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Abstract— Highly reliable systems achieve a low failure 

probability during their operational lifetime with the help of 

redundancy. This technique ensures functionality by replicating 

components or modules, on both software and hardware. The 

addition of redundancy and further architectural decisions that 

arise from its usage results in increased system complexity. The 

resultant complexity hinders analytical approaches to evaluate 

competing architectural designs, as the time and effort spent with 

this type of evaluation may significantly delay development. A way 

to avoid time spent on this type of analysis is to submit the designed 

architecture to simulation, both for validation and evaluation. In 

this paper, we propose the usage of a simulation tool, specifically 

QEMU, to assist reliable system development and simulation. 

Based on this tool, extensions were developed, aiming for a 

simulation environment that covers the redundancy use case, 

allowing to validate the complex interactions under redundant 

architectures, and supports reliability estimations to compare 

architecturally redundant designs. 

Keywords—reliability design and estimation, co-simulation, 

QEMU, redundancy 

I. INTRODUCTION 

Embedded systems cover applications ranging from General 
Purpose systems, such as household electronics, to Safety 
Critical systems such as flight and nuclear control [1]. The 
development of Safety Critical applications requires particular 
attention since system failures can incur on significant economic 
loss or possibly human lives. The possibility of disasters under 
such type of applications brought system reliability concepts to 
the foreground. Reliability is a system metric that is directly 
related to its life expectancy, meaning that highly reliable 
systems present the highest times before system failure. High 
reliability systems are mostly found in the fields of avionics 
[2][3], life support [4], and more recently in the automotive 
sector [5]. 

One way to increase system reliability is to replicate system 
components, allowing it to achieve an higher time before failure, 
consequently reducing its failure probability. This replication 
technique is known as redundancy, and it can be implemented 

on both software and hardware. The usage of redundant 
architectures is connected with an increase in cost and 
complexity as well as synchronization problems [6]. This is the 
main reason why both hardware and software architectures must 
manage redundancy well. A redundant architecture can have 
several processing modules, communicating with each other and 
making decisions about the system operating state. This implies 
that redundant modules present at least one channel of 
communication between them. Lack of solid synchronization 
mechanisms can disrupt the interactions between redundant 
systems, defeating the purpose of redundancy. 

 The addition of redundancy is not the major issue on reliable 
designs, as most complexity comes from the architectural 
decisions made regarding the redundancy under application 
context. Such decisions not only regard the hardware to 
replicate, but also the software that manages it, greatly 
increasing complexity.  Under this perspective, the solution 
space is vast, and can be difficult to evaluate which architectural 
decisions are better for the context. Even after deciding about 
the level of component redundancy to apply, there is a wide 
variety of architecture decisions on how the redundancy is used, 
and on how it will affect system behaviour. The complexity can 
be so high, that an analytical approach to evaluate the design 
may be time consuming and ineffective. Furthermore, the 
increase in complexity can make system weaknesses less 
apparent, since particular behaviours can be harder to identify, 
making it difficult to exactly pinpoint the problem under such 
complex systems. With this in mind, it may be beneficial to 
implement the design and submit it to simulation-based 
evaluation, in order to decide on what solution to adopt, under 
the vast solution space. 

This article aims to take a pragmatic step into a simulation 
environment that aids reliability development by providing 
mechanisms to not only validate but also evaluate the global 
system reliability of architectural decisions made in the context 
of redundancy. With that in mind, QEMU was supplemented 
with three extensions that allow for both multi-modular 
processing system simulation, tackling problems that arise from 
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this type of simulation, and reliability estimations through 
simulation-based techniques. 

II. BACKGROUND AND RELATED WORK 

This section addresses topics that help to understand the 
methodologies used and the theoretical background behind the 
simulation environment proposed: (1) the concept of 
redundancy; (2) QEMU as a full system emulator and as the 
simulation tool chosen for the extensions; (3) co-simulation as a 
technique to simulate redundant modules; (4) reliability metrics 
and what they mean; (5) estimation of reliability metrics and 
techniques that support them. 

A. Redundancy 

Redundancy is a technique that rests on having extra 
components designed to have the same functionality as the 
original ones. By adding these redundant components, or 
replicas, it is ensured that if some part of the system fails, a 
redundant component resumes the functionality of the faulty 
one. There are two kinds of redundancy: spatial and 
computational. Spatial redundancy provides additional 
components, functions, or data items to mask faults that may 
happen on the original components. Space redundancy is further 
classified into hardware, software, and information redundancy, 
depending on the type of redundant resources added to the 
system. In computational redundancy the computation or data 
transmission is repeated, and the result is compared to a stored 
copy of the previous result. 

One of the common forms of redundancy is hardware 
redundancy. Hardware redundancy is when two or more 
physical copies of the hardware component, or system module, 
are used, performing some of the functions already provided by 
the original system. A natural evolution of hardware redundancy 
consists of having two or more component replicas operating in 
parallel. Dual Modular Redundancy (DMR) is a common 
solution, where two processing units execute the same task at the 
same time and communicate between them to compare results 
and detect any possible faulty behaviour.  Following this 
architecture, n-modular redundancy (n-MR) tries to mitigate the 
intrinsic problem of error correction of DMR architectures, by 
adding more modules and a voting entity. The main issue with 
this technique is that similar architectures can respond equally to 
faults, which may cause the voter to produce erroneous results. 

Redundancy can also be classified as homogeneous or 
heterogenous, depending on the type of redundant modules used. 
In homogenous redundancy, the same technology is replicated 
to perform the same function, mitigating only random failures 
[7]. On the other hand, the heterogeneous approach uses 
different technologies to perform the same function, allowing 
the system to recover from systematic failures due to a given 
technology’s inherent limitations 

B. QEMU 

Quick EMUlator (QEMU) [8] is an open source full system 

emulator that translates target binary code to host binary code. 

It features the fast emulation of several CPU architectures (e.g., 

ARM, x86, Sparc, Alpha) on several host platforms (e.g., ARM, 

x86, PowerPC).  Being an open-source software, its source code 

can be changed in order to edit its features or even add new 

ones, to achieve developer’s needs. 

The hardware emulation is done with the help of models that 

mimic real hardware behaviour. These models respond to write 

and read operations during code execution, by using functions 

and routines that contain an approximation of how the hardware 

would respond to those operations. Although the behaviour is 

emulated, latencies specific to such operations cannot be 

emulated. 

One of the features that makes QEMU different from other 

full system emulators is that binary translation does not occur 

on instruction level, but instead guest code is split into 

translation blocks. These translation blocks contain several 

target instructions and are executed atomically. This accelerates 

a typical slowdown from constant overhead of executing 

instructions one at a time. The execution of the translation 

blocks dictates the time advancement during the simulation, 

which is proportional to the number of instructions executed. 

QEMU has already been used for wide variety of research 

purposes. Under the reliability topic, it has been used, by 

several authors, for fault injection and software metric 

estimations [9][10]. At the time, there is no evidence of QEMU 

being used to approach the redundancy use-case under 

reliability development. 

C. Co-simulation 

Typically, within a complex system, models developed in 

different domains are independently validated, meaning that no 

real interactions exist between them. Although testing is 

independent, the models need information from other domains 

to have meaningful simulation results. On this context, co-

simulation is a technique to simulate several domains and the 

interactions between them. It consists of enabling global 

simulation of a complex system through composition and 

interfacing of simulators from different domains.  

Although this may seem an excellent way to validate a 

complex system, the act of simulating in different domains 

makes interactions difficult due to the different temporal 

abstraction levels. Since different domains simulators run on 

different abstraction levels, the time granularity may be 

different across simulators, which means, at a given wall-clock 

time, the simulators may all have different simulation times, 

with different execution advancements. For this reason, 

simulations need to obey a synchronization mechanism since 

simulations are independent and interactions should be 

correctly timed for both simulations. 

Under the synchronization context, there are two major 

classes of synchronization [11]: (1) conservative, which strictly 

avoid causality errors, and (2) optimistic, which allow causality 

errors and recovers from them. Two well know algorithms are 

the Chandy-Misra [12] for conservative methods, and the Time 

Warp algorithm [13] for optimistic.  

Conservative synchronization is based on the work of 

Chandy and Misra in which events are processed in sequential 

chronological order and simulations exchange time-stamped 

messages. These mechanisms assure that all messages are 

attended on time. To do so, the simulations are blocked from 

further processing until the next message can be safely sent and 

798

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore.  Restrictions apply. 



received on both simulations. The main issue of any 

conservative simulation is determining how much can a 

simulation can execute to avoid any causality error. 

On the other hand, optimistic synchronization algorithms 

allow causality errors to happen and recover from them. If a 

causality error is detected, the simulation must be rolled back, 

meaning that all preceding simulation results must be undone 

until the causality error is resolved. Before the occurrence of a 

causality error, the simulations are not synchronized and run 

independently of each other, therefore only being synchronized 

when causality error occurs.  

D. Reliability Metrics 

System reliability is a quantifiable metric which estimates 
the expected useful life of a system. It is given by a cumulative 
distribution function: 

���� � 1 � ���� � 1 � 	 
����� �  	 
����� 
�

�

�

�
�1� 

where Q(t) is the unreliability function, which defines the 
probability of failure over time. Subtracting this probability from 
1, gives the reliability function.  

Another expression that is always part of reliability is the 
Mean Time Between Failures (MTBF) which is expressed as: 

���� �  	 � ∙ 
�����
�

�
�2� 

where, � is the time in hours and f(�) is the probability density 
function of failure. 

E. Reliability Estimation 

Although reliability metrics can be calculated by traditional 
methods, complex systems with large number of different 
components makes calculation impractical. Some techniques 
and methods can be used to synthetize a prediction of such 
metrics, avoiding the inevitable hard and time-consuming work 
that normally would come with traditional methods. The Monte 
Carlo method fits the available techniques by providing 
numerical estimation of an unknown parameter or metric by the 
mean of repeated sampling. 

An example of a Monte Carlo simulation in reliability 
engineering context to evaluate system failure probability, 
consists in running many repetitive trials and changing 
component states according to a probability distribution. On 
each one of these trials, there are time steps which represent 
advancement of system lifetime. On each of these steps, 
component states are changed by generating random numbers 
and comparing them to the component’s failure distribution. If 
the random value is lower than the component failure rate at the 
given time, component state is changed, otherwise no change is 
made. The process is done until system failure, and the resulting 
time step is stored. As the trials are done several times, the time 
step results of each trial will create a system failure distribution, 
which approximates the real system failure rate, with an 
uncertainty.  

Under reliability engineering, this method can also be 
combined with fault injection techniques, in order to gather 
insight about system-level behaviour. The goal of this technique 

is to provoke (inject) faults, or stimuli, that are as close as 
possible to real faults that could occur on real hardware. By 
injecting faults into a running system, it can provide information 
about the failure process, which means that metrics such as mean 
time between failures (MTBF) can be taken from fault injection 
results.  

III. QEMU EXTENSIONS FOR RELIABILITY 

This section describes the simulation extensions that were 
developed with the main goals of multi-modular processing 
system software validation and reliability estimation with fault 
injection. With all this in mind, three extensions for QEMU were 
developed. The Synchronization extension aiming to mitigate 
causality errors during simulation of redundant modules. The 
Shared Bus extension that allows for redundant modules to 
communicate with each other. The Fault Injection extension 
enabling reliability estimation capabilities, by providing 
mechanisms to inject faulty stimuli to system components. 

A. Conceptualization 

Under a redundant architecture, a target system can have 
multiple redundant subsystems, each contributing for the output. 
The redundant modules have independent hardware and 
computations are made within each subsystem processor. Each 
redundant module is conceptualized as a QEMU instance (or 
simulation), running all the software stack and emulating all the 
hardware that composes the subsystem. The diagram in Figure 1 
presents the conceptualization of the redundant modules as 
QEMU instances. 

The redundant subsystems use the same inputs to compute a 
value which contributes to the system output. The computed 
values should be equal across subsystems if all of them do the 
same operations and receive the same inputs. This happens when 
the system presents an homogeneous architecture. Such 
behaviour differs from heterogenous architectures which can 
have different inputs and outputs between subsystems. 
Alongside data output and computation, redundant subsystems 
may also be connected between them for N connections 
depending on the number of redundant subsystems present. 

 
Figure 1 - Redundant modules as QEMU instances 
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As the instances are independent from each other, there must 
be guarantee that causality errors are attended to. Consequently, 
a synchronization mechanism was implemented to mitigate any 
simulation synchronization issues between redundant subsystem 
simulations. 

B. Synchronization 

For simulation synchronization, a conservative method was 

implemented, based on a time budget concept, which 

guarantees that no causality errors happen. The diagram on 

Figure 2 describes the time budget concept. The simulations run 

for a specific amount of time (or budget) and are then blocked 

from executing further, until all other simulations reach the 

same simulation time. For this purpose, both a process was 

created, which handles synchronization between simulations, 

and QEMU was modified to obey to this same process and 

execute target code in a time budget manner. 

 

 
Figure 2 - Synchronization timely diagram 

The process listens to incoming simulations to be 

synchronized and handles the synchronization requests. When 

an “out of budget” message is received, meaning that a 

simulation reached the end of its executing budget, the process 

checks if all other connected simulations have already reached 

the same simulation time. On that case, all blocked simulations 

resume execution. If any simulation is still running, all 

simulations are blocked from further execution until all reach 

the same simulation time. 

On QEMU, the target code execution algorithm was 

modified to force simulations to run for a time budget that is 

application specific and user specified. During emulation, the 

execution of translation blocks and further time advancements 

are monitored to assure increments within the time budget. 

Every time advancement contributes to the depletion of the 

available time budget and upon exhausting it, simulations block 

execution and send an “out of budget” message to the 

synchronization process. The process then replies with a 

“Resume” message, which allows the simulations to resume 

execution up until the duration of the next time budget.  

Time budget granularity depends on the time per 

instruction, which is directly related to the icount parameter 

chosen for the emulation. The lowest number possible for the 

time budget is the time to execute one instruction, meaning that, 

in this case, synchronization would occur at instruction level. 

This type of implementation does not limit the extension 

usage to QEMU simulations only. Any simulation tool that can 

run in a time budget manner can be introduced into a simulation 

environment and be correctly synchronized with different tools 

from different domains. 

C. Shared Bus 

Under a redundant architecture, communications and 
consequent interactions are typically associated with 
communication peripherals such as LPUART or SPI modules. 
The Shared Bus extension aims to expand emulated 
communication peripheral’s capabilities to allow interactions 
between different processing subsystems. The extension 
emulates a data bus and its transactions, covering typical R/W 
operations done by common protocols such as UART, while at 
the same time allowing for multiple peripherals to connect to it, 
attending to the bus characteristics of more complex protocols 
such as CAN or SPI. This kind of emulation entirely abstracts 
the communication protocol’s timings and working principles. It 
only concerns the communication behaviour by saving the data 
and relaying it to other communication peripherals.  

As such, the developed extension is composed by two parts: 
(1) A process (called Shared Bus) that manages all 
communication connections to an emulated bus; (2) A node 
interface allowing peripherals (and other tools) to interact with 
the emulated bus for read and write operations. 

The Shared Bus process manages peripheral connections and 
data transfers. Connected peripherals can perform write and read 
operations on the emulated bus, which saves the data written by 
the peripherals. When a write operation occurs, the written data 
is saved and relayed to all peripherals connected to the bus. It is 
the connected peripherals responsibility to attend the relayed 
messages, consider invalid data and check the integrity of the 
data received.  

The peripherals and the Shared Bus process communicate 
with each other through a pair of sockets in a client-server 
configuration. Each peripheral uses the sockets as following: (1) 
A client socket used for synchronous read/write operations; (2) 
A server socket used for asynchronous reads from the peripheral. 
Peripheral asynchronous reads can be emulated by attending the 
relayed data upon write operations by other peripherals, and for 
that reason peripheral implementation requires a mechanism that 
allows to always listen to these asynchronous events (such as a 
thread). This mechanism mainly emulates typically ISR 
triggered read operations. An example usage of the extension is 
presented in Figure 3. It shows an emulated CAN bus connected 
to emulated CAN peripherals from different QEMU instances. 

 

 

Figure 3 - Shared Bus extension diagram 
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D. Fault Injection 

As mentioned before, fault injection can be used to evaluate 
a system, by provided quantifiable reliability metrics. Under that 
perspective, QEMU was extended to allow fault injection 
capabilities on different system components. The extension is 
based on the research of Andrea Höller [9], where a framework, 
namely FIES, aiming to assess software fault tolerance was 
developed.  

The fault injection extension integrates some components 
from the FIES framework and adds an external coordinator, as 
shown in Figure 4. Each of the components are described next. 

 

Figure 4 - Fault Injection extension components 

Fault Injection Coordinator: this entity generates faults and 
creates a fault list with them. Within the coordinator, the monitor 
manages simulation connections and controls simulation 
experiments based on the data from the Collector. The Fault 
Library contains the possible user-specified faults to be used on 
any fault experiment. 

 Controller: decides how to inject faults according to the fault 
list. The faults specified on the fault list remain on the system 
for a user-specified amount of execution time. Based on this 
information and the QEMU built-in timer, the controller decides 
when and where a fault should be triggered or stopped. The 
controller also parses the fault list, which comes as an XML file 
from the coordinator. 

Injector: core of the fault injection. It contains functions and 
methods that allow injection of the different types of faults. 
Faults can be of four different types which occur on different 
execution locations: instruction decoder, memory cells, 
peripheral access and system power. According to the faults 
present on the fault list received by the controller, the fault 
specific functions are called. 

Collector: gathers information about the status of the 
simulation after any fault is injected. The goal of this component 
is to gain knowledge on how the system responds to the fault by 
retrieving the system’s internal execution status using monitor 
variables. 

 As previously mentioned on the fault injector description, 
faults can occur on instruction decoding, memory cells, 
peripheral access or system power. Besides these type of faults, 
a clock fault type was also added, which is a type of fault addded 
to cover a particular behaviour of the case study. Each one of 
these type of faults will be addressed next. 

Instruction Decoder: these type of faults occur before 
execution of translation blocks, when the target code is 
disassembled. This fault replaces the current disassembled host 
instruction, overwritting it by the new instruction defined in the 
fault list. 

Memory Cell: occurs during read and write operations on 
physically addressable memory. Such operations are monitored 
and as they are realized, available memory faults are injected. 
When a read or write operation is done, the value written or read 
is overwritten by the value specified in the fault list. 

Peripheral Access: prevents access to peripheral memory 
regions by the QEMU system bus, rendering a specific 
peripheral unusable. This is done by monitoring memory access 
during both read and writes on the QEMU system bus and 
blocking any access that matches the fault specified address. 

Power: aims to simulate a power failure on the system, 
forcing the QEMU instance to reset the CPU and every 
peripheral. Although this resets the simulation, the total 
simulation time is not affected, as QEMU keeps track of the 
simulation time up until shutdown of the instance. This type of 
fault is particularly important for redundant systems, since it 
allows to evaluate the system behaviour when a redundant 
module shuts down. 

Clock: this is a special type of fault added for the case-study. 
This was added aiming to emulate clock drift type of situations 
between redundant subsystems. Since QEMU does not emulate 
real clock timings, real clock speed drifts are not possible to 
represent. With that in mind, and knowing that all simulations 
obey to the synchronization process, a clock fault means loss of 
synchronization between a simulation and the synchronization 
process. This is done by dropping the communication between 
them and letting the simulation run at its own pace. 

Externally to QEMU, as previously mentioned, the Fault 
Injection Coordinator handles simulation experiments. The 
implementation of the coordinator is not generic and it is the 
developer burden to implement it in a way it satisfies the 
simulation needs. This is because the possible faults and 
simulation management decisions are case-study specific and 
depend on what the user wants to observe as simulation result. 

IV. CASE STUDY 

The developed extensions were used on the validation and 
reliability evaluation of a case-study that presented mission-
critical characteristics. The system is responsible to acquire 
sensor data and output it to a system bus. It presents hardware 
homogeneous redundancy, as it is composed by two identical 
subsystems that output the same type of data (Figure 5).  

 

Figure 5 - Case-study concept 
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The main system requirement is to provide processed sensor 
data at a rate of 10 milliseconds. Each subsystem outputs 
processed sensor data every 20 milliseconds with 10 
milliseconds offset between them, assuring a 10-millisecond 
data throughput from the system. Upon subsystem failure, the 
remaining functional subsystem reconfigures itself to guarantee 
the initial throughput requirement. Feedback between subsystem 
is made through a communication channel, allowing to correctly 
synchronize subsystem actions. 

The software is responsible to manage the subsystem 
redundancy by deciding the subsystem operating state 
depending on the feedback received. During runtime, both 
subsystems have specific time windows to provide feedback 
about their current operating state. The lack of feedback within 
that same window is assumed to be a subsystem failure, forcing 
the operational subsystem to reconfigure itself. 

The platform used in each subsystem was S32K116 from the 
S32K family from NXP. The platform is based on a 32-bit ARM 
Cortex M0+ machine within a SoC that is specially designed for 
Automotive applications. Due to the lack of platform native 
support on QEMU, the platform was created, along with its 
peripherals and on-board devices, and added to the QEMU 
supported machines. Furthermore, the peripherals that allow 
interactions between subsystems were extended to interact with 
the Shared Bus extension. 

One of the drawbacks of this type of simulation environment 
under QEMU, lays on the models used for the emulate 
peripherals. Any design or implementation bug on such models 
can be misinterpreted as a real hardware limitation, contributing 
for wrong emulation results.  

A. Simulation Environment 

The simulation environment that allowed to validate the 

case study is shown in the figure below. The environment 

combined two QEMU instances, one for each redundant 

subsystem, two Shared Bus instances, for two different 

communication types, and one synchronization process.  

 
Figure 6 - Simulation environment used for case-study validation 

Validation went through analysing the timestamps of 

messages sent to the Shared Bus and through monitoring of 

internal program variables. This validation was made under a 

Linux environment, as seen in Figure 7 and Figure 8. The figures 

demonstrate the entities used in the simulation environment. On 

the right side of the figure, the two terminals are the QEMU 

running instances that emulate each one of the subsystems. The 

terminals output internal state variables to have an insight of the 

system running state. On the bottom left side, the 

synchronization process shows the time increments of both 

instances. This value matches the user chosen value of 50016 

nanoseconds for the time budget. On the top left, the data bus 

shows messages that are sent from both redundant subsystems, 

alongside with the timestamp at which they were sent. As seen 

in the figure, the messages are sent every 10 milliseconds, 

validating the initial system requirement. 

 
Figure 7 - Simulation environment running the system (1) 

Upon confirmation of the main requirement, the redundancy 

management was validated by mimicking subsystem failure. 

Upon aborting one of the QEMU instances, the remaining 

subsystem correctly reconfigured itself to ensure the initial 

10ms data throughput, as seen in Figure 8. 

 

 
Figure 8 - Simulation environment running the system (2) 

B. Reliability Estimations 

In order to evaluate the system for its reliability metrics, 
estimation of such metrics was done during simulation, 
supported by the extensions developed. The system went 
through Monte Carlo simulations, injecting faults into system 
component blocks, according to their failure distributions. Since 
there was not enough data to get an accurate probability of 
failure distribution of each component, failure rate probability 
curves were created according to the MTBF values of the 
components (Table 1).  
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Table 1 – System components MTBF values 

Component MTBF (hours) 

Microcontroller 4.2 x 105 

Communication Module 1 1.7 x 105 

Communication Module 2 2.5 x 105 

Clock 1.6 x 105 

Power 5.3 x 105 

Sensor 2 x 105 

 

The curves were parameterized to fit a Weibull distribution, 
alongside with a cumulative failure rate of 1 � 10�� in the first 
100 hours. The simulations executed until system failure or up 
until a total simulation time of 1 500 000 hours of component 
lifetime. 

The simulations followed a similar environment as the 
validation, alongside the Fault Injection Coordinator controlling 
simulation trials. The resulting environment is shown in the 
figure below. 

 

Figure 9 - Simulation environment used for case-study reliability estimation 

During simulation, faults were injected until system failure, 
which was known by checking the status of both simulations 
from the monitored variables. If both simulations were on failure 
state, the current simulation trial was over and the final 
emulation time was saved, as it was considered system failure. 
When this happened, a new trial started by restarting 
simulations. If the system was still operating, the trial continued 
by generating new faults until system failure. New faults were 
created by generating random values during runtime and 
checking them against the fault probabilities. Regarding 
simulation speed, each 10-hour increment of component lifetime 
(or Monte Carlo step) during the trials took approximately 75ms 
of wall-time to complete.  

C. Results 

The simulations resulted in 181 trials, 10 of which reached 
the maximum simulation time, with the remaining ones resulting 
in system failure. From the collected data, the resulting system 
mean time to failure value was greater than 378797 hours. The 
resulting distribution of the times before failure is presented in 
Figure 10. 

 

 

Figure 10 - Probability density and cumulative density functions of the 
simulation results 

Although the system presented such time before failure, 
sensor faults caused the system to output wrong data while still 
being in an operational state. In order to get an overview about 
the time the system outputs wrong data while being operational, 
the distribution in Figure 11 shows the data relative to such 
behaviour. The resulting mean time before wrong data output 
was 194361 hours. 

 

Figure 11 - Distribution of the probability of wrong data output by the system 

Since the amount of simulation data was low comparing with 
the original plan of 10000 trials, ensemble methods were applied 
to try to gather a better approximation of what the real data 
would been like. First, the bagging method was applied to the 
original time before failure data. From the original data, 10000 
sets were bootstrapped, resulting on data with a mean value of 
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379148 hours and a standard deviation of 36302. On the 
resulting data from bagging, a boosting method was applied, 
which resulted on a mean value of 338910 hours and a standard 
deviation of 14566 hours. Under the same context, the data 
regarding the times before wrong system output went through 
the bagging and boosting process. First, bagging was applied, 
generating 10000 sets of 30 samples resulting on data with a 
mean value of 194392 hours with a standard deviation of 9804 
hours. Then, boosting was applied, following the same 
algorithm and number of iterations used on the time before 
failure data. The process resulted on a data distribution with a 
mean value of 184991 hours with a standard deviation of 4149 
hours.  

Regarding fault occurrence, the histogram in Figure 12 
shows the number of faults occurred before system failure. Since 
there were two redundant subsystems, the maximum possible 
number of faults was 12, since 6 types of system block faults 
could happen in each module. Since the system has components 
that do not contribute to system failure i.e., faults on such 
components are not destructive for the system, it tolerated a 
significant number of faults before failing. 

 

Figure 12 - Fault occurrence before system failure 

V. CONCLUSIONS 

The simulation environment that resulted from the adoption 
of QEMU complemented with the developed extensions, assists 
reliability-oriented development, by providing means to validate 
and evaluate architecturally redundant designs. This way, 
different complex redundant designs can be evaluated and 
compared, before adopting a final solution. Beyond avoiding 
complex analytical analysis to evaluate designs, the design 
iterations and respective software stacks can be validated before 
any physical prototype is available, reducing the overall 
development effort and time. The used simulation tool, QEMU, 
showed itself very versatile, having a lot of potential to be used 
as an exploratory tool for simulation-oriented research. 
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