

Reliable Software Design Aided by QEMU

Simulation

Rui Almeida

Department of Industrial Electronics

Centro Algoritmi, University of Minho

Guimarães, Portugal
b12105@algoritmi.uminho.pt

Rui Faria

Bosch Technology and Development

Center

Bosch Portugal

Braga, Portugal

rui.faria@pt.bosch.com

Luís Novais

Department of Industrial Electronics

Centro Algoritmi, University of Minho

Guimarães, Portugal
lnovais@dei.uminho.pt

Jorge Cabral

Department of Industrial Electronics

Centro Algoritmi, University of Minho

Guimarães, Portugal

jcabral@dei.uminho.pt

Nelson Naia

Department of Industrial Electronics

Centro Algoritmi, University of Minho

Guimarães, Portugal
b7191@algoritmi.uminho.pt

Abstract— Highly reliable systems achieve a low failure

probability during their operational lifetime with the help of

redundancy. This technique ensures functionality by replicating

components or modules, on both software and hardware. The

addition of redundancy and further architectural decisions that

arise from its usage results in increased system complexity. The

resultant complexity hinders analytical approaches to evaluate

competing architectural designs, as the time and effort spent with

this type of evaluation may significantly delay development. A way

to avoid time spent on this type of analysis is to submit the designed

architecture to simulation, both for validation and evaluation. In

this paper, we propose the usage of a simulation tool, specifically

QEMU, to assist reliable system development and simulation.

Based on this tool, extensions were developed, aiming for a

simulation environment that covers the redundancy use case,

allowing to validate the complex interactions under redundant

architectures, and supports reliability estimations to compare

architecturally redundant designs.

Keywords—reliability design and estimation, co-simulation,

QEMU, redundancy

I. INTRODUCTION

Embedded systems cover applications ranging from General
Purpose systems, such as household electronics, to Safety
Critical systems such as flight and nuclear control [1]. The
development of Safety Critical applications requires particular
attention since system failures can incur on significant economic
loss or possibly human lives. The possibility of disasters under
such type of applications brought system reliability concepts to
the foreground. Reliability is a system metric that is directly
related to its life expectancy, meaning that highly reliable
systems present the highest times before system failure. High
reliability systems are mostly found in the fields of avionics
[2][3], life support [4], and more recently in the automotive
sector [5].

One way to increase system reliability is to replicate system
components, allowing it to achieve an higher time before failure,
consequently reducing its failure probability. This replication
technique is known as redundancy, and it can be implemented

on both software and hardware. The usage of redundant
architectures is connected with an increase in cost and
complexity as well as synchronization problems [6]. This is the
main reason why both hardware and software architectures must
manage redundancy well. A redundant architecture can have
several processing modules, communicating with each other and
making decisions about the system operating state. This implies
that redundant modules present at least one channel of
communication between them. Lack of solid synchronization
mechanisms can disrupt the interactions between redundant
systems, defeating the purpose of redundancy.

 The addition of redundancy is not the major issue on reliable
designs, as most complexity comes from the architectural
decisions made regarding the redundancy under application
context. Such decisions not only regard the hardware to
replicate, but also the software that manages it, greatly
increasing complexity. Under this perspective, the solution
space is vast, and can be difficult to evaluate which architectural
decisions are better for the context. Even after deciding about
the level of component redundancy to apply, there is a wide
variety of architecture decisions on how the redundancy is used,
and on how it will affect system behaviour. The complexity can
be so high, that an analytical approach to evaluate the design
may be time consuming and ineffective. Furthermore, the
increase in complexity can make system weaknesses less
apparent, since particular behaviours can be harder to identify,
making it difficult to exactly pinpoint the problem under such
complex systems. With this in mind, it may be beneficial to
implement the design and submit it to simulation-based
evaluation, in order to decide on what solution to adopt, under
the vast solution space.

This article aims to take a pragmatic step into a simulation
environment that aids reliability development by providing
mechanisms to not only validate but also evaluate the global
system reliability of architectural decisions made in the context
of redundancy. With that in mind, QEMU was supplemented
with three extensions that allow for both multi-modular
processing system simulation, tackling problems that arise from

978-1-7281-5730-6/21/$31.00 ©2021 IEEE 797

20
21

 2
2n

d
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
du

st
ria

l T
ec

hn
ol

og
y

(I
C

IT
) |

 9
78

-1
-7

28
1-

57
30

-6
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IT
46

57
3.

20
21

.9
45

34
86

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

this type of simulation, and reliability estimations through
simulation-based techniques.

II. BACKGROUND AND RELATED WORK

This section addresses topics that help to understand the
methodologies used and the theoretical background behind the
simulation environment proposed: (1) the concept of
redundancy; (2) QEMU as a full system emulator and as the
simulation tool chosen for the extensions; (3) co-simulation as a
technique to simulate redundant modules; (4) reliability metrics
and what they mean; (5) estimation of reliability metrics and
techniques that support them.

A. Redundancy

Redundancy is a technique that rests on having extra
components designed to have the same functionality as the
original ones. By adding these redundant components, or
replicas, it is ensured that if some part of the system fails, a
redundant component resumes the functionality of the faulty
one. There are two kinds of redundancy: spatial and
computational. Spatial redundancy provides additional
components, functions, or data items to mask faults that may
happen on the original components. Space redundancy is further
classified into hardware, software, and information redundancy,
depending on the type of redundant resources added to the
system. In computational redundancy the computation or data
transmission is repeated, and the result is compared to a stored
copy of the previous result.

One of the common forms of redundancy is hardware
redundancy. Hardware redundancy is when two or more
physical copies of the hardware component, or system module,
are used, performing some of the functions already provided by
the original system. A natural evolution of hardware redundancy
consists of having two or more component replicas operating in
parallel. Dual Modular Redundancy (DMR) is a common
solution, where two processing units execute the same task at the
same time and communicate between them to compare results
and detect any possible faulty behaviour. Following this
architecture, n-modular redundancy (n-MR) tries to mitigate the
intrinsic problem of error correction of DMR architectures, by
adding more modules and a voting entity. The main issue with
this technique is that similar architectures can respond equally to
faults, which may cause the voter to produce erroneous results.

Redundancy can also be classified as homogeneous or
heterogenous, depending on the type of redundant modules used.
In homogenous redundancy, the same technology is replicated
to perform the same function, mitigating only random failures
[7]. On the other hand, the heterogeneous approach uses
different technologies to perform the same function, allowing
the system to recover from systematic failures due to a given
technology’s inherent limitations

B. QEMU

Quick EMUlator (QEMU) [8] is an open source full system

emulator that translates target binary code to host binary code.

It features the fast emulation of several CPU architectures (e.g.,

ARM, x86, Sparc, Alpha) on several host platforms (e.g., ARM,

x86, PowerPC). Being an open-source software, its source code

can be changed in order to edit its features or even add new

ones, to achieve developer’s needs.

The hardware emulation is done with the help of models that

mimic real hardware behaviour. These models respond to write

and read operations during code execution, by using functions

and routines that contain an approximation of how the hardware

would respond to those operations. Although the behaviour is

emulated, latencies specific to such operations cannot be

emulated.

One of the features that makes QEMU different from other

full system emulators is that binary translation does not occur

on instruction level, but instead guest code is split into

translation blocks. These translation blocks contain several

target instructions and are executed atomically. This accelerates

a typical slowdown from constant overhead of executing

instructions one at a time. The execution of the translation

blocks dictates the time advancement during the simulation,

which is proportional to the number of instructions executed.

QEMU has already been used for wide variety of research

purposes. Under the reliability topic, it has been used, by

several authors, for fault injection and software metric

estimations [9][10]. At the time, there is no evidence of QEMU

being used to approach the redundancy use-case under

reliability development.

C. Co-simulation

Typically, within a complex system, models developed in

different domains are independently validated, meaning that no

real interactions exist between them. Although testing is

independent, the models need information from other domains

to have meaningful simulation results. On this context, co-

simulation is a technique to simulate several domains and the

interactions between them. It consists of enabling global

simulation of a complex system through composition and

interfacing of simulators from different domains.

Although this may seem an excellent way to validate a

complex system, the act of simulating in different domains

makes interactions difficult due to the different temporal

abstraction levels. Since different domains simulators run on

different abstraction levels, the time granularity may be

different across simulators, which means, at a given wall-clock

time, the simulators may all have different simulation times,

with different execution advancements. For this reason,

simulations need to obey a synchronization mechanism since

simulations are independent and interactions should be

correctly timed for both simulations.

Under the synchronization context, there are two major

classes of synchronization [11]: (1) conservative, which strictly

avoid causality errors, and (2) optimistic, which allow causality

errors and recovers from them. Two well know algorithms are

the Chandy-Misra [12] for conservative methods, and the Time

Warp algorithm [13] for optimistic.

Conservative synchronization is based on the work of

Chandy and Misra in which events are processed in sequential

chronological order and simulations exchange time-stamped

messages. These mechanisms assure that all messages are

attended on time. To do so, the simulations are blocked from

further processing until the next message can be safely sent and

798

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

received on both simulations. The main issue of any

conservative simulation is determining how much can a

simulation can execute to avoid any causality error.

On the other hand, optimistic synchronization algorithms

allow causality errors to happen and recover from them. If a

causality error is detected, the simulation must be rolled back,

meaning that all preceding simulation results must be undone

until the causality error is resolved. Before the occurrence of a

causality error, the simulations are not synchronized and run

independently of each other, therefore only being synchronized

when causality error occurs.

D. Reliability Metrics

System reliability is a quantifiable metric which estimates
the expected useful life of a system. It is given by a cumulative
distribution function:

���� � 1 � ���� � 1 � 	
����� � 	
�����
�

�

�

�
�1�

where Q(t) is the unreliability function, which defines the
probability of failure over time. Subtracting this probability from
1, gives the reliability function.

Another expression that is always part of reliability is the
Mean Time Between Failures (MTBF) which is expressed as:

���� � 	 � ∙
�����
�

�
�2�

where, � is the time in hours and f(�) is the probability density
function of failure.

E. Reliability Estimation

Although reliability metrics can be calculated by traditional
methods, complex systems with large number of different
components makes calculation impractical. Some techniques
and methods can be used to synthetize a prediction of such
metrics, avoiding the inevitable hard and time-consuming work
that normally would come with traditional methods. The Monte
Carlo method fits the available techniques by providing
numerical estimation of an unknown parameter or metric by the
mean of repeated sampling.

An example of a Monte Carlo simulation in reliability
engineering context to evaluate system failure probability,
consists in running many repetitive trials and changing
component states according to a probability distribution. On
each one of these trials, there are time steps which represent
advancement of system lifetime. On each of these steps,
component states are changed by generating random numbers
and comparing them to the component’s failure distribution. If
the random value is lower than the component failure rate at the
given time, component state is changed, otherwise no change is
made. The process is done until system failure, and the resulting
time step is stored. As the trials are done several times, the time
step results of each trial will create a system failure distribution,
which approximates the real system failure rate, with an
uncertainty.

Under reliability engineering, this method can also be
combined with fault injection techniques, in order to gather
insight about system-level behaviour. The goal of this technique

is to provoke (inject) faults, or stimuli, that are as close as
possible to real faults that could occur on real hardware. By
injecting faults into a running system, it can provide information
about the failure process, which means that metrics such as mean
time between failures (MTBF) can be taken from fault injection
results.

III. QEMU EXTENSIONS FOR RELIABILITY

This section describes the simulation extensions that were
developed with the main goals of multi-modular processing
system software validation and reliability estimation with fault
injection. With all this in mind, three extensions for QEMU were
developed. The Synchronization extension aiming to mitigate
causality errors during simulation of redundant modules. The
Shared Bus extension that allows for redundant modules to
communicate with each other. The Fault Injection extension
enabling reliability estimation capabilities, by providing
mechanisms to inject faulty stimuli to system components.

A. Conceptualization

Under a redundant architecture, a target system can have
multiple redundant subsystems, each contributing for the output.
The redundant modules have independent hardware and
computations are made within each subsystem processor. Each
redundant module is conceptualized as a QEMU instance (or
simulation), running all the software stack and emulating all the
hardware that composes the subsystem. The diagram in Figure 1
presents the conceptualization of the redundant modules as
QEMU instances.

The redundant subsystems use the same inputs to compute a
value which contributes to the system output. The computed
values should be equal across subsystems if all of them do the
same operations and receive the same inputs. This happens when
the system presents an homogeneous architecture. Such
behaviour differs from heterogenous architectures which can
have different inputs and outputs between subsystems.
Alongside data output and computation, redundant subsystems
may also be connected between them for N connections
depending on the number of redundant subsystems present.

Figure 1 - Redundant modules as QEMU instances

799

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

As the instances are independent from each other, there must
be guarantee that causality errors are attended to. Consequently,
a synchronization mechanism was implemented to mitigate any
simulation synchronization issues between redundant subsystem
simulations.

B. Synchronization

For simulation synchronization, a conservative method was

implemented, based on a time budget concept, which

guarantees that no causality errors happen. The diagram on

Figure 2 describes the time budget concept. The simulations run

for a specific amount of time (or budget) and are then blocked

from executing further, until all other simulations reach the

same simulation time. For this purpose, both a process was

created, which handles synchronization between simulations,

and QEMU was modified to obey to this same process and

execute target code in a time budget manner.

Figure 2 - Synchronization timely diagram

The process listens to incoming simulations to be

synchronized and handles the synchronization requests. When

an “out of budget” message is received, meaning that a

simulation reached the end of its executing budget, the process

checks if all other connected simulations have already reached

the same simulation time. On that case, all blocked simulations

resume execution. If any simulation is still running, all

simulations are blocked from further execution until all reach

the same simulation time.

On QEMU, the target code execution algorithm was

modified to force simulations to run for a time budget that is

application specific and user specified. During emulation, the

execution of translation blocks and further time advancements

are monitored to assure increments within the time budget.

Every time advancement contributes to the depletion of the

available time budget and upon exhausting it, simulations block

execution and send an “out of budget” message to the

synchronization process. The process then replies with a

“Resume” message, which allows the simulations to resume

execution up until the duration of the next time budget.

Time budget granularity depends on the time per

instruction, which is directly related to the icount parameter

chosen for the emulation. The lowest number possible for the

time budget is the time to execute one instruction, meaning that,

in this case, synchronization would occur at instruction level.

This type of implementation does not limit the extension

usage to QEMU simulations only. Any simulation tool that can

run in a time budget manner can be introduced into a simulation

environment and be correctly synchronized with different tools

from different domains.

C. Shared Bus

Under a redundant architecture, communications and
consequent interactions are typically associated with
communication peripherals such as LPUART or SPI modules.
The Shared Bus extension aims to expand emulated
communication peripheral’s capabilities to allow interactions
between different processing subsystems. The extension
emulates a data bus and its transactions, covering typical R/W
operations done by common protocols such as UART, while at
the same time allowing for multiple peripherals to connect to it,
attending to the bus characteristics of more complex protocols
such as CAN or SPI. This kind of emulation entirely abstracts
the communication protocol’s timings and working principles. It
only concerns the communication behaviour by saving the data
and relaying it to other communication peripherals.

As such, the developed extension is composed by two parts:
(1) A process (called Shared Bus) that manages all
communication connections to an emulated bus; (2) A node
interface allowing peripherals (and other tools) to interact with
the emulated bus for read and write operations.

The Shared Bus process manages peripheral connections and
data transfers. Connected peripherals can perform write and read
operations on the emulated bus, which saves the data written by
the peripherals. When a write operation occurs, the written data
is saved and relayed to all peripherals connected to the bus. It is
the connected peripherals responsibility to attend the relayed
messages, consider invalid data and check the integrity of the
data received.

The peripherals and the Shared Bus process communicate
with each other through a pair of sockets in a client-server
configuration. Each peripheral uses the sockets as following: (1)
A client socket used for synchronous read/write operations; (2)
A server socket used for asynchronous reads from the peripheral.
Peripheral asynchronous reads can be emulated by attending the
relayed data upon write operations by other peripherals, and for
that reason peripheral implementation requires a mechanism that
allows to always listen to these asynchronous events (such as a
thread). This mechanism mainly emulates typically ISR
triggered read operations. An example usage of the extension is
presented in Figure 3. It shows an emulated CAN bus connected
to emulated CAN peripherals from different QEMU instances.

Figure 3 - Shared Bus extension diagram

800

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

D. Fault Injection

As mentioned before, fault injection can be used to evaluate
a system, by provided quantifiable reliability metrics. Under that
perspective, QEMU was extended to allow fault injection
capabilities on different system components. The extension is
based on the research of Andrea Höller [9], where a framework,
namely FIES, aiming to assess software fault tolerance was
developed.

The fault injection extension integrates some components
from the FIES framework and adds an external coordinator, as
shown in Figure 4. Each of the components are described next.

Figure 4 - Fault Injection extension components

Fault Injection Coordinator: this entity generates faults and
creates a fault list with them. Within the coordinator, the monitor
manages simulation connections and controls simulation
experiments based on the data from the Collector. The Fault
Library contains the possible user-specified faults to be used on
any fault experiment.

 Controller: decides how to inject faults according to the fault
list. The faults specified on the fault list remain on the system
for a user-specified amount of execution time. Based on this
information and the QEMU built-in timer, the controller decides
when and where a fault should be triggered or stopped. The
controller also parses the fault list, which comes as an XML file
from the coordinator.

Injector: core of the fault injection. It contains functions and
methods that allow injection of the different types of faults.
Faults can be of four different types which occur on different
execution locations: instruction decoder, memory cells,
peripheral access and system power. According to the faults
present on the fault list received by the controller, the fault
specific functions are called.

Collector: gathers information about the status of the
simulation after any fault is injected. The goal of this component
is to gain knowledge on how the system responds to the fault by
retrieving the system’s internal execution status using monitor
variables.

 As previously mentioned on the fault injector description,
faults can occur on instruction decoding, memory cells,
peripheral access or system power. Besides these type of faults,
a clock fault type was also added, which is a type of fault addded
to cover a particular behaviour of the case study. Each one of
these type of faults will be addressed next.

Instruction Decoder: these type of faults occur before
execution of translation blocks, when the target code is
disassembled. This fault replaces the current disassembled host
instruction, overwritting it by the new instruction defined in the
fault list.

Memory Cell: occurs during read and write operations on
physically addressable memory. Such operations are monitored
and as they are realized, available memory faults are injected.
When a read or write operation is done, the value written or read
is overwritten by the value specified in the fault list.

Peripheral Access: prevents access to peripheral memory
regions by the QEMU system bus, rendering a specific
peripheral unusable. This is done by monitoring memory access
during both read and writes on the QEMU system bus and
blocking any access that matches the fault specified address.

Power: aims to simulate a power failure on the system,
forcing the QEMU instance to reset the CPU and every
peripheral. Although this resets the simulation, the total
simulation time is not affected, as QEMU keeps track of the
simulation time up until shutdown of the instance. This type of
fault is particularly important for redundant systems, since it
allows to evaluate the system behaviour when a redundant
module shuts down.

Clock: this is a special type of fault added for the case-study.
This was added aiming to emulate clock drift type of situations
between redundant subsystems. Since QEMU does not emulate
real clock timings, real clock speed drifts are not possible to
represent. With that in mind, and knowing that all simulations
obey to the synchronization process, a clock fault means loss of
synchronization between a simulation and the synchronization
process. This is done by dropping the communication between
them and letting the simulation run at its own pace.

Externally to QEMU, as previously mentioned, the Fault
Injection Coordinator handles simulation experiments. The
implementation of the coordinator is not generic and it is the
developer burden to implement it in a way it satisfies the
simulation needs. This is because the possible faults and
simulation management decisions are case-study specific and
depend on what the user wants to observe as simulation result.

IV. CASE STUDY

The developed extensions were used on the validation and
reliability evaluation of a case-study that presented mission-
critical characteristics. The system is responsible to acquire
sensor data and output it to a system bus. It presents hardware
homogeneous redundancy, as it is composed by two identical
subsystems that output the same type of data (Figure 5).

Figure 5 - Case-study concept

801

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

The main system requirement is to provide processed sensor
data at a rate of 10 milliseconds. Each subsystem outputs
processed sensor data every 20 milliseconds with 10
milliseconds offset between them, assuring a 10-millisecond
data throughput from the system. Upon subsystem failure, the
remaining functional subsystem reconfigures itself to guarantee
the initial throughput requirement. Feedback between subsystem
is made through a communication channel, allowing to correctly
synchronize subsystem actions.

The software is responsible to manage the subsystem
redundancy by deciding the subsystem operating state
depending on the feedback received. During runtime, both
subsystems have specific time windows to provide feedback
about their current operating state. The lack of feedback within
that same window is assumed to be a subsystem failure, forcing
the operational subsystem to reconfigure itself.

The platform used in each subsystem was S32K116 from the
S32K family from NXP. The platform is based on a 32-bit ARM
Cortex M0+ machine within a SoC that is specially designed for
Automotive applications. Due to the lack of platform native
support on QEMU, the platform was created, along with its
peripherals and on-board devices, and added to the QEMU
supported machines. Furthermore, the peripherals that allow
interactions between subsystems were extended to interact with
the Shared Bus extension.

One of the drawbacks of this type of simulation environment
under QEMU, lays on the models used for the emulate
peripherals. Any design or implementation bug on such models
can be misinterpreted as a real hardware limitation, contributing
for wrong emulation results.

A. Simulation Environment

The simulation environment that allowed to validate the

case study is shown in the figure below. The environment

combined two QEMU instances, one for each redundant

subsystem, two Shared Bus instances, for two different

communication types, and one synchronization process.

Figure 6 - Simulation environment used for case-study validation

Validation went through analysing the timestamps of

messages sent to the Shared Bus and through monitoring of

internal program variables. This validation was made under a

Linux environment, as seen in Figure 7 and Figure 8. The figures

demonstrate the entities used in the simulation environment. On

the right side of the figure, the two terminals are the QEMU

running instances that emulate each one of the subsystems. The

terminals output internal state variables to have an insight of the

system running state. On the bottom left side, the

synchronization process shows the time increments of both

instances. This value matches the user chosen value of 50016

nanoseconds for the time budget. On the top left, the data bus

shows messages that are sent from both redundant subsystems,

alongside with the timestamp at which they were sent. As seen

in the figure, the messages are sent every 10 milliseconds,

validating the initial system requirement.

Figure 7 - Simulation environment running the system (1)

Upon confirmation of the main requirement, the redundancy

management was validated by mimicking subsystem failure.

Upon aborting one of the QEMU instances, the remaining

subsystem correctly reconfigured itself to ensure the initial

10ms data throughput, as seen in Figure 8.

Figure 8 - Simulation environment running the system (2)

B. Reliability Estimations

In order to evaluate the system for its reliability metrics,
estimation of such metrics was done during simulation,
supported by the extensions developed. The system went
through Monte Carlo simulations, injecting faults into system
component blocks, according to their failure distributions. Since
there was not enough data to get an accurate probability of
failure distribution of each component, failure rate probability
curves were created according to the MTBF values of the
components (Table 1).

802

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

Table 1 – System components MTBF values

Component MTBF (hours)

Microcontroller 4.2 x 105

Communication Module 1 1.7 x 105

Communication Module 2 2.5 x 105

Clock 1.6 x 105

Power 5.3 x 105

Sensor 2 x 105

The curves were parameterized to fit a Weibull distribution,
alongside with a cumulative failure rate of 1 � 10�� in the first
100 hours. The simulations executed until system failure or up
until a total simulation time of 1 500 000 hours of component
lifetime.

The simulations followed a similar environment as the
validation, alongside the Fault Injection Coordinator controlling
simulation trials. The resulting environment is shown in the
figure below.

Figure 9 - Simulation environment used for case-study reliability estimation

During simulation, faults were injected until system failure,
which was known by checking the status of both simulations
from the monitored variables. If both simulations were on failure
state, the current simulation trial was over and the final
emulation time was saved, as it was considered system failure.
When this happened, a new trial started by restarting
simulations. If the system was still operating, the trial continued
by generating new faults until system failure. New faults were
created by generating random values during runtime and
checking them against the fault probabilities. Regarding
simulation speed, each 10-hour increment of component lifetime
(or Monte Carlo step) during the trials took approximately 75ms
of wall-time to complete.

C. Results

The simulations resulted in 181 trials, 10 of which reached
the maximum simulation time, with the remaining ones resulting
in system failure. From the collected data, the resulting system
mean time to failure value was greater than 378797 hours. The
resulting distribution of the times before failure is presented in
Figure 10.

Figure 10 - Probability density and cumulative density functions of the
simulation results

Although the system presented such time before failure,
sensor faults caused the system to output wrong data while still
being in an operational state. In order to get an overview about
the time the system outputs wrong data while being operational,
the distribution in Figure 11 shows the data relative to such
behaviour. The resulting mean time before wrong data output
was 194361 hours.

Figure 11 - Distribution of the probability of wrong data output by the system

Since the amount of simulation data was low comparing with
the original plan of 10000 trials, ensemble methods were applied
to try to gather a better approximation of what the real data
would been like. First, the bagging method was applied to the
original time before failure data. From the original data, 10000
sets were bootstrapped, resulting on data with a mean value of

803

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

379148 hours and a standard deviation of 36302. On the
resulting data from bagging, a boosting method was applied,
which resulted on a mean value of 338910 hours and a standard
deviation of 14566 hours. Under the same context, the data
regarding the times before wrong system output went through
the bagging and boosting process. First, bagging was applied,
generating 10000 sets of 30 samples resulting on data with a
mean value of 194392 hours with a standard deviation of 9804
hours. Then, boosting was applied, following the same
algorithm and number of iterations used on the time before
failure data. The process resulted on a data distribution with a
mean value of 184991 hours with a standard deviation of 4149
hours.

Regarding fault occurrence, the histogram in Figure 12
shows the number of faults occurred before system failure. Since
there were two redundant subsystems, the maximum possible
number of faults was 12, since 6 types of system block faults
could happen in each module. Since the system has components
that do not contribute to system failure i.e., faults on such
components are not destructive for the system, it tolerated a
significant number of faults before failing.

Figure 12 - Fault occurrence before system failure

V. CONCLUSIONS

The simulation environment that resulted from the adoption
of QEMU complemented with the developed extensions, assists
reliability-oriented development, by providing means to validate
and evaluate architecturally redundant designs. This way,
different complex redundant designs can be evaluated and
compared, before adopting a final solution. Beyond avoiding
complex analytical analysis to evaluate designs, the design
iterations and respective software stacks can be validated before
any physical prototype is available, reducing the overall
development effort and time. The used simulation tool, QEMU,
showed itself very versatile, having a lot of potential to be used
as an exploratory tool for simulation-oriented research.

VI. ACKNOWLEDGMENT

This work is supported by: European Structural and
Investment Funds in the FEDER component, through the
Operational Competitiveness and Internationalization
Programme (COMPETE 2020) [Project nº 037902; Funding
Reference: POCI-01-0247-FEDER-037902].

REFERENCES

[1] A. Birolini, Reliability Engineering, vol. 34, n. 4.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.

[2] T. Wilfredo, «Software Fault Tolerance: A Tutorial»,

2000.

[3] D. Siewiorek e P. Narasimhan, «Fault-tolerant

architectures for space and avionics applications»,

NASA Ames Res., pp. 1–19, 2005.

[4] P. O. Wieland, «Living together in space: The design

and operation of the life support systems on the

International Space Station», NASA Tech. Memo., vol.

1, n. 206956, 1998.

[5] C. Huang, F. Naghdy, H. Du, e H. Huang, «Fault

tolerant steer-by-wire systems: An overview», Annu.

Rev. Control, vol. 47, pp. 98–111, 2019.

[6] A. Dasgupta e J. M. Hu, «Hardware reliability», Prod.

Reliab. Maint. Support. Handbook, Second Ed., pp. 95–

140, 2009.

[7] E. Dubrova, Fault-Tolerant Design. New York, NY:

Springer New York, 2013.

[8] F. Bellard, «QEMU, a fast and portable dynamic

translator», USENIX 2005 Annu. Tech. Conf., pp. 41–

46, 2005.

[9] A. Höller, «Advances in Software-Based Fault

Tolerance for Resilient Embedded Systems», 2016.

[10] Y. Li, P. Xu, e H. Wan, «A Fault Injection System

Based on QEMU Simulator and Designed for BIT

Software Testing», pp. 123–127, 2013.

[11] S. Jafer et al., «Synchronization methods in parallel and

distributed discrete-event simulation», IEEE Trans.

Comput., vol. 77, n. 1, pp. 257–260, 1990.

[12] K. Mani Chandy e J. Misra, «Distributed Simulation: A

Case Study in Design and Verification of Distributed

Programs», IEEE Trans. Softw. Eng., vol. SE-5, n. 5,

pp. 440–452, 1979.

[13] D. R. Jefferson, «Virtual Time», ACM Trans. Program.

Lang. Syst., vol. 7, n. 3, pp. 404–425, 1985.

804

Authorized licensed use limited to: Carleton University. Downloaded on June 20,2021 at 03:24:14 UTC from IEEE Xplore. Restrictions apply.

		2021-06-13T16:20:32-0400
	Preflight Ticket Signature

