
Journal of Computational Physics 384 (2019) 134–150
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Efficient modelling of solute transport in heterogeneous media

with discrete event simulation

Q. Shao a,∗, S.K. Matthäi b, L. Gross a

a School of Earth and Environmental Sciences, The University of Queensland, Queensland 4067, Australia
b Reservoir Engineering Group, Peter Cook Centre for CCS, Department of Infrastructure Engineering, The University of Melbourne, Victoria
3010, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 July 2018
Accepted 29 January 2019
Available online 8 February 2019

Keywords:
Solute transport
Discrete event simulation
Parallel computation
Node-centred finite volumes
Heterogeneity

To address the problem of different time scales present in the simulation of solute
transport through systems with a complex permeability structure such as fractured porous
rocks, we propose a parallel discrete event simulation (DES) algorithm based on local
time stepping criteria, specifically developed for the hybrid finite-element node-centred
finite volume (FV) framework. A preemptive-event-processing (PEP) approach is applied
to synchronise discrete events with sufficiently close time stamps, thereby facilitating the
parallelisation for shared memory architectures. The accuracy of the presented DES-PEP
scheme is first verified against the analytical solution of a 1D advection equation with
spatially variable coefficients. The DES scheme is then applied to simulate tracer advection
through a 3D model of highly heterogeneous fractured rock represented by an unstructured
adaptively refined mesh with over 1 million elements. DES produces results comparable
to those of a conventional time-driven simulation (TDS), but uses less than 1% of the
execution time. Analysis of event distributions shows that updates occur almost exclusively
in a small number of FV cells marked by order-of-magnitudes faster fluid flow and
advection-dominated transfer, while slow-flowing cells remain inactive and excluded from
computations. This focusing of the computational effort leads to high simulation efficiency
while simultaneously diminishing round-off errors. Scalability tests with a parallel version
of DES on shared memory demonstrate further computational speedups mirroring the
increased number of threads. With the use of 20 threads, execution time is reduced
from 42.5 days (with TDS) to only 1.5 hours, equivalent to a speedup of over 670. This
parallel DES algorithm therefore enables efficient multi-core simulation of solute transport
in heterogeneous geologically realistic systems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Understanding the transport of solutes (e.g., chemicals, tracers, minerals or contaminants) in porous geological formations
is essential for a broad range of geo-engineering applications, including enhanced recovery of oil and gas from hydrocarbon
reservoirs [1], remediation of groundwater pollution in aquifers [2], and storage of nuclear waste or CO2 in the subsur-
face [3]. The high degree of heterogeneity in geological systems creates various numerical and computational challenges

* Corresponding author.
E-mail addresses: q.shao@uq.edu.au, bnushaoqi@gmail.com (Q. Shao).
https://doi.org/10.1016/j.jcp.2019.01.026
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.01.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:q.shao@uq.edu.au
mailto:bnushaoqi@gmail.com
https://doi.org/10.1016/j.jcp.2019.01.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.01.026&domain=pdf

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 135
when solving fluid pressure equations and advection–diffusion equations describing the solute transport [4]. Various nu-
merical methods have been proposed to discretise the governing equations and simulation variables in space and time.
Typical examples are finite difference methods (FDM) [5,6] and finite element methods (FEM) [7,8], with the latter hav-
ing more flexibility to represent complex geometries. Combinations of FEM and finite volume method (FVM) have become
increasingly popular [4,9–12]. In this approach, a node-centred finite volume mesh is superimposed on the finite element
mesh. The elliptic fluid pressure equation is solved by FEM and the hyperbolic transport equation by FVM. This combined
approach shows improved accuracy and efficiency over the fully coupled FEM, while retaining the geometric flexibility of
finite elements [10,11].

How to efficiently integrate these spatially discretised equations over time is still a fundamental challenge. Traditionally
time advance is based on a global time step, which synchronously evolves the system at spatially uniform time intervals.
These time-driven simulation (TDS) techniques fall into two categories: explicit and implicit schemes. In explicit schemes,
unknown variables are computed at the current time level from quantities already available from previous times. The size
of the integration time step is restricted by the most stringent Courant–Friedrichs–Levy stability criterion (also known as
the Courant or CFL condition) in the system, which guarantees the capture of the fastest transient change, and ensures nu-
merical stability. This becomes problematic in simulations of solute transport in highly heterogeneous porous media where
flow properties, such as permeability, can vary over many orders of magnitude [11,13,14], leading to dramatic variations in
transport velocities. This problem is further exacerbated in models constructed with variable mesh sizes where the smallest
elements and control volumes tend to represent areas of highest permeability (e.g. rock fractures) and therefore coincide
with regions of enhanced fluid flow [4]. The resultant infinitesimal global time step leads to prohibitively slow TDS simula-
tions.

Stability of implicit schemes is not restricted by the severe CFL constraint permitting larger time increments. However,
this is at the expense of accuracy and an increased computational burden from solving a system of equations at each
iteration step. Matthäi, Nick, Pain and Neuweiler [4] found that when simulating solute transport through a 3D stochastic
discrete fracture model containing 2000 disc-shaped fractures, a single implicit transport step required approximately 20
times the CPU time needed for a single explicit step, even though an efficient algebraic multigrid solver, SAMG [15], was
used. Furthermore, implicit schemes introduce numerical smoothing and tend to be too diffusive [16]. Omelchenko and
Karimabadi [17] argue that implicit integrations conducted with large time increments are unable to correctly represent
local physical phenomena with characteristic process frequencies higher than the inverse of the time-step size.

To get around global time step restrictions, a number of local time-stepping approaches have been proposed to allow the
time step to vary spatially satisfying a local, rather than global CFL condition. In these approaches which are also known
as adaptive or multiple time-stepping schemes, the solutions at different elements or cells are updated with different time
increments determined from local CFL conditions [18–21]. Because of the asynchronous update of different elements, it is
difficult for these methods to correctly and efficiently calculate numerical fluxes across element interfaces. Some use time
interpolation for flux computation, however, these violate local conservation of fluxes, leading to reduced numerical accuracy
and stability [17]. Local time-stepping approaches are often used in combination with adaptive mesh refinement, where the
spatial grid is locally refined in order to represent complex geometries and better capture more active regions [22–27].
Spatial elements on each level of refinement are clustered into a logically rectangular patch, leading to a hierarchy of
nested patches with different temporal resolutions that locally satisfy the CFL conditions. In order to preserve conservation
laws, global synchronization steps are required to impose flux corrections at patch interfaces. For efficiency, a fixed local
time step size, computed at the beginning of each global synchronization step, is used throughout the global time step.
This is problematic for highly complex systems as the CFL conditions may change rapidly and significantly during a global
synchronization step, making the pre-determined time integration sequence inaccurate and unstable.

Discrete event simulation (DES), also called event-driven simulation, provides an alternative to conventional time-
stepping schemes. Unlike TDS where the simulation progresses in pre-defined global or local time steps, in DES temporal
evolution of the global system is driven by discrete events. This forces transition from one state to another at irregular (or
asynchronous) points in time [28,29]. Such discrete events, representing effective units of information in DES, are simulation
objects characterised by a process function responsible for updating the object state, and a time stamp indicating when the
process function is scheduled to be executed. A DES simulation begins with scheduling events based on local rates of change
in individual elements. All scheduled but not yet executed events are listed into an event queue sorted by their time stamps
in increasing order. The top event always corresponds to an event with the earliest time stamp. The DES simulation then
progresses by repeatedly removing the top event from the priority queue, executing it by calling its process function and
adding a new event with an updated time stamp to the queue. Consequently, DES avoids using pre-determined time steps
and integration sequence as in the TDS schemes, but allows individual parts of the simulation domain to evolve based on
their own physically determined temporal scales, which may vary in space and over the progress of the simulation. This
effectively removes the global CFL restriction and, at the same time, ensures numerical accuracy and stability. DES focuses
updates on active parts of the system, while eliminating the computational overhead associated with idling processors.

DES was originally developed for naturally discrete systems, as found in operations research, management science, games
and telecommunications [28–30]. It was extended to modelling continuous systems [31,32] with reported speedups by a
factor of 300 in some cases [33]. The DES scheme has been applied to solve flux-conservative partial differential equations
with source terms [17] by introducing a self-adaptive predictor–corrector scheme. The predictor schedules events with a
time delay estimated from the local variation rate, and the corrector ensures that pending events are processed in time, if

136 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
their causality constraints undergo a significant change. This self-adaptive paradigm, in combination with a synchronization
mechanism for updating neighbouring events, effectively preserves causality and guarantees numerical stability. Later work
by Stone, Geiger and Lord [34] associated an event with the mass transfer at element interfaces, rather than the evolu-
tion within an element. In order to improve event processing by preventing unnecessary inter-element synchronisations in
parts of the computational domain where the solution properties are fairly homogeneous, Omelchenko and Karimabadi [35]
introduced a preemptive-event-processing (PEP) technique, which automatically enforces synchronous execution of events
with sufficiently close timestamps. So far the advances in DES simulation of continuous systems have been demonstrated
on low-dimensional uniform meshes. In this paper we will investigate the use of DES to complex and realistic problems at
larger scales. We will also make use of the advantage that the PEP technique can be used to easily parallelise DES at least
for shared memory architectures – a fact which was not realised in the original publication.

The objective of this paper is to develop a parallel DES algorithm for a finite-element node-centred finite volume scheme.
The implementation uses the Complex Systems Modelling Platform (CSMP++) [36], an object-oriented application program-
mer interface designed for simulation of complex geologic processes and their interactions [37]. It provides an efficient
simulation framework for solute transport through heterogeneous porous media on high-dimensional, complex and unstruc-
tured meshes. The rest of this paper is structured as follows. In section 2, the governing equations for solute transport
in porous media are presented, followed by a brief description of the discretization of these equations in the CSMP++
FEM-FVM framework. We then describe in detail the algorithmic and programming aspects of the parallel DES-PEP for the
node-centred FV transport scheme. In section 3, the proposed DES algorithm is verified with analytical solutions of the 1-D
advection equation with spatially variable coefficients. In section 4, we apply it to tracer advection through a heterogeneous
3D model of fractured rock, and compare its results and performance with conventional TDS simulations. We also con-
duct a scalability analysis for multiple threads on this model. Section 5 concludes this paper with a summary of the most
important results obtained.

2. Methodology and implementation

2.1. Governing equations

Ignoring diffusion which is readily modelled using the finite element approach, advective transport of a non-reactive
solute through a porous medium is governed by the general advection equation

φ
∂c

∂t
+ ∇ · (vc) = q, (1)

where c (kg/m3) represents the solute concentration, φ refers (m3/m3) to the porosity of the medium, t (s) is time, and q
(kg/m3 s) describes external sinks and sources of the solute. The transport velocity v (m/s) is given by Darcy’s law

v = − k

μ
(∇p − ρg), (2)

in which k (m2) refers to the hydraulic conductivity tensor, μ (Pa s) and ρ (kg/m3) are the dynamic viscosity and the
density of water respectively, and g (m/s2) represents the acceleration of gravity vector. Pore water pressure, p (Pa), is
computed from the solution of the transient fluid pressure equation for a slightly compressible flow problem

φct
∂ p

∂t
= ∇ ·

[
k

μ
(∇p − ρg)

]
+ Q̂ . (3)

Here Q̂ (1/s) represents external fluid sinks and sources, and ct (m s2/kg) is the total system compressibility calculated from
a linear combination of the compressibility of the water, βw (m s2/kg), and that of porous material, βs (m s2/kg):

ct = φβw + (1 − φ)βs. (4)

These governing equations are spatially discretised using the hybrid FEM-node-centred FVM framework implemented in
CSMP++ (Fig. 1). The equations are solved sequentially using operator splitting. First, fluid pressure is computed by solving
the parabolic pressure equation (3) using FEM. Flow velocity field is then found by solving (2). Finally, FVM is used to solve
the hyperbolic transport equation (1) explicitly [11,12,38].

The work presented in this paper is focused solving the transport equation (1) on a FV mesh constructed around the
nodes of the finite element mesh (Fig. 1). Based on Green’s theorem, the integration of the divergence of flux over each
finite volume, V i , can be transformed to the integration of the flux over its surface area, Si , leading to:∫

φ
∂c

∂t
dV = −

∫
∇ · vcdV + qi V i = −

∫
n j · vcdS + qi V i, (5)
V i V i Si

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 137
Fig. 1. 2D node-centred finite volumes implemented in CSMP++ (taken from Fig. 7a in [12]). Four neighbouring triangles and quadrilaterals share node X
around which a FV cell shaded in grey is built using FE element barycentres b(e) and midpoints of element faces. FE elements are subdivided into sectors
delimited by FV facets, f , with outward pointing normals, n, and boundaries of finite elements.

where n j is the outward pointing unit normal to facet j and qi is the mean value of source q over V i . Discretising equation
(5) explicitly in time using a forward Euler approximation gives

c(t+�t)
i = c(t)

i − R(t)
i �t + q(t)

i �t, (6)

where Ri (kg/m3 s) is the rate of change of concentration at FV cell V i . Summing the solute flux f c
j (kg/s) over all facets j

leads to solute balance F Bc
i (kg/s) of FV cell, based on which Ri is computed as:

Ri = F Bc
i

V p
i

=
∑

j f c
j

V iφi
=

∑
j n jv j S jc

upstream
j

V iφi
, (7)

where V p
i (m3) and φi (m3/m3) are the pore volume and porosity of cell V i , and v j (m/s), A j (m2) and cupstream

j (kg/m3)
are the flow velocity, facet area and upstream concentration for facet j. Upstream concentration is the concentration in the
FV cell from where the fluid enters the current cell.

In this explicit first-order formulation, the size of the global time increment, �t , has to be sufficiently small to satisfy
the CFL condition, which ensures that the total outflow, F out

i = ∑
j max(n jv j S j, 0), does not exceed the pore volume of a

FV cell:

�t ≤ V p
i

F out
i

. (8)

As discussed previously, meeting this condition can lead to prohibitively small time steps and as a consequence to long
simulation runs. To address this problem, we apply DES to solve the transport equation. Its implementation is presented in
detail in the following section.

2.2. Implementation of the DES transport scheme

In the DES scheme, solute concentration in each FV cell is associated with a so-called event, which holds properties
such as local rate of concentration change, current time, and time scheduled for the processing of the event. Scheduled
time is determined from local conditions, varying from cell to cell as a special feature of DES. The simulation is pro-
gressed by processing the sequence of events ordered from smallest to largest time stamp. Processing an event updates
the concentration in the associated cell and also synchronises the states of its neighbouring cells to honour conservation
laws. To ensure strict causality, a neighbouring event is allowed to be pre-empted for processing earlier than its scheduled
time if a significant change to its concentration has occurred. All events with updated concentration are collected in a
preemptive-event-processing (PEP) list to compute new local variation rates. Processed events are re-scheduled to calculate
new schedule times based on updated local variation rates. After re-sorting the events according to updated schedule times,
the simulation is progressed by processing the earliest events. In all studied cases, calculation of the change rate is the most
time-consuming task but is easily parallelised when concentrations of neighbouring cells are available.

In the following we present this algorithm and its implementation in more details. To simplify notation, the subscript i
indicating cell number is dropped.

2.2.1. Variables and data structures
Table 1 summarises all the variables used in the implemented DES algorithm. Solute concentration and other physical

variables associated with the FV cell, are placed on either the centre node of the cell or the integration points of each FV

138 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
Table 1
Variables used in DES algorithm.

Group Variable name Symbol Unit (in 3D) Placement

FV nodal
variables

Solute concentration c kg/m3

FV
centre
node

Concentration at upstream FV cell cupstream kg/m3

Volume of a FV cell V m3

Porosity of a FV cell φ m3/m3

Pore volume of a FV cell V p m3

Total outflow from a FV cell F out m3/s
Concentration flux balance F Bc kg/s
Rate of concentration change R kg/m3 s
Concentration source q kg/m3 s

FV facet
variables

Area of FV facet S m2

FV
facet

Unit normal vector of FV facet n m
Facet fluid flux f f m3/s
Facet concentration flux f c kg/s

Event
variables

Current time stamp tcurrent s

Event
object

Scheduled time stamp for event processing tschedule s
Target time increment for next event processing �ttarget s
Local CFL time increment �tCFL s
Target concentration change over �ttarget �ctarget kg/m3

Cumulative concentration change �ccum kg/m3

Flag variable for (re-)computing tschedule Flag_T bool
Flag variable for (re-)computing R Flag_R bool

Simulation
variables

Simulation clock Tclock s

Simulation
model

Simulation end time Tend s
PEP time window �tPEP s
CFL multiplier ωCFL –
PEP multiplier ωPEP –
machine epsilon ε –
maximum finite value ∞ –

facet or sector (Fig. 1). Each event object, corresponding to the concentration value in each FV cell, is a simulation unit in
the DES algorithm. Via its member variables, the event object grants the solution variable the properties relevant to timing,
changes and status. In the main iteration loop, simulation variables, including the PEP time window �tPEP and simulation
clock Tclock , are used to track and monitor time progress.

A Fibonacci heap data structure [39], the EventQueue, is created to contain the event objects sorted by their scheduled
time stamps tschedule in increasing order. A sequence container, PEPList, is used to store those active events with time stamps
sufficiently close to Tclock and available for parallel computations.

2.2.2. DES algorithms
The implemented DES algorithm is outlined in the flowchart as displayed in Fig. 2, with its functions explained by the

pseudocode as shown in Table 2. It consists of the following four basic computational steps.

Step 1: Initialisation of simulation

When the simulation starts, an Initialisation() function (Table 2) is called. event objects are created and added to the PEPList,
with their initial flags set to Flag_R = true and Flag_T = true to indicate that their local variation rates R and scheduled time
stamps tschedule need to be computed as they are not initially available. The PEPList thus contains a full list of events at this
initial stage of simulation. Simulation clock Tclock is initialised as 0.

Step 2: Variation rate computation and event scheduling

A new variation rate R and, if required, a new scheduled time tschedule for event processing, are calculated in this step. Each
event ePEP in PEPList has a status of Flag_R = true and thus the call ComputeVariationRate (ePEP) (Table 2) is executed to
compute the new local variation rate R and CFL time increment �tCFL , based on the concentration flux balance F Bc and
the total outflow F out of the associated FV cell. Flag_R is turned to false afterwards. If the time stamp of ePEP needs to be
(re-)scheduled as indicated by Flag_T = true, then the call Schedule (ePEP) (Table 2) computes a new target time increment
�ttarget = ωCFL�tCFL taking into account a user defined CFL coefficient ωCFL (0 < ωCFL ≤ 1), and a new scheduled time for
event processing tschedule . The target change of concentration �ctarget is set as a threshold value to determine whether ePEP

needs to be pre-empted for processing during the neighbour synchronisation procedure as described later in Step 4. If
the computed tschedule is less than the proposed simulation end time Tend , ePEP is added into the EventQueue for further
computations. The PEPList is cleared at the end of this step.

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 139
Fig. 2. Flowchart for implemented DES algorithm. Variables are explained in Table 1, and pseudocode of the functions (marked with *) is displayed in
Table 2.

Step 3: Event queue sorting and simulation clock advancing

Active events, which are scheduled with a valid tschedule for processing in the future, have been added to the EventQueue
in Step 2. If the EventQueue is empty, this means that no active event will be processed before Tend , and the simulation
is terminated. Otherwise, the events in EventQueue are sorted based on their tschedule in increasing order. In this way, the
event etop at the top of the queue corresponds to the earliest event and needs to be processed first. The new Tclock is
advanced to the scheduled time stamp of etop . The PEP time increment �tPEP , which defines the width of the time window
for projecting scheduled events with close timestamps to the current Tclock level, is initialised to positive infinity. The size
of �tPEP is to be adaptively adjusted as stated in the next step.

Step 4: Event processing and synchronisation

The event etop at the top of the EventQueue is extracted from the queue and �tPEP is updated to a smaller value between
itself and the product of �ttarget of etop and a tuning coefficient ωPEP (0 ≤ ωPEP ≤ 1). If the scheduled time tschedule of etop

is later than Tclock + �tPEP then all events scheduled for processing within the time window Tclock to Tclock + �tPEP have
been extracted from the EventQueue and added to the PEPList. Computation is then continued with Step 2. Otherwise, the
simulation will proceed to execute the function call Process (etop) (Table 2) which first calls UpdateSolution (etop) to update
the concentration and cumulative concentration changes in the cell associated with etop and set its current time stamp
tcurrent to Tclock . The event is then added to PEPList (with its status changed to Flag_R = true) to update its local variation
rate later. The neighbouring events of etop need to be synchronised to preserve the conservation laws. In order to make sure

140 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
Table 2
Pseudocode for functions used in the DES algorithm.

function Initialisation ():
1: for each FV cell:
2: compute cell volume V and pore volume V p = V φ

3: initialise an associated event object and add it to PEPList
4: set initial event flags Flag_R = true and Flag_T = true
5: endfor
endfunction

function ComputeVariationRate (event e):
1: for each facet of the FV cell associated to e:
2: compute facet fluid flux f f = v · nS
3: if f f > 0: update FV total outflow F out ← F out + f f

4: determine upstream concentration cupstream

5: compute facet concentration flux f c = f f cupstream

6: update FV concentration flux balance F Bc ← F Bc + f c

7: endfor
8: compute FV variation rate R = F Bc/V p

9: if F out < ε: set CFL time increment �tCFL = ∞
10: else: compute �tCFL = V p/F out

11: set e status Flag_R = false
endfunction

function Schedule (event e):
1: Compute target change of solution �ctarget = ωCFL�tCFL|R + q|
2: if �ctarget < ε: set �ctarget = ε and target time increment �ttarget = ∞
3: else: compute �ttarget = ωCFL�tCFL

4: set e status Flag_T = false
5: if (tcurrent + �ttarget) ≥ Tend: return false
6: else: compute scheduled time stamp tschedule = tcurrent + �ttarget and return true
endfunction

function UpdateSolution (event e):
1: compute time increment �t = Tclock − tcurrent

2: compute solution change �c = −R�t + q�t
3: update solution value c ← c + �c
4: update cumulative solution change �ccum ← �ccum + �c
5: set current time stamp tcurrent = Tclock

6: add e to PEPList and set e status Flag_R = true
endfunction

function Process (event e):
1: if e status Flag_R = false: execute UpdateSolution (e)
2: for each neighbouring event enb of e:
3: if enb status Flag_R = false:
4: execute UpdateSolution (enb)

5 if |enb .�ccum| ≥ |enb .�ctarget|: execute Process (enb)

6: endif
7: endfor
8: reset cumulative solution change �ccum = 0
9: set e status Flag_T = true
endfunction

that all neighbouring cells hold the concentration at the simulation time Tclock , the UpdateSolution (enb) function is applied
for each neighbour event enb that has not been updated. If accumulated concentration change �ccum of enb exceeds the
threshold value, its target concentration change �ctarget , enb is pre-empted for processing and the function call Process (enb)
is performed to synchronise its neighbour events. This synchronisation process is iterated until no neighbour event would
be pre-empted for processing. Once an event is processed, its accumulated concentration change �ccum is reset to 0, and its
scheduled time tcheduled becomes invalid and needs to be re-computed by setting its Flag_T to true. All processed events as
marked by Flag_T = true are removed from EventQueue. If EventQueue becomes empty which means all stored events have
been processed, then the simulation goes back to Step 2. Otherwise, this step is repeated to process the next available top
event in EventQueue.

DES events are exchanged between PEPList and EventQueue during the simulation. PEPList is a dynamically changing list
that contains active events at a certain time level which are to be updated for rate of concentration change and, if required,
(re-)scheduled. Only valid events with scheduled time less than the simulation end time are passed to EventQueue for
further computations. EventQueue contains all valid events in the simulation, sorted on their scheduled time stamps. The
PEPList is always emptied before the simulation clock is advanced to the first event stored in EventQueue. Events falling into
the current PEP time window are processed and removed from EventQueue and added to the PEPList for re-computation of
local variation rate and re-scheduling, together with their synchronised neighbour events. In this way, all other inactive or

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 141
invalid events are excluded from the simulation, limiting the expense of computational resources to only a small fraction of
the whole collection of events. Simulation efficiency is therefore expected to be greatly improved.

Notably, in Step 2, during execution of the ComputeVariationRate() and Schedule() functions, the events stored in the
PEPList are independent of each other. This provides an opportunity to incorporate parallel computations into Step 2 with-
out any causality issues. Here we utilise the OpenMP shared memory multithreading application programming interface
[40].

2.3. Performance analysis

In the following two sections, we evaluate the performance of our new unstructured-grid hybrid FEM-FVM implemen-
tation of DES with two models. First, it is verified with an analytical solution of the advection equation on a simple 1D
model. Then, its computational accuracy and efficiency are evaluated for a geometrically complex field data-based three
dimensional model of fractured rock with discrete fracture representations.

To quantify simulation accuracy, we use two standard statistical metrics, the Nash-Sutcliffe model efficiency (EF) [41]
and the root mean square error (RMSE). EF describes the predictive accuracy of a model. It varies from 1 (perfect fit) to
negative infinity. RMSE measures the difference between predicted and observed values, and a value close to 0 indicates
good agreement. Corresponding mathematical expressions are:

EF = 1 −
∑n

i=1(O i − Pi)
2∑n

i=1(O i − O)2
, (9)

and

RMSE =
√∑n

i=1(O i − Pi)
2

n
, (10)

where n is number of observations, O i is reference value for the concentration at the FV cell i, Pi is corresponding DES
simulated value, and O is arithmetic mean of the reference values.

3. Verification of DES scheme for 1D models

Analytical techniques for the solution of the advection equation are generally restricted to simple problems with specific
initial and boundary conditions. Here we adopt the analytical solutions to the one dimensional advection equation with
spatially variable coefficients [42], where the velocity field is set as a linear function of distance, u(x, t) = u0x. Based on
different initial and boundary conditions, we have conducted an analysis for two scenarios, a steady point source and a
quasi-Gaussian initial profile.

3.1. Steady point source

For this case, a steady point concentration c0 is applied at location x = x0. It models the practice problem of pollutant
transport in an open channel, where the polluted water is diluted by the unpolluted lateral inflow entering the channel,
and the concentration of pollutant decreases with distance. By setting initial and boundary conditions to c(x, 0) = 0 and
c(x0, t) = c0, the evolution in time of the concentration profile is given by Zoppou and Knight [42]:

c(x, t) = c0

x
H

[
u0t − ln(x/x0)

]
(11)

where H is the Heaviside function.
Fig. 3a illustrates the comparison of DES simulation results (cell size = 0.1) and the analytical solution at t = 5, with

u0 = 1, x0 = 1 and c0 = 100. Simulated results agree well with the analytical solution. They both reflect a gradual decrease
of concentration with distance from x0. The close-to-one EF value (0.9982) and small RMSE value (0.7049) further indicate
close agreement between the results, thereby verifying the accuracy of the implemented DES scheme for this case.

Fig. 3a only shows the DES and analytical results for ωCFL = 0.5 and ωPEP = 0.5. We conducted simulations with ωCFL and
ωPEP values ranging from 0.1 to 0.9. Simulation accuracy is not affected by the chosen value of either adjusting coefficient
in this testing case, as is indicated by the unchanged EF and RMSE values in Tables 3 and 4.

The cumulative number of DES events that occurred for each FV cell are plotted against the cell flow velocities in Fig. 4a.
The diagram shows that the number of cumulative events is positively and nearly linearly correlated with flow velocity.
This verifies that FV cells with a larger local variation rate are updated with higher frequencies, which is a fundamental
characteristic of DES. When the value for the control parameter ωCFL is decreased, the cumulative event count increases,
attributed to the reduced time stamps as computed by the Schedule() function (Table 2). The resulting decrease of the
number of iteration steps is shown in Table 3.

142 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
Fig. 3. Comparison of concentration profiles computed by DES and analytical solutions for 1D tracer advection in a non-uniform flow field featured by (a)
a steady point source (Equation (11)) with u0 = 1, x0 = 1 and c0 = 100 at t = 5; (b) a quasi-Gaussian initial profile (Equation (12)) with u0 = 0.1, x0 = 0.2,
σ = 0.2 and c0 = 100 at different time points. Only DES results computed with ωCFL = 0.5 and ωPEP = 0.5 are displayed, but the simulated concentration
profiles are not sensitive to either coefficient with values ranging from 0.1 to 0.9 (Tables 3 and 4).

Table 3
Statistical results for simulation performance with varied ωCFL values and a fixed ωPEP value of 0.5, on 1D
models.

ωCFL Mean PEPList size Iteration steps Total DES events Execution time EF RMSE
(× 103) (× 103) (× 106) (s)*

1D model with steady point source
0.1 1.09 16.77 18.29 155.2 0.998 0.705
0.3 1.08 5.50 5.96 51.2 0.998 0.705
0.5 1.04 3.19 3.32 30.3 0.998 0.705
0.7 0.97 2.19 2.13 19.2 0.998 0.705
0.9 0.99 1.61 1.60 13.9 0.998 0.705

1D model with initial quasi-Gaussian profile
0.1 1.33 7.92 10.53 110.4 0.998 0.691
0.3 1.30 2.64 3.44 36.3 0.999 0.564
0.5 1.28 1.58 2.03 21.6 0.999 0.481
0.7 1.28 1.13 1.44 15.3 0.998 0.583
0.9 1.28 0.88 1.12 11.7 0.998 0.702

*Execution time is obtained on a single thread.

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 143
Table 4
Statistical results for simulation performance with varied ωPEP values and a fixed ωCFL value of 0.5, on 1D
models.

ωPEP Mean PEPList size Iteration steps Total DES events Execution time EF RMSE
(× 103) (× 103) (× 106) (s)*

1D model with steady point source
0.1 0.29 13.40 3.84 32.5 0.998 0.705
0.3 0.64 4.93 3.14 27.0 0.998 0.705
0.5 1.04 3.19 3.32 30.3 0.998 0.705
0.7 1.26 2.22 2.80 27.0 0.998 0.705
0.9 1.43 1.68 2.41 24.9 0.998 0.705

1D model with initial quasi-Gaussian profile
0.1 0.56 7.39 4.10 34.1 0.999 0.484
0.3 0.98 2.59 2.54 24.6 0.999 0.515
0.5 1.28 1.58 2.03 21.6 0.999 0.481
0.7 2.18 1.13 2.46 25.9 0.999 0.500
0.9 2.55 0.88 2.23 23.8 0.999 0.520

*Execution time is obtained on a single thread.

Fig. 4. Cumulative DES events in FV cells plotted against flow velocity with different ωCFL values for 1D tracer advection in a non-uniform flow field featured
by (a) a steady point source with u0 = 1, x0 = 1 and c0 = 100 at t = 5; (b) a quasi-Gaussian initial profile with u0 = 0.1, x0 = 0.2, σ = 0.2 and c0 = 100 at
t = 20. Only the results with ωPEP = 0.1 are displayed, but the resultant cumulative events are not sensitive to this coefficient for values between 0.1 and
0.9 (Tables 3 and 4).

144 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
Fig. 5. Permeability distribution of model FRACS2000 embedding 2000 disc-shaped fractures. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

3.2. Quasi-Gaussian profile

By using the same velocity field as calculated from the linear function of distance, but setting the initial condition as a
quasi-Gaussian concentration profile, the analytical solution of the advection equation becomes:

c(x, t) = M0

xσ
√

2π
exp

{−[ln(x/x0) − u0t]2

2σ 2

}
(12)

where σ is standard deviation, and M0 = c0x0σ
√

2π is the mass contained in the profile [42].
Fig. 3b displays the results at different time points, with u0 = 0.1, x0 = 0.2, σ = 0.2 and c0 = 100. According to the

analytical solution, peak concentration decays exponentially with time while solute mass is conserved. These behaviours are
captured precisely by the DES simulation (cell size = 0.01). Again, near unity EF values and small RMSE values quantitatively
verify the accuracy of the simulated results.

Similar to the simulation case with a constant point source, the simulated concentration profiles are almost unaffected
by the chosen value of either ωCFL or ωPEP , as is indicated by the EF and RMSE values in Tables 3 and 4. A decrease of
the ωCFL value increases the number of iteration steps, leading to increased total number DES events and execution time
(Table 3). A reduction of ωPEP values also contributes to an increase of the iteration count, but leads a decreased size of the
PEPList, which represents the active events at any iteration step (Table 4). These combined effects lead to a small variation
of the total DES event count and execution time with varying ωPEP values.

A positive correlation is also observed between the number of cumulative events and flow velocity within FV cells in this
simulation case (Fig. 4b). This once again demonstrates the ability of DES to asynchronously update different cells according
to their local variation rates, focusing simulation effort on the processing of the most rapidly evolving model regions.

4. Performance evaluation on a complex 3D fracture model

The previous simple 1D tests verified the accuracy and correctness of the implemented DES algorithm. In this section we
further evaluate its computational performance on a complex field data-based model.

4.1. Model setup

The 3D disc-shaped fracture model, FRACS2000 (Fig. 5), is based on a stochastically generated fracture geometry (DFN)
produced by Paul LaPointe (Golder Associates, Inc.) for the San Andres formation in west Texas. It was converted into a vol-
umetric mesh with lower dimensional fracture representations by Matthäi, Mezentsev and Belayneh [43] and has been used

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 145
Fig. 6. Snapshots of DES simulation results (ωCFL = 0.5, ωPEP = 0.5) of tracer advection on model FRACS2000. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

Table 5
Statistical results for simulation performance with varied ωCFL values and a fixed ωPEP value of 0.5, on 3D model
FRACS2000.

ωCFL mean PEPList size iteration steps total DES events execution time EF** RMSE**

(× 103) (× 106) (× 109) (× 103 s)*

0.1 0.93 2.93 2.74 26.76 0.998 0.011
0.3 0.92 0.98 0.89 8.80 0.982 0.033
0.5 0.91 0.59 0.53 5.28 0.951 0.055
0.7 0.90 0.42 0.38 3.77 0.905 0.076
0.9 0.89 0.33 0.29 2.95 0.858 0.095

*Execution time is obtained from the parallel simulation with 20 threads.
**EF and RMSE values are averaged from the results at 3 central lines along the axes as shown in Fig. 7.

previously for numerical simulations of single-phase and multiphase flows in fractured geological formations [4,12,38,44].
This model (1 × 1 × 0.2 km) contains 2000 fractures making up sets with 2 prominent orientations. The fracture diameter
distribution is log normal and the fracture aperture (separation of the 2 walls) varies between 0.1 and 3.5 mm. The result-
ing permeability values for fractures and the rock matrix vary over 9 orders of magnitude across the domain (Fig. 5). This
strongly heterogeneous and spatially adaptively refined model consists of 223,705 nodes and 1,113,580 finite elements in
total. Fractures are represented by locally refined lower dimensional surface elements. Due to local variation of cell size and
permeability leading to small local time step sizes, the FRACS2000 model is particularly challenging for TDS methods and
therefore ideal for performance evaluation of DES.

During simulations, a constant pressure differential of 20 MPa was applied between the opposing left and right bound-
aries, amounting to a hydrostatic far-field fluid pressure gradient giving rise to a time-invariant flow field. Due to the
strongly spatially-correlated permeability structure and large range of permeability values, flow velocity in the domain var-
ied from 5.36 × 10−12 to 1.54 × 10−2 m/s. With no flow conditions set at all other model boundaries, non-reactive tracer
with a concentration of 3.0 kg/m3 was injected continuously through the left boundary for 400 days. The tracer advection
was simulated with both TDS and DES methods.

4.2. Simulation accuracy

Fig. 6 displays snapshots of the tracer distribution through time, as simulated by DES with ωCFL and ωPEP both set to 0.5.
As expected, tracer is transported gradually from left to right while the concentration front feathers out into the fractures.
Fast advection and high concentrations are observed in clusters of larger fractures with high permeability values. Note that
the larger a fracture is, the more likely it is interconnected with others.

146 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
Fig. 7. Concentration profiles for the central line along (a) x axis at 100 days, (b) y axis at 200 days and (c) z axis at 300 days on model FRACS2000, as
computed with TDS and DES methods with varied ωCFL values.

To compare the DES simulation results with those of the TDS simulation in an efficient way, we have graphed con-
centration profiles at selected time points derived from both methods along the central line parallel to each of the three
coordinate axes in Fig. 7. For comparison, the DES results with different ωCFL values are shown. In general, a close agree-
ment is observed between DES and TDS results for all concentration profiles, especially for simulation cases with a small
ωCFL value of 0.1. As the ωCFL value increases, simulation accuracy tends to decrease by underestimating the concentrations,
as seen in Fig. 7(b) and 7(c). This reduced accuracy is also reflected in decreased EF and increased RMSE values (Table 5).
Nevertheless, a satisfactory accuracy (EF > 0.85 and RMSE < 0.01) in comparison to the TDS solution is achieved even with

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 147
Table 6
Statistical results for simulation performance with varied ωPEP values and a fixed ωCFL value of 0.5, on 3D model
FRACS2000.

ωPEP Mean PEPList size Iteration steps Total DES events Execution time EF** RMSE**

(× 103) (× 106) (× 109) (× 103 s)*

0.1 0.31 1.70 0.53 5.63 0.952 0.055
0.3 0.60 0.89 0.53 5.43 0.952 0.053
0.5 0.91 0.59 0.53 5.28 0.951 0.055
0.7 1.25 0.42 0.53 5.27 0.950 0.055
0.9 1.60 0.33 0.52 5.61 0.955 0.054

*Execution time is obtained from the parallel simulation with 20 threads.
**EF and RMSE values are averaged from the results at 3 central lines along the axes as shown in Fig. 7.

Fig. 8. Distribution of cumulative DES events on model FRACS2000.

a ωCFL value as large as 0.9. Simulation accuracy is not sensitive to the input value of ωPEP in this test case, see results
shown in Table 6.

4.3. Computational efficiency

While obtaining highly similar simulation results, DES shows significantly improved computational performance charac-
teristics by comparison with TDS. When ωCFL and ωPEP are both set to 0.5, the total events processed by DES (= 5.07 × 108)
are only 0.76% of those processed by TDS (= 6.69 ×1010). The underlying reason is evident from Fig. 8 which shows the spa-
tial distribution of cumulative events in the DES simulation. The number of events accumulated by different FV cells varies
strongly from 0 to 105 across the domain. Evidently, the FV cells representing highly permeable fractures are processed far
more frequently due to the orders-of-magnitude greater flow velocities, while the frequency of updates in the rock matrix
and in low permeability fractures are considerably lower. This reflects the focusing of the computational effort on rapidly
evolving regions in the domain, thereby reducing the waste of computational work on the inactive parts. Conversely, during
TDS simulation, a tiny time step (2.6 min), corresponding to the tightest local CFL condition in the domain, is forced on all
FV cells, leading to a large total number of iterations (2.2 × 105) for each FV cell. As a result, for a comparative simulation
accuracy, the execution time consumed by DES (9.5 hours) is only 0.93% of that required by TDS (1018.6 hours). This leads
to a very significant speedup of around 107.

By examining the accuracy measures shown in Tables 5 and 6, we are able to further qualify the influence of the input
ωCFL and ωPEP values on simulation performance. Similar to our findings for the 1D test cases, increasing the value of ωCFL

from 0.1 to 0.9 leads to reduced iteration count and therefore decreased execution time, at the cost of slightly reduced
simulation accuracy (Table 5). Increasing the value of ωPEP from 0.1 to 0.9 would also reduce the iteration step count, but
as it is accompanied by an increase of the size of the PEPList, the overall impact on total DES events, execution time and
simulation accuracy is small (Table 6).

148 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
Fig. 9. Speedups (ratio between TDS and DES execution times) achieved by DES for the simulations of tracer advection through model FRACS2000 with
different numbers of threads and input coefficients ωCFL = 0.5 and ωPEP = 0.5.

4.4. Scalability analysis on parallel computations

Thus far, all results were obtained with a serial DES program without relying on any parallel computations, except
for the algebraic multigrid solver that was used once to compute the steady-state fluid pressure distribution at the onset
of the simulation. Despite dramatically improved simulation efficiency, a simulation run on such a large 3D model still
requires a considerable amount of time to complete. Further inspection of the runtime of each of the DES procedures,
shows that 91.24% of the execution time is spent on Step 2 (Fig. 2), computing local variation rates with the function
ComputeVariationRate() as well as the scheduling of events stored in the PEPList with the function Schedule(). As mentioned
earlier, events in the PEPList are independent from each other, and therefore can be executed in parallel with multithreads
without any causality issues. A parallelisation of this heaviest calculation effort in the simulation holds the biggest promise
for further improvement of computational efficiency.

For parallelisation, we apply the OpenMP paradigm [40] and conduct a strong scalability test on the model FRACS2000
with numbers of threads varying from 1 to 20. The tests are performed on a Linux-based HPC cluster at The University
of Queensland containing 66 compute nodes. We utilise a single node of this supercomputer, which is comprised of two
10-core Intel® Xeon® E5-2660 v3 2.60 GHz CPUs. Results are presented in Fig. 9. The speedup is calculated by dividing
the TDS execution time on a single thread by the DES execution time with different number of threads. We see a general
increase in speedup with increased thread number. A more linear and rapid increase from 107.2 to 466.5 is observed
when initially increasing the threads from 1 to 8, followed by a more gradual increase to 671.6 when further increasing
the threads to 20. This slowdown may be explained by the limited number of active events (908 on average) available in
the PEPList, which results in a decrease of workload per thread for larger number of threads and hence the dominance of
synchronisation costs. It is expected that transport equations requiring computationally more expensive updates or problems
with a larger PEPList will achieve better parallel speedups. This needs further investigation in future studies. Nevertheless,
with the use of parallel DES computations, we have achieved remarkable performance improvement by further reducing the
execution time from 9.5 hours to 1.5 hours.

5. Conclusions

In this paper we present a new parallel DES algorithm for hybrid FEM–FVM simulations performed on unstructured
grids. It is implemented in the node-centred FV framework of the CSMP++ modelling platform, for the efficient simulation
of solute transport through heterogeneous porous media in a stationary flow velocity field. Compared with conventional
synchronous time-driven simulation, the implemented DES scheme has the following advantages: (1) efficiently removing
the global CFL restriction via asynchronous updates of individual FV cells based on their physically determined local vari-
ation rates and temporal scales; and (2) focusing computational effort and resources on the active cells where fast solute
transport occurs while excluding inactive or idle cells from computations by means of event sorting and synchronisation
operations. DES greatly improves computational efficiency while retaining numerical stability and accuracy, as demonstrated
by test cases. The PEP (preemptive-event-processing) method is incorporated in the presented new implementation of DES
to facilitate parallel simulations with OpenMP. For this purpose, a dynamically changing PEPList is created containing ac-
tive events with sufficiently closely scheduled time stamps. In this way, parallel computations can be applied to proximal
events for the calculations of variation rates and time stamps, accelerating these most costly computations of the simula-
tion.

We have demonstrated with a complex 3D unstructured model consisting of over 1 million adaptively refined elements,
that execution time is significantly reduced from 1018.6 hours for TDS simulation to 9.5 hours for serial DES simulation, and
further to only 1.5 hours for parallel DES simulation on 20 threads. It follows that the presented parallel DES–PEP scheme
enables efficient simulation of solute transport in realistic and complex systems at large scales.

Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150 149
The focus of this paper is on simulating solute transport, but the presented parallel DES framework is generic and can
be applied to other problems, such as the simulation of two phase flows through porous media. This work is in progress
and will be reported in our future publications.

Acknowledgements

The presented research is funded by the Carbon Capture and Storage Research Development and Demonstration
Fund (CCS49356) “Australian subsurface carbon sequestration Simulator” awarded by the Department of Industry, Inno-
vation and Science, Australian Government. Dr. Yuri Omelchenko is thanked for providing additional technical context
about his publications on the subject and for sharing his enthusiasm about the potential of DES as a fundamentally
new and powerful computational method. The authors also thank Dr. Andrea Codd for the assistance in English polish-
ing.

References

[1] L.W. Lake, Enhanced Oil Recovery, Prentice Hall, Englewood Cliffs, N.J, 1989.
[2] O.A. Cirpka, Intrinsic remediation in natural-gradient systems, in: P.K. Kitanidis, P.L. McCarty (Eds.), Delivery and Mixing in the Subsurface: Processes

and Design Principles for In Situ Remediation, Springer, New York, NY, 2012, pp. 217–238.
[3] K. Pruess, J.S.Y. Wang, Y.W. Tsang, On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff, 1:

simulation studies with explicit consideration of fracture effects, Water Resour. Res. 26 (1990) 1235–1248.
[4] S.K. Matthäi, H.M. Nick, C. Pain, I. Neuweiler, Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume

method permitting large time steps, Transp. Porous Media 83 (2010) 289–318.
[5] D.D. Laumbach, A High-Accuracy Finite-Difference Technique for Treating the Convection–Diffusion Equation, 1975.
[6] T.N. Narasimhan, P.A. Witherspoon, An integrated finite difference method for analyzing fluid flow in porous media, Water Resour. Res. 12 (1976)

57–64.
[7] P.S. Huyakorn, G.F. Pinder, The Computational Methods in Subsurface Flow, Academic Press, New York, USA, 1983.
[8] J. Istok, Groundwater Modeling by the Finite Element Method, American Geophysical Union, 1989.
[9] L.J. Durlofsky, A triangle based mixed finite element – finite volume technique for modeling two phase flow through porous media, J. Comput. Phys.

105 (1993) 252–266.
[10] R. Huber, R. Helmig, Multiphase flow in heterogeneous porous media: a classical finite element method versus an implicit pressure–explicit saturation-

based mixed finite element–finite volume approach, Int. J. Numer. Methods Fluids 29 (1999) 899–920.
[11] S. Geiger, S. Roberts, S.K. Matthäi, C. Zoppou, A. Burri, Combining finite element and finite volume methods for efficient multiphase flow simulations

in highly heterogeneous and structurally complex geologic media, Geofluids 4 (2004) 284–299.
[12] A. Paluszny, S.K. Matthäi, M. Hohmeyer, Hybrid finite element–finite volume discretization of complex geologic structures and a new simulation

workflow demonstrated on fractured rocks, Geofluids 7 (2007) 186–208.
[13] G. Dagan, Solute transport in heterogeneous porous formations, J. Fluid Mech. 145 (1984) 151–177.
[14] M. Sahimi, Flow and Transport in Porous Media and Fractured Rock, Wiley–VCH Verlag GmbH & Co. KGaA, 2011.
[15] K. Stüben, Algebraic Multigrid (AMG): An Introduction with Applications, GMD-Forschungszentrum Informationstechnik, 1999.
[16] T. Unfer, J.-P. Boeuf, F. Rogier, F. Thivet, An asynchronous scheme with local time stepping for multi-scale transport problems: application to gas

discharges, J. Comput. Phys. 227 (2007) 898–918.
[17] Y.A. Omelchenko, H. Karimabadi, Self-adaptive time integration of flux-conservative equations with sources, J. Comput. Phys. 216 (2006) 179–194.
[18] W.L. Kleb, J.T. Batina, M.H. Williams, Temporal adaptive Euler/Navier-Stokes algorithm involving unstructured dynamic meshes, AIAA J. 30 (1992)

1980–1985.
[19] X.D. Zhang, J.Y. Trepanier, M. Reggio, R. Camarero, Time-accurate local time stepping method based on flux updating, AIAA J. 32 (1994) 1926–1929.
[20] C. Dawson, R. Kirby, High resolution schemes for conservation laws with locally varying time steps, SIAM J. Sci. Comput. 22 (2001) 2256–2281.
[21] E.M. Constantinescu, A. Sandu, Multirate timestepping methods for hyperbolic conservation laws, J. Sci. Comput. 33 (2007) 239–278.
[22] M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984) 484–512.
[23] R.D. Hornung, J.A. Trangenstein, Adaptive mesh refinement and multilevel iteration for flow in porous media, J. Comput. Phys. 136 (1997) 522–545.
[24] C.C. Chueh, M. Secanell, W. Bangerth, N. Djilali, Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media, Comput.

Fluids 39 (2010) 1585–1596.
[25] M. Gedeon, D. Mallants, Sensitivity analysis of a combined groundwater flow and solute transport model using local-grid refinement: a case study,

Math. Geosci. 44 (2012) 881–899.
[26] B. Amaziane, M. Bourgeois, M. El Fatini, Adaptive mesh refinement for a finite volume method for flow and transport of radionuclides in heterogeneous

porous media, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 69 (2014) 687–699.
[27] A. Dell’Oca, G.M. Porta, A. Guadagnini, M. Riva, Space–time mesh adaptation for solute transport in randomly heterogeneous porous media, J. Contam.

Hydrol. (2017).
[28] R.M. Fujimoto, Parallel and distributed simulation systems, in: Proceeding of the 2001 Winter Simulation Conference (Cat. No. 01CH37304), 2001,

pp. 147–157, vol. 141.
[29] J. Banks, Handbook of Simulation, John Wiley & Sons, Inc., 2007.
[30] B.P. Zeigler, T.G. Kim, H. Praehofer, Theory of Modeling and Simulation, Academic Press, Inc., 2000.
[31] J. Nutaro, Parallel Discrete Event Simulation with Application to Continuous System, Department of Electrical and Computer Engineering, University of

Arizona, 2003.
[32] J. Nutaro, B.P. Zeigler, R. Jammalamadaka, S. Akerkar, Discrete Event Solution of Gas Dynamics Within the EVS Framework, Springer, Berlin, Heidelberg,

2003, pp. 319–328.
[33] H. Karimabadi, J. Driscoll, Y.A. Omelchenko, N. Omidi, A new asynchronous methodology for modeling of physical systems: breaking the curse of

Courant condition, J. Comput. Phys. 205 (2005) 755–775.
[34] D. Stone, S. Geiger, G.J. Lord, Asynchronous discrete event schemes for PDEs, J. Comput. Phys. 342 (2017) 161–176.
[35] Y.A. Omelchenko, H. Karimabadi, A time-accurate explicit multi-scale technique for gas dynamics, J. Comput. Phys. 226 (2007) 282–300.
[36] S.K. Matthäi, S. Geiger, S.G. Roberts, The Complex Systems Platform CSP5.0: User’s Guide, ETH, Zurich, Switzerland, 2004.
[37] S.K. Matthäi, S. Geiger, S.G. Roberts, A. Paluszny, M. Belayneh, A. Burri, A. Mezentsev, H. Lu, D. Coumou, T. Driesner, C.A. Heinrich, Numerical simulation

of multi-phase fluid flow in structurally complex reservoirs, Geol. Soc. (Lond.) Spec. Publ. 292 (2007) 405–429.

http://refhub.elsevier.com/S0021-9991(19)30067-1/bib31s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib32s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib32s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib33s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib33s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib34s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib34s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib35s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib36s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib36s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib37s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib38s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib39s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib39s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3130s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3130s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3131s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3131s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3132s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3132s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3133s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3134s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3135s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3136s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3136s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3137s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3138s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3138s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3139s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3230s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3231s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3232s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3233s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3234s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3234s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3235s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3235s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3236s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3236s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3237s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3237s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3238s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3238s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3239s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3330s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3331s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3331s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3332s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3332s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3333s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3333s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3334s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3335s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3336s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3337s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3337s1

150 Q. Shao et al. / Journal of Computational Physics 384 (2019) 134–150
[38] S.K. Matthäi, A.A. Mezentsev, M. Belayneh, Finite element – node-centered finite-volume two-phase-flow experiments with fractured rock represented
by unstructured hybrid-element meshes, SPE Reserv. Eval. Eng. 10 (2007) 740–756.

[39] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. Assoc. Comput. Mach. 34 (1987) 596–615.
[40] OpenMP Architecture Review Board, OpenMP Application Programming Interface: Version 4.5, November 2015.
[41] J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models, part I — a discussion of principles, J. Hydrol. 10 (1970) 282–290.
[42] C. Zoppou, J.H. Knight, Analytical solutions for advection and advection–diffusion equations with spatially variable coefficients, J. Hydraul. Eng. 123

(1997) 144–148.
[43] S.K. Matthäi, A.A. Mezentsev, M. Belayneh, Finite element – node-centered finite-volume two-phase-flow experiments with fractured rock represented

by unstructured hybrid-element meshes, in: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, Houston, Texas U.S.A., 2005.
[44] S. Geiger, Q. Huangfu, F. Reid, S.K. Matthäi, D. Coumou, M. Belayneh, C. Fricke, K.S. Schmid, Massively parallel sector scale discrete fracture and matrix

simulations, in: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, The Woodlands, Texas, 2009.

http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3338s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3338s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3339s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3430s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3431s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3432s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3432s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3433s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3433s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3434s1
http://refhub.elsevier.com/S0021-9991(19)30067-1/bib3434s1

	Efﬁcient modelling of solute transport in heterogeneous media with discrete event simulation
	1 Introduction
	2 Methodology and implementation
	2.1 Governing equations
	2.2 Implementation of the DES transport scheme
	2.2.1 Variables and data structures
	2.2.2 DES algorithms

	2.3 Performance analysis

	3 Veriﬁcation of DES scheme for 1D models
	3.1 Steady point source
	3.2 Quasi-Gaussian proﬁle

	4 Performance evaluation on a complex 3D fracture model
	4.1 Model setup
	4.2 Simulation accuracy
	4.3 Computational efﬁciency
	4.4 Scalability analysis on parallel computations

	5 Conclusions
	Acknowledgements
	References

