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Abstract— In the recent decade, drones or Unmanned Aerial Vehicles (UAVs) are getting increasing 

attention by both industry and academia. Due to the support of advanced technologies, they might be soon 

an integral part of any smart-cities related project. In this paper, we propose a cost-effective framework 

related to the optimal placement of drones in order to monitor a set of static and/or dynamic targets in the 

IoT era. The main objective of this study is to minimize the total number of drones required to monitor an 

environment while providing the maximum coverage, which in turn leads to significant reduction in cost. 

Our simulation results show that by increasing the battery capacity of the drones, the drones’ visibility 

range would also increase and thus, the number of drones would be reduced. Moreover, when the targets 

are sparsely distributed across a large number of different regions, a further increase to the targets does not 

require an increase in the number of drones needed to monitor them. 

Index Terms—Smart city, Unmanned Aerial Vehicle (UAV), Drone, Internet of Things (IoT). 

1.	Introduction	

In recent decade, due to massive growth in the telecommunication sector, there is a high demand 

for providing high quality services. Moreover, the rapid growth in population and increase in the 

number of mobile connected devices have brought several challenges such as network coverage 

and capacity.  One promising way to overcome such challenges is to utilize intelligent systems 

towards smart projects such as smart cities. Smart cities [1] are led by strategic administrations 

that support technology and innovation. The aim of smart cities is to maximize the efficient use of 
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valuable resources to foster sustainable growth. Unmanned aerial vehicle (UAV) is considered a 

crucial part of smart cities. The main objective of a smart city is to improve its resident’s life by 

providing low-cost services and efficient infrastructure. UAVs are already being used to document 

accident scenes [2], support first responder activities, and monitor construction sites [3], but they 

are ready to become an integral part of a smart city’s network as well. UAVs can be used to gather 

key intelligence data on movements of potential threats and to help in determining locations of 

threats and providing detailed topographic information in real time. They can also be utilized in 

providing an accurate representation of an area using images, which can help to rescue human and 

animals in case of a disaster [4]. In addition, it is important to develop model-based controllers in 

order to monitor the movement of the UAVs in real-time. In this regard, discrete event modelling 

of embedded systems can be used as a formal method to develop software for embedded systems 

in order to implement the system software as a model [44]. 

The concept of smart city is converting cities into digital societies, transforming the life of its 

citizens to an easy life in every facet, and intelligent transport system (ITS) becomes an 

indispensable component among all. ITS [5] is considered as the application of sensing, control, 

analysis, and communication technologies to ground transportation in order to enhance security 

and mobility as well as efficiency. It includes a wide range of applications that process and share 

information to ease congestion, enhance traffic management, minimize environmental impact, and 

increase the benefits of transportation to commercial users and the public in general. As our 

contributions, we propose a cost-effective framework to minimize the total number of drones 

needed to monitor an area while providing the maximum visionary coverage for the target. In other 

words, we optimize the number and location of drones to have full coverage of an area which in 

turn reduces the overall cost of the network.  
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In order to fully understand drones and the proposed framework in this study, we first discuss 

various applications of drones in smart cities. The concept of smart city is based on the integration 

of Information and Communication Technology (ICT) and its trends. Smart cities play a significant 

role in development of a sustainable environment and drones play a major role in it as well. Drones 

are widely utilized in various areas. Their applications can be classified into environmental- and 

industrial-based applications. Some typical ones of these applications are listed and described in 

the following subsections. 

1.1	Environmental‐Based	Applications 

Drones or UAVs are becoming increasingly popular for monitoring the environment. The 

technology has entered various fields such as surveillance and search and rescue operations. 

Drones can be equipped with sensors and cameras, making them ideal for monitoring environment. 

In this section, we briefly discuss some important applications of drones in monitoring 

environments. 

Disaster Management: Disasters are affecting different regions of the world every year. They are 

unstoppable events that are either natural or man-made, such as wildfire, earthquake, terrorist 

attacks, and floods. One of the major challenges faced by the rescue team during an enormous 

disaster is to find survivors and victims as early as possible and to take them out of the disaster 

area to ensure that they are not stuck under the destroyed area. In this regard, drones can help to 

detect people in disaster areas [6]. They can be equipped with sensors and camera to identify the 

precise location of survivors as early as possible. The data can be sent to the rescue team for further 

investigation and action. 

Vegetation Management: Drones provide an important innovation in vegetation monitoring. By 

using the right sensors and an appropriate camera attached to it, it is possible to map the health of 
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the crops by determining soil quality, humidity, and pollution in the area. The advantage of using 

drone-based system for vegetation monitoring is that unlike satellite images, drones can provide 

more information in relatively smaller areas. Moreover, the cost of using drones is much lower 

compared with manned flights, and therefore, it makes the technology more accessible. 

Water Resource Management: Water management is one of the main issues in agriculture, in 

which new technologies such as drones can provide solutions. The use of drones in water 

management can help to provide solution on how to manage irrigation water and maximize its 

efficiency. For example, integration of UAV photogrammetry and image recognition technology 

can be used to solve the limitations of the existing measuring tools and techniques for water level 

measurements in the field [7]. 

1.2	Industrial‐Based	Applications 

Drones or UAVs are playing a significant part in the industrial internet of things (IIoT) [8]. They 

can be valuable in industrial applications such as mining [9], oil and gas [10], and construction 

[11]. We briefly discuss some important aspects of these industrial applications in this section. 

Mining Activities: Drones or UAVs can enhance security in applications related to mining 

activities with real-time information, such as latest surface surveys for enhanced blast patterns, 

quick and accurate pre- and post-blast information, and recognizing of misfire and wall damage. 

Moreover, drones can provide an effective approach to monitor stores and assist with area 

exploration as well as general management. In addition, miners can gain benefits from the use of 

drones in the design of roads and dumps, as they help them to find out more efficient approaches 

in terms of environmental impacts. 

Oil and Gas: UAVs or drones have been deployed and used by several operators in oil and gas 

sector for various activities in difficult environments [10]. These activities include data collection, 
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inspection, and exploration. Using inspection drones in oil and gas sector has several advantages 

over traditional inspection methods. For example, it eliminates major dangers to personnel 

involved in traditional inspection activities in dangerous environments. Moreover, a significant 

reduction in cost is achieved due to ease of access in difficult environments. 

Construction: Aerial craft can be used in almost every stage of the engineering process, from 

planning to final construction. Helicopters and airplanes are already being used in civil engineering 

for different purposes such as mapping from a plane and producing marketing films for tourist 

destinations. Utilizing drones can significantly reduce the expense and time traditionally involved 

in various stages of the engineering process, such as construction of roadways and forest road, and 

coastal erosion.  

The contribution of this study is that the proposed cost-effective framework deals with a cost 

minimization problem related to the optimal placement of drones which in turn monitors a set of 

static or dynamic targets. The minimization problem aims to reduce the number of drones in the 

environment while providing the maximum coverage, given a constant value of battery capacity. 

Moreover, the proposed framework can be integrated with Artificial Intelligence (AI) and deep 

learning for the problem of drone detection and tracking challenges [39]. For example, AI and 

deep learning can be used together with drones equipped with sensors as a promising solution in 

intrusion detection systems [40][41]. In addition, the study in [42] shows that Machine Learning 

(ML) algorithms can be applied in deployment of drone BSs in wireless networks to analyze the 

traffic pattern and estimate the traffic demand in the target system. Similarly, the authors in [43] 

utilize deep learning approaches for on-demand drone deployment in emergency and temporary 

conditions since the position of drones is a crucial factor that affects the available capacity to the 

data flows which is being served.  
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The remainder of this article is organized as follows. Section 2 presents the existing studies related 

to the use of UAVs in the IoT era. Problem description and the proposed framework are outlined 

in Section 3. Section 4 discusses the performance metrics, results, and findings of the study. 

Finally, Section 5 concludes this paper. A list of abbreviations together with their brief definitions 

used throughout the paper is provided in Table 1 to help the readers in understanding the 

abbreviated terms. 

Table 1. List of Abbreviations 

Abbreviated Name 

AED Automated External Defibrillator 

AI Artificial Intelligence 

CPMS Canonical Particle Multi-path Swarm 

CPS Canonical Particle Swarm 

DSP Drone Scheduling Problem 

ECA Emission Control Area 

FMPS Fully Multi-path Particle Swarm 

GPS Global Positioning System 

ICT Information and Communication Technology  

IIoT Industrial Internet of Things 

INS Inertial Navigation System 

IoT Internet of Things 

ITS Intelligent Transport System 

KF Kalman Filter 

LRBA Lagrangian Relaxation-Based Approach 

ML Machine Learning 

ODP Optimal Drone Placement 

OPA Optimized Placement Approach 

OS Operating System 

QoS Quality of Service 

TSP Traveling Salesman Problem 

UAV Unmanned Aerial Vehicle 

WBS Wireless Base Station 
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2.	Related	Works 

This section provides a review on existing studies related to use of drones and their deployment 

approaches in the IoT era. Recently, the use of UAVs or drones to control the emissions of sailing 

vessels has attracted too much attention due to its significant potential for performing regulations 

in Emission Control Areas (ECAs). In [12], the authors propose a drone scheduling problem (DSP) 

such that a group of planned tours is developed for drones to examine the vessels in ECAs. The 

dynamics of sailing vessels are modeled by utilizing a location function in real-time in a 

deterministic manner. They also propose a Lagrangian relaxation-based approach (LRBA), which 

is able to gain the best solution for the problem in large-scale cases. The results reveal that the 

proposed approach outperforms the commercial ones for the problem of up to 100 vessels. Drones 

have also been well utilized for military purposes [13-16]. For instance, the routing of a set of 

drones to destroy a determined group of targets that are prioritized differently is studied in [13]. 

The authors propose a two-phase approach that considers resolving a sub-problem related to target 

assignment for each drone in the initial phase. The second phase in this solution framework is to 

solve a travelling salesman problem (TSP) to obtain a routing plan. Similarly, the authors in [14] 

develop an integer-programming model for an environment where new targets may emerge 

dynamically. This model reassigns UAVs to the updated group of tasks regarding any changes in 

the battleground. In [15], the routing of UAVs is considered for military surveillance purposes, 

where UAVs gather information from targeted area using sensors. The proposed strategy chooses 

the sensors for each UAV by including payload capacity restrictions. Then, following these 

constraints, a group of UAVs is routed to develop a region-sharing approach by considering 

uncertainty on the data gained from observations. This strategy dynamically sends drones to gather 

information instead of focusing on a predesignated routing plan. The results of the study prove that 
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the proposed approach is effective in a contemporary battleground where communications between 

UAVs and ground base stations are frequently blocked. 

Besides military purposes, several studies consider the problem of routing drones in logistic 

delivery operations [17-19]. In this regard, drones assist trucks to deliver items to the customers 

who are located geographically. However, drones are often limited to carry only one package that 

makes the routing decision of the drones easier and enhance the operational efficiency [12]. For 

instance, a joint scheduling problem for trucks and drones is studied in [27]. In this study, drones 

are used to deliver packages to customers close to the storage, and trucks are responsible to deliver 

parcels far. The results reveal that, with such a delivery system, customers receive their orders 

faster. Moreover, it reduces cost of distributions as well as environmental impacts. Another similar 

problem is studied in [18]. In this study, trucks are permitted to carry UAVs in specific routes so 

that they can fly from the trucks and deliver parcels to people who are far from the storage. In [19], 

the authors prove that the potential improvement in delivery efficiency of the cooperation between 

drones and trucks depend on the speed of drones and the square root of the ratio of the speed of 

trucks.  

UAVs or drones are increasingly proposed for medical use cases as well. For example, the study 

in [20] develops a new optimization model to help in the deployment of a network of automated 

external defibrillator (AED)-enabled medical drones to minimize the time it takes to reach to a 

patient’s side. The proposed approach can optimally locate drones by considering the problem of 

backup coverage location with complementary coverage. At the same time, it improves backup 

coverage with insignificant loss of initial coverage.  

In several studies, drones have been used for the tasks related to trajectory planning and task 

allocation [21, 22]. For example, in [21], the authors propose an automated surveillance system to 
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track several mobile ground targets. The aim of this study is to reduce the total energy consumption 

and to find the exact location of the targets. The study in [22] proposes a system containing several 

operating drones and a control station. The drones receive control information from the control 

station and send their location information and the sensed parameters back to the control station. 

The results show the effectiveness of the proposed task allocation algorithm in terms of task 

completion. 

Apart from the studies where drones are used for ideal trajectory planning problems, some studies 

have utilized drones to track different targets using various sensors. For example, in [23], an 

algorithm is proposed to track a mobile target in a cooperative manner using several drones 

equipped with cameras. The goal is to keep the mobile target in the position visible by cameras 

from various angles while achieving a low computational complexity. In addition, the authors in 

[24] investigated a similar problem by considering multiple criteria, such as the number of drones, 

the satisfaction of customers, and the total distance moved by the drones simultaneously. The 

objective is to detect the exact location of mobile targets using the sensors placed on the target.  

Although the mentioned studies so far reveal the use of drones and their deployment approaches 

in the IoT era, but none of them consider the optimal drone placement (ODP) problem and the 

issues related to the target coverage. However, these issues are extensively investigated in the 

following studies [25-27]. For example, the optimal placement of a group of drones is considered 

in [26], with the assumption that a large number of drones are available to cover a group of mobile 

targets. The main objective of this study is to reduce the total amount of energy consumption. A 

similar study is presented in [27], where mobile targets are monitored by a group of drones that 

have restricted energy resources. The aim of this study is to reduce the number of required drones 

to monitor a piece of plane where the targets are moving. The authors mathematically present the 
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problem under study by using mixed integer non-linear optimization models. In addition, heuristic 

procedures according to restricted mixed integer-programming formulation are defined for the 

problem. Finally, the behavior of the proposed model is assessed and a comparison is provided 

between the proposed model and the mixed integer-programming-based heuristic models in terms 

of efficiency and effectiveness. In [25], the authors propose a mathematical model to formulate 

the ODP problem. They provide an improved model that considers the energy of each drone, and 

design an ideal approach to solve the placement problem of static or mobile drones. Using two 

low-complexity centralized algorithms, samples of the mentioned problem with more than 50 

targets and a large number of possible locations for the drones can be solved. 

Although these studies tried to solve the ODP problem with the reduced amount of energy 

consumption, but they did not attempt to provide the maximum coverage for the drones while 

minimizing the total number of drones in monitoring the environment which is considered in this 

study.  

In [32], the authors examine and simulate real time Inertial Navigation System (INS) and Global 

Positioning System (GPS) in UAV navigation using a two-level Kalman Filter (KF). The proposed 

approach is based on predicting the error in position of the INS and then removing it from its 

corresponding position besides the second level of applied KF for the entire integrated GPS/INS 

errors. The results obtained show that the KF-based module is able to decrease the INS position 

error and prevent its growth even in the long-term period. The study in [33] introduces an 

optimized data delivery framework called Canonical Particle Swarm (CPS) for multimedia 

delivery using drones in the 5G/IoT era. In the proposed framework, multi-swarm strategy is 

utilized to specify the optimal direction while carrying out a multi-path routing. The results show 

the performance improvement of the proposed method compared to other ordinary optimization 
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approaches such as Canonical Particle Multi-path Swarm (CPMS) and Fully Multi-path Particle 

Swarm (FMPS).  

In [34], the authors present a study which aims to find the optimal locations for static drones in a 

given area in order to maximize the coverage. The algorithm solves the ODP problem for both 

clustered and uniformly targets. The results show the effectiveness of the proposed approach in 

solving the placement problems of drones. However, the approach does not consider the mobile 

targets in the area.   

The authors in [35] use an algorithm based on gradient projection in order to find the optimal 

placement of a single drone in case it can be used as aerial Wireless Base Station (WBS) when 

cellular networks are out of service. They consider the uplink scenario as a constraint and find an 

optimal location for the drone in a way to maximize the sum of durations of the time of uplink 

transmissions. A similar study in [36] presents an algorithm to optimally locate drone BS in an 

area with various target densities. The authors aim to minimize the number of drones and their 3D 

placement in a way that all the users are served.   

Another study on 3D deployment of drone BSs is presented in [37]. The authors propose a 

framework to maximize the number of covered users with various Quality of Service (QoS) 

requirements. They model the problem as a placement problem with multiple circles and propose 

an algorithm that uses an exhaustive search in a closed region over a 1D parameter. In addition, 

the authors propose the maximal weighted area algorithm to deal with the placement problem. 

Such use cases are important due to the growth of data traffic caused by multimedia applications 

[38]. 
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3.	Proposed	Methodology 

One of the major drawbacks of drones is their limited range [28], which is due to the capacity of 

the battery. Another challenging issue regarding the usage of drones is related to their high price. 

Therefore, there is a need to optimize the number and location of drones to have full coverage of 

an area. In this regard, we propose a method called optimized placement approach (OPA) to 

minimize the total number of drones required while providing maximum coverage. This in turn 

leads to reduction in cost. 

3.1	Optimized	Placement	Approach	 

The relationship between the drone’s height and the coverage area of the target can be formulated 

by 𝐴 𝜋 𝑅 ℎ  where h is the height of the drone, and A and R are the drone’s coverage area 

and the radius of the drone’s wireless transmitter respectively. Clearly 𝐴  𝜋𝑅  when ℎ 0. In 

our model, we assume that there are N drones in the area in which they can fly to a maximum 

height of hmax and minimum height of hmin maintaining a particular coverage radius [25]. We 

assume that there is a location (x, y, z) that each drone can be placed in the area.  

Please note that deploying drones to cover targets is not a simple problem. The deployment strategy 

should reduce the overall cost by minimizing the number of drones required to control a target. 

They should be placed in a way to cover all the targets while having minimum overlapped coverage 

between drones. Moreover, there should be high quality wireless communications between the 

drones and the ground targets which can be achieved by reducing the altitude of the drones. In 

addition, multi-hop connectivity between the drones and a BS can be provided using air-to-air 

communications. Therefore, connectivity, full coverage of the targets and the quality of the 

coverage are the main objectives and constraints of our problem.  
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Let D denotes a group of available drones and T represents the group of targets to be monitored. 

The objective function is to minimize the total number of required drones for monitoring the 

environment. Assume that each target is determined by the values (x, y, z), where x, y, and z signify 

length, width, and height of the target, respectively. Therefore, given a drone d, it is located at a 

coordinate (x, y, z) with a target T to be monitored. It is possible to define the distance between d 

and Ti when z = 0 as follows [31]: 

    2 2
  d d

i i i

x y
t t d t dU x x y y                 (1) 

Drones have a visibility of θ, which is signified by a disk on the plane with radius rz depending on 

zd. The drone visibility is also dependent on the angle of camera lens. Moreover, the position where 

each drone d ∈ D should be located (xd, yd, zd), and the target ti ∈ T monitored by the drone should 

be decided. Therefore, the first decision variables are defined as follows: 

 
 1 if is located at coordinate , , 

 
0 otherwise

d
xyz

d x y z


 
  
 

            (2) 

 
1 if taret isobserved bydrone  

0 otherwisei

id
t

t d


 
  
 

             (3) 

The goal is to carefully control and watch all the targets with minimum one UAV to minimize the 

required number of drones as well as total energy consumption which will be formulated in section 

3.2. Furthermore, according to [25][27][30] the energy consumption of each drone can be 

formulated as follows: 

       /maxE k t P K S                   (4) 

where β is the minimum power for the drone required to stay in the air and α is a motor speed 

multiplier. α and β are both dependent on the weight of the drone, and the features of the motor it 

is using. Pmax, S, and t are maximum power of the motor, speed, and the operating time, 
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respectively. The term αk indicates the relationship between the height and power, and Pmax (K/S) 

is the power required to move up to height K with speed S. The objective function is to minimize 

the total number of required drones for monitoring the environment, which can be formulated as 

follows: 

 
 , ,

Min . 1 (  )  d
xyz

x y z

f s t d D                   (5) 

 
 , ,

    ,  
d

i

i

z
d d
t xyz idxy

x y z t

r
d D t T

D
 

 
    

 
                (6) 

3.2	Equations	of	the	Drone’s	Location 

The flying zone for the drone is represented by Z = [Zmin, Zmax]. This is the area that is parallel to 

the plane containing the targets. Detection of the target above Zmax is not possible, and the drones 

are not permitted to fly above this threshold in the region. In addition, drones cannot fly below 

Zmin. The flying zone is presented by a rectangle of length Xmax and width Ymax such that 

 1   
i

d
t i

d D

t T


                     (7) 

When the drones fly, they need to observe the target for a specified amount of time. Additionally, 

the target can move in the region, particularly a time window ,i it t
min max     is associated with each 

target ti ∈ T, meaning that at the beginning the target ti is placed at the point of coordinate, and it 

has been detected in the time range specified by the time window. If the target is moving to catch 

mobility in the system, a sequence coordinate Ci is associated with each target. According to [26], 

it is assumed that: 

  
i it t

max min
iC
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where Δτ represents the time interval such that a new location of the target ti is obtained. 

Considering all the constraints and objectives discussed earlier, the equations to minimize the 

number of required drones and the total energy consumption can be formulated as follows: 

 𝑓 𝛿 𝑁 ∗ ∑ ∑ 𝛿 𝑡∈, ,               (9) 

                                              𝑓 𝛿 𝐴 𝑁 ∗ ∑ 𝛿 ∗ 𝐴∈                                           (10) 

Where A is the entire area to be monitored and N and Ai are the number of drones and the area 

monitored by the ith drone respectively. 

𝐸 𝑁 ∗ 𝛽 ∑ ∑ 𝛿 𝑡∈, , 𝑎 ∑ ∑ 𝑍𝛿∈ ∑ ∑ 𝑍𝛿∈, ,, ,      (11) 

4.	Performance	Evaluation	and	Results 

In this section, to assess our proposed model, we discuss the performance metric and parameters 

as well as the results obtained by simulation.  

4.1	Simulation	Setup	

Equations (1)–(10) in Section 3 are aimed to minimize the number of drones. The simulation has 

been implemented in Octave programming language, namely GNU 4.4.1 [29] which is a high-

level scientific programming language primarily intended for numerical computations. Octave is 

an important open-source and free software tool used in robotics which is equivalent to Matlab.  

Our simulation script was executed on a device with Windows 8 Operating System (OS). The 

device has the following specifications: Intel(R) Atom(TM) CPU Z2760 @ 1.80 GHz, 1,800 MHz, 

2 Core(s), 4 Logical Processor(s). The usage of RAM was low, and the computation time was from 

4 to 6 s. There are a couple of assumptions that were made during the simulation phase. First, the 

battery capacity is not subjected to optimization, that is, the optimum value for battery capacity 
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corresponding to the minimum number of drones are determined through trial and error. This is 

because various applications have different requirements which may affect the battery capacity. 

Therefore, through the trial and error, we determine the optimum value for the battery capacity of 

the drones. Second, each drone covers an area that is a square of 1 km2. The reason for choosing 

such a large coverage area for the drones is that we are targeting a large-scale scenario such as 

street coverage in smart cities. Finally, for simplicity purposes, the communication range between 

drones is considered as circular disks. 

4.2	Performance	Metrics	and	Parameters	

To assess the proposed framework, the following performance metric is considered in the script. 

Target Coverage: This is the coverage area of drones while flying over a target. The metric is 

evaluated while varying the following parameters: 

Energy (E): It represents the initial capacity of the drone’s battery. 

Visibility angle (θ): It is the opening of the drone visibility range. 

Horizontal Energy Consumption (γ): This is the energy consumed due to the horizontal 

movement of the drone. 

Vertical Energy Consumption (α): It represents the energy consumed due to the vertical 

movement of the drone. 

Number of Targets (nt): It represents the number of targets to be monitored by the drones. 

Please note that there are also some important parameters such as delay which can affect the critical 

applications of the UAVs. For example, the average experienced delay in the system may change 

if the height of the drone changes. In this regards, if the height of the drone increases, the delay 

may increase too. This is due to the increase of coverage in the space that permits less hops between 

the target and the final destination. Another critical communication metric is the network 
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throughput which can be defined as the amount of useful works such that connected drones can 

carry out per the unit of time in terms of bytes that have been delivered successfully to the base 

station. If the number of drones increases, the network throughput increases too. This is clear when 

there are more drones available, there will be more routes available towards the base station. This 

in turn causes improvement in the data delivery. However, by increasing the number of drones, 

the total energy consumption of the network increases as well. Therefore, it is important to find 

the optimal number of required drones for monitoring an area in order to have an energy-efficient 

system.  

4.3	Results	and	Discussions	

In this section, we discuss the results obtained from the simulation tool implemented to evaluate 

the performance of the proposed framework. During the simulation, we considered two phases: 

static and dynamic targets. 

4.3.1	Static	Targets		

Static targets have fixed positions and do not change their locations. We considered two situations 

regarding static targets. First, given a fixed number of targets (nt = 100), the results for the optimal 

solution (e.g. minimum number of drones) are obtained as follows. Figure 1 shows a scenario 

where the drones, which are flying away either horizontally or vertically or both, have a narrower 

visibility range than the ones close to the (0, 0) coordinates. The number of drones is initially 23 

drones. If we decrease the energy consumption of flying horizontally to γ = 2 with less battery 

capacity as in Figure 2, it can be seen that drones flying to the right and to the top right of Figure 

2 are covering more targets due to flying further. Doing the same steps of decreasing energy cost Jo
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of moving horizontally and the battery capacity makes the drones fly further and higher. Therefore, 

a bigger visibility range is achieved as shown in Figure 3. 

 

Figure 1 - Energy = 40, gamma = 2.5, alpha = 3. 

 

 

Figure 2 - Energy = 35, gamma = 2, alpha = 3. 
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Figure 3 - Energy = 30, gamma = 1.5, alpha = 3. 

 

 

Figure 4 - Energy = 39, gamma = 1, alpha = 3. 
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More optimal results can be reached by increasing the battery capacity while maintaining the cost 

of flying horizontally and vertically. Figure 4 shows the least number of drones with wider 

visibility range than the ones on Figure 5, where the drones’ visibility range is smaller. Drones that 

are flying further away from the hub (zero coordinates) have less visibility range by the time they 

reach their destination. This is because traveling further diagonally consumes more energy than 

flying close to the hubs (due to the short distance traveled). Therefore, this leads them to decrease 

their elevation and their visibilities simultaneously. 

 

Figure 5 - Energy = 30, gamma = 1, alpha = 3. 

In the second scenario regarding static targets, we changed the number of targets (nt) and kept the 

following energy-related parameters constant; E = 40, gamma = 2, and alpha = 4. We then observed 

the changes in behavior. Figures 6 – 10 represent target coverage by drones with respect to the 

number of drones. Figure 6 shows three targets in different locations, since they are away from 

each other; three drones are needed to cover them. If the number of targets is x, then the number Jo
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of drones can have a value ranging between a minimum of 1 and a maximum of x. As the number 

of targets increases, the number of drones increases as seen in Figures 7 – 10. 

 

Figure 6 - Targets coverage nt = 3. 

 

Figure 7 - Targets coverage nt = 22. 
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Figure 8 - Targets coverage nt = 66. 

 

Figure 9 - Targets coverage nt = 111. 

Figure 11 shows the number of drones with respect to the number of targets. As it is expected, the 

number of drones needed to monitor a given number of targets increases gradually. However, this 
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is only true, until a certain number of targets. This number of targets requires the highest number 

of drones to be monitored. It can be thought to cover several varying regions across the total area 

being monitored. Later, if the number of targets is further increased, the number of drones does 

not increase. 

 

Figure 10 - Targets coverage nt = 144. 

 

Figure 11 - The relationship between the number of drones and targets. 
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4.3.2	Dynamic	Targets	

So far, we have assumed that the targets are static (not moving). However, in this scenario, we 

assume that the targets are capable of moving throughout the time they are being monitored. To 

display this effect in the simulation, the seqLength (SL) and walkArea (WA) parameters change. As 

explained earlier, SL is the number of time intervals in which the target moves (i.e. how many times 

the target will move), and WA is how far the target moves within every time interval. For example, 

if SL =2 and WA =3, then each target will move randomly twice, each with three steps. We set the 

energy-related parameters as E = 40, gamma = 2, and alpha = 4 to observe the changes. The script 

is written in such a way that if the target is static it draws a plus (+) sign, otherwise, it draws a 

minus ( ) sign, and displays the trajectories of movement of the drones. Figure 12 shows static 

and non-moving targets, whereas in Figure 13, the targets are moving slightly. The visibility range 

of drones is slightly overlapping. This is due to the fact that the drones are trying to cover the 

moving targets. 

 

Figure 12 - Targets coverage with SL = 1, WA = 1. 
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In Figure 14, each target moved five times, each time with five steps, where each colored segment 

shows the trajectory of a certain target. As it can be seen in Figure 14, the targets are moving a lot 

more than the previous ones. Therefore, the overlapping region between the drones’ visibility 

range is higher. The reason for this overlapping is the long trajectories of the targets, where they 

get too close to each other. 

 

Figure 13 - Targets coverage with SL=5, WA = 1. 

 

Observing the change in the target’s behavior and the number of targets with respect to SL and WA 

parameters, we notice that the longer path the trajectory target takes, the closer the targets get to 

each other. Therefore, less number of drones is needed to cover them. Figure 15 shows how the 

number of drones decreases as the trajectory length increases. The trajectory length (TJ) was 

calculated using the following equation: 

 *J A LT W S                    (12) 
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Figure 14 - Targets coverage with SL = 5, WA = 5. 

As it can be seen in Figure 15, the curve clearly displays the inverse relationship between the 

number of drones and the corresponding lengths of the trajectories of targets. This is clearly 

observed as the highest number of drones corresponds to the lowest trajectory length and vice 

versa. 

 

Figure 15 - The relationship between trajectory length and the number of drones. 
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5.	Conclusion	

In this study, a cost minimization problem is considered which is related to the optimal placement 

of drones to monitor a set of static or dynamic targets. Our minimization problem aims to minimize 

the number of drones, given a constant value of battery capacity. The problem stated earlier is 

formulated, and the mathematical models were provided accordingly. The simulation results 

obtained from different variations in changing the parameters reveal that increasing the battery 

capacity leads to an increase in the drone’s visibility range, and thus, a decrease in the number of 

drones. This effectively provides a better solution for our minimization problem. Moreover, when 

dynamic targets are considered, moving with higher WA leads to targets ending up in locations 

close to each other. In actuality, almost an inversely proportional linear relation exists, as can be 

seen in Figure 15. Therefore, the drones’ visibility areas will be overlapping, which may cause a 

number of drones to be considered as redundant, leading to a smaller number of drones. Finally, 

there exists a limit where the number of drones no longer proportionally increases in relation to 

the number of targets. This is because the limit exhibits a case where the targets are distributed 

across a large number of different regions in the area monitored, rendering a further increase to the 

targets that does not require an increase in the number of drones needed to monitor them. 
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