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Abstract

Parallel and distributed simulation is a powerful tool for developing complex
agent-based simulation. Complex simulations require parallel and distributed
high performance computing solutions. It is necessary because their sequential
solutions are not able to give answers in a feasible total execution time. There-
fore, for the advance of computing science, it is important that High Performance
Computing (HPC) techniques and solutions be proposed and studied. In literature,
we can find some agent-based modeling and simulation tools that use HPC.
However, none of these tools are designed to enable the HPC expert to be able
to propose new techniques and solutions without great effort. In this paper,
we introduce Care High Performance Simulation (HPS), which is a scientific
instrument that enables researchers to: 1) develop techniques and solutions of
high performance distributed simulations for agent-based models; and, 2) study,
design and implement complex agent-based models that require HPC solutions.
Care HPS was designed to easily and quickly develop new agent-based models.
It was also designed to extend and implement new solutions for the main issues
of parallel and distributed solutions such as: synchronization, communication,
load and computing balancing, and partitioning algorithms. We conducted some
experiments with the aim of showing the completeness and functionality of Care
HPS. As a result, we show that Care HPS can be used as a scientific instrument
for the advance of the agent-based parallel and distributed simulations field.

Keywords: Agent-Based Model; Agent-Based Modeling and Simulation; High
Performance Simulation; High Performance Computing; Parallel and
Distributed Simulation;

1. Introduction

Agent-Based Modeling and Simulation (ABMS) is an approach for modeling
and simulating complex systems. ABMS can model a complex system if it
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can be represented as a collection of agents. These agents are programmed to
follow some rules of behavior [1]. In addition, the interactions of the agents
might generate a collective behavior. Thus, it allows scientists to gain new
knowledge and hypotheses in their research field. For that, a dynamic process is
required that simulates the agent interaction over time. ABMS relates to several
disciplines: military, biology, social science, economics, etc. As advantages of
ABMS, we can cite:

1. Determining the implications of different hypotheses starting from a verbal
argumentation [2]. Thus, what-if experimentation can be conducted with
only parameter and configuration adjustments.

2. ABMS can execute in a parallelized way [2], therefore this enables the
execution of complex models.

3. ABMS allows the researcher to produce emergent phenomena.

e

ABMS is a suitable tool to study complex systems.
5. ABMS enables us to simulate problems where analytical solutions are not
possible.

Therefore, scientists can reach conclusions and gain knowledge about the
system under using ABMS. However this is only possible if these simulations
offer realistic results. It means simulations whose results are valid in reality, and
which can also be used for prediction or to explain some phenomenon. There-
fore, these simulations require reliable results through statistical approaches.
Moreover, they have a high computational complexity because thousands of
agents model them, their higher level of parameters and their rules complexity.
Thus, this kind of simulation requires a long execution time. Consequently,
parallel and distributed simulations can be a solution to solve these simulations,
since parallel and distributed simulations can take advantage of the powerful
architecture available nowadays. Thus, it is possible to create complex models.
This enables us to achieve simulation results that are closer to reality. In this
context, we find two different user profiles. However, they are complementary
and necessary for developing these solutions:

1. application area researchers have a lot of knowledge of their specific research
field, yet they are not able to deal with the complex computing solutions,
which are needed to execute large and complex simulations.

2. HPC experts are able to provide scalable and efficient complex simulations,
but they do not have a deep knowledge of the application areas.

In this paper, we introduce a tool called Care HPS, whose main objective
is to be a scientific instrument tool for ABMS in a parallel and distributed
architecture. Its sub-objectives are: 1) to enable applications area researchers to
study, design and implement complex agent-based models that require an HPC
solution; and 2) to enable HPC experts to develop techniques and solutions of
high performance distributed simulation for agent-based models. The remainder
of the paper is organized as follows. We dedicate Section 2 to presenting the
history, motivation and justification of Care HPS. In Section 3, we present
related works where we show the results of an extensive search in the literature




for tools in the scope of Care HPS. Care HPS is presented in Section 4, and
here we focus on the theoretical support and present its architecture. In Section
5, we compare the main tools that we have found in the literature review
technically with Care HPS. Some examples and explanations of implementation
are given in Section 6. This section takes into account the points of view of the
application area researchers and HPC experts. Then, we check the completeness
and functionality of our tool through the experiments presented in Section 7;
and, lastly, our conclusions and final considerations are shown in Section 8.

2. Why Care HPS? History, motivation and justification

Over the last few years, our group has been researching HPC in parallel and
distributed simulation. From the beginning, our main aim has been to get more
complex simulations. The motivation is because researchers in application areas
require more realistic results coming from complex simulations. The problem
is that complex simulations demand a lot of computing resources. Thus, we
have to study how to provide these simulations in a more efficient and scalable
way. Therefore, we have developed an agent-based modeling and simulation
tool where we have applied our techniques and solutions proposed for HPC.

The initial ideas about Care HPS emerged in 2013. However, we cannot
disregard all of the know-how developed and acquired by research group before
the conception of Care HPS. Almost all of this knowledge has given support to
and has been implemented in Care HPS. Therefore, the history of Care HPS
has two periods. The first between 2004 and 2013, when many contributions in
HPC for agent-based models were proposed. And the second after 2013, when
the idea of the current conception of Care HPS emerged and its implementation
started.

The contributions of our research group in HPC to ABMS from 2004 until
2013 can be summarized in the following way. The first version of the simulator
dates from 2004. Firstly, we implemented the first fish schooling agent-based
model version with MPI. The distribution of data throughout the architecture
was implemented with a partial partitioning. The synchronization of the distrib-
uted processes was controlled using conservative protocol. After that, the fish
schooling model was improved and other HPC features were included. Next, in
2005/2006 [3, 4, 5], the simulator started to support a higher number of agents
after improvements. Also, a halo exchange routine for communication between
agents near partition borders was implemented. In 2008, some optimizations
were implemented to improve scalability and communication [6]. Next, in 2009,
we represented the behavior of fish agents using a Fuzzy Logic[7]. In 2010,
we added obstacles in order to improve the environment representation. Also,
we simulated different species in the same simulation space [8]. In 2011, the
research group developed a clustering algorithm partitioning [9]. Then, in 2012,
the research group implemented a load balancing routine for agents [10]. And
lastly, in 2013, we developed two new MPI communication approaches (BSP
and asynchronous)[11].




From this point on, all new implementations in the new simulator (named
Care HPS) have considered two basic object-oriented programming concepts:
extension of functionality and reusability. The biggest change in the original
simulator was uncoupling the agent layer. After that, we redesigned all important
HPC features. Then, all previous HPC features implemented were also decoupled
and included in Care HPS. This process was always cyclic and progressive. Also,
we added new HPC features in Care HPS, described as follows. In 2014, we
improved the clustering algorithm[9] to support the memory shared paradigm
[12]. In the same year, we adapted a statistical method defined by[13]. This
method identifies the best run length of the simulation[14]. And finally, in 2015,
we implemented a new agent-based model and partitioning algorithm[15]. For
that, we used the existing agent layer and features to extend partitioning algo-
rithms. Also, we added other features: serializable agents, an environment layer
and a model layer.

As we said, scalability and efficiency are the most important issues for
providing a complex simulation. Therefore, from the point of view of scalability
and efficiency in the ABMS context, we have noted that the HPC approaches
used to reach a good scalability and efficiency depend on the characteristics
of the model. To illustrate this, we will give two forms of agent-based model
interactions among agents and environment. There are models in which agents
do not modify the environment, for example, fish schooling. In this model,
the fish swim to avoid obstacles, but no environmental resources are consumed.
In this context, no resources consumed means that there are no changes in
environmental properties. Therefore, the synchronization among the distrib-
uted processes is not needed to update the environment. However, the dynamic
of the environment in an Ant Colony is completely different. In this model, the
stacks of food are distributed among the processes. Therefore, the quantity of
food available must be synchronized in order for all processes to know when
the simulation has finished. Thus, the ABMS cannot deal with synchroniza-
tion using the same synchronization approach. Otherwise, the fish schooling
model can spend time carrying out an unnecessary procedure. Consequently,
this will increase the total execution time of the simulation. We understand
that the characteristics of the agent-based model and HPC techniques must fit
together in order to extract the best solution performance. The synchronization
is just one example. Another example would be whether the simulation type is
communication or computing demand. An agent-based model that has a high
communication volume requires a different distribution of data compared with
agent-based models that are computing demand. This reasoning is applicable
for other important HPC and ABMS issues.

Care HPS basically comes from the answers to two questions. The first
question is: how can we make a generalization of our HPC techniques for ABMS?
The second one is: how can we develop other agent-based models rapidly and
test our HPC techniques with other agent-based model rules? Why are these
questions important? In computer science, as well as in general science, the
generalization of results is a fundamental scientific aspect. The research must
give results that can be applied in other contexts. In this way, the research can




have a bigger impact on and importance to the studied field. We have observed
that our previous contributions had an impact in a specific context. In this case,
a fish schooling model or similar agent-based models.

Applying these solutions to other contexts would require a huge effort in
programming, since other models with different computing characteristics must
be implemented. Therefore, we hope that the next step in our research will
provide solutions for a greater range of models. To reach this aim, the ABMS
tools need to enable the user to easily add new models in order to test/evaluate a
new proposed HPC feature, as well as enabling the user to easily extend /develop
features for a specific model.

Figure 1 shows two hypothetical scenarios with the objective of presenting
the applicability of Care HPS. In Scenario 1, we have implemented a load
balancing (LB) algorithm. Care HPS enables us to use different agent-based
models (ABM_A, ABM_B and ABM_C), which have different computing requirements
in order to analyze the load balancing algorithm proposed. These scenarios
enable the HPC expert to evaluate the efficiency of the load balancing with
different agent-based models. In the other scenario, we want to analyze which
load balancing algorithm (LB_A, LB_B and LB_C) will fit best with the agent-
based model’s requirements. This scenario enables the application area researcher
to identify which LB algorithm offers the best execution times without a great
effort in implementation.

o - LowBelancing__ olma] o] [oe]

Figure 1: Different scenarios of research.

Until the ends of 2013, the architecture of our simulator was overly coupled:
the fish schooling model, the kernel of simulation and the HPC solutions were
all connected. Adding new techniques, such as a new partitioning algorithm,
required a lot of programming effort. We were spending more time programming
than doing science.

In the literature, we find several tools in which ABMS has been very well
tested in specific projects. These tools also present a high maturation level. As
examples: Flame in EURACE project [16, 17], which simulates the European
economy. Netlogo has a huge community and a large library of sample models.
Pandora is being used in SimulPast, which is an archaeological project [18, 19,
20]. Finally, Repast HPC has presented excellent weak scalability on Argonne
National Laboratorys IBM Blue Gene [21]. However, most of these tools address
and support HPC features using generic approaches. In addition, they do not
allow the user to extend the HPC features without a huge programming time




investment. Thus, Care HPS was born as an instrument that supports our HPC
experimentation for ABMS. The basic premises are:

1. To easily support the extension and reuse of our HPC techniques proposed
for ABMS.

2. To easily support the addition of new HPC features.

To support the development of new agent-based models faster.

4. To enable the user with less programming know-how to develop parallel
and distributed simulation without previous knowledge of HPC.

©w

3. Related work

Based on the literature, we have nominally listed several tools. In addition,
we checked which ones have some features and purposes of support simulations.
We have found around 80 different tools referenced. After that, we then selected
tools that fit with the criteria:

1. supports parallel and/or distributed simulation, and/or
2. support for agent-based modeling and simulation.

The tools found are: Ascape[22], D-Mason|[23], EcoLab[24], Flame[25], MobiDyc|[26],
Netlogo[27], Pandora[28], Repast HPC[29], and Swarm[30, 31]. Ascape is a
framework for developing general-purpose agent-based models [22]. D-Mason[23]
is a parallel extension of MASON|[32] library for writing and running ABMS.
EcoLab [24] was initially projected to support an abstract ecology model [33]. Tt
supports the partitioning of agents over processors and tolerance failure support.
EcoLab has a component that allows reflection to be added to C++ language.
Flame (FLexible Agent-based Modelling Environment) is a code-generated tool
that allows the user to define its agent-based model. Flame automatically
generates C code optimized for efficient parallel processing [25]. MobiDyc
aims to develop individual-based modeling in the fields of ecology and biology.
MobiDyc enables the user to develop their model through simple primitives
[26]. Netlogo [27] was born as an educational project. Netlogo has a friendly
GUI and an easy programming API for developing new agent-based models.
Netlogo does not support HPC features. However, it is a powerful ABMS tool
with a huge user community. Pandora[28] has been used in several archaeology
projects. Pandora is an ABMS tool of the Barcelona Supercomputer Center.
Repast HPC is an agent-based modeling and simulation toolkit [29]. Repast
HPC implements the main concepts of Repast Simphony. Repast HPC has
support for parallel distributed environments. It was designed with the goal of
obtaining extreme scalability for the TOP500-class supercomputer[34]. Swarm
was the first ABMS software development environment created by the Santa Fe
Institute. The agents are organized through a collection called ”swarm” that has
a scheduled event for these agents [31]. Swarm [31] does not have any parallel
capabilities [35]. Swarm uses Objective C.

As presented, we can find several ABMS tools that support several issues,
features, and contexts. A few of them use HPC to execute their models.




However, none of these tools are designed with the aim of being a scientific
instrument that facilitates the research of HPC for agent-based models that
demand high performance solutions. Of course, many of these tools are open
source and researchers can add other features. However, the time invested in
programming is too high. Furthermore, it requires high level knowledge of
the tool and programming. Finally, Railsback et al. [36] offer us interesting
recommendations for the development of ABMS tools. We implemented many
of them in Care HPS and others will compose our future work.

4. Care HPS architecture

Care HPS supports a distributed memory system which allows for the distri-
bution of the simulation space over several processors using MPI. In addition, it
may use the shared memory paradigm to compute agents which are located at
the same processor through OpenMP in order to increase the efficiency of the
execution of a model.

Care HPS was designed with a focus on good object-oriented programming
practices. It is composed of several layers and components (see Figure 2) coded
in C++4 language. The design of Care HPS permits all of the complexity of the
HPC to remain hidden for the application area researchers. This means that
application area researchers do not need to worry about the following: how to
distribute the agent in different cores; how to balance the agents over processes;
or how to synchronize the processes. These are few examples of HPC issues that
are hidden by Care HPS through the use of its layers and components. This
enables users to use HPC without much programming effort or know-how.

In addition, the design of Care HPS enables HPC experts to extend and
reuse code. This is possible because Care HPS uses several design patterns
[37]: Composite, Facade, Factory method, Strategy, Singleton. These design
patterns allow the HPC users to improve their HPC solutions, as well as to
easily enable the addition of new features and resources. Other papers mention
the importance of using a design pattern in ABMS architecture [38]. Papers
[23],[28], [29] have used design patterns to extend and implement their features.
For more details, definitions and examples of design patterns see [37].

We will explain the most important components of Care HPS layer by layer
in the following subsections.

4.1. Agent-based model layer

The agent-based model layer is composed of the following components: Agent,
Serializable, Environment, Random number generation (RNG) and Model. Application
area researchers must use this layer in order to carry out their research.

The Agent component has a built-in agent class that has the main fields
required to represent agents of an agent-based model in a Euclidean space 2D
and 3D. The fields are:

1. position - indicates the position of the agent in space.
2. welocity - indicates the direction of the agent.
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Figure 2: System architecture.

3. covering radius - indicates the radius of the interaction of the agent with
the environment and other agents.

member - used to serialize the state of the agent (serializable component).
ID - identifies the agent uniquely.

random_move - indicates if the agent moves randomly.

alive - indicates if the agent is alive. Sometimes the agent is no longer
useful along the simulation. Therefore, it can be excluded from the simu-
lation space.

NS ot

Care HPS is prepared to execute any agent upon the condition that the agent
implements or extends the built-in class: agent. This is the most important
class that has the responsibility of implementing the behavior of agents. The
problem modeled sometimes requires additional fields that can be included in
the user’s agent classes (concrete class of agent), as well as the methods of the
concrete agents which implement local rules and behavior. Therefore, the user
has to implement these methods and call them inside the basic method called
update_agent. The user must call these methods in an appropriate order using
logical and/or conditional statements.

Care HPS executes the update_agent method many times by from the beginning
to the end of simulation. Furthermore, Care HPS does not implement a schedule
of events. Rather, all agents are added in a bucket. At each simulation step, the
system calls the update_agent method of each agent. The agents are accessed
randomly in the bucket to avoid the first mover advantage. The algorithm used
for the randomization of the bucket has a linear algorithm complexity. The




group behavior emerges as a consequence of the agents’ interactions occurring
in this loop execution. The agent can interact with other agents or environment
inside of its covering radius. This value can be changed in the execution time in
order to implement different behaviors of agents. Other solutions, such as [23],
use this same concept, known as area of interest.

Another important feature of the agent class is the ability to serialize the
state of the agent. The agent class uses the Serializable component through a
field called member. All required states are saved and loaded in the member
data structure. This data structure supports the main primitive type data of
C++ language. The user has the responsibility of saving and loading the field
in the same order. The base fields of the agent class have their states saved
automatically by Care HPS. Only the fields created at concrete agent classes -
the user’s class that inherits from the agent class - need to be specified by the
user. By definition, agents have state and behavior. However, the serialization
of the state of the agent is a required feature in parallel and distributed simu-
lation. This is required because the agents might migrate from one process to
another. In the migration processes, the agents are deleted from the processes
and created in other processes. Therefore, the agents’ states must be preserved
in this operation. The migration processes are common in an agent-based model
distributed solution. It can occur as a consequence of a local role, a motion in
space, or because of a load balance or partitioning routines. The Serializable
feature enables Care HPS to know what the new fields are. Consequently,
Serializable component can use this information in the communication process.
Therefore, the application area researchers do not need to implement any com-
munication routine. This is provided by the communication component (see
4.3).

The Environment component enables the modeling of an environment in an
ABMS. To create an environment in Care HPS, it is necessary to extend the two
classes which compose the Environment component: environment and object.
The environment is the space where the agent has ”life”. The environment class
holds the agents that interact with the environment and with other agents.
Also, the environment class will be the container of possible objects created
inside of it. The objects of the environment might be created or extended from
the object classes. Care HPS enables the user to define objects with the most
appropriate representation for the problem. With the aim of implementing this
feature, we are using a math approach to model and represent the objects of the
environment. This approach enables us to dynamically create a representation
of any type of obstacle or resource, such as buildings, food, paths, etc. For
example, we can use the linear_plan class to simulate a coast, valley and rocks
in the sea. Equation 1 gives a specific example where it intends to represent a
rock:

2% —13%xy+5 (1)

In this example, Care HPS checks the intersection between the plan and the
vector equation of the line. This equation represents the agent’s position and




direction. The vector equation of the line is defined by the equation:

P=A+tv (2)

Where P indicates the next position of the agent; A represents the actual
position; v the direction; and ¢ is a constant which represents the maximum
distance that the agent can move per time step. The equation of the line
indicates if there is a point (P) that is the root of the equation that represents
the object of the environment. Therefore, the code sums the current agent
position (A) with the next agent position (tv), where ¢ is defined in this case as
covering radius.

In summary, this approach checks if the new point (next agent position) is
a root of the object equation. If so, an agent’s behavior should be executed in
order to model the interaction with the environment. The user can create as
many objects inside the environment as is required. This described procedure
will be executed for each object within the environment. We chose to use a math
approach instead of using agents to represent the objects in an environment.
The math approach supports a wide range of representations of space. Several
math expressions can be added in the same environment class as objects. Thus,
many combinations can create the required environment. This approach easily
supports the interaction between agents and objects of the environment. It
occurs with math operations of intersection between an agent’s vector and the
equation that represents the object. In addition, the Environment component
enables the user to replicate the environment in all processes. This means that
all processes have a full copy of the environment. This option should be used
when the objects do not undergo changes during the simulation. Therefore, it
avoids communication with other processes.

Care HPS provides a class for random number generation (RNG). Some
simulations work with stochastic data that is used to create the initial input
of a simulation as well as defining random values for agent behavior, such as
velocity or position. The user can create normal, exponential, gamma and
uniform distributions. In addition, random numbers can be obtained within a
range. RNG is a useful feature that is also available in other ABMs such as
Flame [25], Netlogo [27], D-Mason [23], Pandora [28], and Repast HPC [29].

The last component of the Agent-based model layer is the Model compo-
nent. The application area researchers will use this component to represent their
problem. The user will specify agents, environment and other components. As
well as this, the user will choose the HPC strategies that the model will use.
The Model component is composed of two classes: model and pds. The concrete
class model requires the user to implement some methods in order to define:

1. the size of the agent - the communication layer (see 4.3) uses this information
to execute the pack and unpack.

2. the agent that will be created and simulated.

the type of object that the environment will contain

©w

4. the type of environment.

10




The concrete class pds configures and defines the characteristics of simula-
tion. As an example of the most important methods, we can cite: getModel -
create or get the model; initialize_agent - initialize the simulation agents; prepare
- setup and define behavior and parameters of the simulation; simulate - execute
the simulation steps; wrapp-to_synch - defines a method for the synchronization.

Moreover, the concrete class pds represents the parallel and distributed sim-
ulation of the specific model. pds class uses model class to create the agent
and environment. The pds class is an implementation of the Abstract Factory
design pattern [37]. Therefore, with a concrete class pds, it is possible to create
products related to the simulation, such as model, partitioning, load balancing,
environment, agent, etc. This class has many factory methods that must be
overridden by the user. This defines which object will be created in execution
time. These factory methods are the key to hiding the complexity of HPC. In
addition, these factory methods interface the Agent-based model layer with the
Parallel and distributed simulation layer.

4.2. Parallel and distributed simulation layer

The Parallel and distributed simulation (P&DS) layer implements the issues
related to parallel and distributed simulation. Executing simulations in a parallel
and distributed way requires diverse techniques such as: synchronization, partitioning,
and load and computing balance. This layer has the following components:
Logical process, Sync, Partitioning, Balancing, and Output. Application area
researchers do not need to have deep knowledge of this layer. Since the use of the
components is available through the factory methods. On the other hand, the
HPC expert can use this layer in order to execute their HPC experimentation
and also propose new strategies and solutions.

Care HPS supports a distributed memory system. The Logical process com-
ponent creates the distributed processes that communicate by message passing.
Additionally, this component controls the simulations running in different processes.
Care HPS was designed for simulations that advance in steps. Therefore, the
synchronization between processes is necessary before the next step is taken.
The Sync component implements the synchronization features. The synchroni-
zation can be used for many purposes: maintaining the simulation coherence,
executing load balance, executing compute balance, or re-partitioning. Care
HPS enables the application area researchers to choose which synchronization
method to call, as well as to define which reduced operation will be executed.
The result of this method is sent to all distributed processes. This result might
be used in order to make decisions, such as finalizing the simulation, executing
a load balancing, etc. For this, the application area researchers must implement
the wrapp_to_synch callback method. Repast HPC [29] implements a similar
callback method that executes a global data collection.

The design of Care HPS allows other synchronization approaches to be im-
plemented and proposed. Care HPS implements a conservative [39] protocol
in synchronization. In this implementation, each process has its own bucket
with agents. The processes are blocked until all of the distributed buckets have
finished the execution of their agents. In contrast with other ABMS tools, such
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as Repast HPC, we do not implement a scheduler to iterate the simulation
forward. In Repast HPC, the user has to add events to occur at a specific tick
in the scheduler [29]. The execution approach of Care HPS is quite simple. We
consider the agents to be autonomous and therefore know what they must do
and when to do it.

Data partitioning is the most important aspect of parallel and distributed
solutions. The distribution of data over a distributed architecture has a strong
correlation with communication, load and compute balancing. Care HPS provides
three partitioning strategies: cluster-based partitioning [9], strip partitioning
with a pure MPI solution [15] and the new hybrid strip partitioning proposed
in Subsection 6.2. Moreover, Care HPS enables HPC experts to extend new
partitioning algorithms.

The cluster-based partitioning approach can be used for agent-based models,
where its agents’ interactions can be grouped into clusters [40]. This approach
uses an unsupervised classification of patterns. The criteria used in this method
is based on Voronoi diagrams and covering radius[9].

The strip partitioning approach fits better with agent-based models which
have a spatially dependent problem. The strips are created in accordance with
the number of MPI processes. This partitioning algorithm chooses the best
partition configuration. It considers the number of processes and the distribu-
tion of objects in the environment. This strategy avoids objects being shared
by processes [15].

The users choose the partitioning approach through the factory method of
model class. The partitioning has two main methods public to the user: distrib-
ute and execute. The first method distributes the agents over the distributed
architecture and the second one executes the agents’ behavior, which calls the
update_agent method (see Subsection 4.1). The distribution of the agents and
their behavior’s execution are completely transparent for the user. Moreover,
other functions such as the migration of agents, point-point communication, and
loading the state of agents are executed by partitioning algorithms.

The partitioning algorithm distributes the data throughout the architecture.
In an agent-based model parallel and distributed solution, the algorithm of
partitioning must distribute the agents equally among the processes. A well-
done partitioning algorithm should ensure three issues. First, a load balance
among the processes. Second, that all agents have similar computing and com-
munication throughout the whole simulation. And lastly, decreasing the agent
migrations. However, this situation is not common. Generally, the agents
are executing different rules in the same moment. In addition, the migration
between processes is a common procedure in distributed simulations, especially
in Euclidean space simulation, where the agents might move constantly. There-
fore, during the simulation, two situations can occur: 1) some processes can
contain more agents than others; and/or 2) some processes can spend more
time computing than others. The first situation is due to the migration of
agents between processes. And the second one is because the distribution of
agents does not take into account the computing differences between agents.
These situations have a direct impact on the total execution time, especially,
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if the simulations use conservative protocol. The reason is because the faster
processes wait for the slower processes to finish before moving forward to the
next step in the simulation.

Parallel and distribution simulations can become inefficient if they are not
accomplished with a loading and computing balancing. The balancing approach
can be categorized into spatial dependence problems and non-spatial dependence
problems.

First of all, let’s discuss when the agent-based model is a spatial dependence
problem. The movement of an agent from one partition to another is quite
complex when a loading or computing balance action occurs. These solutions
generally already define which partition will execute that part of the problem.
All of the simulation space is divided among the partitions. Each core handles
one or more partitions. Therefore, if the agent is moved from one partition to
another, then it will act in a different part of the simulation space. Redefining
which core will execute the partition is not a problem. However, all environ-
ment, objects and agents allocated at the partition will also be reallocated and
executed by this core. Therefore, increasing or decreasing the granularity of the
simulation space might be a good strategy for spatial dependence problems.

On the other hand, loading or computing balancing routine is more simple
when the problem is not spatially dependent. For this type of problem, the
balancing policies can take into account just the objective functions, whose
results can direct actions such as assigning partition/agents for specific cores,
resizing partitions, etc.

However, in both categories, the loading and computing balancing actions
can depend on the modeled problem. Therefore, an extension of the available
solution of the balancing approach can be required. The distribution of data
has attributes that should be considered in order to develop a feasible balance
routine. Thus, the algorithms of load and computing balancing should act on
partitioning of data algorithms. Currently, three balancing policies are imple-
mented: re-configuration of cluster [10], re-size of the strip and number of agents.
In addition, new strategies can be implemented and extended. In Care HPS, the
algorithms of load and computing balancing are designed as a composition of the
partitioning of data. This means that the partitioning of data might have many
load and computing balancing algorithms. This way, they can be invoked in the
synchronization to deal with imbalance occurrences. As an example, consider
the cluster-based partitioning that the re-configuration cluster strategy uses [10].
First of all, the strategy detects an imbalance, verifying the number of agents
per cluster. Secondly, the strategy checks if this number of agents per cluster is
within the thresholds. It detects underused or overloaded resources. The next
step is the re-configuration of the cluster with the adjustment of (1) the workload
to the mean of agents per core; and, (2) core that will execute the clusters. The
application area researchers set the load and computing balance strategy to use
after they choose the partitioning approach. Care HPS will automatically call
all balance strategies defined for the partitioning in synchronization.

The HPC expert needs to implement the subclass of the balancing interface
and implement the method to execute if they want to propose a new balance
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strategy.

4.8. High performance simulation layer

The High performance simulation (HPS) layer is composed of the Commu-
nication component. As can be observed in Figure 2, the P&DS and HPS layers
share some components. This occurs due to the overlapped techniques used for
developing the two layers. The interactions with the P&DS layer and the Com-
munication component of the HPS layer occur via the partitioning algorithm in
order to execute the communication processes for the whole simulation. Care
HPS communication processes occur basically when:

e there is a migration of agents among processes.
e the processes exchange information for the synchronization process.
e initialization of the simulation.

e when the load balancing, compute balancing and partitioning are executed.

There is no direct communication between the agents through MPI routines.
However, there is local communication between agents through memory copy
or shared memory.

Only the partitioning algorithms interface with the Communication com-
ponent. This component uses the pack and unpack pattern in order to send
and receive data. Care HPS has implemented three communication patterns:
asynchronous, synchronous and BSP [11]. The MPI communication routines
used in Care HPS depend on the partitioning used. For example, the cluster-
based partitioning needs a broadcast communication due to the fact that agent
migrates to an unknown process. In the strip partitioning approach, the com-
munication occurs just among the neighboring processes. In this strategy, the
agents can only migrate to partition neighbors. Therefore, only MPI_Send and
MPI_Recv routines are required.

The Serializable component (see 4.1) is the key to automating the com-
munication process for the application area researchers. The communication
process works with the agent superclass. Therefore, it does not know about
the specialized fields. A similar approach is found in the Repast HPC [29]. In
Repast HPC [29], the user must specify each field of the agent class, providing
the serialization code, executing the pack, and executing the unpack. However,
Care HPS solution is simpler. In Care HPS, the user needs only to handle the
Serializable component. After informing which fields need to be saved, then
the save and load methods are called at the appropriate moment. We delegate
to the application area researchers to inform which fields are new and which
ones must be saved. This is compensated by the fact that the application area
researchers do not manipulate the Communication component.
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5. Comparison: Care HPS and other ABMS tools

With Care HPS features in mind, we will present the main differences among
similar tools found. We are concerned with ABMS tools that have support for
parallel and/or distributed executions and with similar features to Care HPS. In
the bibliographical survey carried out in Related Work 3, we found the following
tools: Flame [25], D-Mason [23], Pandora [28], and Repast HPC [29]. For the
main features of Care HPS, see Table 1, and we will explain how each ABMS tool
addresses these issues. This comparison will focus on how each tool addresses a
feature rather than strengths and weakness. In spite of supporting the parallel
and distributed execution, each tool has a different domain. In addition, it was
designed for a different purpose than Care HPS.

5.1. Agent

Care HPS has a built-in agent class that represents agents of an agent-
based model in a Euclidean space 2D and 3D. The user can extend classes
from this base class in order to model their problem. In Flame, the agents
are represented by X-machine [41], and its behavior is defined by a directed
acyclic graph. D-Mason implements the agent extending an abstract class called
RemoteAgent. This class enables the agent to be serializable. Pandora uses the
Agent class that encapsulates any entity of the model. The user must define
the updateState method to specify the state, decision-making processes and
behavior of the agent. Repast HPC represents its agents by C++ class. The
user has to implements their agent class and behavior by methods in this class
[29]. Moreover, all agents must implement the Agent interface [29]. All these
tools allow for the extension of a base class (or proprietary unit: X-machine),
where the user can implement the agent’s behavior.

5.2. Environment

The interactions among agents occur inside the environment. Depending on
the problem, the environment can be static or dynamic. There are no changes
in environment properties when the environment is static. In a dynamic envi-
ronment, the interactions among agents or the interactions of agents with the
environment can change its properties.

Care HPS represents the environment through two classes: environment
and object. The environment class is a container for the object. The interaction
between agents and the objects of the environment is implemented using a math
approach. Flame uses an X-machine in order to represent an environment. D-
Mason has built-in classes that represent a space at 2D and 3D. Its environment
can be represented as Grid or Continuous space [42, 43]. Pandora extends
classes to represent an environment. These classes are abstract classes and
must be implemented by the user. Repast HPC implements the environment
with Context and Projection concepts [29]. A context contains a set of agents
and has Projections associated with it [29]. A projection is a way of structuring
agent relationships [44]. Some of the tools listed here use their own agent
classes in order to represent the environment. The advantage of this approach
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is that the user can handle the whole simulation composed of objects. So, the
communication between an agent and the environment is through the messages
of the objects.

As presented in Section 4, we chose a math approach to represent objects in
an environment. The reasons are:

e we believe that representing the environment and its objects as agents do
not strictly follow the agent definition in an ABMS context.

e the math approach allows for easier implementation and interactions with
objects in a Euclidean space.

e this approach enables the representation of a huge number of environments
and objects.

5.8. Synchronization

The synchronization operation in distributed processes is generally a critical
operation. This is a block operation, thus the faster processes have to wait for
the slower processes. A possible technique to minimize this problem is to use
overlap routines. But this type of solution cannot always be used because of
the data dependence.

We think that the synchronization can be adapted in accordance with the
problem. Therefore, it is important to have a public interface for extension by
users. Care HPS enables the user to define which method will be used for syn-
chronization. A callback function calls this method and uses its returned value
to make a decision. Flame controls the synchronization through the message
boards. This strategy ensures that all agents can see the same set of messages
[45]. D-Mason implements a local step-by-step synchronization of each region.
Each region is synchronized with its neighborhood before each simulation phase
[23]. Pandora defines the synchronization process through a scheduling system.
The user can define its own scheduler solution [28]. Repast HPC handles any
necessary synchronization using a discrete event scheduler [29].

5.4. Serializable

Serializable is a required feature in parallel and distributed simulation because
the agents might migrate from one process to another. For basic fields of agents,
the state is saved automatically by Care HPS. Additional fields must be added
by the user in the field member of the agent. The serializable feature can
be implemented by memory in the X-machine in Flame. D-Mason uses the
publish-subscribe design pattern to propagate agent state information [23]. In
this way, the agent is able to update and maintain its state at each simula-
tion step. Pandora saves the states of the agent in a file format. This file
format supports high performance computing applications [28]. Repast HPC
supports the serializable feature through serialization. The user has to provide
a serialization code. This code must extract the agent state, package it for
transfer and then unpack the transferred package [29].
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5.5. Partitioning

Data partitioning is the most important aspect of parallel and distributed
solutions. The distribution of data over a distributed architecture has a strong
correlation with communication, load and compute balance. Care HPS provides
three partitioning strategies: cluster-based partitioning [9], pure MPI strip
partitioning [15] and hybrid strip partitioning proposed in this paper (see 6.2).
Beyond that, Care HPS enables HPC experts to extend new partitioning al-
gorithms such as the hybrid strip partitioning. Flame implements two static
partitioning approaches: Separator Partitioning and Round Robin Partitioning
[46]. Separator Partitioning is a kind of geometric partitioning. Flame takes
into account the position of the agents in order to define the partition that will
be allocated [46]. In Round Robin Partitioning, Flame distributes each agent
at a time to each partition in turn. D-Mason implements a space partitioning.
The space simulated is partitioned into regions by the master. Each region has
a set of agents and each region is assigned to a worker [23]. Pandora implements
a spatial partitioning. Each node receives a part of the simulated environment
and the agents located within its boundaries. Each part of the environment is
divided into four different sections. Then, the sections are executed sequentially
[28]. Repast HPC implements the partitioning through a projection concept.
The user can choose from among three types of projection: grid, continuous
space and a network [29].

5.6. Computing and loading Balancing

The loading and computing balancing in Care HPS is dependent on the
partitioning strategy. Care HPS enables one or more balancing policies to be im-
plemented for each partitioning strategy. Currently, three load balance policies
are implemented, and the user can also propose and extend new balancing
algorithms. Flame considers that the communication among the agents has
a more significant impact on the total execution time than the light-weight
computational nature of many agent types [46]. Flame does not implement a
load balance routine directly. It should be reached using a partitioning strategy,
as presented in [35]. In a recent paper, Kang and colleagues [47] proposed an
extension of Flame with support to load balance through migration processes.
D-Mason deals with load balancing through the granularity of the simulated
space’s decomposition [23]. The user must define the granularity of the partition,
as well as the number of regions to be assigned to each worker. In Repast HPC,
the load balance can be reached through projection parameters. Some examples
can be found in [44].

5.7. Communication

The communication process is the key for performance in parallel and dis-
tributed solutions. Care HPS communication occurs when:

e there is a migration of agents between processes.

e the processes exchange information for the synchronization process.
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e initialization of simulation.
e when the load balancing, compute balancing and partitioning are executed.

In Flame, the agent communicates with the environment and other agents
through a Message board [45]. The communication is all-to-all through message
boards, and there is no direct agent-to-agent communication [45]. D-Mason
uses the publish-subscribe design pattern in order to propagate agent state
information. Each worker receives relevant messages through a multicast channel
[23]. Pandora supports OpenMP and MPI APIs in its communication routines.
Local communication uses OpenMP inside a given interaction range [28]. On
the other hand, neighbor nodes receive border information by MPI every time
a step is executed [28]. Repast HPC automates much of its communication
processes, but, the user must provide a serialization code to pack and unpack
the agent information [29].

5.8. Model

High performance solutions require parameterizations that will be somehow
translated into code. For an application area research user, the meaning of the
parameters can be complicated. Therefore, this increases the complexity for
the user. On the other hand, decreasing this complexity for the user means
hiding the technical details. Consequently, this will assume default values that
probably will not bring the best performance results. As examples: number of
threads for memory shared solution, the affinity of processes, size of messages,
and many others. Therefore, the bigger trade-off of ABMS tools resides in
modeling the facilities for users that are not experts in computing. A Care
HPS user must define its model by implementing and overriding some classes
using the C++ language specification. Care HPS was designed with the purpose
of hiding all the possible complexity of HPC techniques from the application
research user. The Flame model specification is defined in XMML, which is
Flame’s agent specification language based on the XML standard [46]. The
XMML must represent the model. The user must also provide information such
as: the agent properties; a list of functions with current state and end state;
user defined data types; possible inputs; and/or conditional statements. Each
function must be implemented by the user in a C program source. A model in D-
Mason is defined by using the subclass of Mason’s model class called SimState
[32]. It contains a discrete-event schedule, a random number generator, and
fields. Pandora has two abstract classes (World and Agent) to represent the
content of any model [28]. Repast HPC does not provide any interface or extend
any class to represent a model [29]. The user has to create and initialize the
Repast HPC components to model their problem.

The literature has many ABMS tools with different approaches, solutions,
implementations and domains. Each tool achieves varying levels of performance
and facilities for different types of users. After this comparison, we can summa-
rize that Care HPS differs from other ABMS tools in the following point:
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e Care HPS was designed to be a tool to do science with agent-based models
that require high performance simulations as the main objective, for both
the application area user and for the HPC expert user.
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6. How to use Care HPS as a scientific instrument

Care HPS was designed to be a scientific instrument for two type of users:
application area researchers and HPC experts. In this section, we will give
some examples of how to use Care HPS from two points of view. In the first, we
will focus on the application area researcher’s point of view with the following
examples: 1) how to implement an environment with an obstacle for a fish;
and 2) how to create and extend an agent. We will not explain all of the
implementation detail, but instead we will focus on the most important aspects.
In the second point of view, we present the implementation of a new hybrid strip
partitioning based on [15]. We will show how to use Care HPS if the HPC expert
user wants to propose a new HPC solution.

6.1. Application area researchers’ point of view

Application area researchers are interested in how to model their problems in
ABMS. Therefore, in this section, we demonstrate how to represent the Agent,
Environment and Model using Care HPS.

Agent-based model requires an environment where interactions occur between
an environment’s objects and the agents. The agents must execute local rules
when these interactions happen. As an example of this kind of interaction, we
can cite the repulsion behavior in the Fish Schooling model. The new fish’s ori-
entation depends on its position and orientation. If there is an obstacle ahead,
the fish must change its direction in order to avoid a collision with the en-
vironment’s objects. Consequently, this fish behavior influences its neighbors
after the local interactions. Listings 1 and 2 show implementations of this fish’s
behavior. We create one linear plan, then we check the intersection between
the plan and the vector equation of the line representing the fish’s position and
direction. The code checks if the next fish position is a root of environment
equation. If so, the repulsion behavior should be executed in order to avoid the
collision.

Listing 1: Creating an environment and its object for the fish schooling
pds_fishx PDS_FISH = new pds_fish ();

/*x Creates an environment with a
plan(az + by + cz + d = 0) defined by
equation: 2xy — 8 x/

environment* ENV = PDS_FISH—>createEnvironment (
new linear_plan (0,2,0,—3));

The agent must call the check_environment method 2 in order to interact
with the environment. This method implements the interactions between the
agent and the environment. The code checks if the collision happens for each
object that has been created in the environment. If there is a collision, then the
repulsion behavior of the agent is executed. Any other behavior of the agent
can be used.
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Listing 2: check_environment implementation

void fish ::check_environment (void){

vector<object*> obj_env = ENV—>getObjects ();

for (vector<objectx>::iterator ob=obj_env.begin ();
ob!=obj_env.end ();
ob++)

if ((*xob)—>check_collision (this—>get_position (),
this—>get_velocity (),
MAXIMUM_VISION_RANGE) )
this—>repulsion (xthis);

Until now, the objects in Care HPS have been represented by linear plan and
circle. Care HPS enables the users to extend the object class by adding other
types of objects, such as surfaces, objects with special characteristics, square or
other types of geometric shapes.

The other important entity of ABMS is the agent, so the application area
researchers need to create or extend an agent to model their problem. To create
a new agent, the user has to follow two steps:

e The user has to create a class that inherited from the agent class.

e The user has to define the methods that represent the behavior of the
agent and call these methods inside the update_agent method.

Application area researchers can face a situation in which extending an agent
is a better option than starting from scratch. To extend an agent, three actions
are required:

e The user just needs to create a new class extending another agent class
and overriding the methods required.

e In Care HPS, a model is related with an agent. Therefore, in order to use
the new agent class, the user has to create a class that extends a concrete
model class. The next step is to override the factory methods that create
the agent in the new model class. These factory methods must call the
constructor of the new agent. Through these factory methods, Care HPS
can dynamically create any agent. This is a key point of Care HPS.

e Finally, the user has to create a pds class extending the previous pds class.
The pds class defines which model will be used in the simulation. The
user must redefine the constructor, destructor and override the getModel
method in order to specify the model that will be created at runtime.

This section briefly showed how simple it is for the user to represent an
environment, model and agent using Care HPS.
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6.2. Ezpert HPC user

One of the main purposes of Care HPS is to enable the expert HPC user
to be able to develop and propose new techniques at HPC for ABMS. In this
section, we give an example of how to develop a new partitioning approach
using Care HPS. The partitioning of data is the distribution of space simulated
throughout the distributed architecture. The space simulated in this context is
composed of agents and an environment. These techniques try to reduce the
communication time among the distributed processes. They also try to evenly
distribute the agents throughout the cores.

We use the strip partitioning proposed in [15] as a base, which is implemented
with a distributed memory paradigm. In this strip partitioning, the agents
and environment are partitioned. This partitioning avoids the objects of the
environment being shared between processes. Consequently, it avoids extra
communication in order to update the state of the objects that are changed
because of the interactions with the agents. In paper [15], we used an Ant
Colony as a case study where we had observed a concentration of ants near
nests and food. This is a natural and correct behavior of the ants in this
model. The problem is that some cores become idle when this behavior occurs.
Therefore, we propose a hybrid strip partitioning with the aim of decreasing the
idleness of cores. We decrease the idleness of these cores through the creation
of OpenMP threads, which are used to compute the extra agents that are in
other cores. This partitioning checks the proportion of the quantity of agents
inside a strip and dynamically creates a number of threads. First, we calculate
an initial number of threads using Formula 3. Where the number_agent is
the total number of agents inside a partition. The total_number_agents is the
total number of agents simulated. And number_cores is the total number of
MPI processes divided by 4. We use four because it fits better with the CPU
architecture but this value is parameterized. Finally, the number of threads is
defined when we apply the rules in accordance with Equation 4.

threads = number_agent /total_number_agents x number_cores (3)
2 if threads =1

threads = < threads if threads >= 2 and threads <=8 (4)
8 if threads > 8

The expert HPC user needs to follow some simple steps to implement a new
partitioning strategy. Note that other extensions can follow the same sequence.
It is possible because all other features have a similar design. The first step is
to create a new partitioning class that inherits partitioning_strip class. The
new partitioning class could be inherited from a partitioning interface, yet
we chose inheriting directly from the partitioning_strip because we reuse all
methods, except the method execute. The next step is the implementation of
partitioning strategy overriding the method called execute. Listing 3 presents
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the implementation of the execute method. In this code, we do a loop paral-
lelization. We dynamically create the number of threads that will execute the
behavior of a set of agents.

Listing 3: Implementation of partitioning strategy.

void partitionig_strip_hybrid ::execute(){
//here goes the other partitioning codes

long thread = number_agent/total_-number_agents*number_cores;
if (abs(num_thread)>=1){
if (abs(thread)==1)
omp_set_num_threads (2);
else if ((abs(thread)>=2) and (abs(thread)<=8))
omp-set_num_threads (abs(thread));
else if (abs(thread)>8)
omp-set_num_threads (8);

#pragma omp parallel default(none) firstprivate (i)
shared (_bucket)
{

unsigned long j;
#pragma omp for private(j) schedule(dynamic) nowait
// For each agent execute its rules.
for (j=0;j<_bucket—>size ();j++)
_bucket—>at (j)—>update_agent ();
}

else{
// Ezecute the loop without thread just with pure MPI

}
3

We have calculated the number of threads required. If the number of threads
is higher than one, it indicates that there is a concentration of agents in the strip.
The higher the number of threads calculated is, the higher the concentration of
agents. We never create more than eight threads. It avoids potential saturation,
resource contention and excessive locks. After finishing the partitioning strategy
implementation, we have to change the concrete class of model that will use
the new partitioning. The only change in this class is the implementation of
the factory method factory_partitioning(). This factory method defines which
partitioning algorithm will be created. The other option is for the user to create
a subclass of a model and to just reimplement this factory method.

The user only has to change the factory method if they want to test other
already-implemented strategies of partitioning, for example. No other changes
are required. Therefore, the expert HPC user can invest time in the HPC tech-
nique instead of doing model implementations or other necessary implementations.

7. Experimental results

We have executed four experiments that explore different abstraction levels.
In order to show that Care HPS reaches the proposed aim. These experiments
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were carried out with three agent-based models as case studies: Fish Schooling,
Ant Colony and Shopping Agent models. In the first experiment, we show that
Care HPS is able to reproduce the interactions among the agents. We will
compare the results of the simulation obtained by Care HPS with the results
obtained using the Netlogo version of the Buyer model proposed by [48]. We
used a simple alignment and replication process in this comparison. Gilbert and
Troitzsch compare three different versions of buyers. They show the increase in
agent intelligence by presenting the number of ticks required by all agents to
buy all of their products. In the second experiment, we will present the result
of the implementation of the fish repulsion behavior. This behavior avoids
the collision of agent with environment. This implementation uses our math
strategy to represent the objects of the environment. In the third experiment,
we will present the results obtained for the hybrid partitioning strip for the Ant
colony proposed in Section 6.2. Lastly, we will present the scalability of Care
HPS using the Buyer model.

All experiments were carried out with an environment with the following
characteristics: 16 nodes with 128 cores distributed in 8 sockets with three cache
levels (AMD Opteron 6200 1.6 GHz, L2 (2MB), L3 (6MB)) , 64 GB RAM per
node) with Gigabit Ethernet. Care HPS was developed using C++ (gcc 4.5.2),
STL (C++ standard template library), MPI namespace (openmpi 1.4.3).

7.1. First experiment

ABMS tools must be able to model agent rules and behaviors. So, this model
can create collective and emergent behavior. It is important that these tools
can reflect the interaction among agents. Moreover, these tools must enable
researchers to improve and analyze the agent behavior under study. The aim of
this experiment is to show that Care HPS goes in this direction.

In this experiment, we accomplish a simple alignment and replication of the
Gilbert and Troitzsch model [48]. The alignment of computational models or
docking is a process to determine whether two models can produce the same
results [49]. Linked to this is the replication, which refers to the creation of a
new implementation of a conceptual model [50].

This model [48] was implemented in Netlogo [27]. Each agent has a list of
products that must be bought in the stores. Which are distributed throughout
an environment. Each shop sells just one type of product. The goal of the agent
is to purchase all of the products on its list. Gilbert and Troitzsch [48] have
developed three versions of the model:

e The first version is the simplest version. Agents randomly walk around
the environment in order to find a shop which sells some product from
their list.

e In the second version, the authors add another behavior. The agents can
see neighboring shops that are inside their covered radius.
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e In the third version, we find the smartest agents. This version has all of the
behaviors of Versions 1 and 2. Moreover, the agents exchange information
about the known shop positions.

These are the two main changes made to replicating the Gilbert and Troitzsch
model with Care HPS. In the first, the environment of the Netlogo is composed
of patches. The environment of Care HPS is represented by a Euclidean space.
Thus, we use the same proportion of space and agents found in Netlogo to
represent the Gilbert and Troitzsch model in Care HPS. In the second change,
the Netlogo implementation is supported by cellular automata theory. There-
fore, some functional features such as seeing neighboring shops are implemented
using the Moore Neighborhood concept. This concept was replaced in Care HPS
by covering radius. Thus, the agents interact with objects of the environment or
agents that are inside this radius. We are concerned with establishing whether
the replicated model creates output sufficiently similar to the outputs of the
Gilbert and Troitzsch model. If we are able to establish this, then we can assume
that Care HPS implemented a successful replication [50]. For this purpose,
we use a category of replication standard defined by [49] called distributional
equivalence. Whose aim is ”showing that two models produce distributions of
results that cannot be distinguished statistically”.

For this statistic proof, we used the data presented in Table 2. This table
depicts the average of the ticks of each version of the model for Netlogo and
Care HPS. Gilbert and Troitzsch [48] executed their simulation 100 times. They
got an average of 14310 ticks for the first buyer agent implementation. For the
second buyer agent version, the authors decreased the number of ticks to 6983,
and the last version of the buyer agent obtained approximately 2000 ticks. The
faster the buyers buy all of their products, the smarter the model is. Therefore,
the smartest version tends to finish the simulation in fewer simulation steps
(ticks).

Table 2: Comparison of ticks of the solutions

Version 1 | Version 2 | Version 3
Net.logoz Gilbert and 14310 6983 2000
Troitzsch
Care HPS 19082 1361 348

We executed the t-test on these data in order to check if the average number
of ticks was significantly different. There is a difference between the group
average, if the p-value is less than 0.05. In this case, the resulting p-value was
0.81. Therefore, there is no significant difference between the average of ticks of
these two samples. This means that the ticks produced by the two models are
similar.

Moreover, the data of Table 2 shows that the number of ticks in Care HPS
version decreases as well in the different versions. Thus, this experiment shows
that Care HPS can model agents and their behaviors. The decrease in ticks
in the versions shows that there are interactions among the agents, as well
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as showing that changes in the agent’s behavior influence the results of the
simulation.

7.2. Second experiment

In this experiment, we will use Fish Schooling as a case study. Fish Schooling
is a behavior in which a group of fish are swimming in harmonious patterns. It
is composed of many fish of the same species. And it can be observed in almost
80 percent of the more than 20,000 known fish species in some phase of their
life cycle. Fish schooling is one of the most common social groups in nature.
This is an example of a self-organized system, where we find a leaderless, non-
hierarchical and decentralized structure. This social aggregation shows complex
emergent properties such as strong cohesion and a high level of synchronization.
A collective behavior emerges as a result of local interactions between fish that
are within a limited vision range.

We have implemented the fish schooling biological model described in [51]
and [52]. This model takes into account that a new fish’s position and orientation
depends on the position and orientation of a fixed number of nearest-neighbors.
The model identifies three vision areas: attraction, repulsion and parallel ori-
entation (see Figure 3). Depending on the position of its neighbors, the fish
chooses one of these behaviors. In the parallel orientation behavior, the group
moves in the same direction. Attraction behavior maintains the cohesion of the
group. And, the repulsion behavior avoids a collision between the fish.

Attraction area

Parallel Orientation area

@ \ Repulsion area

Non visible area

Figure 3: Fish’s vision areas.

Figure 4 shows the result of the fish repulsion behavior for avoiding collision.
This figure is an environment that represents a sea. In this environment, there
is a school of fish swimming represented by agents in red and green. The yellow
lattice is the obstacle created in order to show the interactions among the fish
and the objects of the environment. This figure has a sequence of images of the
fish school swimming towards the obstacle in different moments of the simulation
(steps). When the fish ”see” the obstacle (around steps 205 and 375), each fish
executes its repulsion behavior and the collision is avoided.

Each fish can see the obstacle because each fish asks the environment if there
is some obstacle inside its radius. In terms of code, it is implemented just by
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Fish schooling avoiding obstacle
8192 Fish
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Figure 4: Fish repulsion behavior to avoid the collision. This experiment was executed in two
cores using 8192 agents.

checking the intersection between the plan created and the vector equation of a
line that represents the agent’s position and direction (see Subsection 4.1).

This approach can be used to model other behaviors and other types of in-
teractions between agents and the environment. As an example, we can cite
the Ant Colony model [53], which has two main rules: searching for food and
bringing the food to the nest. The ant moves randomly throughout the en-
vironment. The ant executes three procedures. Where we can find different
interactions reproducing different behaviors, when it finds food:

e The ants drop a chemical in the environment. The chemicals are objects
of a type circle that are created dynamically to represent the pheromone.
The smell of the pheromone is reduced, decreasing the radius of circle.

e The ants ”eat” the food when they find it. The food is represented per
circle. The radius of the circle is decreased when an ant finds it. This
means that the food was eaten by an ant.

e The ants carry the food to the nest. Another example is the Shopping
model, where the buyer buys its product when it finds the store.

This experiment highlights three things:

e Care HPS is able to represent an environment and its objects using a math
approach.
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e Care HPS enables the interaction between agents and the objects of the
environment.

e Care HPS enables the representation of simple rules in agents, and these
simple rules can generate a collective behavior after agent interactions.

In addition, it is important to note that the user can choose between two
built-in (circle and linear plan) objects. Alternatively, the user can create their
own object to represent their model. The user also defines the behavior executed
after the interaction with the environment. Therefore, Care HPS offers many
possibilities for representations of the environment and its interactions with
agents. Additional built-in objects will be included in future versions of Care
HPS.

7.8. Third experiment

The strip partitioning proposed in [54] has some heuristics in order to dis-
tribute the strips throughout the architecture. The experiments conducted in
that paper ([54]) shows that the ants concentrate their movements around the
nest and food. The problem is that some cores have an overload while others
are underloaded. The hybrid strip partitioning creates threads dynamically in
order to compensate the idle cores in this scenario.

The experiments were carried out for 1000, 2500, 5000 and 10000 agents, and,
they were executed in 64 cores for the pure MPI strip partitioning and hybrid
strip partitioning. For hybrid partitioning, n threads were created between the
intervals [2..8] for each MPT process. The number of threads created depended
on the load of MPI processes. This follows the formula defined in Equation 4.
Figure 5 presents the total execution obtained from the two versions of the strip
partitioning algorithm.

As we can observe in Figure 5, the hybrid partitioning strip approach con-
siderably reduces the total execution time of the simulation. Two aspects are
important to note:

e All ants in this experiment emerge from the nest as specified in the Ant
Colony model. This means that all of the ants in the simulation are in the
same core at step zero. During the simulation execution, the agents start
to migrate to other strips. The cores which contain the nest and food will
always be in higher demand, while others might not be completely busy.

e We execute the experiment taking into account the worst partitioning
heuristic in accordance with [15]. In the horizontal fixed heuristic, there
is no special mapping policy nor is the computing cost of each strip taken
into account. In this heuristic, each strip is allocated to one core.

After the results presented in Figure 5, we executed another test in order
to confirm the overload effect of centralized agents in a few strips. We have
executed the experiment distributing 10000 ants uniformly throughout the en-
vironment. For MPI and Hybrid version approaches, we got 2168.65 seconds
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Figure 5: Total execution time of pure MPI and Hybrid strip partitioning algorithm.

and 3264.45 seconds, respectively. As we can see, the performance results are
completely different. Firstly, all of the total execution times are lower than the
previous experiments. This occurs because the ants are distributed over all of
the strips. Therefore, the ants can find all of the food in the environment faster.
Secondly, the agents are better distributed throughout the environment. Thus,
the dynamic creation of threads overloads the cores because the number of idle
cores is low. As a consequence, this results in a worse total execution time for
the hybrid approach.

These results show that the hybrid partitioning strip is an interesting ap-
proach when there is a high concentration of agents in the same region of a
simulated space. However, some questions emerge: Is the number of threads
created appropriate for the size of the problem and the cores available? Does
the hybrid partitioning strip have good results if a heuristic with better mapping
is applied? What are the results of this hybrid partitioning if we change the
agent to a Buyer? Care HPS proposes to provide features to easily answer these
types of questions with just a few extensions and implementations of code.

7.4. Fourth experiment

In this experiment, we will approach scalability. Scalability is an important
measure for parallel and distributed simulation. Simulations require a minimum
number of executions in order to obtain data that is statistically reliable for
a correct output analysis. In [13], it is possible to find some techniques for
identifying the appropriate number of steps or the number of complete executions
required for a simulation. Generally, this number of required simulations is
high enough to require a fast single execution. Therefore, the solution must be
scalable in order to adjust the number of cores to the time restrictions. This can
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be illustrated briefly by Figure 6. The time required to execute in one core is
around 4610 seconds. Suppose this model requires at least 10 executions of the
simulation to give an appropriate output. This same result could be obtained
using 64 cores. But the total execution time would decrease from almost 13
hours to approximately 1 hour.

Scalability of Buyer Version 3
Simulation of 10000 agents in 50000 steps

5000 -

4000

3000

2000

Time in seconds

1000

Cores

Figure 6: Scalability of Buyer Version 3 with 10000 agents in 50000 steps.

Scalability of Buyer Version 3
Simulation of 50000 agents in 50000 steps

30000 T T T T T T T

25000

20000
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Figure 7: Scalability of Buyer Version 3 with 50000 agents in 50000 steps.

We have executed all experiments of this section with Buyer Version 3, where
each one had to buy 10 products. Figures 6 and 7 provide the results obtained
from the execution of the model. They show the decrease in time when we
include more processors. This occurs because more processors are available to
execute the same workload. Therefore, the total workload is divided among
more units of processing. If the solution is scalable, the execution time will
decrease when the number of processors increases. As it is possible to note, the
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decrease in time is not proportional to the number of cores. It occurs because
of the communication between the processes. In addition, there are random
movements of agents in the environment. The other factor is the idleness of the
processors due to the movement of agents on the partitions. All these issues are
recurrent aspects in parallel and distributed research for ABMS.

In order to show that Care HPS can handle large models, we executed
another test with a greater number of agents (Figure 8). If we consider a
fixed number of cores (64 cores) and we increment the complexity of agents or
the number of agents in the simulation, the execution time will increase. As
we can see, Care HPS is able to carry out large numbers of agents. Therefore,
Care HPS can execute larger simulations by just including more cores to solve
the problem modeled, as depicted in Figure 9. We executed the simulation for
200000 and 250000 agents and increased the number of cores to get a lower
execution time. The results show that scalable behavior is sustained in Care
HPS. Besides scalability, Care HPS can handle high quantities of agents and
models with high complexity. This also enables the user to adjust the parallel
and distributed simulation to their needs and computational resources.

Scalability of Buyer Version 3
Simulation in 64 cores in 50000 steps

12000 T

695890

10000 ~

8000

6000

Time in seconds

4000 -

<
2000 - °
©

5K 25K 50k 75k 100k 150k 175k 200k 250k
Number of agents

Figure 8: Scalability of Buyer Version 3 in 50000 steps executed in 64 cores.

8. Conclusion

In this paper, we introduce Care High Performance Simulation (HPS). Care
HPS is more than a tool for agent-based modeling and simulation in a parallel

and distributed architecture. Care HPS is a scientific instrument that enables
both:

e application area researchers to gain knowledge about the system under
study using agent-based models that require a high performance computing
solution. This is possible because Care HPS offers a well defined and
simple interface for this type of user in which all HPC complexity is hidden.
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Scalability of Buyer Version 3
Simulation of 200000 and 250000 agents in 50000 steps
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Figure 9: Scalability of Buyer Version 3 in 50000 steps to 200k and 250k agents executed in
64, 128, 192 and 256 cores.

e HPC expert users to develop techniques of high performance parallel
and distributed simulation for agent-based model problems without high
programming effort. Care HPS was projected using good object-oriented
design practices, which enable the extension and reuse of the main HPS
features.

As part of our main findings and contributions, we present Care HPS.
We show through experimentation that Care HPS meets its objective, and it
can be used as a scientific instrument for agent-based modeling that requires
high performance parallel and distributed simulations. Currently, we are im-
plementing the agent-based model for the assessment of Aedes Aegypti pupal
productivity proposed in [54] using Care HPS. The aim is to use Care HPS to
simulate a dengue outbreak that is both a demand computing problem and a real
problem. At present, Care HPS continues in the development and improvement
of its features. We have planned the implementation of the following features:

e Include a new layer in Care HPS in order to support the execution of the
application area researchers’ models in a cloud.

e Support for many types of agents within the same simulation space.
e Automatic visualization generation of the simulation.

e Create an output analysis module.

e GUI interface to define the agent and environment.

e Provide more built-in load balancing, load computing, partitioning strate-
gies, environment and objects.
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e Provide a script for model generation for the user. The idea is for some
user input to automatically create the model classes for the application
area researchers;

e Provide affinity of processes and threads.
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