
Journal Pre-proof

ACSmt: A plugin for eclipse papyrus to model systems of systems

Sean Kristian Remond Harbo, Emil Palmelund Voldby, Jonas Madsen and Michele Albano

PII: S0167-6423(23)00090-4

DOI: https://doi.org/10.1016/j.scico.2023.103008

Reference: SCICO 103008

To appear in: Science of Computer Programming

Received date: 9 December 2022

Revised date: 7 August 2023

Accepted date: 7 August 2023

Please cite this article as: S.K. Remond Harbo, E. Palmelund Voldby, J. Madsen et al., ACSmt: A plugin for eclipse papyrus to model
systems of systems, Science of Computer Programming, 103008, doi: https://doi.org/10.1016/j.scico.2023.103008.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2023 Published by Elsevier.

https://doi.org/10.1016/j.scico.2023.103008
https://doi.org/10.1016/j.scico.2023.103008

Highlights

• The Abstract Communicating Systems (ACS) System of System (SoS) engineering methodology presents potential for designing com-
plex SoS-based platforms.

• ACS modeling tool (ACSmt) is the first tool implementing the ACS methodology.
• ACSmt is implemented as an Eclipse Papyrus plugin, which supports UML 2.5 and is well-accepted in the industry.
• To facilitate ACSmt implementation in Papyrus, ACS was mapped on UML 2.5. This also concurs to a gentler learning curve.
• ACSmt allows for verifying structural properties of the designed SoS.
• The open source code of ACSmt can be used as reference when implementing plugins for Papyrus.

ACSmt: A Plugin for Eclipse Papyrus to Model

Systems of Systems

Sean Kristian Remond Harbo

Department of Computer Science, Aalborg University, Selma Lagerløfs Vej 300, 9220

Aalborg, Denmark

Emil Palmelund Voldby

Department of Computer Science, Aalborg University, Selma Lagerløfs Vej 300, 9220

Aalborg, Denmark

Jonas Madsen

Department of Computer Science, Aalborg University, Selma Lagerløfs Vej 300, 9220

Aalborg, Denmark

Michele Albano

Department of Computer Science, Aalborg University, Selma Lagerløfs Vej 300, 9220
Aalborg, Denmark

Abstract

While System of Systems (SoS) architectures for large and complex soft-
ware projects are gaining momentum, the commonly used modeling and
tooling approaches are still general-purpose or oriented towards single sys-
tems. Developers could benefit from methods and tools that avoid system-
centric details in favor of native SoS modeling support. This paper presents
a diagram-centric modeling tool with native SoS modeling support. The tool
is implemented as a plugin for the Eclipse Papyrus modeling tool. The tool
was showcased as a demo at MODELS’22. The code of the plugin is freely
available via Github.

Keywords: Papyrus, UML Profile, Metamodel, SoS modeling, DSML

Preprint submitted to Science of Computer Programming August 9, 2023

Metadata1

Nr. Code metadata description Please fill in this column
C1 Current code version v1.0
C2 Permanent link to code/reposi-

tory used for this code version
https://github.com/acs-

modeling-tool/acs-

modeling-tool/tree/v_

1.0

C3 Permanent link to Reproducible
Capsule

C4 Legal Code License GNU General Public License
version 3.0 (GPL-3.0)

C5 Code versioning system used git
C6 Software code languages, tools,

and services used
Java, Eclipse Modeling
Tools, Papyrus

C7 Compilation requirements, oper-
ating environments and depen-
dencies

Support for Windows, Linux
& MacOS. Dependency on
Eclipse Modeling Tools 2023-
03 and Papyrus

C8 If available, link to developer doc-
umentation/manual

https://github.com/acs-

modeling-tool/acs-

modeling-tool/wiki

C9 Support email for questions seankrh@cs.aau.dk

Table 1: Code metadata (mandatory)

1. Motivation and Significance2

In recent years the number of internet-connected devices has continued to3

rise [1] and, as software projects get larger and more complex, current trends4

aim to support applications by means of a System of Systems (SoS), a system5

being defined by operational independence (they can fulfill valid purposes in6

their own right) and by managerial independence (the systems are managed7

for their own purposes rather than the purposes of the whole) [2, 3].8

There is general agreement that modeling the systems [4] can be useful9

for documenting and driving the development process [5], for verifying the10

systems using formal methods [6], and for code generation [7]. Current ap-11

proaches to SoS modeling and design inherits largely from system modeling12

and design.13

2

https://github.com/acs-modeling-tool/acs-modeling-tool/tree/v_1.0
https://github.com/acs-modeling-tool/acs-modeling-tool/tree/v_1.0
https://github.com/acs-modeling-tool/acs-modeling-tool/tree/v_1.0
https://github.com/acs-modeling-tool/acs-modeling-tool/tree/v_1.0
https://github.com/acs-modeling-tool/acs-modeling-tool/wiki
https://github.com/acs-modeling-tool/acs-modeling-tool/wiki
https://github.com/acs-modeling-tool/acs-modeling-tool/wiki
seankrh@cs.aau.dk

Our work makes use of the Abstract Communicating Systems (ACS) [8]14

SoS engineering methodology, which is a novel approach that focuses on15

the communication activities of the systems that are part of the SoS. To16

ease the modeling efforts, ACS considers that all internal computations of17

systems are represented by time delays. Thus, the SoS designer can focus on18

describing the structure of the SoS and on the behavior of each system, with19

the goal of verifying static and dynamic properties of the SoS (its structure,20

communication timing, ordering of the messages, type correctness). However,21

several alternatives exist. Given their characteristics, we argue that ACS is22

a better fit for a methodology that is both useful to support SoS modeling,23

verification and code generation, while providing a relatively shallow learning24

curve.25

Designing for Adaptability and evolutioN in System of systems Engineer-26

ing (DANSE) [9] uses contract-driven design to support modeling, validation,27

and design correction related to system interactions. The official DANSE im-28

plementation integrates a dozen different tools, extensions, and frameworks29

into one tool-suite [10]. Even though the DANSE methodology appears ef-30

fective for SoSE and long-term development, it requires the user to learn a31

plethora of techniques and tools, some of them being still works in progress,32

which can be an issue since DANSE was discontinued in 2015.33

The Comprehensive Modelling for Advanced Systems of Systems (COM-34

PASS) consortium focuses on supporting the modeling of complex and het-35

erogeneous SoSs [11] using both text- and graphics-based SoS-modeling tools36

centered around the text-based COMPASS Modelling Language (CML) [11].37

CML defines purpose-built semantics for specifying assumptions and guaran-38

tees (e.g. contracts) about SoSs, which allows for automated fault detection39

using static analysis tools such as theorem provers and model checkers. How-40

ever, apart from the incomplete state of the project, CML is general-purpose41

and details-oriented, and models might become hard to maintain as they42

grow in size. On the other hand, ACS abstracts away from the internal logic43

of the systems, and it uses the Structure diagram to capture the hierarchy44

in the structure of the SoS, leading to more compact models.45

The approach proposed by the AMADEOS consortium [12] makes use of46

SysML for SoS modeling, and it can specify very diverse aspects of a SoS.47

However, we argue that it suffers from the same issues as DANSE [9], since48

its conceptual model is articulated on seven different viewpoints, each one49

modeled as a different SysML profile, leading to a steep learning curve.50

SosADL [13] is a language used for SoS modeling, and it bases its for-51

malism on π-calculus. The formal specification of a SoS can then be speci-52

fied with the textual SosADL language or within the Architecture Develop-53

ment Environment SosADE, which provides a graphical concrete syntax for54

3

SosADL. Later on, SosADL can be compiled into UPPAAL [14] models or55

other artifacts for verification. This latter approach is similar to ACS, still56

its models are inherently very detailed. One of the strengths of ACS is in57

its hierarchical structure that allows to build Composites, which can contain58

other Composites or atomic systems, leading to a structured definition of a59

SoS and more abstract models.60

CD++ [15] is a tool for DEVS, which is a low-level formalism for modeling61

complex dynamic systems using a discrete event abstraction. DEVS has a62

more fine grained vision than ACS of the atomic systems, called atomic63

models. In fact, CD++ allows atomic models to be written in C++ and64

linked to the simulation tool. The vision of ACS is different than CD++,65

in that the internal execution of the atomic systems are abstracted away,66

to focus on the communication capabilities of the systems. On the other67

hand, DEVS was used by a number of tools [16] as a simulation ”assembly68

language” to which models in other formalisms can be mapped, and it could69

be interesting to map ACS over DEVS.70

ModelicaML [17] combines Modelica, UML and SysML into a formalism71

for model-driven development of cyber physical systems. Its approach is72

similar to ACS, with the main difference being its reliance on Modelica’s73

formal executable modeling for analyses and simulation, while ACS has no74

such requirement and it allows the models to be abstract with respect to75

their internal logic.76

This paper introduces ACS modeling tool (ACSmt), which is an imple-77

mentation of the ACS methodology as a plugin for Eclipse Papyrus [18],78

which is well accepted by the industry and academia alike as a prominent79

system modeling tool. An advantage of ACSmt is that, since the IDE is based80

on Eclipse Papyrus, experienced users should have an easier time adopting81

ACSmt IDE. Another contribution of this work is related to Eclipse Pa-82

pyrus itself, since its developer documentation [19] is sometimes lacking,83

and the code of ACSmt (https://github.com/acs-modeling-tool/acs-84

modeling-tool) is open source and well documented and can be used as85

reference for further development of Papyrus plugins.86

2. Software Description87

There exist several open-source modeling editors [20, 18, 21], that might88

be utilized as a basis to create the ACSmt tool. These existing projects89

represent an opportunity to capitalize on existing code and established best90

practices. More than ten domain specific modeling projects (and various91

other projects) have some software support for their graphical notation using92

Eclipse Papyrus [22, 23, 24, 25, 19, 26]. Papyrus has been supported for a93

4

https://github.com/acs-modeling-tool/acs-modeling-tool
https://github.com/acs-modeling-tool/acs-modeling-tool
https://github.com/acs-modeling-tool/acs-modeling-tool

Figure 1: ACS Structural components as part of the UML profile.

long time, evident by the approximately 17.000 commits it has received since94

2009 [27]. We considered Papyrus to be a mature and well-tested tool, suited95

to create the ACS tool. For this reason, the dedicated ACS tool and IDE is96

implemented using the Papyrus framework.97

2.1. Software Architecture98

Papyrus is a plugin for the Eclipse platform, and it supports UML 2.5 [25]99

natively. Thus, it was deemed useful to map the ACS methodology on the100

UML 2.5 metamodel, in which ACS concepts are mapped to extensions101

of UML concepts. The ACS UML profile was created using the software102

“Eclipse Modeling Tools v. 2023-03” [28], which provides a great deal of103

facilities to ease the development of plugins for “Eclipse Papyrus v. 2023-104

03” [18], such as templates, code-generation, file management, and various105

editors (profile, code, etc.). The ACS UML profile contains the ACS Struc-106

ture (see Fig.1), Behavior, and Data layers. More information on this map-107

ping can be accessed on [29]. The ACS UML profile is compiled by Eclipse108

Modeling Tools into a number of specialized plugins, which are run together109

and are deployed as a single, fully-functioning ACSmt executable for Win-110

dows, Mac, and Linux.111

2.1.1. Plugins112

Each plugin of ACSmt is dedicated to a specific function in the modeling113

tool, namely UML Profile, Wizard, Architecture, Palette, Properties, and114

Validation.115

The UML profile plugin contains the UML profile for ACS (see for exam-116

ple the ACS Structural components in the profile in Fig.1) and in this sense it117

5

Figure 2: ACSmt: Structure example [30]

implements the modeling constructs of the ACS methodology, and the Java118

classes that Papyrus generates from it. The Wizard plugin is accessible from119

the IDE menu, and it is used to create an empty ACS Project containing120

a default empty Structure Diagram (see Section 2.2 and [8] for information121

regarding the diagrams composing the ACS methodology). The Architecture122

plugin adds the ACS look & feel such that diagrams, colors and styles ele-123

ments are the ones expected by the ACS methodology, instead of the UML124

elements they extend. This is achieved for example with a Cascading Style125

Sheet type file. The Palette plugin presents a toolbar specific to ACS, which126

contains the ACS elements that are usable in the new ACS diagram types.127

The toolbar is context-specific and for example only Controller-related ele-128

ments are visible when editing a Controller Diagram. The Properties plugin129

adds an ACS menu to the Properties view of Papyrus, which contains ACS-130

specific properties of the elements added by the UML Profile plugin. The131

Validation plugin is the entry point to the model-wide validation capabilities132

of ACS, it ensures that the model is structurally correct, and provides error133

messages that hint to a solution to a bad model. As of writing, ACSmt can134

validate the Structure diagram and some of the other diagrams. Still, the135

tool is a work in progress and it lacks the majority of validation functionality136

related to the Behavior and Data layers.137

2.1.2. Software Setup138

The ACSmt github wiki page contains a guide for setting up the software.139

6

Figure 3: ACSmt: Controller example [30]

2.1.3. Finished Result140

The ACS IDE is shown in Figures 2 (Structure diagram) and 3 (Con-141

troller diagram). Given the limitations of Papyrus, the presented Structure142

Diagram (Fig. 2) does not support Link Connection Directionality & Car-143

dinality and Link Hub shape. However, overall the modeling tool facilitates144

modeling and structural validation of ACS models in a style similar to ex-145

isting Papyrus projects, which is an advantage to ease ACS adoption by the146

Papyrus community. The complete source code and a compiled release build147

is freely available on GitHub [30].148

2.2. Software Functionalities149

Broadly speaking, ACSmt currently supports creating ACS projects, as150

well as building and structurally verifying ACS models in custom made dia-151

grams to look the part. An ACS model consists of the “Structural”, “Behav-152

ioral”, and “Data” layers (see Figures 4a and 4b, and Listing 1, respectively).153

ACSmt implements a Structure Diagram for the structure layer, which mod-154

els the structure of the SoS and the connections between the systems within155

that communicate. Next, ACSmt implements the Controller Diagram and156

Event Diagram for the behavior layer, which models the timing and com-157

munication characteristics of the aforementioned systems by means of state158

machines that exchange messages with each other. Lastly, ACSmt imple-159

ments a Type Diagram for the otherwise textual data layer, which models160

the structure of the types of data/messages communicated between systems.161

For now, this approximation is the only way to include ACS types in ACSmt.162

To validate an ACS model, right-click anywhere in any ACS diagram and163

press “Model validation > Validate model”.164

7

(a) Structure Diagram

(b) A representation of the behavior of and in-
teraction between the Client and Coordinator
systems from Figure 4a

Figure 4: Examples of a Structure diagram, and Controller and Event diagrams

Message = (// A record

String message, // A field with type "String"

Urgency urgency, // A field with type "Urgency"

num? deadline // A field with type "nullable number"

) {

.message._elem."a-zA-Z ", // Constraint array element values

.message.[[1;100]], // Constraint array size

.deadline.[0;+inf], // Constraint number-value

.deadline.(0) // Decimal precision = '0' (integer)

}

Listing 1: Definition of ”Message” type mentioned in the Event Diagrams of Figure 4b.

3. Illustrative Examples165

ACSmt was demonstrated at the MODELS’22 conference [31], and a video166

of it is available at https://youtu.be/RT_9SuwAaRA.167

4. Impact168

The implemented ACSmt is, to the best of our knowledge, the only tool169

implementing the ACS methodology [8], and it does that as an extension of170

Eclipse Papyrus [27], which is well-accepted in the industry. Moreover, the171

ACS methodology is mapped on UML 2.5 through a UML Profile. Together,172

these characteristics allow for a quick learning for the practitioner. Apart173

from demonstrating ACSmt at a flagship conference [31], we have performed174

usability testing (reported on in [29]) with a group of professional designers175

and developers from a large industry from France, and a group from a SME176

from Hungary. The feedback has been quite positive and it was used to177

8

https://youtu.be/RT_9SuwAaRA

improve the tool further, and in particular to improve the styling of the user178

interface.179

ACSmt poses an opportunity to introduce the ACS methodology’s princi-180

ples and ideas to industry experts and to explore the efficacy and soundness181

thereof, where ACS itself explores a new approach to view, model, and verify182

SoSs, where all diagrams and model-components are interconnected.183

It can be argued that the existence of an IDE heavily affects the recep-184

tion of the formalism it implements. Moreover, ACSmt also explores ACS’s185

compatibility with traditional diagrammatic editors, and whether new ap-186

proaches to such editors are required. This might be the case since the187

tight-woven relationships between an ACS model’s diagrams and types are188

difficult to capture using the traditional approach of describing each one with189

its own diagram, or splitting a bigger model into a number of smaller dia-190

grams. One such new approach could be to embed the different Behavior191

and Data diagrams of an ACS model into its Structure diagram, so that the192

entire model seamlessly fits together while respecting the inherent hierarchy193

typical of a SoS.194

5. Future Plans195

We are in the process of integrating ACSmt with the UPPAAL model196

checker [14], which is an industry leader for verification of timed systems. By197

means of a novel plugin, ACSmt will create an XML representation of a SoS,198

which will be fed to UPPAAL to check the timing and ordering properties199

defined in the Behaviour layer of the model.200

We are interacting with the Eclipse Arrowhead project [32], which is a201

framework for the support of industrial SoSs. The aim of this joint work is to202

allow ACS to be used at design time for Arrowhead-compliant systems, and203

to extend ACSmt to generate a configuration for the systems participating204

in a Arrowhead-compliant SoS.205

Acknowledgements206

Research funded in part by the ERC Advanced Grant LASSO; by the207

S4OS Villum Investigator Grant (37819) from Villum Fonden.208

We thank Saadia Dhouib (CEA List, France) and Géza Kulcsár (IncQuery209

Labs, Hungary) for their support while designing and implementing our tool210

as a plugin for the Eclipse Framework, and for participating in usability211

testing of ACSmt, which is reported in [29].212

9

References213

[1] S. Al-Sarawi, M. Anbar, R. Abdullah, A. B. Al Hawari, Internet of things214

market analysis forecasts, 2020–2030, in: 2020 Fourth World Conference215

on Smart Trends in Systems, Security and Sustainability (WorldS4),216

2020, pp. 449–453. doi:10.1109/WorldS450073.2020.9210375.217

[2] M. W. Maier, Architecting principles for systems-of-systems, Systems218

Engineering: The Journal of the International Council on Systems En-219

gineering 1 (4) (1998) 267–284.220

[3] J. Axelsson, A refined terminology on system-of-systems substructure221

and constituent system states, in: 2019 14th Annual System of Systems222

Engineering Conference (SoSE), IEEE, Tampere, Finland, 2019, pp. 31–223

36.224

[4] A. M. Madni, M. Sievers, Model-based systems engineering: Motivation,225

current status, and research opportunities, Systems Engineering 21 (3)226

(2018) 172–190.227

[5] M. A. Mohamed, M. Challenger, G. Kardas, Applications of model-228

driven engineering in cyber-physical systems: A systematic mapping229

study, Journal of Computer Languages 59 (2020) 100972.230

[6] P. L. Laursen, V. A. T. Trinh, A. E. Haxthausen, Formal modelling and231

verification of a distributed railway interlocking system using uppaal, in:232

International Symposium on Leveraging Applications of Formal Meth-233

ods, Springer, Rhodes , Greece, 2020, pp. 415–433.234

[7] M. Albano, B. Nielsen, Interoperability by construction: code gener-235

ation for arrowhead clients, in: 2020 IEEE Conference on Industrial236

Cyberphysical Systems (ICPS), Vol. 1, IEEE, Tampere, Finland, 2020,237

pp. 429–432. doi:10.1109/ICPS48405.2020.9274746.238

[8] S. K. R. Harbo, M. K. Kristensen, E. P. Voldby, S. V. Andersen, F. C.239

Petersen, M. Albano, Communication oriented modeling of evolving sys-240

tems of systems, in: 2021 16th Annual System of Systems Engineering241

Conference (SoSE), IEEE, Väster̊as, Sweden, 2021, pp. 88–94.242

[9] DANSE Consortium, Danse - designing for adaptability and evolution243

in system of systems engineering., https://web.archive.org/web/244

20210424073231/http://www.danseip.eu/home/index.html (2015).245

10

https://doi.org/10.1109/WorldS450073.2020.9210375
https://doi.org/10.1109/ICPS48405.2020.9274746
https://web.archive.org/web/20210424073231/http://www.danseip.eu/home/index.html
https://web.archive.org/web/20210424073231/http://www.danseip.eu/home/index.html
https://web.archive.org/web/20210424073231/http://www.danseip.eu/home/index.html

[10] DANSE Consortium, Configure danse tool-net environment.,246

https://web.archive.org/web/20210424073233/http://www.247

danseip.eu/home/configure-danse-tool-net-environment.html248

(2015).249

[11] COMPASS Consortium, Comprehensive modelling for advanced sys-250

tems of systems., http://www.compass-research.eu/resources/251

COMPASSdatasheet.pdf (2014).252

[12] M. Mori, A. Ceccarelli, P. Lollini, B. Frömel, F. Brancati, A. Bondavalli,253

Systems-of-systems modeling using a comprehensive viewpoint-based254

sysml profile, Journal of Software: Evolution and Process 30 (3) (2018)255

e1878.256

[13] F. Oquendo, Formally describing the software architecture of systems-257

of-systems with sosadl, in: 2016 11th Annual System of Systems Engi-258

neering Conference (SoSE), IEEE, 2016, pp. 1–6.259

[14] UPPAAL developers, Features of the uppaal model checking tool,260

https://uppaal.org/features/ (2023).261

[15] G. Wainer, Cd++: a toolkit to develop devs models, Software: Practice262

and Experience 32 (13) (2002) 1261–1306.263

[16] Y. Van Tendeloo, H. Vangheluwe, An evaluation of devs simulation tools,264

Simulation 93 (2) (2017) 103–121.265

[17] L. Zhang, Modeling large scale complex cyber physical control systems266

based on system of systems engineering approach, in: 2014 20th Inter-267

national Conference on Automation and Computing, IEEE, 2014, pp.268

55–60.269

[18] The Eclipse Foundation, Eclipse papyrus™ modeling environment,270

https://www.eclipse.org/papyrus/ (2022).271

[19] The Eclipse Foundation, Papyrus sysml git, https://git.eclipse.272

org/c/papyrus/org.eclipse.papyrus-sysml16.git (2022).273

[20] T. C. Lethbridge, A. Forward, O. Badreddin, D. Brestovansky, M. Gar-274

zon, H. Aljamaan, S. Eid, A. Husseini Orabi, M. Husseini Orabi, V. Ab-275

delzad, O. Adesina, A. Alghamdi, A. Algablan, A. Zakariapour, Umple:276

Model-driven development for open source and education, Science of277

Computer Programming 208 (2021) 102665. doi:https://doi.org/278

10.1016/j.scico.2021.102665.279

11

https://web.archive.org/web/20210424073233/http://www.danseip.eu/home/configure-danse-tool-net-environment.html
https://web.archive.org/web/20210424073233/http://www.danseip.eu/home/configure-danse-tool-net-environment.html
https://web.archive.org/web/20210424073233/http://www.danseip.eu/home/configure-danse-tool-net-environment.html
http://www.compass-research.eu/resources/COMPASSdatasheet.pdf
http://www.compass-research.eu/resources/COMPASSdatasheet.pdf
http://www.compass-research.eu/resources/COMPASSdatasheet.pdf
https://uppaal.org/features/
https://www.eclipse.org/papyrus/
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-sysml16.git
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-sysml16.git
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-sysml16.git
https://doi.org/https://doi.org/10.1016/j.scico.2021.102665
https://doi.org/https://doi.org/10.1016/j.scico.2021.102665
https://doi.org/https://doi.org/10.1016/j.scico.2021.102665

[21] Various Authors, Modelio the open source modeling environment,280

https://github.com/ModelioOpenSource/Modelio (2023).281

[22] B. Maggi, Papyrus-list, https://github.com/bmaggi/Papyrus-List282

(2020).283

[23] The Eclipse Foundation, Papyrus robotics git, https://git.eclipse.284

org/c/papyrus/org.eclipse.papyrus-robotics.git (2022).285

[24] The Eclipse Foundation, Papyrus rt git, https://git.eclipse.org/c/286

papyrus-rt/org.eclipse.papyrus-rt.git (2017).287

[25] The Eclipse Foundation, Papyrus uml light git, https://github.com/288

eclipsesource/papyrus-umllight (2019).289

[26] The Eclipse Foundation, Papyrus opcua git, https://github.com/290

model-UA/papyrus-opcua-plugin (2021).291

[27] Various Authors, index-org.eclipse.papyrus.git, https://git.eclipse.292

org/c/papyrus/org.eclipse.papyrus.git/ (2023).293

[28] The Eclipse Foundation, Eclipse modeling tools, https://www.294

eclipse.org/downloads/packages/release/2022-03/r/eclipse-295

modeling-tools (2022).296

[29] E. P. Voldby, J. Madsen, S. K. R. Harbo, A modeling297

tool for system of systems, https://projekter.aau.dk/298

projekter/en/studentthesis/a-modeling-tool-for-system-of-299

systems(b51142c3-e698-41d2-bea6-716b8cc79461).html (2022).300

[30] S. K. Remond Harbo, E. Palmelund Voldby, J. Madsen, M. Al-301

bano, The acs modeling tool, https://github.com/acs-modeling-302

tool/acs-modeling-tool (2022).303

[31] S. K. R. Harbo, E. P. Voldby, J. Madsen, M. Albano, A diagram-centric304

modeling tool for systems of systems, in: Proceedings of the 25th Inter-305

national Conference on Model Driven Engineering Languages and Sys-306

tems: Companion Proceedings (MODELS’22), ACM, New York, NY,307

USA, 2022, p. 51–55. doi:10.1145/3550356.3559093.308

[32] J. Delsing, P. Varga, L. Ferreira, M. Albano, P. P. Pereira, J. Eliasson,309

O. Carlsson, H. Derhamy, The arrowhead framework architecture, in:310

IoT Automation, CRC Press, Boca Raton, USA, 2017, pp. 79–124.311

12

https://github.com/ModelioOpenSource/Modelio
https://github.com/bmaggi/Papyrus-List
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-robotics.git
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-robotics.git
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-robotics.git
https://git.eclipse.org/c/papyrus-rt/org.eclipse.papyrus-rt.git
https://git.eclipse.org/c/papyrus-rt/org.eclipse.papyrus-rt.git
https://git.eclipse.org/c/papyrus-rt/org.eclipse.papyrus-rt.git
https://github.com/eclipsesource/papyrus-umllight
https://github.com/eclipsesource/papyrus-umllight
https://github.com/eclipsesource/papyrus-umllight
https://github.com/model-UA/papyrus-opcua-plugin
https://github.com/model-UA/papyrus-opcua-plugin
https://github.com/model-UA/papyrus-opcua-plugin
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://projekter.aau.dk/projekter/en/studentthesis/a-modeling-tool-for-system-of-systems(b51142c3-e698-41d2-bea6-716b8cc79461).html
https://projekter.aau.dk/projekter/en/studentthesis/a-modeling-tool-for-system-of-systems(b51142c3-e698-41d2-bea6-716b8cc79461).html
https://projekter.aau.dk/projekter/en/studentthesis/a-modeling-tool-for-system-of-systems(b51142c3-e698-41d2-bea6-716b8cc79461).html
https://projekter.aau.dk/projekter/en/studentthesis/a-modeling-tool-for-system-of-systems(b51142c3-e698-41d2-bea6-716b8cc79461).html
https://projekter.aau.dk/projekter/en/studentthesis/a-modeling-tool-for-system-of-systems(b51142c3-e698-41d2-bea6-716b8cc79461).html
https://github.com/acs-modeling-tool/acs-modeling-tool
https://github.com/acs-modeling-tool/acs-modeling-tool
https://github.com/acs-modeling-tool/acs-modeling-tool
https://doi.org/10.1145/3550356.3559093

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

	Motivation and Significance
	Software Description
	Software Architecture
	Plugins
	Software Setup
	Finished Result

	Software Functionalities

	Illustrative Examples
	Impact
	Future Plans

