)).130

Discrete-rate simulation (DRS), available for instance within the131

ExtendSim® environment, aims at amending some of the shortcomings of132

classical discrete-event models such as the periods of stasis between events.133

To this end, DRS allows states (inventories) to evolve on a continuous134

linear envelope between events. Negligence to do this can, in some cases,135

lead to accruing numerical error (Damiron & Krahl (2014)).136

2.2. Hybrid Systems137

Continuous behaviour is best described by systems of differential138

equations. Analytical solutions to these systems are normally not139

obtainable, thus a time-advance based on a list of next events is not140

possible. The coexistence of continuous and discrete dynamics requires that141

the solver is capable of handling both, and in the following two distinctions142

are drawn which are likely to influence the choice of solver.143

2.2.1. Hybrid Systems with Frequent Discrete Events144

If system dynamics are largely dictated by discrete elements, one can145

try to find local approximations of the continuous system trajectory in such146

a way that they can be handled by a discrete-event solver. This is not147

element of this article, and a large base of literature around the GDEVS148

framework is available (Giambiasi & Carmona (2006); D’Abreu & Wainer149

(2003); Giambiasi et al. (2001)). Furthermore, in the form of PowerDEVS150

(Bergero & Kofman (2011), a Simulink-like process simulator with151

user-friendly graphic implementation features is available. These solvers are152

necessary if discrete events occur at very high frequencies, for instance153

during periods of chattering. Compared to the function evaluations needed154

to describe continuous system behaviour, discrete events occur at low155

6

Page 9 of 42

Jo
ur

na
l P

re
-p

ro
of

frequencies in batch process systems. This frees the modeller from the need156

to pursue such an approach.157

2.2.2. Hybrid Systems w. Infrequent Discrete Events158

Numerical integration is a standard method of chemical engineering to159

solve systems of ordinary differential equations (ODE’s). Also for stiff160

systems, a variety of performant implicit solvers (in the case of MATLAB161

for instance ODE15s, ODE23s) are available. Chemical engineers are162

generally familiar with these methods and skilfully balance numerical error163

with accuracy.164

The question is then how to handle the discrete-event part of the system.165

From a computational perspective, a split system approach is preferable166

(Nutaro et al. (2012); Bouchhima et al. (2007); Clune et al. (2006)). In this167

scheme, continuous and discrete system fractions are calculated168

independently, and synchronisation only occurs when an event is triggered.169

This is attractive both in terms of computational performance as well as170

numerical error control during the numerical integration scheme.171

However, especially in the case of complex systems with many elements,172

links, and transitions, implementation of split models may be cumbersome.173

Thus, one can choose to embed the discrete dynamics into the continuous174

solver regime. A good balance between practicality and performance is175

indicated by using variable step solvers with discrete-event detection. The176

advantages in implementing and maintaining these models may outweigh177

the disadvantages (accuracy, performance) as computation is fairly cheap.178

Software environments capable of this are i.e. gPROMSs®,179

Modelica®/Dymola, or MATLAB/Simulink® (van Beek & Rooda (2000)).180

2.3. Hybrid Systems in MATLAB/Simulink181

The solver capabilities in place, several attributes render182

MATLAB/Simulink attractive from a modellers point of view. Firstly, as183

an environment apt both for data processing and modelling, it manages to184

7

Page 10 of 42

Jo
ur

na
l P

re
-p

ro
of

integrate two tasks which are ordinarily separated if dedicated process185

simulators are chosen. Furthermore, through numerous libraries/toolboxes,186

it allows facile implementation of advanced methods either within Simulink187

flowsheets or in the embedding MATLAB environment.188

However, neither the user interface nor currently available libraries are189

designed for the implementation of complex batch process systems.190

Notably, the SimEvents® (MathWorks (2019a); Gray (2007)) toolbox is191

developed specifically for systems comprising discrete events and allows the192

presence of continuous dynamics (Clune et al. (2006)). However, it is193

optimised for systems consisting of queues and entities, which is not194

practical for the implementation of sequential/parallel hybrid batch process195

systems. This can be inferred from the predefined function blocks within196

the toolbox (entity generators and sinks, queues, servers). While they are197

useful elements of a high-level abstracted discrete-event study, they are not198

convenient within the context of a hybrid simulation that includes199

continuously evolving states. SimEvents expands Simulink by useful200

elements connected to entity-management, which in a process systems201

context is necessary for batch tracking. However, this can also be202

implemented in the StateFlow framework with reasonable effort (shown in203

section 3.2.7).204

3. A Framework for Modelling Batch Process Systems in205

MATLAB/Simulink/StateFlow206

In the following, a stepwise procedure is introduced which separates the207

modelling task into a series of sub-tasks. This is in general anticipated to be208

of great help due to the complexity of the endeavour.209

3.1. Limitations of Continuously Solved Flow Charts210

In the chosen simulation approach, state charts have to be solved under a211

continuous regime, which in MATLAB R2019b has the following implications:212

8

Page 11 of 42

Jo
ur

na
l P

re
-p

ro
of

� Library-links are disabled.213

� No state transitions through event-broadcasting.214

� Outputs cannot be written during state activity.215

Furthermore, the absence of model libraries renders implementation tedious216

and therefore error-prone. Event-broadcasting within a flowchart is217

convenient in synchronising resources and callers (both of which there can218

be multiple). However, dynamic updates of outputs (for instance set points219

for manipulated variables) during state execution can usually be emulated220

on root flowsheet level. Note also that, if the chart was a pure timed221

automaton (all next future events are predictable at current event), it could222

still be executed in event-based manner also within a continuously solved223

flowsheet.224

3.2. Stepwise Model-Building Procedure225

In the following, the most important aspects of the model building226

procedure in Simulink and StateFlow are elaborated. They are concisely227

presented in figure 1, and each step is explicated in a dedicated sub-section.228

It is not strictly necessary to follow this sequence, but there is a rather229

natural order to it. In the proposed approach, a model has two layers: the230

batch control system (a StateFlow state chart) and a physical process231

counterpart. The latter is normally a system of differential-algebraic232

equations, modelled using integrators or S-functions on root flowsheet level.233

This is conceptually visualised in figure 2. The state chart layout is234

representative of a StateFlow implementation.235

3.2.1. Step 1 - Model Configuration Parameters236

Aside from general solver properties (tolerances, algorithm, etc.), the237

number of batches to be processed during a campaign is best specified in238

advance. A sufficiently long simulation horizon to process all batches should239

9

Page 12 of 42

Jo
ur

na
l P

re
-p

ro
of

be chosen; the simulation can be terminated prematurely when the last240

batch has been processed on the most-downstream units (and all machines241

have returned to idle state after finishing the last re-initialisation).242

Simulating over such large time horizons may require controlling major243

integration step size as the default step size is large if left on automatic244

selection. In general, despite of the use of StateFlow under a continuous245

solver regime, cases are experienced where events are not properly detected246

if input values change rapidly compared to step size. This will usually be247

identifiable by implementing a series of simulation integrity checks (section248

3.4). Therefore, adjusting model configuration parameters (step 1) is249

iterative by nature. This is especially so if no units with inherent step size250

requirements are installed (for instance pulse- or sine sources). Choosing251

the second-largest step size (by order of decimal place) which leads to exact252

solutions has shown to be a robust approach with good computational253

performance. The fact that numerical error in the discrete-event system254

part may occur is undesirable and the modeller needs to be alert.255

3.2.2. Step 2 - Define Structure of Process System256

Liquid or gaseous material must at all times be contained in a tank or257

an equivalent storage unit. Hold-ups of flow processing units (centrifuges,258

filters, etc.) are likely negligible. Systems can however be modelled to such259

a high degree of fidelity if that is required. In the case of solids that can be260

stored more flexibly, the requirement for a containing unit is relaxed. It is no261

problem to extend the model by storages with room for more than one (solid)262

batch, but this has not been implemented in this example. In the same way,263

it is not a problem to combine batches in one tank or split a batch in two. It is264

intuitive to choose a distributed modelling approach for the continuous part265

of the system. Each physical entity that stores material (buffer tanks, unit266

operations, etc.) is represented by an integrator or S-function. A second class267

of physical units are those that predominantly process material downstream268

(or recycle it) - continuously operating units. These can often be understood269

10

Page 13 of 42

Jo
ur

na
l P

re
-p

ro
of

as resources needed by the tank units, which also require a free recipient270

tank before material can be sent downstream. Flow processing units can be271

modelled using arbitrary (for instance algebraic) function blocks. Naturally,272

also a complex dynamic model - embedded within for example an S-function273

- can be implemented.274

3.2.3. Step 3 - Batch Control System275

Deciding whether or not to decompose the batch control system into276

separate StateFlow state charts is less straightforward. Separate state277

charts are generally more intuitive to understand as they comply well with278

the concept of recipe-driven unit procedures. As the continuous solver279

regime forbids the use of library functions within the state chart280

environment, this furthermore allows mimicking object-oriented281

programming: local variable names can be re-used within separate state282

charts, which can therefore be copied easily. On the other hand, a283

separation leads to more complex signal routing on root flowsheet level:284

each time a variable is passed between charts, this requires that a link285

(graphic or virtual) is drawn. Finally, the decomposition into multiple286

charts led to stability issues in MATLAB R2019b and previous versions.287

These issues can be circumvented by choosing a fixed-step solver, which is288

however undesirable due to performance and accuracy set-backs (section 2).289

A centralised implementation (one superordinate flow chart) requires that290

the embedding chart is solved under parallel (AND) decomposition. It291

contains an embedded sub-chart for each unit and storage tank present in292

the system. These are all executed at the same time and initialised as Idle.293

They represent the actual machines which can only ever be in one state and294

must themselves be solved under exclusive (OR) decomposition.295

Virtual units: it is possible to model resources within the control system296

that have no representation in the actual flowsheet. This might be297

convenient if they have no inherent dynamics and there is no interrelation298

with the process other than an effect on the schedule. Examples of this are299

11

Page 14 of 42

Jo
ur

na
l P

re
-p

ro
of

cleaning-in-place stations or operators.300

3.2.4. Step 4 - Interface: Batch Control System - Process301

As indicated in figure 1, the layout of this interface is closely302

interrelated with the two consecutive steps (resource handling & material303

routing). Firstly, the interface needs to contain ports which allow passing304

measurements from the process to the control system. In a scenario limited305

to mass flows, this specifically concerns tank volumes/levels, but it is easy306

to extrapolate to temperatures, pH, or any variable obtained from a direct307

or inferential measurement. Secondly, the bi-directional interface needs to308

be able to pass command signals from the batch control system to the309

physical process. From a simulation perspective, these signals can be310

directly passed to the units. Yet, if the modeller chooses to do so, it is easy311

to implement a regulatory control layer in-between. This also enables the312

introduction of implementation errors in the control loop (useful for313

diagnostic studies), and extends the model by dynamics from feedback314

components in the lower layer. In practical terms, the interface depends on315

the structure of inputs and outputs of state chart and (unit operation)316

sub-systems. As a centralised state chart implies that numerous variables317

are passed on, these should conform to an intuitive and consistent318

nomenclature and array sequence (channel 1 - inflow, channel 2 - outflow,319

...).320

Beyond the signals on unit operation level, the control system needs to be321

able to implement resource handling / material routing on flowsheet level.322

Therefore, a further variable which essentially emulates valve positions in323

the piping system is necessary.324

3.2.5. Step 5 - Resource Handling in Control System325

If a plant layout is fixed (each upstream tank feeds via a standard unit326

to a fixed downstream tank), an implementations in StateFlow is trivial327

and this step is reduced to checking whether the statically assigned units328

12

Page 15 of 42

Jo
ur

na
l P

re
-p

ro
of

are Idle. However, in modelling flexible batch plants, resource handling is329

one of the key challenges. It is exacerbated by the limitation that state330

charts cannot broadcast events under a continuous solver regime (section331

3.1). This precludes the immediate transition of a resource unit from Idle332

to Busy upon being claimed by an caller.333

A workaround is possible as all sub-charts within a superordinate chart can334

write to- and read from the local state chart workspace. Note that, also as335

a consequence of continuous solving, library functions are disabled, and the336

list of variables can quickly grow very long. Therefore, thoughtful and337

consistent naming of variables is essential.338

Resource handling firstly entails the check for a free process path (often339

both, a processing unit and a recipient tank). The check has to cover all340

related downstream units; introducing a dedicated state for each path341

(state toTank1viaUnit2, ...) allows choosing preferred recipient units by342

assigning an order to the state transitions. The moment an upstream unit343

starts sending material downstream, processing resource and recipient tank344

must no longer be called from a further upstream unit. This is best345

controlled by the origin tank, and here the state chart workspace comes346

into play. As events cannot be broadcast to the resources (causing them to347

leave Idle), a setter variable in the shared workspace accounts for the348

utilisation state of the unit. The upstream caller immediately assigns this349

variable a new value when a resource is called. It should now be evident350

that upstream units check the state of this variable to find a feasible path.351

As resources might be busy in a procedure which is not linked to an352

upstream caller (re-initialisation, cleaning, maintenance), a check for Idle is353

still necessary. Each resource can reset the setter variable once the354

procedure is complete and the link to the caller broken.355

3.2.6. Step 6 - Material Routing on Flowsheet level356

It is crucial that the flow of each unit is specified only by one control357

system caller. Furthermore, every outflow must eventually turn into the358

13

Page 16 of 42

Jo
ur

na
l P

re
-p

ro
of

inflow to another storage unit. In the case of systems of multiple sources359

and destinations, coordination of these mass flows is necessary. The most360

intuitive way to solve this is by using Simulink selector blocks which contain361

the necessary functionality: only one input can be passed through at a time362

(indicated by bold lines in figure. Beyond this, only inflows from external363

sources are allowed in downstream tanks. (Unlike in Modelica, in Simulink364

the modeller is not forced to model connectors in a way that promotes mass365

balance consistency.) The flow resource is the counterpart to a connector,366

and in this way, the material balance throughout the plant is closed.367

The setter variable connected to a resource (introduced in the previous368

section) is helpful in the material routing problem: it is efficient to use it369

not only to hold (Idle/Busy) information, but to contain the ID of the370

upstream caller. If callers are enumerated regularly, these ordinals can be371

used to control the path through the selector blocks. If no caller is372

specified, the variable is to hold zero. This index is chosen as the default373

feed-through of the selector blocks - if this signal is also zero, it does not374

affect the mass balance. (Disabling sub-systems of tanks and other375

resources during inactivity creates redundancy.)376

3.2.7. Step 7 - Implement Batch Tracking System377

The functionality to track batches through the system is not required378

in order to be able to execute the simulation. However, it is important in379

posterior validation as well as evaluation of a simulation study. A batch380

ID can be created either in the queue or in the most-upstream unit, in the381

simplest case it counts up incrementally, which is easy in StateFlow and382

only requires a further local variable. As a receiver knows by which unit383

it was called, it can take over the batch ID from upstream units. If there384

is a dedicated state in each unit for each caller-resource / sender-resource385

combination (section 3.2.5), this is implementable with ease.386

Not only the batch number is required to keep track of all statistics, the387

machine states (Filling, Waiting for ..., ...) need to be logged as well. Also388

14

Page 17 of 42

Jo
ur

na
l P

re
-p

ro
of

here, consistent naming is crucial to render the system as understandable as389

possible. In this work, machine steps have been classified according to the390

following keys:391

� 0 idle392

� 1,2,3,... standard operations (nominal processing)393

� 100,200,300,... waiting for resources / recipients during processing394

� -1 re-initialisation395

� -10 CIP called396

� -11 CIP in progress397

During nominal operation, the first cypher counts up continuously: an398

exemplary sequence reads 1, 2, 300, 4, 500, 6,−1 for a unit with four399

operations (1, 2, 4, 6), two waiting steps (300, 500), and a re-initialisation400

step (−1). There is no standard number associated with a certain type of401

step (filling/emptying), and it is entirely up to the modeller to find an402

appropriate enumeration. Similarly, the assignment of negative values for403

re-initialisations and CIPs is arbitrary. Here it is chosen such that it404

facilitates selective plotting/colouring schemes.405

3.3. Re-initialisation vs. Cleaning-In-Place (CIP)406

With the above, the basics for putting together a functional batch407

process system in Simulink using StateFlow state charts are in place.408

However, several functionalities necessary for realistic modelling have not409

yet been introduced. These are i.e. equipment re-initialisations and CIPs.410

The distinction is drawn as CIPs or sterilisation-in-place (SIPs) are411

understood as plantwide issues which require coordination with other units412

and a CIP system (resource), whereas unit operation re-initialisations are413

local. Inclusion of a virtual CIP station (free/busy) in the batch control414

15

Page 18 of 42

Jo
ur

na
l P

re
-p

ro
of

system is sufficient, naturally a physical entity can be implemented on root415

flowsheet level if this is desirable. Either process may require operator416

attendance (resource); the operator model (busy/free/activity) can be417

implemented in the same way as a virtual CIP station. A re-initialisation or418

CIP may be called after each batch, after a certain time, after a certain419

number of batches, after a certain event-occurrence on a batch, or after a420

transient variable for some unit operation (for instance fouling) crosses a421

threshold.422

3.4. Validation423

As indicated by Tiwari (2002), especially for large systems with complex424

input patterns it is a challenging task to verify whether a state machine425

reacts to arbitrary input patterns in the desired way. To this end, formal426

verification methods exist that are not element of this work. However,427

validation of complex batch campaigns is an issue that needs to be428

addressed. The identification of faulty sequences on a unit operation is not429

a problem, as visual verification for several scenarios can, with relatively430

high certainty, confirm that the sequence is implemented properly.431

(Furthermore, implementing sequences on unit operation level is relatively432

straightforward.)433

Resource handling and material routing are substantially more error-prone.434

It would greatly upset the fidelity of a simulation if a batch could be lost or435

created ’out of nowhere’ in the middle of the downstream line. (Or, in the436

worst case, both - which renders detection difficult.) Keeping track of the437

total number of processed batches allows to deduce whether simulation438

integrity is maintained or not. Visual or automatic checking of cycle times439

and volume profiles under different solver options gives the modeller a quick440

feeling for both implementation and numerical issues.441

16

Page 19 of 42

Jo
ur

na
l P

re
-p

ro
of

4. Implementation of an Example Plant442

In the following, the implementation of a reference batch process system443

is presented. It is inspired by the industrial case study documented in444

Bähner & Huusom (2019). Beyond modelling, focus is put on posterior445

graphic evaluation to give the reader an intuitive understanding of the type446

of process which has been simulated. In terms of operational complexity447

(i.e. dynamic selection of units and cleaning operations) the model does not448

stand back from batch or hybrid processes documented in open literature449

(Montes et al. (2018); Alshekhli et al. (2010); Monroy & Vallejo (2013);450

Sharda & Bury (2010); Toumi et al. (2010); Noguera & Watson (2004).451

The generic example line is fed by two fermenters; before each set of unit452

operations, two holding tank are installed. Some process steps contain453

parallel machines, others only one. A schematic overview is given in figure454

3.455

4.1. Model Specifications456

A description of the operational procedures in terms of constraints and457

rates is given in table 2. A simple campaign is visualised in Gantt chart458

notation in figure 4. Here, a campaign of four batches (colour-code) is459

shown. Scaled volumes and flow profiles are plotted for the sake of460

understandability. A re-initialisation occurs when a unit is still coloured461

due to attribution to a batch while no flows are processed (units U21/22,462

U31/32, and U4). Flows on units U31/32 are chosen to alternate frequently463

to show the possibility. Rapid changes in flow rates may require step size464

control (section 3.2.1) due to numerical error.465

Cycle times on the machines are designed such that, normalised for the466

number of available units, all process steps take 15 hours per batch. That is467

with one exception: due to the irregular re-initialisation schedule on unit 4468

(after every second batch), there is minor theoretical overcapacity. This469

stems from the instances in which the machine is idle while no470

17

Page 20 of 42

Jo
ur

na
l P

re
-p

ro
of

re-initialisation occurs, as the timeslot needs to be reserved if a fixed471

schedule is to be implemented.472

4.1.1. Example CIP Procedure473

To study complex schedules arising from cleaning-in-place events, the474

model is extended by CIP routines. This firstly requires the introduction of475

a CIP station in the batch control system (here reduced to a virtual476

resource, section 3.2.3). CIP stations are often shared between production477

lines and may block more than one machine at a time, for instance when a478

tank is needed in order to CIP a unit. Therefore, all machines that are479

subject to a CIP need to be extended by the related states, these are i.e.480

CIP called and CIP in progress.481

The scenario is designed such that a CIP covers units 21/22 up to tanks482

41/42, as indicated in figure 3. It is called every 8.75 days, thus fitting483

exactly into the schedule. It follows a rigid procedure which can be seen in484

figure 5. In the standard CIP sequence, firstly unit 21 and tank 31 are485

cleaned congruently. Upon completion, unit 31 and tank 41 are blocked to486

enable a consecutive CIP (grey bar). Once unit 22 and tank 32 have487

processed the last batch, they proceed to active CIP. Blocking the488

downstream units from further processing guarantees a coherent CIP489

barrier between the pre- and post-CIP batches. When the CIP on unit 22490

and tank 32 is completed, unit 31 and tank 41 can proceed to active CIP,491

and as in the above, unit 32 and tank 42 are blocked from processing a492

batch to prevent cross-contamination until they are cleaned in the final CIP493

routine. Each cleaning of a unit/tank group lasts exactly 15 hours - the494

constraining cycle time in the system.495

A second procedure follows a different pattern: after cleaning U21/T31,496

U31/T41 are subjected to a CIP. Consecutively U22/T32, and finally497

U32/T42 are cleaned. This is shown in figure 6, and visual assessment498

reveals that less waiting is experienced in this scenario.499

18

Page 21 of 42

Jo
ur

na
l P

re
-p

ro
of

4.1.2. Effect of CIPs on Equipment Efficiencies500

It can be seen that the first introduced CIP procedure in figure 5 leads501

to a significant amount of blockage due to units being taken out of502

operation in anticipation of a CIP. As the CIP duration is designed such503

that it actually fits into the schedule, this is suboptimal and leads to long504

cycle times induced by the step waiting for CIP (step -10), visualised in505

figure 7-a. Cycle times of the second (improved) procedure are presented in506

figure 7-b. They lie notably below those in the previous CIP design and507

lead to a 5.4% capacity increase.508

The schedule indicated in figure 6 (dashed rectangle) exhibits an interesting509

property, namely the coincidental starting and finishing of the filling510

procedure in tanks 41/42. In the designed case it does not matter in which511

order the tanks are processed on unit 4, as it leads to equal waiting periods.512

It is however a good example of complex scheduling decisions which are not513

trivial to make without support through technological tools, as it would514

require the proper course of action if capacities were leveraged.515

4.2. Behaviour Under Stochastic Uncertainty516

Randomised waiting can easily be added in within the control system by

introducing a random timer. This is representative of manual control, as

operators may react delayed. Beyond that, the physical system on Simulink

flowsheet level can easily be extended by random effects. As a simple

example, in the following the flow rates on U21/U22 unit are subjected to

Gaussian noise (flow rate values are kept constant during a cycle). To this

end, the inlet flow rate of 1.5m3/h is superposed a random term ∆F,i with

var (∆F,U21) = 0.05 (1)

var (∆F,U21) = 0.075 (2)

As equipment capacities in the process are relatively even, system517

performance does not benefit from short cycles, but prolongations518

19

Page 22 of 42

Jo
ur

na
l P

re
-p

ro
of

propagate up- and downstream. An overview of the affected step durations519

on tanks 21/22 is shown in figure 8, and it becomes evident that variability520

is not only experienced in the affected material transfer step, but also521

periods of idle time are experienced due to short cycles and upstream522

delays. The according cycle times are shown in figure 9.523

4.3. Computational Performance524

Due to the great number of additional function evaluations under a525

continuous solver regime - compared to a pure discrete-event system -526

performance differences are present. The overall computation workload is527

strongly linked to the differential equation solver, the nature of the528

continuous system, and the allowed for error tolerances. A rigorous hybrid529

simulation of a campaign of several batches may thus result in substantial530

execution times and should be kept in mind.531

In the example simulation, the system is reduced to piecewise linear mass532

balances between time- and state discrete events. The system is solved with533

ODE15s on an Intel® Core� i5-5300U CPU which is rated at 2.3 GHz.534

Execution time scales linearly with the number of batches in a campaign535

and the Simulink flowsheet for a duration of 500 batches executes in less536

than 25 seconds.537

In this calculation, a maximum step size of 0.1 - which in the given system538

corresponds to hours - and the standard absolute and relative ODE15 error539

tolerances are chosen. The maximum step size does not equate incurred540

error on event detection; the identification of these events is accurate and in541

the case of intrinsic timers exact. However, if this tolerance is left542

unchecked, the solver tends to miss chains of events entirely as the linearity543

of the continuous system may trigger excessively large integration step544

sizes. These can result in missed zero-crossings of the event detection545

system. Increasing maximum step size to 1 (hour) reduces the execution546

time to under 20 seconds; all events are still identified properly.547

Performance after the inclusion of complex continuous dynamics remains to548

20

Page 23 of 42

Jo
ur

na
l P

re
-p

ro
of

be investigated, but at least it is indicated that the execution of the549

discrete part of the system can be included in the holistic modelling550

approach without inhibiting performance drastically.551

5. Discussion552

It can be concluded that the MATLAB/Simulink/StateFlow553

environment is apt for modelling and simulating batch process systems.554

This is expected, not least due to the fact that it has been used for555

applications of this kind before. However, the implementation which has556

been presented in the article at hand surpasses them in complexity, and557

guidelines have been introduced which aid in structuring a complex model558

building process. Overall, there are only few environments which can559

handle true continuous-discrete models, especially when it comes to systems560

with numerous elements and complex sequential procedures (such as batch561

process plants).562

The Simulink/StateFlow environment allows facile study of the interplay563

between continuous and discrete systems. An exemplary phenomenon of564

interest would be the effect of proportional-integral controller tuning on565

time-scale separation error. Another example would be the quantification of566

the gains from being able to terminate a fermentation subject to biological567

variability based on process analytical technology rather than a fixed568

schedule. In general, if dynamic phenomena connected to product quality569

or yield are in need of quantification, this calls for an environment which570

can handle continuous system elements (Costandy et al. (2018)). While the571

models in Simulink/StateFlow are not accessible to mixed-integer solvers,572

black-box optimisation algorithms can be tried. Furthermore, the models573

can be used for the sake of validating an abstracted optimisation model574

(Vieira et al. (2019)).575

The proposed framework allows the generation of hybrid data sets based on576

mechanistic models which resemble those of real production sites to a very577

21

Page 24 of 42

Jo
ur

na
l P

re
-p

ro
of

high degree. Here, the Simulink flowsheet environment gives the modeller578

intuitive control of the inputs and thus the occurring effects. The modelled579

behaviour can exceed mere random uncertainties, which is expectedly an580

Achilles’ heel of many machine learning algorithms. Therefore, this581

framework might be seen as a first steps toward creating a sandbox582

environment for facile testing and validation of data-driven algorithms583

before they are tried in real production environments. (Here, typically a584

large number of unknowns and uncertainties are beyond the analyst’s585

control). The value of accepted benchmark models such as the Tennessee586

Eastman Proces (Downs & Vogel (1993)), or the Benchmark simulation587

model no 2 (Jeppsson et al. (2007)) in disseminating maturity and aptitude588

of technologies between academic but also industrial researchers has been589

pointed out many times (see for instance Huusom (2015); Downs (2012)).590

Unfortunately, numerical accuracy of the simulations needs to be asserted591

through integrity checks which are likely to require some manual592

evaluation. On the other hand, despite of Simulink’s well understood593

capabilities for solving continuous systems (Klee & Allen (2016)), it is not594

unusual that simulation accuracy and performance are balanced by means595

of iterative tuning. Therefore, this should not be considered a disadvantage596

compared to other software environments. Simulation studies of campaigns597

consisting of several batches are likely to require lengthy computation,598

therefore this approach is not apt for real-time hard tasks.599

While the chosen environment allows modelling batch process systems of600

some complexity, limitations arise which one needs to be aware of.601

Generally, it is not advisable to model complex602

� Multi-purpose plants (plants without a fixed topology)603

� Multi-product plants with severely different recipes (differing not only604

in parameter values, but recipe sequences)605

To some extent, this is a consequence of the restriction which arise in606

22

Page 25 of 42

Jo
ur

na
l P

re
-p

ro
of

continuously solved state charts (such as limitations in object-oriented607

modelling practice and event broadcasting). Therefore, the model-building608

process is likely too tedious and a recipe-based discrete-event simulator is a609

much more appropriate environment. Not least, it is unlikely that detailed610

reaction kinetics and unit operation models for a wide variety of products611

are available.612

On the other hand, for plants with fixed layouts and moderate product613

diversity (or dedicated to one product) it is possible to build models in a614

straightforward, graphically supported way. Here, the benefits of the615

integrated MATLAB environment (data pre-analysis and parameter616

identification, modelling & simulation, posterior data analysis and617

optimisation) can be exploited - while offering facile inclusion and study of618

continuous effects. Furthermore, simple manual scheduling studies619

(Georgiadis et al. (2019)) which are ordinarily conducted in discrete-event620

simulators can be executed effectively. MATLAB could be assessed with621

respect to its abilities for pure discrete-event system studies of complex622

batch process systems. While the modelling effort is still going to exceed623

that in simulators dedicated to the cause, recipes can be implemented in a624

straightforward way using StateFlow, especially as the limitations from625

section 3.1 are mediated if a pure discrete-event solver is chosen.626

Furthermore, the SimEvents® toolbox offers (strongly abstracted) standard627

blocks which might be useful for such models. MATLAB’s integrated628

functionalities and widespread availability (i.e. due to its academic629

licensing scheme) would enable effective method development, for instance630

related to automatic derivation or validation of discrete-event models based631

on batch process data.632

6. Conclusion633

In this work, applied guidelines have been presented that support634

constructing sequential/parallel hybrid batch process system models in635

23

Page 26 of 42

Jo
ur

na
l P

re
-p

ro
of

MATLAB. An example plant has been simulated, and the capabilities for636

posterior data visualisation and analysis have been shown. Model-building637

in MATLAB entails some challenges which arise on the one hand from the638

lack of standardised functionalities, and secondly from several limitations in639

StateFlow as a consequence of a continuous solver regime. These difficulties640

render the environment unattractive for industrial applicants who need641

quickly-implementable solutions. Furthermore, it is inapt for systems with642

high combinatorial complexity; still, it is shown that the simulation643

environment allows the creation of holistic, non-linear, continuous-discrete644

plantwide models of reasonably complex systems. Data sets can be645

generated which closely resemble those of real batch process systems - with646

full and intuitive control of the modelled phenomena and especially647

disturbances. In the future, an implementation of a batch process system648

benchmark model in MATLAB would enable easy access throughout the649

academic community as well as facile testing and development of new650

methods.651

Acknowledgements652

The authors would like to acknowledge the Technical University of653

Denmark (DTU) and BIOPRO2. The project received financial support654

from Innovation Fund Denmark through the BIOPRO2 strategic research655

center (Grant number 4105-00020B).656

References657

Alshekhli, O., Foo, D. C., Hii, C. L., & Law, C. L. (2010). Process simulation658

and debottlenecking for an industrial cocoa manufacturing process. Food659

and Bioproducts Processing , 89 , 528–536. URL: http://dx.doi.org/10.660

1016/j.fbp.2010.09.013. doi:10.1016/j.fbp.2010.09.013.661

24

http://dx.doi.org/10.1016/j.fbp.2010.09.013
http://dx.doi.org/10.1016/j.fbp.2010.09.013
http://dx.doi.org/10.1016/j.fbp.2010.09.013
http://dx.doi.org/10.1016/j.fbp.2010.09.013

Page 27 of 42

Jo
ur

na
l P

re
-p

ro
of

Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical662

Computer Science, 126 , 183–235. doi:10.1016/0304-3975(94)90010-8.663

Alur, R., Henzinger, T. A., Lafferriere, G., & Pappas, G. J. (2000). Discrete664

abstractions of hybrid systems. Proceedings of the IEEE , 88 , 971–984.665

doi:10.1109/5.871304.666

Amaran, S., Sharda, B., & Bury, S. J. (2016). Targeted Incremental667

Debottlenecking of Batch Process Plants. In T. M. K. . Roeder, P. I. .668

Frazier, R. Szechtman, T. . Huschka E. Zhou, & S. E. Chick (Eds.),669

Proceedings of the 2016 Winter Simulation Conference (pp. 2924– 2934).670

Bähner, F. D., & Huusom, J. K. (2019). A Debottlenecking Study of671

an Industrial Pharmaceutical Batch Plant. Industrial & Engineering672

Chemistry Research, 58 , 20003–20013.673

Baldea, M., & Harjunkoski, I. (2014). Integrated production scheduling674

and process control: A systematic review. Computers and Chemical675

Engineering , 71 , 377–390. URL: http://dx.doi.org/10.1016/j.676

compchemeng.2014.09.002. doi:10.1016/j.compchemeng.2014.09.002.677

Bangsow, S. (2012). Use Cases of Discrete Event Simulation. doi:10.1007/678

978-3-642-28777-0.679

Bathelt, A., Ricker, N. L., & Jelali, M. (2015). Revision of the Tennessee680

eastman process model. IFAC-PapersOnLine, 28 , 309–314. URL: http://681

dx.doi.org/10.1016/j.ifacol.2015.08.199. doi:10.1016/j.ifacol.682

2015.08.199.683

van Beek, D., & Rooda, J. (2000). Languages and applications in hybrid684

modelling and simulation: Positioning of Chi. Control Engineering685

Practice, 8 , 81–91. doi:10.1016/s0967-0661(99)00137-9.686

25

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/5.871304
http://dx.doi.org/10.1016/j.compchemeng.2014.09.002
http://dx.doi.org/10.1016/j.compchemeng.2014.09.002
http://dx.doi.org/10.1016/j.compchemeng.2014.09.002
http://dx.doi.org/10.1016/j.compchemeng.2014.09.002
http://dx.doi.org/10.1007/978-3-642-28777-0
http://dx.doi.org/10.1007/978-3-642-28777-0
http://dx.doi.org/10.1007/978-3-642-28777-0
http://dx.doi.org/10.1016/j.ifacol.2015.08.199
http://dx.doi.org/10.1016/j.ifacol.2015.08.199
http://dx.doi.org/10.1016/j.ifacol.2015.08.199
http://dx.doi.org/10.1016/j.ifacol.2015.08.199
http://dx.doi.org/10.1016/j.ifacol.2015.08.199
http://dx.doi.org/10.1016/j.ifacol.2015.08.199
http://dx.doi.org/10.1016/s0967-0661(99)00137-9

Page 28 of 42

Jo
ur

na
l P

re
-p

ro
of

Bergero, F., & Kofman, E. (2011). PowerDEVS: A tool for hybrid system687

modeling and real-time simulation. Simulation, 87 , 113–132. doi:10.1177/688

0037549710368029.689

Bouchhima, F., Brière, M., Nicolescu, G., Abid, M., & Aboulhamid,690

E. M. (2007). A SystemC/Simulink co-simulation framework for691

continuous/discrete-events simulation. In BMAS 2006 - Proceedings of the692

2006 IEEE International Behavioral Modeling and Simulation Workshop.693

doi:10.1109/BMAS.2006.283461.694

Clune, M. I., Mosterman, P. J., & Cassandras, C. G. (2006). Discrete Event695

and Hybrid System Simulation with SimEvents. In Proceedings of the 8th696

International Workshop on Discrete Event Systems (pp. 386–387). doi:10.697

1109/wodes.2006.382398.698

Costandy, J. G., Edgar, T. F., & Baldea, M. (2018). A scheduling699

perspective on the monetary value of improving process control. Computers700

and Chemical Engineering , 112 , 121–131. URL: https://doi.org/10.701

1016/j.compchemeng.2018.01.019. doi:10.1016/j.compchemeng.2018.702

01.019.703

Croughan, M. S., Konstantinov, K. B., & Cooney, C. (2015). The future704

of industrial bioprocessing: Batch or continuous? Biotechnology and705

Bioengineering , 112 , 648–651. doi:10.1002/bit.25529.706

D’Abreu, M., & Wainer, G. (2003). Models for continuous and hybrid system707

simulation. In Proceedings of the 2003 Winter Simulation Conference. New708

Orleans, LA, USA: IEEE. doi:10.1109/wsc.2003.1261479.709

Damiron, C., & Krahl, D. (2014). A Global Approach for Discrete-Rate710

Simulation. In Winter Simulation Conference (pp. 2600–2608). doi:10.711

1016/j.copbio.2004.09.001.712

26

http://dx.doi.org/10.1177/0037549710368029
http://dx.doi.org/10.1177/0037549710368029
http://dx.doi.org/10.1177/0037549710368029
http://dx.doi.org/10.1109/BMAS.2006.283461
http://dx.doi.org/10.1109/wodes.2006.382398
http://dx.doi.org/10.1109/wodes.2006.382398
http://dx.doi.org/10.1109/wodes.2006.382398
https://doi.org/10.1016/j.compchemeng.2018.01.019
https://doi.org/10.1016/j.compchemeng.2018.01.019
https://doi.org/10.1016/j.compchemeng.2018.01.019
http://dx.doi.org/10.1016/j.compchemeng.2018.01.019
http://dx.doi.org/10.1016/j.compchemeng.2018.01.019
http://dx.doi.org/10.1016/j.compchemeng.2018.01.019
http://dx.doi.org/10.1002/bit.25529
http://dx.doi.org/10.1109/wsc.2003.1261479
http://dx.doi.org/10.1016/j.copbio.2004.09.001
http://dx.doi.org/10.1016/j.copbio.2004.09.001
http://dx.doi.org/10.1016/j.copbio.2004.09.001

Page 29 of 42

Jo
ur

na
l P

re
-p

ro
of

Daoutidis, P., Lee, J. H., Harjunkoski, I., Skogestad, S., Baldea, M., &713

Georgakis, C. (2018). Integrating operations and control: A perspective714

and roadmap for future research. Computers and Chemical Engineering ,715

115 , 179–184. URL: https://doi.org/10.1016/j.compchemeng.2018.716

04.011. doi:10.1016/j.compchemeng.2018.04.011.717

Downs, J. J. (2012). Industrial Perspective on Plantwide Control. In718

G. P. Rangaiah (Ed.), Plantwide Control: Recent Developments and719

Applications . doi:10.1002/9781119968962.ch2.720

Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process721

control problem. Computers and Chemical Engineering , 17 , 245–255.722

doi:10.1016/0098-1354(93)80018-I. arXiv:1722.723

Edgar, T. F. (2004). Control and operations: When does controllability724

equal profitability? Computers and Chemical Engineering , 29 , 41–49.725

doi:10.1016/j.compchemeng.2004.07.013.726

Fernández, I., Renedo, C. J., Pérez, S. F., Ortiz, A., & Mañana, M. (2012).727

A review: Energy recovery in batch processes. Renewable and Sustainable728

Energy Reviews , 16 , 2260–2277. doi:10.1016/j.rser.2012.01.017.729

Foo, D. C., & Elyas, R. (2017). Introduction to Process Simulation.730

Elsevier Inc. URL: http://dx.doi.org/10.1016/B978-0-12-803782-9.731

00001-7. doi:10.1016/B978-0-12-803782-9.00001-7.732

Galvanauskas, V., Simutis, R., & Lübbert, A. (2018). Hybrid modeling of733

biochemical processes. In J. Glassey, & M. von Stosch (Eds.), Hybrid734

Modeling in Process Industries chapter 5. (1st ed.).735

Geist, S., Gromov, D., & Raisch, J. (2008). Timed discrete event control736

of parallel production lines with continuous outputs. Discrete Event737

Dynamic Systems: Theory and Applications , 18 , 241–262. doi:10.1007/738

s10626-007-0023-2.739

27

https://doi.org/10.1016/j.compchemeng.2018.04.011
https://doi.org/10.1016/j.compchemeng.2018.04.011
https://doi.org/10.1016/j.compchemeng.2018.04.011
http://dx.doi.org/10.1016/j.compchemeng.2018.04.011
http://dx.doi.org/10.1002/9781119968962.ch2
http://dx.doi.org/10.1016/0098-1354(93)80018-I
http://arxiv.org/abs/1722
http://dx.doi.org/10.1016/j.compchemeng.2004.07.013
http://dx.doi.org/10.1016/j.rser.2012.01.017
http://dx.doi.org/10.1016/B978-0-12-803782-9.00001-7
http://dx.doi.org/10.1016/B978-0-12-803782-9.00001-7
http://dx.doi.org/10.1016/B978-0-12-803782-9.00001-7
http://dx.doi.org/10.1016/B978-0-12-803782-9.00001-7
http://dx.doi.org/10.1007/s10626-007-0023-2
http://dx.doi.org/10.1007/s10626-007-0023-2
http://dx.doi.org/10.1007/s10626-007-0023-2

Page 30 of 42

Jo
ur

na
l P

re
-p

ro
of

Georgiadis, G. P., Elekidis, A. P., & Georgiadis, M. C. (2019). Optimization-740

Based Scheduling for the Process Industries : From Theory to Real-Life.741

Processes , 7 , 438.742

Giambiasi, N., & Carmona, J. C. (2006). Generalized discrete event743

abstraction of continuous systems: GDEVS formalism. Simulation744

Modelling Practice and Theory , 14 , 47–70. doi:10.1016/j.simpat.2005.745

02.009.746

Giambiasi, N., Escude, B., & Ghosh, S. (2001). GDEVS: A generalized747

discrete event specification for accurate modeling of dynamic systems. In748

Proceedings - 5th International Symposium on Autonomous Decentralized749

Systems, ISADS 2001 . doi:10.1109/ISADS.2001.917452.750

Gray, M. A. (2007). Discrete Event Simulation: A Review of SimEvents.751

Computing in Science and Engineering , 9 , 62 – 66. doi:10.1109/MCSE.752

2007.112.753

Harel, D. (1987). Statecharts: a visual formalism for complex systems.754

Science of Computer Programming , 8 , 231 – 274. doi:10.1016/755

0167-6423(87)90035-9.756

Huusom, J. K. (2015). Challenges and opportunities in integration of design757

and control. Computers & Chemical Engineering , 81 , 138–146. doi:10.758

1016/j.compchemeng.2015.03.019.759

Jeppsson, U., Pons, M. N., Nopens, I., Alex, J., Copp, J. B., Gernaey,760

K. V., Rosen, C., Steyer, J. P., & Vanrolleghem, P. A. (2007). Benchmark761

simulation model no 2: General protocol and exploratory case studies.762

Water Science and Technology , 56 , 67–78. doi:10.2166/wst.2007.604.763

Klee, H., & Allen, R. (2016). Simulation of dynamic systems with MATLAB764

and simulink, second edition.765

28

http://dx.doi.org/10.1016/j.simpat.2005.02.009
http://dx.doi.org/10.1016/j.simpat.2005.02.009
http://dx.doi.org/10.1016/j.simpat.2005.02.009
http://dx.doi.org/10.1109/ISADS.2001.917452
http://dx.doi.org/10.1109/MCSE.2007.112
http://dx.doi.org/10.1109/MCSE.2007.112
http://dx.doi.org/10.1109/MCSE.2007.112
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/j.compchemeng.2015.03.019
http://dx.doi.org/10.1016/j.compchemeng.2015.03.019
http://dx.doi.org/10.1016/j.compchemeng.2015.03.019
http://dx.doi.org/10.2166/wst.2007.604

Page 31 of 42

Jo
ur

na
l P

re
-p

ro
of

Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis . (3rd766

ed.). McGraw-Hill Education. doi:10.1145/1667072.1667074.767

MathWorks (2019a). SimEvents. URL: https://se.mathworks.com/768

products/simevents.html.769

MathWorks (2019b). Stateflow. URL: https://se.mathworks.com/770

products/stateflow.html.771

Monroy, D. F. Z., & Vallejo, C. C. R. (2013). Production planning and772

resource scheduling of a brewery with plant simulation. In Use Cases773

of Discrete Event Simulation: Appliance and Research. doi:10.1007/774

978-3-642-28777-0_15.775

Montes, F. C., Gernaey, K., & Sin, G. (2018). Dynamic Plantwide Modeling,776

Uncertainty, and Sensitivity Analysis of a Pharmaceutical Upstream777

Synthesis: Ibuprofen Case Study. Industrial and Engineering Chemistry778

Research, 57 , 10026–10037. doi:10.1021/acs.iecr.8b00465.779

Noguera, J. H., & Watson, E. F. (2004). Analyzing throughput and capacity780

of multiproduct batch processes. Journal of Manufacturing Systems , 23 ,781

215–228. doi:10.1016/S0278-6125(04)80035-9.782

Nutaro, J., Kuruganti, P. T., Protopopescu, V., & Shankar, M. (2012). The783

split system approach to managing time in simulations of hybrid systems784

having continuous and discrete event components. Simulation, 88 , 281–785

298. doi:10.1177/0037549711401000.786

Petrides, D., Carmichael, D., Siletti, C., & Koulouris, A. (2014).787

Biopharmaceutical Process Optimization with Simulation and Scheduling788

Tools. Bioengineering , 1 , 154–187. URL: http://www.mdpi.com/789

2306-5354/1/4/154/. doi:10.3390/bioengineering1040154.790

29

http://dx.doi.org/10.1145/1667072.1667074
https://se.mathworks.com/products/simevents.html
https://se.mathworks.com/products/simevents.html
https://se.mathworks.com/products/simevents.html
https://se.mathworks.com/products/stateflow.html
https://se.mathworks.com/products/stateflow.html
https://se.mathworks.com/products/stateflow.html
http://dx.doi.org/10.1007/978-3-642-28777-0_15
http://dx.doi.org/10.1007/978-3-642-28777-0_15
http://dx.doi.org/10.1007/978-3-642-28777-0_15
http://dx.doi.org/10.1021/acs.iecr.8b00465
http://dx.doi.org/10.1016/S0278-6125(04)80035-9
http://dx.doi.org/10.1177/0037549711401000
http://www.mdpi.com/2306-5354/1/4/154/
http://www.mdpi.com/2306-5354/1/4/154/
http://www.mdpi.com/2306-5354/1/4/154/
http://dx.doi.org/10.3390/bioengineering1040154

Page 32 of 42

Jo
ur

na
l P

re
-p

ro
of

Sahbani, A., & Pascal, J. C. (2000). Simulation of Hybrid Systems Using791

Stateflow. In 14th European Simulation Multiconference (ESM’2000), (pp.792

271–275).793

Sharda, B., & Bury, S. J. (2010). Bottleneck analysis of a chemical plant using794

discrete event simulation. In Proceedings - Winter Simulation Conference.795

doi:10.1109/WSC.2010.5678916.796

Simeonova, I. (2008). On-line periodic scheduling of hybrid chemical plants797

with parallel production lines and shared resources . Doctoral thesis798

Universite catholique de Louvain.799

Teoh, S. K., Rathi, C., & Sharratt, P. (2016). Practical Assessment800

Methodology for Converting Fine Chemicals Processes from Batch to801

Continuous. Organic Process Research and Development , 20 , 414–431.802

doi:10.1021/acs.oprd.5b00001.803

Tiwari, A. (2002). Formal semantics and analysis methods for Simulink804

Stateflow models. Unpublished report, SRI International , . URL:805

http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=806

intitle:Formal+Semantics+and+Analysis+Methods+for+Simulink+807

Stateflow+Models{#}0.808

Toumi, A., Jürgens, C., Jungo, C., Maier, B. A., Papavasileiou, V.,809

& Petrides, D. P. (2010). Design and optimization of a large scale810

biopharmaceutical facility using process simulation and scheduling tools.811

Pharmaceutical Engineering , 30 , 1–9.812

Vieira, M., Moniz, S., Gonçalves, B., Pinto-Varela, T., & Barbosa-Povoa,813

A. P. (2019). Integrating Simulation and Optimization for Process814

Planning and Scheduling Problems. In 29th European Symposium on815

Computer Aided Process Engineering (pp. 1441–1447).816

30

http://dx.doi.org/10.1109/WSC.2010.5678916
http://dx.doi.org/10.1021/acs.oprd.5b00001
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Formal+Semantics+and+Analysis+Methods+for+Simulink+Stateflow+Models{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Formal+Semantics+and+Analysis+Methods+for+Simulink+Stateflow+Models{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Formal+Semantics+and+Analysis+Methods+for+Simulink+Stateflow+Models{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Formal+Semantics+and+Analysis+Methods+for+Simulink+Stateflow+Models{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Formal+Semantics+and+Analysis+Methods+for+Simulink+Stateflow+Models{#}0

Page 33 of 42

Jo
ur

na
l P

re
-p

ro
ofType Linear Non-linear

Continuous
Systems

Continuous
LTI models

(Discrete LTI
approximations*)

Differential
(P)D(A)E
Systems

Discrete-
Event

Systems

Multi-Rate
Timed Automata

Automata,
Petri Nets

Frequent Events:
GDEVS Formalism

Hybrid
Systems

Scarce Events:
Discrete-Rate
Simulation**

Scarce Events:
(Complete Batch

Process
Systems)

Table (1) Dynamic system types and common mathematical model expressions.
*Discrete computation of linear time-invariant (LTI) systems is trivial as the sampling rate is constant.

**Continuous evolution of volumes between events is considered in this otherwise discrete modelling

framework (section 2.1.1).

31

Page 34 of 42

Jo
ur

na
l P

re
-p

ro
of

7) Implement Batch Tracking System
(In Batch Control System)

- One variable per subchart
(0 - inactive, ‘batchID’ - active)

- batch ID is always adapted
from upstream tank unit

6) Material Routing on Root Flowsheet Level
(Emulation of valve positions)

- Use of selector blocks or
custom MATLAB functions

- Assure that only one path
can be active

5) Resource Handling in Control System
(All callers move into ‘Waiting’ before calling resources)

- Checks for resource
availability

- Call resource and establish
link during processing

4) Interface: Batch Control System - Process
(Define measurements and control signals)

- Direct interface: control
signals directly implemented

- DCS* interface: control
signals passed to lower layer

3) Batch Control System (Superordinate state chart under
‘parallel’ decomposition, all unit charts start in ‘Idle’)

- Real units: each unit from
2) is dedicated a state chart

- Virtual units: resources
exist only in control system

1) Model Configuration Parameters
(Requires iterative re-tuning)

2) Define Structure of Process System
(Each unit within a virtual or enabled sub-system)

- Integrators/S-functions for
entities which hold material

- Algebraic expressions may
suffice for processing units

- Select appropriate ODE
solver (variable-step)

- Limit max step size in case
of numerical inaccuracy

Figure (1) List of the most important steps concerned with building a batch process

system model in MATLAB/Simulink/StateFlow. The steps are delineated in detail in the

subsections within section 3.2.

(* DCS: Distributed Control System)

32

Page 35 of 42

Jo
ur

na
l P

re
-p

ro
of

BATCH CONTROL SYSTEM ("AND" decomposition)BATCH CONTROL SYSTEM ("AND" decomposition)BATCH CONTROL SYSTEM ("AND" decomposition)

TANK 1 ("OR" decomposition)TANK 1 ("OR" decomposition)TANK 1 ("OR" decomposition) TANK 2TANK 2TANK 2RESOURCE 1RESOURCE 1RESOURCE 1

IDLE

entry /

state = 0

controlVal = zeros()

IDLE

entry /

state = 0

controlVal = zeros()

IDLE

entry /

state = 0

controlVal = zeros()

FILL FROM EXT

entry /

state = 1

controlVal = filling()

FILL FROM EXT

entry /

state = 1

controlVal = filling()

FILL FROM EXT

entry /

state = 1

controlVal = filling()

calledFromExt()

WAIT FOR RESOURCE

entry /

state = 200

controlVal = zeros()

WAIT FOR RESOURCE

entry /

state = 200

controlVal = zeros()

WAIT FOR RESOURCE

entry /

state = 200

controlVal = zeros()

level1.full()

(physical entity)

DRAIN TO... VIA...

entry /

state = 3

callResources()

DRAIN TO... VIA...

entry /

state = 3

callResources()

DRAIN TO... VIA...

entry /

state = 3

callResources()

resource1.free() & Tank2.free()

level1.empty()

(physical entity)

IDLE

entry /

state = 0

controlVal = zeros()

IDLE

entry /

state = 0

controlVal = zeros()

IDLE

entry /

state = 0

controlVal = zeros()

FILL FROM ...

entry /

state = 1

controlVal = zeros()

FILL FROM ...

entry /

state = 1

controlVal = zeros()

FILL FROM ...

entry /

state = 1

controlVal = zeros()

calledFromTank1()

...

...

...

...

...

...

level1.empty()

(physical entity)

...

...

...

...

...

...

...

level2.empty()

(physical entity)

IDLE

entry /

state = 0

outPuts = zeros()

IDLE

entry /

state = 0

outPuts = zeros()

IDLE

entry /

state = 0

outPuts = zeros()

ACTIVE

entry /

state = 1

outPuts = filling()

ACTIVE

entry /

state = 1

outPuts = filling()

ACTIVE

entry /

state = 1

outPuts = filling()

calledFromTank1()

level1.empty()

(physical entity)

REINITIALISE

entry /

state = -1

outPuts = zeros()

REINITIALISE

entry /

state = -1

outPuts = zeros()

REINITIALISE

entry /

state = -1

outPuts = zeros()

enable()

setControlVals()

enable()

setControlVals()

enable()

setControlVals()

TANK 1

(Integrator)

RESOURCE 1

(Algebraic

Expression)

TANK 2

(Integrator)
outFlow outFlow

setFlowRate() setFlowRate()

fillFromExt

fillFromExtmeasurements() measurements() measurements()

Figure (2) Exemplary architecture if one superstate with parallel decomposition of sub-

states (machine states) and continuous elements on root flowsheet level is chosen.

Ferm 1

Ferm 2

Tank
11

Unit 1
Tank
12

Tank
21

Tank
22

Unit
21

Unit
22

Tank
31

Tank
32

Unit
31

Tank
41

Tank
42

Unit 4

CIP

Unit
32

Figure (3) Overview of units in production line to be modelled.

33

Page 36 of 42

Jo
ur

na
l P

re
-p

ro
of

Unit Constraint

Steps

(excl. idle)
Value Rate ID

Dur.

(h)

Ferm 1/2

Fill from ext. 10 m3 10 m3/h 1 1

Ferment 24 h 2 24

Wait for R. 300

Drain 0 m3 2 m3/h 4 5

Tank 11/12

Fill 10 m3 2 m3/h 1 5

Hold 9 h 2 9

Fill from ext. +5 m3? 5 m3/h 3 1

Wait for R. 400

Drain

(via Unit 1)
0 m3 1 m3/h 5 15

Unit 1

Processing 15 m3 1 m3/h 1 15

Tank 21/22

Fill 15 m3 1 m3/h 1 15

Hold 5 h 2 5

Wait for R. 300

Drain

(via U21/22)
0 m3 1.5 m3/h 4 10

Unit 21/22

Processing 15 m3 1.5 m3/h 1 10

Reinitialise 15 h -1 20

Tank 31/32

Fill 15 m3 1.5 m3/h 1 10

Hold 5 h 2 5

Wait for R. 300

Drain

(via U31/32)
0 m3/h 1 m3/h 4 15

Unit 31/32

Processing 15 m3 1 m3/h 1 15

Reinitialise 15 h 15

Tank 41/42

Fill 15 m3 1 m3/h 1 15

Wait for R. 200

Drain

(via Unit 4)
0 m3 1.5 m3/h 3 10

Unit 4

Processing 15 m3 1.5 m3/h 1 10

Reinitialise 5 h?? -1 5

?Amount of material added relative to current fill level.

??Reinitialisation occurs only after every second batch.

Table (2) Overview of constraints (timers / volumes & rates) of the system. Nominal

design values lead to equal equipment utilisation; CIP procedures omitted.

34

Page 37 of 42

Jo
ur

na
l P

re
-p

ro
of

Figure (4) Exemplary campaign of four batches (colour-code).

35

Page 38 of 42

Jo
ur

na
l P

re
-p

ro
of

Figure (5) CIPs on units 21/22 & 31/32, tanks 31/32 & 41/42. Gray bar: unit blocked,

CIP system busy. Black centred bar: CIP.

36

Page 39 of 42

Jo
ur

na
l P

re
-p

ro
of

Figure (6) Excerpt of improved CIP schedule with reduced waiting time.

37

Page 40 of 42

Jo
ur

na
l P

re
-p

ro
of

2xFe 2xT1 U1 2xT2 2xU2 2xT3 2xU3 2xT4 U4

Unit Operations

0

5

10

15

17.47

20

E
ffe

ct
iv

e
C

yc
le

 T
im

e
(h

)

4

300

2

10

5

400
3

2

1
0

1

0

4

300

2

1

0

-11-10

-1

1

0

-11-10

4

300
2

1

0

-11
-10

-1

1

0

-11
-10

3

200

1

0

-1

1

0

(a) Line capacity under standard CIP policy.

2xFe 2xT1 U1 2xT2 2xU2 2xT3 2xU3 2xT4 U4

Unit Operations

0

5

10

15
16.58

20

E
ffe

ct
iv

e
C

yc
le

 T
im

e
(h

)

4
300

2

10

5

400
3

2

1
0

1

0

4

300
2

1

0

-11-10

-1

1

0

-11-10

4

300
2

1

0

-11-10

-1

1

0

-11-10

3

200

1

0

-1

1

0

(b) Line capacity under improved CIP schedule.

Figure (7) Effective cycle times for a campaign of 300 batches. Step nomenclature: 0:idle,

1,2,3...:processing, 200,300,...:waiting, -1:reinitialisation, -10:blocked by CIP-call, -11:CIP

in progress

38

Page 41 of 42

Jo
ur

na
l P

re
-p

ro
of

Figure (8) Durations of operations on tanks 21/22 as a consequence of the randomised

flow rates on the downstream processing units.

39

Page 42 of 42

Jo
ur

na
l P

re
-p

ro
of

2xFe 2xT1 U1 2xT2 2xU2 2xT3 2xU3 2xT4 U4

Unit Operations

0

5

10

15.71

20

E
ffe

ct
iv

e
C

yc
le

 T
im

e
(h

)

4
300

2

10

5

4003

2

1
0

1

0

4

300
2

1

0

-1

1

0

4

300
2

1

0

-1

1

0

3

200

1

0

-1

1

0

Figure (9) The equipment utilisation throughout the plant as a consequence of variability

on the flow rates on U21/U22.

40

	Introduction
	Computation Approaches to Systems with Hybrid Dynamics
	Discrete-Event Systems
	Discrete-Rate Simulation

	Hybrid Systems
	Hybrid Systems with Frequent Discrete Events
	Hybrid Systems w. Infrequent Discrete Events

	Hybrid Systems in MATLAB/Simulink

	A Framework for Modelling Batch Process Systems in MATLAB/Simulink/StateFlow
	Limitations of Continuously Solved Flow Charts
	Stepwise Model-Building Procedure
	Step 1 - Model Configuration Parameters
	Step 2 - Define Structure of Process System
	Step 3 - Batch Control System
	Step 4 - Interface: Batch Control System - Process
	Step 5 - Resource Handling in Control System
	Step 6 - Material Routing on Flowsheet level
	Step 7 - Implement Batch Tracking System

	Re-initialisation vs. Cleaning-In-Place (CIP)
	Validation

	Implementation of an Example Plant
	Model Specifications
	Example CIP Procedure
	Effect of CIPs on Equipment Efficiencies

	Behaviour Under Stochastic Uncertainty
	Computational Performance

	Discussion
	Conclusion

