
Information Sciences 292 (2015) 75–94
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Extended self-reproducible Discrete Event System Specification
(DEVS) formalism using hidden inheritance
http://dx.doi.org/10.1016/j.ins.2014.08.069
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: lubimia@kunsan.ac.kr (S. Park), yoos@uah.edu (S.-M. Yoo).
Sangjoon Park a, Seong-Moo Yoo b,⇑
a Department of Computer Information Engineering, Kunsan National University, Kunsan Gunsan-si, JeonBuk 573-701, Republic of Korea
b Electrical and Computer Engineering Department, The University of Alabama in Huntsville, Huntsville, AL 35899, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 November 2013
Received in revised form 5 August 2014
Accepted 18 August 2014
Available online 16 September 2014

Keywords:
Discrete event system specification
Modeling
Formalism
Inheritance
Self-reproducible
In system modeling and simulation, a reproducible parent object can transfer its properties
to a child object, allowing the inherited child to represent the characteristics of its parent.
In this paper, we propose the use of an extended Self-Reproducible Discrete Event System
Specifications (SR-DEVS) modeling formalism, which is characterized by a coupled (equiv-
alent) parent–child hereditary relationship. Yet, contrary to other existing schemes, we
consider the hidden mechanism of the inheritance process. When modeling a self-growing
overall system in which a component object reproduces an offspring object, the hereditary
formalism elaboration from one generation to the next normally displays the system archi-
tecture and modeling characteristics. Thus, a parent component object passes its structural
properties to its child components so that the overall growing system expresses a contin-
uous self-identity and similarity. However, in the presence of a hidden inheritance mech-
anism, an inherited asset may be concealed or its proper function may not be outwardly
clear, even after its inheritance by the child object. In this work, we investigate a case study
that applies the proposed model to the simulation of a social evolution model, using social
behaviors related to online shopping.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The overall framework entities of a system simulation consist of a real-world source system, system model and simulator.
The system model derived from the real source system has specifications to express the modeled architecture and system
behavior [7,15]. The model’s structure and behavior can be clearly constructed using rich system data; therefore, system
modeling is an important phase in determining how well the extracted system model reflects the properties of the real
source system. After system modeling is complete, the system simulator, which is constructed based on model specifications,
implements the simulation and can provide analyzed simulation results. In filling the system agent role, the simulator not
only obeys the model specifications but also reveals the simulation behavior. Through computer technique developments,
computer simulations are being widely used to analyze more complex source systems and to predict difficult and changeable
real systems. However, simulation modeling needs a regular style to be effective, which supports the use of a formal, spec-
ified model of rules when constructing a valid simulation model, as opposed to using a more irregular approach. Hence, the
formalism of simulation modeling provides for the design of a rule model that formally sets the model’s specifications.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.08.069&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.08.069
mailto:lubimia@kunsan.ac.kr
mailto:yoos@uah.edu
http://dx.doi.org/10.1016/j.ins.2014.08.069
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

76 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
To attain formalism in simulation modeling and computer simulation, Discrete Event System Specification (DEVS) was
introduced in [15] as a well defined modeling formalism and is now continuously extended to describe applied complex sys-
tem models. Using this methodology, DEVS formalism can maintain the validity of simulation modeling. Atomic DEVS and
coupled DEVS were introduced as the classical forms of DEVS formalism but were succeeded by DEVS models that repre-
sented more complex system models [2–4,8,10,11,14,16,17]. Parallel DEVS was also introduced to handle simultaneously
scheduled events and resolve transition collisions [4,5,13,14]. In classical DEVS formalism, through the select function, the
model attempts to process the collision behavior between internal and external events. However, the select function is lim-
ited to adjusting two or more transition events, so the confluent transition function in parallel DEVS is employed to control the
collision behavior. Dynamic structure DEVS allows for the possibility of dynamic structural change within the model [1,2],
such as the addition or deletion of a model component or the alteration of a component connection. Real time DEVS
(RT-DEVS) is extended DEVS formalism in which the real time advance function replaces the virtual time advance function
for the simulation’s time activity [6,8,18]. In RT-DEVS, a driver model function is introduced to offer an interface between the
simulation model and real source objects [6]. Finally, the cell-DEVS model is used to combine Cellular Automata with DEVS
formalism [17].

The DEVS-based applications as well as formalism extensions have been introduced in various simulations [12,19–23].
Sung and Kim [12] have proposed a collaborative modeling method to develop effective modeling and simulation software,
using a war game DEVS simulator to exemplify and support their approach. Huang et al. [19] have proposed a railway sim-
ulation library (LIBROS-II) using the DEVS formalism to increase the performance of rail simulation. Further, the authors in
[20,21] have incorporated the applications of DEVS into wireless network simulations while Wang et al. [22] have proposed a
simulation model of emergency evacuation that is supported by Building Information Modeling (BIM) of Computer-aided
Design (CAD) software. It aims to produce useful emergency plans and rapid evacuation times through evacuation modeling
and simulation with a Cell-DEVS model. Additionally, Olamide and Kaba [23] have presented a model-based verification and
validation technique to ensure the accuracy and correctness of simulation results. They have also provided a case study
example of GSM telecommunication systems to highlight the capabilities of the verification framework.

Self-Reproducible DEVS (SR-DEVS) is also proposed to ensure the fitness of complex modeling and requires a more ade-
quate modeling formalism for the reproducible system structure [9]. In reproducible systems, self-reproduction can be rep-
resented in a structural system with an inheritance function between the parent and child components. This inheritance
function dictates that a child component receives a property from its parent component while reproducing. Here, we can
consider the elaboration of the inheritance function when a child component takes its parent’s characteristic. In the inher-
itance process, the hidden property of the inherited asset in a child component can be evaluated for various genetic
characteristics.

Thus, in this paper, we propose the use of extended SR-DEVS formalism using hidden inheritance properties (contrary to
existing schemes) to show that modeling formalism can represent more complicated inheritance mechanisms. Also, while
the system structure is partially changeable through the process of succession, the structural properties can be continuously
maintained with inherited assets. As a result, the inheritance function can support the organizational continuity found in
social functional systems, evolutionary or biological structural systems and other technical computing system simulations.

In this paper, we also investigate a case study that applies our proposed model to a social evolution model based on online
social networks. The social evolution model is used to find the social change model based on biological evolution [26], with
various researches being provided to describe the social change mechanism [27,30]. Based on the proposed model, we
attempt to find the technical analysis model for social evolution. Also, we examine online social commerce and the verifi-
cation methodology of evolution variation in consideration of the social model.

This paper is organized as follows. In Section 2, we provide an overview of the existing DEVS model formalism. In Section
3, we propose an extended SR-DEVS formalism and examine the proposed model to a social evolution model. Finally, we
conclude this paper in Section 4.

2. Devs formalism

2.1. Classic DEVS formalism

DEVS formalism [9,16] is a representative modeling methodology used to describe various computing models and to ana-
lyze the validity of simulations and modeling. Initially, atomic DEVS and coupled DEVS were introduced as forms of classical
DEVS formalism. Atomic DEVS defines the specifications of dynamic system behavior for single-system modeling. It has a
single input and output port by which event values come in and out of a component model on the time segment. An atomic
DEVS model, M, is defined by the following structure:
M ¼ ðX;Y; S; dint; dext; k; taÞ
where
X is a set of input events,
Y is a set of output events,
S is a set of states,

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 77
dint: S ? S is the internal transition function,
dext: Z � X ? S is the external transition function,
where Z ¼ fðs; eÞjs 2 S; 0 6 e 6 taðsÞg is the set of total states of the model and
e is the time elapsed since last transition,
k : S! Y is the output function,
ta : S! Rþ0;1 is the time advance function.

The basic system model is affected by event X that is given by modeling environments. When the basic system is in a state
s without an external event, it will stay in the state s within the time ta(s). If the elapsed time becomes e = ta(s), the system
outputs the value by kðsÞ, and changes to a state dint(s). Hence, if no external event occurs before the time expiration of state
s, the system generates an output event by the output function, and then immediately its state is shifted to next state by the
internal transition function. If an external event x e X arrives at elapsed time e 6 taðsÞ, and the system is in a state (s, e), the
system changes to a state dext(s, e, x) and new ta(s) is determined. That is, if an external event arrives before the time exhaus-
tion to next internal transition, the external transition function leads the next state of system which is determined by the
current state, input event and the elapsed time. Here, the time base t is a real number. Also, the output function K of the
dynamic system [9,15] is given by
Kðs; eÞ ¼
kðsÞ if e ¼ taðsÞ and xðtÞ ¼£

kðsÞ or £ if e ¼ taðsÞ and xðtÞ – £

£ otherwise

8><
>:
where x(t) is the time segment.
A single system can be a component model in a composed structural system that includes a component group. A com-

ponent model in a composed system has input and output ports to communicate with other component models.
Coupled DEVS is also a classic form of DEVS that it is composed of atomic systems. A coupled model can be joined as a

component system to construct a more hierarchically complicated structural system. Also, coupled models can be employed
to make a distributed modular system. For inside components, a coupled model has three interconnections (couplings): an
external input coupling, an internal coupling and an external output coupling. Fig. 1 shows an example of these three cou-
plings. The external input coupling is the interconnection between the external coupled model and the input of the inside
component. The internal coupling provides the interconnection for the output of a component and the input of another com-
ponent while the external output coupling connects the output of the component and the output of the coupled model.

The coupled DEVS, DM, including sub components, is defined as:
DM ¼ ðX;Y ;D; fcMdjd 2 Dg; EIC; EOC; IC; SELECTÞ
where
X = {(p, v)|p e IPorts, v e Xp} is a set of input ports p and values v,
Y = {(p, v)|p e OPorts, v e Yp} is a set of output ports p and values v,
D is a set of DEVS component names,
cMd ¼ ðXd;Yd; S; dint; dext ; k; taÞ is a component DEVS model with
Xd = {(p, v)|p e IPortsd, v e Xp} and Yd = {(p, v)|p e OPortsd, v e Yp},
EIC # fððDM; inpMÞ; ðd; inpdÞÞ inpM 2 IPorts; inpd 2 IPortsdj g is the external input coupling to external inputs and component
inputs,
EOC # fððd; oupdÞ; ðDM; oupMÞÞ oupM 2 OPorts; oupd 2 OPortsdj g is the external output coupling to component outputs and
external outputs,
Fig. 1. Couplings of coupled DEVS system model.

78 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
IC # fððf ; oupf Þ; ðs; inpsÞÞ f 2 D; oupf 2 OPortsd; s 2 D; inps 2 IPortsd

�� g is the internal coupling to component outputs and
inputs, and
SELECT: 2D �£ ? D is the selection function.
Example 1. Refer to Fig. 1. The input of COMP, a whole system, is connected into the input of component1 so that the exter-
nal input coupling is EIC = {(COMP, in), (component1, in)}. The internal coupling to component1, component2 and compo-
nent3 is IC = {((component1, out1), (component2, in1)), ((component1, out2), (component3, in2))}. The output of COMP is
linked into the outputs of component2 and component3 that the external output coupling is EOC = {((component2, out),
(COMP, out)), ((component3, out), (COMP, out))}.

2.2. SR-DEVS model

SR-DEVS model [9] provides a mechanism that a single DEVS parent reproduces child components showing structural
similarity with the same or similar behavior function. A parent DEVS component once reproduces a child DEVS component,
and both become a cluster as family. A parent model, PW, has a structure as follows;
PW ¼ ðX;Y ; S;C; dint; dext; k; taÞ
where W is a name of a parent model.
C ¼ ðPW; fRWjRW 2� PWg; INH;CONÞ
where
C is a connector of PW as the reproduction relationship to parent and child components,
RW is a set of child components ðRW ¼ fr1; r2; . . . ; rnj1 6 n 61gÞ,
e⁄ means the inheritance relation that a child DEVS component is derived from a parent DEVS model,
INH is a set of inheritance function from a parent model to child components,
CON ¼ ðPW; outWÞð ðRW0 ; inÞÞf ; ðRW0 ; outÞ;ð PW; inWÞÞð joutW and out 2 OutCon; inW and in 2 InCong CON is a connection set of
parent and child models
inCon is a set of input connection, and OutCon is a set of output connection.

Hence, a child component model is obtained as:
rW ¼ ðIP;OP; SW;CW; dW�int; dW�ext; kW; taWÞ
where
IP = {a1, a2, . . . , al} is an input set,
OP = {b1, b2, . . . , bm} is an output set,
SW = {c1, c2, . . . , cn} is a state set,
CW is a connector,
dW-int(e ⁄dint) is the internal transition function,
dW-ext(e ⁄dext) is the external transition function,
kW0 ð2 �kWÞ is the output function.

Note that if a parent component model has no child component, it is the same as classic atomic DEVS model. Assume that
a component model is given by Pa ¼ ðXa;Ya; S;Ca; dint; dext; k; taÞ, and it has no child component (Ra = £). Then, INHa and CON
cannot be accomplished (INHa = £, CONa = £), and by Ca = £ Pa is a single DEVS model. However, if a parent component has
at least one child component, both components have the inheritance relationship and child components show the same or
similar system behaviors to their parent model.
t tt Δ+ 'ttt Δ+Δ+

Fig. 2. A system reproduction.

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 79
2.3. More explanations of SR-DEVS modeling

In this subsection, we explain SR-DEVS modeling in greater detail, using Figs. 2 and 3, before proposing the extended
model.

In simulation modeling environments, we may need a model with the same or similar components (or coupled model) to
construct a distributed or hierarchical structure model. In such a functional structure, a member component can reproduce a
child component so that a reproduction relationship is established. The reproduction relationship among components per-
mits similarities in component operation, in that a child DEVS component can show the same or similar functional config-
uration as its parent DEVS component. We call this reproduction relationship the behavior inheritance. Through inherited
behavior, a child DEVS component receives behavior from its parent DEVS component. Furthermore, structural inheritance
as well as behavior inheritance is possible in the reproduction of a coupled model. The system architecture may change the
Fig. 3. Inherited behavior of SR-DEVS mode.

80 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
time flow of the simulation as a coupled component receives structural properties from a parent coupled component during
the reproduction process.

Example 2. Fig. 2 shows a system reproduction process. Component A reproduces component B at time t. From the
component A, the component B receives not only the set of inherited behavior but the structural configuration. In time t + Dt,
component A reproduces a new component B0. It is possible that the child components B and B0 may resemble or be the same
each other. Otherwise, the component B0 can show entirely different behavior configuration to component B. In Fig. 2(c),
components B and B0 reproduce their child components C and C0 during Dt0. The child component C and C0 may also resemble
or not. Hence, we need an inheritance mechanism for self-reproducible system which has the property of structural growth
or evolution system.
Example 3. The inherited behavior sequences of a child component model are illustrated in Fig. 3. The upper (bottom) figure
shows system behavior of a parent (child) model’s transition sequences. Here, dint(s1) ? s2 is the internal state transition
without an external event. When external input event x0 is arrived at the end of elapsed time e2 and current state s2, next
state is determined as dext(s2, e2, x0) ? s3. After a child component is reproduced, it shows the same transition behavior as
that of parent component if it receives all functions from the parent model. Like the parent component, when no external
event occurs in state s4, the internal state transition of the child component is dW-int(s4) ? s5. With external input x1,
elapsed time e5 and current state s5, the new state is represented to dext(s5, e5, x1) ? s6.

Note that the inheritance pattern has two categories: integrity and fragment. By integrity a child component receives all
inheritance assets of parent model so that the child component shows the same system behavior. By fragment, a child model
can only represent partial behavior of parent model. It is possible that child components are more or less different each other
by the inheritance variation. In SR-DEVS model a child DEVS component model can have plural parent DEVS models to com-
pose various inheritance behaviors. When a child DEVS component has some parent DEVS models, its reproduction relation-
ship (connector) is represented as follows:
CP ¼ ðP; fRWjRW 2 �Pg; INH; CONÞ
where P is a set of parent models P = {pW1, pW2, pW3, � � � , pWn}.
Also, a coupled SR-DEVS model, CPm, is given by
CPm ¼ ðXm;Ym;D; fcMdjd 2 Dg;Ccp; EIC; EOC; ICÞ
where
D is a set of sub-components,
Ccp is the connector of coupled model.

Here, a coupled SR-DEVS model can deliver the overall structured model to the child coupled model. Inside components
are basically imparted to the child coupled model during the model’s reproduction process. In particular, a child coupled
model resembles not only the system behavior of its parent coupled model but also the structural properties that define
the composed identity. In essence, a parent coupled component can include normal atomic components without the repro-
duction function. If a parent coupled component has inside components that have reproduction ability, a child coupled com-
ponent can be reproduced while a parent component changes its structure.

The SR-DEVS model is a reproduction formalism methodology that shows inheritance characteristics (integrity and frag-
ment) [9]. In the reproduction process, a more elaborate inheritance form can be requested for the functional configuration.
In the next section, we propose an extended SR-DEVS model using hidden inheritance properties.

3. Extended SR-DEVS model

3.1. Hidden inheritance

An inheritance function allows the properties of a parent component to be passed on to a child component while preserv-
ing the generational characteristics on time flow. We introduce a hidden mechanism that is adopted in the reproduction pro-
cess. When a child component receives an inheritance property from its parent component, the hidden mechanism is
involved in the inheritance. Hence, after an inheritance asset of the parent is transferred to the child, the hidden mechanism
is instantaneously implemented to determine the expression of the inheritance asset. Through this hidden inheritance, the
property can be either represented or hidden by the system behavior. If a child DEVS component receives a normal inherited
behavior, it expresses this property externally. However, if it obtains a hidden inheritance behavior, it does not outwardly
reveal its hidden characteristic, although the inherited property has not disappeared. This is called hidden inheritance, as
it permits a child DEVS component to receive an inherited behavior from its parent component, but it cannot show that
behavior. Instead, the child component simply possesses the inherited property without expressing the property’s behavior.
For the hidden mechanism, the inheritance function of the SR-DEVS model is represented as follows:

Table 1
Elemen

INH⁄

INH[

INH½�c
INHn

INH(

INHðc
INH½�n

INH⁄

INH[

INH½�c
INHn

INH(

INHðc
INH½�n

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 81
INH� ¼ ðrW; Ih;Oh; Sh; dh�int; dh�ext; kh; hs; taÞ
where
rW is a child DEVS component reproduced from its DEVS parent component,
Ih is a set of inheritance functions of input values X ¼ fx1; . . . ; x�m; . . . ; xm0 g,
ih�m is an inheritance function to x�mð2 XÞ for the hidden inheritance,
Oh is a set of inheritance functions of output values Y ¼ fy1; . . . ; y�n; . . . ; yn0 g,
oh�n is an inheritance function to y�nð2 YÞ for the hidden property,
Sh is a set of inheritance function of state set which can include a hidden inheritance,
dh-int is a set of inheritance functions of internal transition which can include a hidden inheritance ðdih�i Þ,
dh-ext is a set of inheritance functions of external transition which can include a hidden inheritance ðdxh�j Þ,
kh is a set of inheritance function of output including a hidden inheritance, and hs is the hidden strength of inheritance
property for the atomic SR-DEVS component.

The elements of Ih, Oh, dh-int, and dh-ext of INH⁄ are listed in Table 1.

Here, a hidden mechanism has hidden strength. The hidden strength affects the determination of the hidden character-

istic to the inheritance property. Also, an inheritance property can have the hidden mechanism. If an inherited property has
no hidden characteristic, its hidden strength is £. Hence, if all inherited properties do not have any hidden mechanisms, the
child receives all inherited properties normally, and it shows the received asset as it is. The hidden strength might be a con-
stant value, a threshold value, or described as the strength function with a proper format. If the hidden strength is a Boolean
value, the inheritance property has unconditionally hidden when the hidden strength is 1. If the hidden strength is expressed
by the strength function, this function becomes the determination function to the hidden inheritance. The function provides
a decision value for the hidden inheritance.

The inheritance properties can share certain hidden strength values as
hs ¼ w1; . . . ;wm; . . . ;wm0½ �;
or as
hs ¼

f 1ðvÞ � � � f kðv 0Þ � � �
� � � � � �

� � � nmðqÞ � � �
� � � on0 ðwÞ � � � on00 ðw0Þ

2
66664

3
77775:
After the inheritance to a property is fulfilled, immediately the hidden property is determined by the hidden strength.
Note that the hidden inheritance is only applied to current child component, not other components. A positive property
in a parent component can be a hidden property in a child component while inheriting the property. Otherwise, a hidden
property of parent component remains as unchanged property in a child component. Also, a child component can receive
several hidden properties from a parent component.
ts of hidden inheritance.

Ih Oh

ih1; . . . ; ih�m; . . . ; ihm0 oh1; . . . ; oh�n; . . . ohn0
⁄] ih1; . . . ; ½ih��m; . . . ; ihm0 oh1; . . . ; ½oh��n; . . . ohn0

� ihs10 ; ihs20 ; ½ih�
�
s30 ; . . . ; ihm0 ohs10 ; ohs20 ; ½oh��s30 ; . . . ohn0

c ihs100 ; ihs200 ; ihs300 ; . . . ; ihm00 ohs100 ; ohs200 ; ohs300 ; . . . ohn00
⁄) ih1; . . . ; ðihÞ�m; . . . ; ihm0 oh1; . . . ; ðohÞ�n; . . . ohn0

�Þ ihs10 ; ihs20 ; ðihÞ
�
s30 ; . . . ; ihm0 ohs10 ; ohs20 ; ðohÞ�s30 ; . . . ohn0

�
c

ihs100 ; ihs200 ; ½ih�
�
s300 ; . . . ; ihm00 ohs100 ; ohs200 ; ½oh��s300 ; . . . ohn00

dh-int dh-ext

dih1; . . . ; dih�i ; . . . ; dihi0 dxh1; . . . ; dxh�j ; . . . ; dxhj0

⁄] dih1; . . . ; ½dih��i ; . . . ; dihi0 dxh1; . . . ; ½dxh��j ; . . . ; dxhj0

� dihs10 ; dihs20 ; ½dih��s30 ; . . . ; dihi0 dxhs10 ; dxhs20 ; ½dxh��s30 ; . . . ; dxhj0

c dihs100 ; dihs200 ; dihs300 ; . . . ; dihi00 dxhs100 ; dxhs200 ; dxhs300 ; . . . ; dxhj00

⁄) dih1; . . . ; ðdihÞ�i ; . . . ; dihi0 dxh1; . . . ; ðdxhÞ�j ; . . . ; dxhj0

�Þ dihs10 ; dihs20 ; ðdihÞ�s30 ; . . . ; dihi0 dxhs10 ; dxhs20 ; ðdxhÞ�s30 ; . . . ; dxhj0

�
c

dihs100 ; dihs200 ; ½dih��s300 ; . . . ; dihi00 dxhs10 ; dxhs20 ; ½dxh��s30 ; . . . ; dxhj0

S

Fig. 4. Hidden inheritance.

82 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
Example 4. Fig. 4 shows an example of the hidden inheritance of the child component in Fig. 3. In the child component an
external input event x0 is arrived to activate an external transition function, but by the hidden inheritance it does not show
the same behavior of its parent component and the system state remains at s2. The output function to the external function
is not worked to produce output value y3. System state s2 becomes the next system state s4.

Hidden inheritance consists of two different types: complete hidden property and incomplete hidden property. With a com-
plete hidden property, the inherited asset is thoroughly hidden, but, with an incomplete hidden property, the asset is unsta-
ble and only partially hidden. Here, hidden strength influences whether the property exists as a complete or incomplete
hidden property. If the hidden strength presents a decision value to the hidden inheritance, the type of completion mode
would be selected by the decision value. The two hidden property types are illustrated in Fig. 5. Here, a parent DEVS com-
ponent reproduces its child DEVS component, which receives the parent’s properties, including structural as well as behav-
ioral inheritance. After its own reproduction, the child component can then reproduce the next child component.

(1) Complete hidden property: With a complete hidden property, related input and output values and transition functions
of a hidden behavior are concealed. Hence, a child DEVS component does not show any system behaviors related to the
complete hidden property. However, the child component still contains the concealed asset though it cannot represent
its behavior. Also, it is possible for the child component to pass on its concealed asset to the next child component. In
doing so, a complete hidden property inherited from a parent component can be changed into a positive property dur-
ing reproduction, which may allow the inherited behavior to be displayed normally.

The inheritance function including the complete hidden property is represented as: [INH[⁄] = (rW, Ih, Oh, Sh, dh-int, dh-ext, kh,
hs, ta)], where the inheritance element functions for the complete hidden property are represented as ½ih��m, ½oh��n, ½dih��i and
½dxh��j . The elements of Ih, Oh, dh-int, and dh-ext of INH[⁄] are listed in Table 1.

Fig. 5(a) shows a complete hidden property. In the figure, the inherited function s30 of the first child component shows
complete hidden inheritance style. Though the child component has the inherited function s30 from the parent function
s3, the child component does not show the behavior to s30. However, the next child component can show active behavior
to s300 when it obtains the functional behavior s300 from its parent component. In this case, as normal inherited function,
the inheritance of s300 does not show the complete hidden property.

Hence, in Fig. 5(a) the inheritance function of the first child component is given by INH½��c ¼ (rfc, Ih, Oh, Sh0, dh-int, dh-ext, kh0,
hs, ta). The elements of Ih, Oh, dh-int, and dh-ext of INH½��c are listed in Table 1. Also, the inheritance function of the next child
component is INHnc =(rnc, Ih, Oh, Sh00, dh-int, dh-ext, kh00, hs, ta). The elements of Ih, Oh, dh-int, and dh-ext of INHnc are listed in

s1''

s2'' s3''

s4''

s1'

s4'

s1

s2 s3

s4

s3's2'

s1''

s2''

s4''

s1'

s4'

s1

s2 s3

s4

s3's2'

s3''

Fig. 5. Hidden inheritance type. (a) Complete hidden property. (b) Incomplete hidden property.

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 83
Table 1. The next child component is able to represent the same inherited behavior to the first parent component, when the
inheritance is implemented as the integrity type.

(2) Incomplete hidden property: With an incomplete hidden property, partially inherited input and output values and
transition functions can be related to reveal some behaviors in the hidden environment. When an inherited
behavior shows an incomplete hidden property in the inheritance process, a partial function to the inherited
behavior is activated to represent some of its actions. A child DEVS component can show unstable or irregular
inherited behaviors for the incomplete hidden property even though its parent expresses normal behavior. When
a parent DEVS component reproduces multiple child components that receive an inherited function from an
incomplete hidden property, it is unusual for the received function to manifest unequally in these child compo-
nents. Also, a child DEVS component that has an incomplete hidden behavior can reproduce a child component
in which the incomplete hidden behavior can be changed into a normal or complete hidden behavior during
reproduction.

The inheritance function that includes incomplete hidden property is given by INH(⁄) = (rW, Ih, Oh, Sh, dh-int, dh-ext, kh,
hs, ta), where the inheritance element functions of the incomplete hidden property are represented as ðihÞ�m, ðohÞ�n, ðdihÞ�i
and ðdxhÞ�j . By the hidden strength, the hidden type of a child can be the incomplete hidden type. The elements of Ih, Oh,
dh-int, and dh-ext of INH(⁄) are listed in Table 1.

Fig. 5(b) shows an incomplete hidden property. When a parent component makes a child component, the inherited
behavior s30 shows the incomplete hidden style. As mentioned above, even though another child component may get the
functional behavior s30 from the parent component as the same incomplete inheritance pattern, it can show different con-
duct. The inheritance behavior of the first child component is given by INHð�Þc = (rfc, Ih, Oh, Sh0, dh-int, dh-ext, kh0, hs, ta). The ele-
ments of Ih, Oh, dh-int, and dh-ext of INHð�Þc are listed in Table 1.

The next child component receives inherited behavior from the first child component that the behavior s300 is in the com-
plete hidden property. The inheritance function of the next child component is given by INH½��nc = (rnc, Ih, Oh, Sh00, dh-int, dh-ext,
kh00, hs, ta). The elements of Ih, Oh, dh-int, and dh-ext of INH½��nc are listed in Table 1.

Therefore, there exist three composition cases of hidden type management caused by the hidden strength. An inheritance
group may have only either complete or incomplete hidden type, or the group may possess child components showing both
hidden types.

84 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
3.2. Multiple parent inheritance with a hidden property

The hidden property of an inherited behavior can be delivered to child components in different ways during the inher-
itance process. In special cases, a child DEVS component with multiple parent DEVS components receives a greater number
of compositional inheritance characteristics. Further, in local cluster morphism, when specific parent components try to
transmit an inheritance behavior to a child component, the child component selects only a subset of the parents’ behavioral
properties. Meanwhile, in integrity inheritance, the inheritance asset of selected parents remains intact in the child compo-
nent. But, with a hidden property, some inherited behaviors become inactive, and the appearance of the inherited behavior is
limited so that it appears as if the inheritance is of the fragment type.

We also consider hidden properties within the integrity type of global cluster morphism. In global cluster morphism, even
though a child DEVS component receives all of the inheritance assets from certain parent DEVS components, it appears as if
the child only partially receives these inheritance assets because of a hidden property. Hence, the child DEVS component will
display inherited behavior from the specific parent components but not from all parent components, making this format
similar to local cluster morphism of the integrity type. However, if the child component can only partially represent the
behaviors of all parent components, then this is akin to the fragment type of inheritance. The child component still contains
all of the inheritance assets from its parent components, but the expression of these assets is limited by hidden behaviors.
Notably, the next child component can outwardly express all of the functional behaviors through integrity inheritance.

Fig. 6 illustrates the multiple DEVS parent inheritance with the hidden property. Assume that by the integrity type the first
child component gets the functional inheritance from three parent components (a-component, b-component and c-compo-
nent), and each parent gives all self-inheritance assets to the next child component. Then, the next child component makes
its child component with another component. Once through the cluster morphism, a-, b- and c-components as the parent
components give their all functional behavior to the first child component. If the succession is normally implemented with-
out any variation, the child component should successfully form the inherited behavior to three parent components. How-
ever, as shown in the figure, the first child component only represents the inherited behavior of the a-component normally.
In this case the inheritance asset of the b- and the c-components is locked to hide active behavior. Here, during the inher-
itance, to the behavior of the b-component it follows the complete inheritance property, and the incomplete inheritance
property is applied to the behaviors of the c-component.

The inheritance function to the first child component is given by INHmp_fc = (rfc, Ih, Oh, Sh0, dh-int, dh-ext, kh0, hs, ta). In this
case, the hidden strength affects the hidden inheritance of b- and c-components. The elements of Ih, Oh, dh-int, and dh-ext

of INHmp_fc are listed in Table 2. Then, the first child component makes the next child component by the integrity type without
the hidden property. The hidden behavior of b- and c-components in the first child component is released to appear in the
next child component, i.e., the hidden property of the first child component is finished in the next child component. The
inheritance function of the next child component is given by INHmp_nc = (rnc, Ih, Oh, Sh00, dh-int, dh-ext, kh00, hs, ta). The elements
of Ih, Oh, dh-int, and dh-ext of INHmp_nc are listed in Table 2. Here, all inheritance properties of next child component show their
behaviors to proper characteristics because the results of hidden strength stop the hidden inheritance.

In terms of a system component, we consider the continuance of the hidden characteristics of an inherited behavior. Vari-
ations within the system state can affect the hidden behavior; for example, a system component that holds a hidden behav-
ior may undergo a state transition, which can change the hidden property to a normal mode of expression. Therefore, in this
Fig. 6. Multiple parent DEVS inheritance.

Table 2
Elements of multiple parent inheritance with hidden property.

Ih Oh

INHmp_fc iha01 ; . . . ; iha0
l
; . . . ; iha0

l0
; oha01 ; . . . ; oha0

l
; . . . ; oha0

l0
;

½ih��b01 ; . . . ; ½ih��b0m ; . . . ; ½ih��b0m0 ; ½oh��b01 ; . . . ; ½oh��b0m ; . . . ; ½oh��b0m0 ;
ðihÞ�c01 ; . . . ; ðihÞ�c0n ; . . . ; ðihÞ�c0

n0
ðohÞ�c01 ; . . . ; ðohÞ�c0n ; . . . ; ðohÞ�c0

n0

INHmp_nc iha001 ; . . . ; iha00
l
; . . . ; iha00

l0
; oha001 ; . . . ; oha00

l
; . . . ; oha00

l0
;

ihb001
; . . . ; ihb00m

; . . . ; ihb00m0
; ohb001

; . . . ; ohb00m
; . . . ; ohb00m0

;

ihc001 ; . . . ; ihc00n ; . . . ; ihc00
n0

ohc001 ; . . . ; ohc00n ; . . . ; ohc00
n0

INH⁄ ðih1; . . . ; ih�m; . . . ; ihm0 Þ; ðoh1; . . . ; oh�n; . . . ohn0 Þ;
ð£; . . . ; itr�m; . . . ;£Þ ð£; . . . ; otr�n ; . . . ;£Þ

INH0mp fc ðiha01 ; . . . ; iha0
l
; . . . ; iha0

l0
; ðoha01 ; . . . ; oha0

l
; . . . ; oha0

l0
;

½ih��b01 ; . . . ; ½ih��b0m ; . . . ; ½ih��b0m0 ; ½oh��b01 ; . . . ; ½oh��b0m ; . . . ; ½oh��b0m0 ;
ðihÞ�c01 ; . . . ; ðihÞ�c0n ; . . . ; ðihÞ�c0

n0
Þ; ðohÞ�c01 ; . . . ; ðohÞ�c0n ; . . . ; ðohÞ�c0

n0
Þ;

ð½itr��b01 ; . . . ; ½itr��b0m ; . . . ; ½itr��b0m0 Þ ðob0� ¼£;

¼ ib0� ¼£; oc0� ¼£Þ
ððitrÞ�c01 ; . . . ; ðitrÞ�c0n ; . . . ; ðitrÞ�c0

n0
Þ

¼ ic0� ¼£

dh-int dh-ext

INHmp_fc diha01 ; . . . ; diha0
l
; . . . ; diha0

l0
; dxha01 ; . . . ; dxha0

l
; . . . ; dxha0

l0
;

½dih��b01 ; . . . ; ½dih��b0m ; . . . ; ½dih��b0m0 ; ½dxh��b01 ; . . . ; ½dxh��b0m ; . . . ; ½dxh��b0m0 ;
ðdihÞ�c01 ; . . . ; ðdihÞ�c0n ; . . . ; ðdihÞ�c0

n0
ðdxhÞ�c01 ; . . . ; ðdxhÞ�c0n ; . . . ; ðdxhÞ�c0

n0

INHmp_nc fdiha001 ; . . . ; diha00
l
; . . . ; diha00

l0
; fdxha001 ; . . . ; dxha00

l
; . . . ; dxha00

l0
;

dihb001
; . . . ; dihb00m

; . . . ; dihb00m0
; dxhb001

; . . . ; dxhb00m
; . . . ; dxhb00m0

;

dihc001 ; . . . ; dihc00n ; . . . ; dihc00
n0

dxhc001 ; . . . ; dxhc00n ; . . . ; dxhc00
n0

INH⁄ ðdih1; . . . ; dih�i ; . . . ; dihi0 Þ; ðdxh1; . . . ; dxh�j ; . . . ; dxhj0 Þ;
ð£; . . . ; ditr�i ; . . . ;£Þ ð£; . . . ; dxtr�j ; . . . ;£Þ

INH0mp fc ðdiha01 ; . . . ; diha0
l
; . . . ; diha0

l0
; ðdxha01 ; . . . ; dxha0

l
; . . . ; dxha0

l0
;

½dih��b01 ; . . . ; ½dih��b0m ; . . . ; ½dih��b0m0 ; ½dxh��b01 ; . . . ; ½dxh��b0m ; . . . ; ½dxh��b0m0 ;
ðdihÞ�c01 ; . . . ; ðdihÞ�c0n ; . . . ; ðdihÞ�c0

n0
Þ; ðdxhÞ�c01 ; . . . ; ðdxhÞ�c0n ; . . . ; ðdxhÞ�c0

n0
Þ;

ðdib0� ¼£; dic0� ¼£Þ ðdxb0� ¼£; dxc0� ¼£Þ

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 85
work, we describe the continuous as well as interrupted concealment of the hidden functional behavior. If a child component
has a hidden behavior that remains purely in the existence of the child component, it guarantees continuous concealment, in
which the state of a hidden behavior would not be changed to expose the concealed action. However, it is possible that the
continuation of a hidden behavior is interrupted when behavior activity reaches the interrupted concealment. If a child com-
ponent receives a hidden behavior with interrupted concealment and an event occurs to activate the interruption function,
the hidden property of the behavior would be removed and it would appear as a normal behavior in the child component.

In the SR-DEVS component, the interrupted concealment is delivered in the inheritance function INH⁄ = (rW, Ih, Oh, Sh,
dh-int, dh-ext, kh, hs, ta), where the interruption element functions are represented as itr�m, otr�n , ditr�i and dxtr�j . The elements
of Ih, Oh, dh-int, and dh-ext of INH⁄ are listed in Table 2.

The interrupted concealment in the inheritance function is connected to the hidden function. If a child component shows
no interruption function to any hidden behavior, the child component contains un-changed, hidden behavior. Assume that
inheritance function is given in the first child component in Fig. 6.

When the hidden behavior of b- and c-components follows the continuous concealment, the interruption function is not
provided that the inheritance function is the same as the above function by INH0mp fc = (rfc, Ih, Oh, Sh0, dh-int, dh-ext, kh0, hs, ta).
The elements of Ih, Oh, dh-int, and dh-ext of INHmp_fc are listed in Table 2.

However, if the hidden behavior adopts the interrupted concealment, the interruption functions are inserted to apply the
state change of behavior from the hidden mode to active behavior mode. Hence, to offer the interruption functions to the
hidden behavior of b- and c-component of the first child component in Fig. 6, the inheritance function is the same as
INH0mp fc except that all ‘‘(= £)’’ are removed from all elements.

On the inheritance process, the child component may receive the hidden behavior having interruption functions by the
inheritance function. The hidden property of a behavior is released by a triggered interruption function while simulating the
component behavior.

3.3. Hidden inheritance of coupled SR-DEVS

In a coupled SR-DEVS model of the integrity type, a child coupled component receives all assets from its parent coupled
component so that the parent properties dictate the entire structural form as well as the functional inheritance. After the

86 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
reproduction of a coupled system, internal elementary DEVS components implement their proper behaviors and can com-
municate with each other. Let us consider the hidden inheritance of the coupled SR-DEVS model. To determine the hidden
inheritance, the connector Ccp for the inheritance relationship of the coupled DEVS model is given as follows:
Ccp ¼ Pcp; fRWjRW 2 �Pg; INH�cp; CON
� �
where Pcp is a parent coupled DEVS model, and INH�cp is the inheritance function including a set of hidden functions.
Here, the inheritance function INH�cp has a structure as follows:
INH�cp ¼ ðrcp; Ih;Oh;dM; dEI; dEO; dIC; chsÞ
where
rcp is a child coupled DEVS model,
dM = dm1; . . . ; d�mn; . . . ; dmn0

� �
is a set of inheritance functions of sub-element DEVS components,

d�mn is an inheritance function to the hidden inheritance,
dEI = dei1; . . . ; dei�i ; . . . ; deii0

� �
is a set of inheritance functions of external input coupling connections that include a hidden

function dei�i
� �

,

dEO = deo1; . . . ; deo�j ; . . . ; deoj0

n o
is a set of inheritance functions of external output coupling connections that include a

hidden function deo�j
� �

,

dIC = dic1; . . . ; dic�k; . . . ; deick0
� �

is a set of inheritance functions of internal coupling connections that include a hidden func-
tion dic�k

� �
, and chs is the component’s hidden strength to determine the hidden inheritance of DEVS element.

Note that a parent coupled SR-DEVS component model becomes a general coupled DEVS model if the former does not
have any child coupled component (Ccp = £). A coupled SR-DEVS model can hold several elementary DEVS components,
which have the coupling connections to specify structural characteristics. The inheritance of three coupling connections
and their inside elementary components are used to construct the structure of a child coupled component. In the coupled
SR-DEVS model, only integrity inheritance is allowed so that a child coupled component inherits all behavior and structural
properties from its parent coupled component.

However, hidden inheritance affects the expression of a child coupled structure. In this paper, we consider a hierarchical
hidden mechanism for the coupled SR-DEVS model. The hidden mechanism of an atomic component has its own elementary
hidden strength (see Section 3.1) while the coupled structure possesses the component’s hidden strength for the hidden
inheritance. Thus, if the component’s hidden strength affects the component in the coupled structure, the child coupled
structure would receive the component as a hidden property. If this hierarchical hidden strength of the coupled structure
is £, it does not have any hidden characteristic to its components. Also, even though a component in the coupled structure
will not mirror the entire hidden component in terms of the appearance value of the component’s hidden strength, it may
internally contain this elementary hidden strength.

The component’s hidden strength might be a decision value, a threshold value, or a determination function to decide the
hidden inheritance. Hence, when the hidden inheritance is determined by the component’s hidden strength, the component
at work will be hidden in the child coupled structure. Also, atomic components of a coupled structure can have the same
component’s hidden strength, or they may acquire different hidden strengths in the inheritance process. As mentioned ear-
lier, although the child coupled structure cannot outwardly show the hidden component’s properties, it has still inherited the
component’s assets. Therefore, it is possible for the child coupled structure to show different characteristics from its parent
coupled structure through hierarchical hidden inheritance. In this way, a child coupled structure that has hidden properties
may appear different from another child coupled structure that is produced by the same parent component.

Example 5. Fig. 7 illustrates a hidden inheritance of coupled SR-DEVS component. The parent coupled component
(j-component) reproduces two child coupled components (G-component and H-component) in Fig. 7(a). By the component
hidden strength, the G-component has l

0 l01; . . . ;l0m; . . . ;l0m0
� �

elements as hidden assets, and the H-component has k0

k01; . . . ; k0k; . . . ; k0k0
� �

and x0 x01; . . . ;x0n; . . . ;x0n0
� �

elements as hidden assets. Here, the component hidden strength might be
Boolean array values to each atomic component. Even though G-component and H-component have the same parent
component and hold the same inheritance, they would show different coupled component movement. If an element
component gets into hidden mode in the inheritance process, its overall behavior cannot be activated as if it were not
included in the coupled component.

The inheritance function of G-component is given by INH�j�component = (rG-component, Ih, Oh, dG-component, dEI, dEO, dIC, chs). Also,
the inheritance function of H-component is given by INH�j�component = (rH-component, Ih, Oh, dH-component, dEI, dEO, dIC, chs). The ele-
ments of both G-component and H-component are listed in Table 3.

Fig. 7(b) illustrates some examples of inheritance configuration to the coupled component. Assume that the G0-compo-
nent is a next child coupled component from the G-component of Fig. 7(a), and reproduces its next child coupled component
(G00-component). By the reproduction of inside DEVS element, the architecture of G0-component is varied to extend

1λ

1μ

1ω

'mμm

kλ

'mμ

1ω nω 'nω

'kλ

'nω

1λ

1μ

1ω

mμ1μ

1λ 'kλ

1μ11

component−κ

componentG −

componentH −

1'λ1'λ
1'λ

k'λ ''kλ

''kλ

1'μ
1'μ

1'μ
m'μ ''mμ

''mμ

1'ω
1'ω

1'ω n'ω ''nω

''nω

1'λ k'λ
1'λ

1'λ ''kλ
'' kλ

1'μ
1'μ

1'μ m'μ ''mμ
''mμ

1'ω
1'ω

1'ω

n'ω ''nω
''nω

(a)

1'λn1'λn

1'λn

kn 'λ ''knλ

''knλ

1'μn
1'μn

1'μn
mn 'μ

''mnμ
''mnμ

1'ωn
1'ωn

1'ωn nn 'ω
''nnω

''nnω

"
hnλ

"
'hnλ

"
1λn

"
1λn

"
1λn

''1α

''2α''3α

''4α

1"β

2"β3"β

4"β

componentG −'

1'λ1'λ

1'λ

k'λ ''kλ

''kλ

1'μ
1'μ

1'μ
m'μ ''mμ

''mμ

1'ω
1'ω

1'ω n'ω ''nω
''nω

"
1λ "

hλ "
'hλ

"
1λ

"
1λ

componentG −''

'1γ

'2γ'3γ

'4γ

(b)

Fig. 7. Hidden inheritance of coupled SR-DEVS model.

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 87
component movement. Elements k00 ¼ k001; . . . ; k00h; . . . ; k00h0
� �� �

of the G0-component are child element components reproduced
from the k0.

In a coupled SR-DEVS model, an inside atomic DEVS element can reproduce its child component. In the G0-component, the
element k001 is reproduced as a normal component, but the element k00h is a hidden component by the complete hidden prop-
erty. Also, the inheritance mode of x

0
is changed into the hidden type during inheritance. The inheritance of G00-component is

implemented without any variation. In this case, the component’s hidden mechanism of G0-component leads the same hid-
den results for the hidden inheritance. Thus, the G00-component shows equivalent hidden characteristics to G0-component.
Note that a hidden element in a coupled SR-DEVS component can be activated by a triggering interruption function such
as atomic SR-DEVS component.

Example 6. Let us describe an example of probability model to determine the hidden inheritance by the component’s hidden
strength. We suppose the reproduction of coupled structure shown in Fig. 1. Its inheritance function is given by
INHcom = (rcom, Ih, Oh, dcom, dEI, dEO, dIC, chs). Once the parent structure implements its reproduction, the hidden determina-
tion to the received property of child structure is instantly determined by the hidden strength. Here, assume that the
component’s hidden strength to the reproduction of child coupled structures follows a probability distribution with
chs = fchs(i) (i = 0, 1, . . . , n), and let the hidden determination of three components independently adopt an identical
probability distribution model. We investigate two scenarios to the hidden determination through the component’s hidden
strength.

Table 3
Elements of G- and H-component in Fig. 7.

G-component H-component

d dk01; . . . ;dk0k; . . . ;dk0k0 ; d�k01; . . . ;d�k0k; . . . ;d�k0k0 ;
d�l01; . . . ;d�l0m; . . . ;d�l0m0 ; dl01; . . . ;dl0m; . . . ; dl0m0 ;

dx01; . . . ; dx0n; . . . ;dx0n0 d�x01; . . . ; d�x0n ; . . . ;d�x0n0
dEI deik01; . . . ; dei�l01; . . . ; deix01 deik01; . . . ; dei�l01; . . . ; deix01
dEO deok0k0 ; . . . ; deo�l0m0 ; . . . ; deox0n0 deok0k0 ; . . . ; deo�l0m0 ; . . . ; deox0n0

dIC dick01; . . . ; dick0k; . . . ; dick0k0 ; dick01; . . . ; dick0k; . . . ; dick0k0 ;

dic�l01; . . . ; dic�l0m; . . . ; dic�l0m0 ; dic�l01; . . . ; dic�l0m; . . . ; dic�l0m0 ;

dicx01; . . . ; dicx0n ; . . . ; dicx0n0 dicx01; . . . ; dicx0n; . . . ; dicx0n0

88 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
In the first scenario, we concern that a certain component of kth child structure shows the first hidden property to its
component if the parent structure continuously reproduces child coupled structures. That is, the component in the child cou-
pled structure has been normally reproduced without having the hidden property until the (k � 1)th reproduction, and the
kth component reproduction has the hidden property. Let a random variable X be the number of hidden determination that
has the Poisson distribution. Then, the probability function to the hidden determination is given by
f pðX ¼ iÞ ¼ e�ktðktÞi

i!
ð1Þ
where t is the unit time with the hidden parameter k.
Since there exist k � 1 hidden failures and kth hidden determination to the component, it follows the geometric distri-

bution as
f GðkÞ ¼ ð1� pÞk�1p ð2Þ
where p is the hidden determination probability to chs. Let us substitute (1) into (2). Then, we have
f GðkÞ ¼ 1� e�ktðktÞi

i!

" #k�1
ektðktÞi

i!

" #
ð3Þ
In the second scenario, we consider the occurrence number of hidden inheritance to a component. If the parent structure
reproduces n child structures, j components in the n reproductions can have the hidden property. Thus, it follows the Bino-
mial distribution as
f BðjÞ ¼
n

j

	

e�ktðktÞi

i!

" #j

1� e�ktðktÞi

i!

" #n�j

ð4Þ
Fig. 8 shows the hidden probabilities of fG and fB by the hidden strength of component. For the hidden strength, assume
that the hidden parameter k is 5 and the number of hidden determination per unit time is 2. In this case, the probability value
of hidden strength to a component of coupled structure is 0.14073. Fig. 8(a) illustrates the probability of fG according to the
different k size. The figure also shows both simulation results and analytical results. Now, we implement more than 100,000
reproduction samplings for the simulation. The results describe that the probability of the first hidden occurrence of the
component to the geometric distribution is decreased gradually. It might mean that the hidden occurrence is an independent
event, so that the hidden failure does not affect the next component reproduction. Also, the simulation results show almost
the same probability results to the numeric analysis. Fig. 8(b) shows the probability of fB as each j size. We assume that the
parent structure reproduces 10 child structures each time. In the figure the probability fB is dramatically decreased if the
value j increases. This indicates that the probability value (0.14073) of hidden strength is not high, so that the consecutive
hidden occurrence is difficult. However, when the value j is 1, the probability of hidden occurrence is higher than the value of
0. Even though the occurrence number to the hidden property is low, there can be a hidden component. The hidden deter-
mination to each component of child structure is independently determined by the hidden strength. Also, if each component
has the same value of hidden strength, the distribution probability of hidden occurrence would be similar to each other.

3.4. Case study of a social evolution model

In this section, the proposed model is applied to an evolution model that has a changeable property. In particular, we
describe a case study of a social evolution model based on online social commerce. Also, we propose a verification method-
ology of evolution variation.

The social evolution model or social Darwinism has its origin in biological Darwinism [24,28]. It has borrowed many
evolutionary endeavors from Darwinian methodologies [26]. The research range is extremely wide from social psychology
to cultural evolutionary investigation, and many efforts have been made to analyze the format of evolution [27,28]. However,

1.0E-02

1.0E+00

1 2 3 4 5 6 7 8 9 10

Analy�cal

Simula�on

)(k

Gf

)(j

1.0E-06

1.0E-04

1.0E-02

1.0E+00

0 1 2 3 4 5 6 7

Analy�cal

Simula�on

Bf

(b) Probability Bf by j size

(a) Probability Gf by k size

Fig. 8. Hidden probabilities of fG and fB by the hidden strength.

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 89
these attempts have yielded only a basic understanding that evolution is naturally continued from parent to offspring
[29–31]. That is, the child generation model is merely considered to be the succeeding generation of the one that came
before. Thus, inclusive fitness, for example, is simply provided as a condition for evolutionary success [25,31].

However, verification of evolutionary succession or variation can be requested in the evolution environment. Fig. 9 shows
examples of an evolution model. Let the origin model appear at time t0, and suppose that the child model is evolved on the
time flow. Fig. 9(a) shows the child evolution models for models A and B, respectively. Although the two original models are
different from each other, at time t2, the two child models show the same evolved shape. In this case, it may provoke the
question of whether the two child models at time t2 are the same or not. Fig. 9(b) shows an example of an evolution division
model. Although the child model at time t1 can be regarded as a similar model of its parent with slight differences, the next
child model at time t2 may look like a completely different model from its parent, raising the question of whether the next
child model is a new-born model or not. Fig. 9(c) depicts another example of evolution division. The origin model of D
reproduces two child models at time t1, which can be regarded as sibling models. However, at time t2, the next two child
models take on different shapes, prompting additional questions about the evolutionary difference between the next two
child models. For these questions, we must consider the evolutionary property of similarity in order to verify evolutionary
succession or variation.

Similarity refers to the extent of resemblance between two or more evolutionary models and may provide a way to mea-
sure evolutionary succession change. Accordingly, we define the basic rules of similarity as follows:

� If a child model shows a high similarity to its parent model, it can be considered as the succession model.
� If a child model shows low similarity, it is a division model or a new-born model.
� If two or more evolved models have some similarity, they can be considered sibling models based on the degree of this

similarity. In this case, they should satisfy certain similarity conditions, such as deriving from the same original model
or sharing an evolutionary history.
� If two or more evolved models show the same evolutionary properties, they are twin models. However, this decision

depends on the measurement of similarity.
� The similarity can be represented as quantitative or qualitative values, and the evolution resemblance and variation can be

judged through the measurement method.

(a) Two evolution models

(b) Evolution division I

(c) Evolution division II

Fig. 9. Examples of evolution model.

90 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
Human society is evolving toward tremendously complicated social models, including independent as well as global
social models. Also present are applied social mechanisms, such as online social networks [32,33]. In these networks, some
social evolution models are founded on adaptive social behaviors. Here, we note that online social networks may show par-
ticular social behavioral styles that compare to the autonomous social model, and the construction of this social model helps
the social evolution [34].

An online shopping service that uses a social network for sales and advertising is an example of a recent phenomenon that
combines two distinct online activities: shopping and social networking [35]. To identify the above-mentioned evolution
variation, we consider the online shopping service that operates on a social network. Before online shopping, people were
typically limited to purchasing products in face-to-face encounters between a customer and a seller. However, with the rapid
development of online shopping, the social element of commerce has progressively changed. Through the online medium,
people can have shopping experiences without the need to make a face-to-face purchase. Additionally, combining online
shopping and social networking leads to a new shopping pattern by means of the online community, i.e., people using smart
phones and tablet PCs to develop social relationships and build a social community based within the Internet. Huang and

Table 4
Social behaviors of shopping.

Social behaviors Online social shopping

Shopping place s [36,38]
Shop visiting time X [38,42]
Shop display s [39]
Product purchase contact 4 [38]
Purchase negotiation s [35]
Advertisement s [36]
Customer privacy management [40,41]
Government legal safeguard s [35,41]
Customer management s [42]
Purchase motivation and evaluation [43,44]

(s – Continuous inheritance, – changed inheritance,4 – hidden inheritance and X – extinction).

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 91
Benyoucef [36] introduced a social commerce design model that includes commerce, community, conversation and individ-
ual elements. The community element, including conversation, supports social commerce. Within the social community, 83%
of online shoppers attempt to share shopping information with other people [37]. In traditional offline shopping, there is
undoubtedly ‘‘word of mouth’’ communication of purchase behavior. However, people receive this information only from
family, friends, and a very limited social community.

This social behavior change affects social evolution and can lead to change in the social model. Online social commerce
shows both different and similar social behaviors to the offline shopping experience. In Table 4, we list the social behaviors
associated with social shopping that appear in recent literature. The first column of the table presents social behaviors of an
offline shopping setting. To investigate the variation of social evolution, we classify the listed social behaviors into four var-
iation properties: continuous inheritance, changed inheritance, hidden inheritance and extinction properties.

Inheritance means that the child’s social behavior reflects its parent’s social behavioral characteristics. In continuous
inheritance, the social behavior is conveyed as is; however, in changed inheritance, the social behavior changes in cer-
tain situations while the social behavior succeeds to the next generation. In online social commerce, information security
and privacy management should be carried out by the individual customer [40,41]. Also, regarding purchase motivation
and evaluation, although people receive information by word of mouth for offline shopping, they tend to create a social
community through online social commerce [43,44]. The hidden inheritance property is that the child behavior becomes
hidden in the inheritance process. For example, a product purchase in modern offline shopping reflects the same behav-
ior in terms of face-to-face contact between a buyer and a seller it did in the previous century. However, when people
use online social commerce, they only engage with the online shop, not an actual person [36,38]. Online shopping can
offer the possibility of face-to-face contact at some point in the transaction, but the social behavior of this contact might
be hidden.

Sometimes, a social behavior can be stopped in a social environment so that it is the extinction of social behavior. The
restriction of shop visiting time is released in online shopping. When people visit the offline shop, they can only go to the
shop in the shop open time, but the online shop visiting is available 24 h [38,42].
Purchase motivation and evaluation

Customer management
Government legal safeguardCustomer Privacy management
Advertisement

Purchase negotiation
Product purchase contact

Shop displayShop visiting time

Shopping place

Purchase motivation and evaluation

Customer management
Government legal safeguardCustomer Privacy management
Advertisement

Purchase negotiation
Product purchase contact

Shop displayShop visiting time

Shopping place

∑
=

m

i
ii

1
ωα∑

=

m

i
ii

1
ωiiα

∑
=

n

j
jj

1
ωα

∑

∑

=

=
n

j
jj

m

i
ii

1

1

ωα

ωα

∑

∑

=

=
n

j
jj

m

i
ii

1

1

ω jjα

ωiiα

Fig. 10. DEVS simulation model of offline/online shopping.

5.0E-01

1.0E+00

0.8 0.7 0.6 0.5 0.4 0.3 0.2

Offline social commerce

(a) Hidden inheritance behavior

5.0E-01

1.0E+00

Offline social commerce

(b) Changed inheritance behaviors

2.5E-01

5.0E-01

1.0E+00

0.1 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.37

Inheritance effect = 0.8

Inheritance effect = 0.5

(c) Similarity to weighted value

0.8 0.7 0.6 0.5 0.4 0.3 0.2

Fig. 11. Similarity of offline social commerce.

92 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
We apply Jaccard coefficient to investigate the similarity between the offline and the online social commerce as follows
[45]:
CoðA;A0Þ ¼ A \ A0

A
: ð5Þ
Here, the denominator is A, because the comparative model is based on the parent model. That is, only parent social
behaviors to the child model are considered to determine the similarity. If the social behaviors of intersection of sets between
parent and child models are extracted such as A \ A0 = {a1, a2, . . . am}, we have the sum of the similarity value of each behav-
ior as follows:
kAA0 ¼ a1x1 þ a2x2 þ � � � þ amxm ¼
Xm

i¼1

aixi ð6Þ

S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94 93
where a is the inheritance effect of social behavior showing the variation property, and x is the priority or weighted value to
the social behavior. Hence, from (5) and (6), we have
ksim ¼
Pm

i¼1aixiPn
j¼1ajxj

ð7Þ
where a1;a2; . . . ;am;amþ1; . . .anðm 6 nÞ; and
Pn

j¼1xj ¼ 1.
If a parent model reproduces a child model, and the child model has high similarity level ðksim P k0Þ, the child model is the

succession model to the parent model. If ðksim < k0Þ, the child model will be a division model. Here, k0 is a relative value for the
determination of similarity.

In the simulation implementation, we assume that the offline shopping model is the parent model to the online social
commerce as shown in Fig. 10. Note that the social behaviors of parent model and child inheritance for the evaluation of
evolution variation are presented in Table 4. If the continuous inheritance effect of social behavior is 1, the hidden strength
of social behavior is simply determined by an on/off model. If the online social commerce receives continuous inheritance of
all social behaviors from the offline commerce model, its similarity becomes 1 so that it is the same model without variation.

Fig. 11 shows the similarity of online social commerce. We assume that all of continuous inheritance behaviors in Table 4
have the same values of inheritance effect (= 1.0) and behavior weight (= 0.1), respectively. Fig. 11(a) shows the similarity by
the hidden inheritance effect variation of purchase contact behavior. The figure indicates that if the hidden inheritance effect
decreases, the similarity would also decreases. If a social behavior is hidden with some absent impacts, the child model may
look different. Fig. 11(b) shows the similarity of changed inheritance behaviors. In Table 4, two social behaviors are taken as
changed inheritance behaviors. The figure also shows that the similarity decreases if the inheritance effect decreases. The
similarity of changed inheritance behaviors is lower than that of hidden ones. It means that the addition of changed behavior
affects the evolution similarity. Fig. 11(c) describes the similarity by the weighted value variation. In the simulation, we
increase the weight values of shop visiting time and purchase contact. Generally, in offline commerce, people visit the offline
shop in the shop open time, and they have bought products through face-to-face contact to sellers. The restriction of shop
visiting time and the face-to-face trade for the purchase contact traditionally seem to be basic social behaviors to offline
commerce. Hence, if those social behaviors are assumed as important social behaviors of offline commerce, the online social
commerce can have low similarity. In the figure, if two social behaviors have more than 0.25 weighted values with the inher-
itance effect of changed behavior of 0.8, the similarity drops below 0.5. Also, when the inheritance effect of changed behavior
is 0.5, the similarity already drops below 0.5 to the weighted value of 0.22. We know that the similarity may be low if the
social community of online commerce is regarded as more changed social behavior from the offline commerce. Here, if the
similarity value of 0.5 is the decision value of evolution variation to the commerce model, the online social commerce is a
division model. In other words, it becomes a new social evolution model in human society.
4. Conclusion

DEVS formalism is a typical methodology use in modeling and simulation that is continuously expanded to simulate dis-
crete-based computing mechanisms. In various simulation modeling environments, this more elaborate kind of formalism
can establish the validity of particular simulations and modeling. In this paper, we have proposed extended SR-DEVS, an
additional modeling formalism, that models lifelike reproduction. We have introduced hidden inheritance to the SR-DEVS
component model so that a hidden property occurs in the inheritance process. An SR-DEVS component that has a hidden
behavior is characterized by limited functional behavior. In addition, we have considered the concept of hidden strength
to determine the influence of a hidden property on inheritance. The hidden behavior would be an active behavior if the hid-
den property were stopped by an interruption function. In a coupled SR-DEVS model, a hidden element with self-execution
affects the internal movement of the coupled component. Some SR-DEVS components can express different behavioral prop-
erties from one another although they share the same parent component. In this paper, we have also explained a case study
that applies our proposed scheme to a social evolution model based on online social commerce. We have studied the evo-
lution variation of online social consumerism versus the offline commercial experience. Accordingly, we expect that the
extended SR-DEVS formalism can be used to design tools for modeling and simulating social system analysis, evolutionary
or biological structural systems and similar computing systems with hidden properties.
References

[1] F.J. Barros, Modeling formalism for dynamic structure systems, ACM Trans. Model. Comput. Simulat. 7 (4) (1997) 501–515.
[2] F.J. Barros, Dynamic structure multiparadigm modeling and simulation, ACM Trans. Model. Comput. Simulat. 13 (3) (2003) 259–275.
[3] S.D. Chi, Model-based reasoning methodology using the symbolic DEVS simulation, Trans. Soc. Comput. Simulat. 14 (4) (1997) 141–152.
[4] A.C. Chow, B.P. Zeigler, Doo Hwan Kim, Abstract simulator for the parallel DEVS formalism, in: Proc. of IEEE AI, Simulation and Planning in High

Autonomy Systems, December 1994, pp. 157–163.
[5] A.C. Chow, B.P. Zeigler, Parallel DEVS: a parallel, hierarchical, modular modeling formalism, in: Proc. of IEEE Winter Simulation Conference, vol. 2(2),

December 1994, pp. 716–722.
[6] Seongmyun Cho, Taggon Kim, Real-time DEVS simulation: concurrent, time-selective execution of combined RT-DEVS model and interactive

environment, in: Proc. of SCSC-98, July 1998, pp. 410–415.
[7] P.A. Fishwick, Simulation Model Design and Execution, Prentice Hall, 1995.

http://refhub.elsevier.com/S0020-0255(14)00889-5/h0005
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0010
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0015
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0035
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0035

94 S. Park, S.-M. Yoo / Information Sciences 292 (2015) 75–94
[8] Joonsung Hong, Haesang Song, Taggon Kim, Kyuho Park, A real-time discrete event system specification formalism for seamless real-time software
development, Discr. Event Dyn. Syst. 7 (4) (1997) 355–375.

[9] Sangjoon Park, Byunggi Kim, Self-reproducible DEVS formalism, J. Parall. Distrib. Comput. 65 (11) (2005) 1329–1336.
[10] H. Saadawi, G. Wainer, Rational time-advanced DEVS (RTA-DEVS), in: Proc. of Spring Simulation Conference DEVS Symposium, April 2010, pp. 199–

206.
[11] H. Saadawi, G. Wainer, From DEVS to RTA-DEVS, in: Proc. of IEEE/ACM Symposium on Distributed Simulation and Real-Time Application, October 2010,

pp. 207–210.
[12] Changho Sung, Taggon Kim, Collaborative modeling process for development of domain-specific discrete event simulation systems, IEEE Trans. Syst.,

Man Cybernet. – Part C: Appl. Rev. 42 (4) (2012) 532–546.
[13] A. Troccoli, G. Wainer, Implementing parallel Cell-DEVS, in: Proc. of IEEE Annual Simulation Symposium, March 2003, pp. 273–280.
[14] Y.H. Wang, B.P. Zeigler, Extending the DEVS formalism for massively parallel simulation, Discr. Event Dyn. Syst.: Theory Appl. 3 (2/3) (1993) 193–218.
[15] B.P. Zeigler, H. Praehofer, T.G. Kim, Theory of Modeling and Simulation, Academic Press, 2000.
[16] B.P. Zeigler, S.D. Chi, Symbolic discrete event system specification, IEEE Trans. Syst., Man, Cybernet. 22 (6) (1992) 1428–1443.
[17] G. Wainer, N. Giambiasi, N-dimensional cell DEVS, Discr. Event Syst.: Theory Appl. 12 (1) (2002) 135–157.
[18] Hesham Saadawi, Gabriel Wainer, From DEVS to RTA-DEVS, in: Proc. of IEEE/ACM DS-RT, October 2010, pp. 207–210.
[19] Y. Huang, M.M. Seck, A. Verbraeck, LIBROS-II: railway modeling with DEVS, in: Proc. of IEEE WSC, December 2010, pp. 2150–2160.
[20] P. Bastien, A.S. Thierry, Wireless sensor network deployment using DEVS formalism and GIS representation, in: Proc. of IEEE SPECTS, July 2012, pp. 1–6.
[21] G. Wainer, M. Tavanpour, E. Broutin, Application of the DEVS and Cell-DEVS formalisms for modeling networking applications, in: Proc. of IEEE WSC,

December 2013, pp. 2923–2934.
[22] S. Wang, M.V. Schyndel, G. Wainer, V.S. Rajus, R. Woodbury, DEVS-based building information modeling and simulation for emergency evaluation, in:

Proc. of IEEE WSC, December 2012, pp. 1–12.
[23] S.E. Olamide, T.M. Kaba, Formal verification and validation of DEVS simulation models, in: Proc. of IEEE AFRCON, September 2013, pp. 1–6.
[24] C. Darwin, On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life, 1859.
[25] W.D. Hamilton, The genetical evolution of social behavior. I, J. Theor. Biol. 7 (1) (1964) 1–16.
[26] W.D Hamilton, Narrow Roads of Gene Lean: Evolution of Social Behavior, vol. I, Oxford University Press, 1998.
[27] Richard R. Nelson, Evolutionary social science and universal Darwinism, J. Evol. Econ. 16 (5) (2006) 491–510.
[28] Geoffrey M. Hodgson, Generalizing Darwinism to social evolution: some early attempts, J. Econ. 39 (4) (2005) 899–914.
[29] T. Szekely, A.J. Moore, J. Komdeur, Social Behavior, Genes, Ecology and Evolution, Cambridge University Press, 2010.
[30] Adrian V. Bell, Peter J. Richerson, Richard McElreath, Culture rather than genes provides greater scope for the evolution of large-scale human

prosociality, PNAS 106 (42) (2009) 17671–17674.
[31] Herbert Gintis, Inclusive fitness and the sociobiology of the genome, Biol. Philos. (November) (2013) (Online paper).
[32] Haibo Hu, Xiaofan Wang, Evolution of a large online social network, Phys. Lett. A 373 (12) (2009) 1105–1110.
[33] H. Kwak, C. Lee, H. Park, S. Moon, What is Twitter, a social network or a news media?, in: Proc. of WWW, April 2010, pp. 591–600.
[34] Yuan-Chu Hwang, Positive social evolution in autonomous social network communities, in: Proc. of EDR, May 2011, pp. 324–328.
[35] W.K. Tan, Y.J. Tan, Online or offline group buying?, in: Proc. of IEEE FSKD, August 2010, pp. 2853–2857.
[36] Zhao Huang, Morad Benyoucef, From e-commerce to social commerce: a close look at design features, Elsevier Electron. Commer. Res. Appl. 12 (4)

(2013) 246–259.
[37] J. Chen, X.L. Shen, Z.J. Chen, Understanding social commerce intention: a relation view, in: Proc. of IEEE HICSS, January 2014, pp. 1793–1802.
[38] J. Zhang, Y. Yu, B. Xu, K. Zhu, A social network service-oriented architecture for mass customization, in: Proc. of IEEE CAIDCD, November 2009, pp.

2012–2015.
[39] R. Irfan, G. Bickler, S.U. Khan, J. Kolodziej, Hongxiang Li, Dan Chen, L. Wang, K. Hayat, S.A. Madani, B. Nazir, I.A. Khan, R. Ranjan, Survey on social

networking services, IET Netw. 2 (4) (2013) 224–234.
[40] Moo Nam Ko, G.P. Cheek, M. Shehab, R. Sandhu, Social networks connect services, IEEE Comput. 43 (8) (2010) 37–43.
[41] Xiao Jiang, Privacy concern toward using social networking service: a conceptual model, in: Proc. of IEEE AIMSEC, August 2011, pp. 3180–3183.
[42] C. Grange, I. Benbasat, Online social shopping: the function and symbols of design artifacts, in: Proc. of IEEE HICSS, January 2010, pp. 1–10.
[43] Z. Chong, W. Bian, L. Benfu, P. Geng, Social network characteristics of online shopping interpersonal relationship in real and virtual communities, in:

Proc. of IEEE CEC, September 2012, pp. 101–106.
[44] You Rie Kang, Cheol Park, Acceptance factors of social shopping, in: Proc. of IEEE ICACT, February 2009, pp. 2155–2159.
[45] S. Niwattnakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of Jaccard coefficient for keywords similarity, in: Proc. of IMECS, March 2013, pp.

380–384.

http://refhub.elsevier.com/S0020-0255(14)00889-5/h0040
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0040
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0045
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0060
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0060
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0070
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0075
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0075
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0080
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0085
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0125
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0130
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0130
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0230
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0235
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0145
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0145
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0240
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0240
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0245
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0160
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0180
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0180
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0195
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0195
http://refhub.elsevier.com/S0020-0255(14)00889-5/h0200

	Extended self-reproducible Discrete Event System Specification (DEVS) formalism using hidden inheritance
	1 Introduction
	2 Devs formalism
	2.1 Classic DEVS formalism
	2.2 SR-DEVS model
	2.3 More explanations of SR-DEVS modeling

	3 Extended SR-DEVS model
	3.1 Hidden inheritance
	3.2 Multiple parent inheritance with a hidden property
	3.3 Hidden inheritance of coupled SR-DEVS
	3.4 Case study of a social evolution model

	4 Conclusion
	References

