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Abstract—The fifth generation (5G) cellular networks are
expected to produce a massive amount of traffic due to the rapid
development of 5G applications and Internet of Things (IoT)
services. Content sharing through the device to device (D2D)
multicast communication can effectively mitigate the burden of
the cellular network and add to network capacity. To achieve
effective content sharing among users, appropriate clustering
strategy is needed. In this paper, we first present an integration
of Software Defined Network (SDN) and millimeter wave based
heterogeneous network (mmWave-based HetNet) for 5G networks
to handle the massive traffic load. Then, we propose a clustering
strategy for sharing the requested content by a group of users
through D2D multicast communication to mitigate the burden of
the cellular networks. Moreover, we formulate an optimization
problem to maximize the efficiency of the D2D multicast clusters
formation. Finally, we perform a simulation study to examine the
impact of the maximum D2D communication distance, minimum
social relation, and minimum distance among cluster heads on the
clustering performance, so to evaluate the effective parameters
needed to tune a desirable D2D multicast clustering strategy.

Index Terms—5G, D2D, Clustering, Multicasting, Content
Sharing.

I. INTRODUCTION

The tremendous growth of user equipment (UE) along with
the expansion of the bandwidth-demanding applications such
as video streaming, online gaming, and multimedia sharing has
contributed to a 74% increment in the network traffic over the
last years [1] [2]. According to the smart devices developments
and the network traffic growth rate, the number of cellular
network subscribers is expected to reach 7.7 billion by 2021
[3] [4]. Moreover, by the implementation of the fifth gener-
ation (5G) network and the introduction of its applications
(e.g., augmented reality, virtual reality, autonomous driving),
the network traffic is expected to increase by 8-fold, whereas
the network resources are scarce. Therefore, the radio access
network (RAN) would be overloaded by this predicted huge
traffic demand. Since upgrading RAN needs high capital in-
vestment and requires more licensed bands, directly upgrading
the RAN is undesirable. Nowadays, the cellular networks have
been paving the way toward a multi-tier architecture, in which
a dense-deployment of heterogeneous small cells underlaid the
macrocells [5]. Hence, the heterogeneous cellular networks
(HetNets) in addition to present the required structure for

approaching the 5G cellular network, they provide an effective
way to handle the ever-increasingly network traffic. Despite
the benefits of small cells dense deployment, the cellular
networks still suffer from resource scarcity and enormous
strain on base stations (BSs).

To mitigate the tremendous pressure on cellular BSs, estab-
lishing device-to-device (D2D) communication enables UEs to
directly communicate with each other in a licensed spectrum
leading to higher spectral efficiency and cellular capacity,
lower energy consumption, and better traffic delay [6]. Since
modern devices and smartphones have a significant storage
capacity to store the data, they can share the requested data
with neighboring UEs through D2D communication, which
effectively relieve the burden on cellular BSs.

Content sharing is one of the common services in the
content-centric networks, such as 5G networks, because Users
constantly produce new content with the aim of sharing with
the interested users by social media and video streaming
applications. As the local users are likely to request the same
content, sharing the content among UEs can significantly
mitigate the burden on cellular BSs [7]. According to the
conducted research in [8], the number of requests and pop-
ularity of given content follow the Zipf distribution. Thus, it
is expected the users in a congested area like public events,
stadiums, concerts, central malls require to access identical
types of data. To cope with this challenge, D2D multicast
communication can be utilized to share the content among
users, in which instead of sending the requested content one-
by-one by the BS, it would be relayed through the D2D link.
Hence, part of users act as D2D multicast transmitters, which
receive the content from cellular BS and directly forward it to
intended users. Since the cellular BSs don’t need to send the
data multiple times, the scarce resources of the network are
saved, which improves the Quality of Service (QoS) [9].

According to the literature, the clustering concept can
improve the efficiency of the D2D multicast communication
[10], and the formation of appropriate clusters influence the
performance of the underlay cellular network [11]. Hence,
clusters are formed, in which one UE is chosen as the cluster
head (CH) that is responsible for synchronization and radio
resource management of its cluster members. Thus, CH re-
ceives the requested data from the respective BS and multicast
it among the intended members through D2D links. Most of978-1-7281-8241-4/20/$31.00 ©2020 IEEE
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Fig. 1: Integration of SDN and mmWave-based HetNet for 5G
networks.

the proposed methods to form the multicast clusters take only
into account the physical location of users for selecting CHs
and cluster members. The mobility of UEs affect the stability
of clusters. Selecting a UE with a high level of mobility as a
CH, frequently interrupts the D2D multicast transmission links
because its stay time in the cluster is too short to complete the
transmission processes. The residual energy is another factor
in cluster stability. The CH without enough battery energy
could lead to unwanted interruptions in transmission. The
frequent interruptions extremely reduce cellular network per-
formance. Moreover, the signal strength between the selected
CH and corresponding BS significantly affects the QoS, so
that a weak received signal by the CH extremely increases
the transmission delay. Due to the importance of received
signal strength by selected CH, the cross-interference among
D2D multicast communications should be considered in the
CH selection procedure, as well. Therefore, an optimal D2D
multicast CH selection strategy should be designed reducing
the transmission delay while increasing the network capacity
and performance.

In this paper, we propose a clustering strategy for con-
tent sharing through the D2D multicast communication in
5G networks to improve the network capacity and spectral
efficiency. Moreover, we formulate an optimization problem
to maximize the efficiency of the proposed clustering strategy.
Furthermore, we utilize a genetic algorithm to solve the
optimization problem.

The major contributions of this work are listed as follow:

• An integration of Software Defined Network (SDN) and
millimeter wave (mmWave)-based HetNet for 5G networks
is presented to increase the network capacity through reusing
the cellular resources for establishing the D2D communica-
tion.

• A cluster-based, social-aware D2D multicast content sharing
is proposed to mitigate the burden of cellular small cell BSs
(SBSs). Hence, UEs join the cluster that is related to the
community of the requested content. Then, the CH shares
the content among the members through the D2D links.

• A greedy cluster formation is proposed to maximize the
number of admitted D2D UEs, which improve the spectral

efficiency. The social strength, achievable data rate, node
density, and residual energy are evaluated by the SDN
controller to choose the optimal CH for each community.

• We utilize a genetic algorithm to solve the optimization
problem, which ensures finding of global optima.

The rest of the paper is organized as follow. Section II
provides a brief review of the related work. Section III presents
the proposed system model. Section IV describes the proposed
cluster-based multicast content sharing that includes the CH
selection and joining the users to the selected cH. In Section V,
the problem formulation and the solution of the optimization
problem is presented. Performance analysis is demonstrated in
Section VI, and conclusions are drawn in Section VII.

II. RELATED WORK

It is reported in the literature that the cellular network
can benefit the D2D multicast communication advantages to
significantly mitigate the burden of massive traffic on cellular
BSs [12] [13]. Clustering the users with similar interest
can significantly improve the spectral efficiency through the
sharing content by the D2D multicast communication [14]
[15]. Authors in [16] presented an energy-efficient multi-hop
clustering algorithm for multiple-input and multiple-output
(MIMO) Internet of Things (IoT) systems to accomplish the
energy-efficient and Quality of Experience (QoE) supported
communication. It is a user behavior and context-aware clus-
tering approach aiming to facilitate CH selection for IoT
devices. In [17], the authors presented an adaptive vehicle
clustering for SDN enabled 5G vehicular networks, in which
vehicles in proximity are clustered using the road condition
gathered by the SDN. In [18], the authors proposed a SDN-
enabled, social-aware clustering in 5G vehicular networks.
They utilized a social pattern prediction model to enhance
the stability of clusters causing the improvement of user ex-
perience. To model the movement of vehicles, a discrete time-
homogeneous semi-Markov model used. To do so, integration
of state transition probability and sojourn time probability
distribution presented, in which the social pattern of vehicles
generate as the output of the model. Then, the predicted social
pattern is used for cluster formation. Due to the importance
of the vehicle’s distance and speed, the cluster head selection
strategy is formulated based on the inter-vehicle distance and
their relative speed. In [19], the authors presented a cluster
selection method for content-centric 5G networks, where a
combination of the node density and the neighboring degree
is proposed as a metric to select nodes. The focus is on how a
BS selects the appropriate CHs that are very influential in the
community of requested content, and on designing a suitable
cashing mechanism for system model to increase the hit ratio.

Different from the existing efforts, in this paper, we take
into account the cluster transmission rate, social relation,
node density, and residual energy to maximize the efficiency
of cluster formation. We consider a SDN controller as the
responsible entity to manage all activities in the cell. Hence,
for each recognized community, the SDN selects an optimal
CH such that a large number of UEs would desire to join the
formed D2D multicast cluster.
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Fig. 2: D2D multicast clustering scenario.

III. SYSTEM MODEL

We propose a mmWave-based D2D multicast communica-
tion for 5G HetNets to increase the network capacity and im-
prove the spectral efficiency, as depicted in Fig. 1. We consider
a single-cell cellular network with a massive MIMO-enabled
Macrocell BS (MBS) located in the center, and a number of
mmWave-enabled small cell BSs (SBSs) densely underlaid the
macrocell. The objective of the dense deployment of SBSs is to
bring the RAN closer to UEs, which ensures the high-quality
transmission links. Since establishing the fiber-optics link
between all SBSs and the network core is difficult, because of
urban cabling restrictions and the expensive costs, wireless
communication can be a proper alternative for deployment
the small cells due to easy deployment, cost-effectiveness,
and flexibility. Therefore, in our proposed system model, the
integrated access and backhaul (IAB) scheme is considered
for connecting SBSs to each other and to the network core,
in which SBSs use the mmWave frequency band for both
backhaul links and access links. Hence, SBSs transmit the
backhaul traffic to a gateway Access Point (AP) via mmWave
link and then the gateway AP forwards the received traffic
toward the network core.The key to establishing a high-
performance backhauling by the mmWave links is to provide
the exact line-of-sight (LOS) among SBSs. Since it is difficult
to acquire LOS for backhaul links in an urban environment,
the multi-hop relays are considered for backhaul traffic, using
short-distance and highly capable links. Thus, SBSs can reach
the gateway AP using multi-hop relays if there is not any direct
backhaul link to the gateway AP.

Small Cells dual connectivity (DC) is applied to increase
the per-user throughput and mobility robustness, in which
UEs simultaneously are connected to an MBS and an SBS.
It enables the separation of control plane and data plane such
that MBS manages the connection and mobility, while the
SBSs deal with data delivery. An SDN controller is deployed
to facilitate the management of the cellular network by the
separation of the control plane and data plane. The SDN
controller deals with all control signaling and instructs the
OpenFlow (OF) switches through the OpenFlow interface to
handle the data flow. The SDN needs to collect and maintain
the up to date information about all the network entities.
Since UEs are simultaneously connected to one MBS and
one SBS (dual connectivity), SDN is up to date about the
UEs’ status. SDN can communicate with the application and
services over the network through the application program

interfaces (APIs), like RESTful APIs, to facilitate orchestration
and automation of the different applications’ requirements.
Moreover, OF interfaces connect the SDN controller to OF
switches for implementing the SDN in networking equipment.
The OF switch proceeds with a lookup of the received packet
into the flow table, and if there is a match then the OF
switch runs a set of actions and forwards the packet to the
destination. Otherwise, the SDN controller decides how to
deal with the packet without valid flow entry. The OF switch is
programmable by the SDN controller through adding or delet-
ing flow entries. Since the OF switch provides communication
between the MBS and the SBS via the fiber links, transferring
the backhaul traffic among them will be fast with negligible
delay since they are all connected to the same switch.

IV. PROPOSED CLUSTER-BASED MULTICAST CONTENT

SHARING

To mitigate the burden of SBSs, a cluster-based D2D
multicast content sharing is defined to distribute the requested
content among a group of UEs through mmWave D2D links.
We assume there are k UEs U = {u1, u2, ..., uk} in a small
cell area, where all k UEs requested the specific contents. If the
content is valuable for the users just in a short period of time,
it is forwarded to UEs by the cellular link; otherwise, it is de-
livered to the UEs by the D2D multicast communication. The
key to ensuring the performance of content sharing through
the D2D multicast communication is the formation of D2D
clusters, which consists of CH selection and joining UEs to the
proper cluster. In general, clustering aims to achieve network
scalability, stability, and improve performance through the load
balancing. In 5G networks, clustering caters to meet the ultra-
densification, network heterogeneity, and high variability.

For the sake of generality, there are n clusters G =
{c1, c2, ..., cn}. As depicted in Fig. 2, each cluster includes
one CH as the transmitter and plenty of cluster members (CM)
as the receivers. CHs are selected among UEs and comprise of
Υ = {h1, h2, ..., hn}, where hn denotes the CH of cluster cn.
The rest of UEs are considered as CMs and they collectively
form Ψ = {r1, r2, ..., rm}. Each cluster might have a CM
who can establish a D2D link with a member of the adjacent
cluster that is called the cluster gateway (CG). Note that, each
UE can only be the member of one cluster and there is no
overlapping among the clusters.

For content sharing through D2D communication, first, an
SBS receives the request for sharing specific content from a
group of UEs. According to the different interested contents,
UEs can form the communities denoted as Λ = {g1, g2, ..., gl}.
UEs with strong social strength can form the D2D multicast
cluster, if they can satisfy the D2D communication conditions.
For each community, there are some active UEs denoted as
ΛU (gl) = {rgl,1, rgl,2, ..., rgl,k}. The SDN controller selects
CHs for each community and broadcasts CH identification and
location to active UEs. Then, each UE decides whether to join
selected CHs or not based on the received information, i.e., a
UE might not discover the desirable CH, thus UE who can not
join a proper cluster receives the content by the cellular link.
After clusters are formed, SBS transmits the content to the
CHs and the UEs that are operating in cellular mode. Once a
CH receives the content will share it with its CMs through the
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D2D multicast communication. The re-clustering formation
occurs when changes appear in the current clustering structure,
including joining/leaving of UEs to/from the cluster. The re-
clustering is essential, because of managing a large number
of joining and leaving of UEs, rotating the role of CHs, and
offering load balancing.

Since content sharing relies on wireless transmission, there
is a need to ensure the availability of link resources. For
sharing the received content by the CHs with their CMs,
mmWave based D2D communication is utilized due to the IAB
scheme, which improves the efficiency of spectrum utilization
by reusing the link resources.

As mentioned before, clustering includes two major phases,
that is, the CH selection and the cluster formation, which affect
the overall network performance. In the rest of this Section,
we explain both in detail.

A. CH Selection

In the clustering context, CHs are chosen among the active
UEs as the point of entry or sending aggregate data toward
the network. In multicast systems, CHs are bridges between
the SBS and CMs. It is favorable that the UE be selected
as CH that can serve the highest number of CMs. This fact
causes better spectral efficiency. Thus, selecting a UE with the
larger node density and better social strength can be an optimal
solution to improve spectral efficiency. To measure the ability
of UEs for acting as CH, we introduce the centrality degree,
node density, and residual energy as follow.

1) Centrality Degree: The centrality measures the ability
of each UE for establishing connection with UEs in proximity
in terms of the physical distance and social closeness, such
that the larger the degree of centrality, the more efficient
cooperation. To calculate the centrality degree, first we need
to calculate the CH transmission rate and social strength as
below.

• CH Transmission Rate: In the cluster-based multicast sys-
tems, the CH transmission rate can be measured as the
lowest transmission rate between the respective CH and
its CMs [20]. Hence, we defined the CH transmission rate
as the minimum achievable data rate of the CMs in the
corresponding cluster. Consider cn as the nth cluster with
hn as its CH. Let αhn

rm
show whether CM rm joins cluster

Cn, in which αhn
rm

= 1 denotes rm is in cn; otherwise it is
out of cn. The achievable data rate of rm can be calculated
by

ϕhn,rm = BLog2

(

1 +
phn

ghn,rm

BN0 + phn
cg g

hn
cg,rm

)

(1)

where B denotes the link bandwidth, phn
is the transmission

power of respective CH, ghn,rm shows the gain between hn

and rm, N0 represents the power noise, phn
cg

is the trans-
mission power of the users in cellular mode that reuse the
cellular link with hn, and gcg,rm is the channel gain between
cg and rm. Thus, the transmission rate of CH hn with
cluster formation strategy Φ = {αhn

rm
|rm ∈ Ψ, hn ∈ Υ}

is equivalent to the minimum achievable data rate between
CH hn and its CMs in cluster cn, which can be denoted as
below.

Θhn
(Φ) = min

{

ϕhn,rm |∀ αhn
rm

= 1
}

(2)

• Social Strength: Since CHs consume more energy, local
storage, and bandwidth, compared with CMs, they are not
perfectly happy to act as a bridge between the SBS and CMs.
However, UEs with high social relations are willing to share
content despite the losses even under ultra-dense networks
[21]. Thus, the social relationships of UEs need to be consid-
ered for CH selection to persuade the selected CH for tight
cooperation with the other UEs resulted in the improvement
of the clustering performance in terms of the number of
clusters and average cluster size. We define the tendency
degree and contact degree to measure the social strength
among UEs. Let symmetric matrix A = {εri,rj}N×N , in
which εri,rj denotes the social strength between ri and rj .

Assuming L categories of content, we denote the ten-
dency degree of ri and rj as L dimensional vectors Yri and
Yrj , respectively. The tendency degree for a given category
is calculated by the cumulative access time in a certain
period of time. According to the cosine similarity [22], the
tendency degree between ri and rj can be calculated and
normalized as given below.

γri,rj =
YriYrj

|Yri | .
∣

∣Yrj

∣

∣

(3)

The contact degree between ri and rj can be calculated
and normalized as

ρri,rj =
bri,rj

bmax
ri,rj

+
tri,rj

tmax
ri,rj

(4)

where bri,rj and tri,rj represents the contact number and
the contact period, respectively. Thus, the social strength
between ri and rj can be denoted as follow.

εri,rj = γri,rj + ρri,rj (5)
According to the formulated CH transmission rate and social
strength in (1) and (5), respectively, the centrality degree of
UE ri can be calculated by

Γri =
∑

rj∈,i 6=j

ϕri,rj

ϕmax

+ εri,rj (6)

2) Node Density: To improve spectral efficiency, a UE
should be selected as CH if it can serve a large number of
CMs. Thus, a UE with more node density should have a higher
priority to be selected as CH. Using node density as a metric
for CH selection can increase the cluster stability because
the selection of a UE with higher node density enhances the
probability of having a connection between the respective CH
and a CM. Let tri be the transmission range of UE ri and
dri,rj be the euclidean distance between ri and rj . Thus, rj
is within coverage of ri if dri,rj < tri . Hence, the normalized
node density of UE ri can be calculated by

λri =

∑

∀ri,rj∈Ψ,ri 6=rj

(

dri,rj < tri
)

k
(7)

3) Residual Energy: In the 5G networks, selecting a UE
that possesses higher residual energy compared to the rest of
the candidate UEs can increase the network lifetime. This is
due to the fact that the selection of UE with higher residual
energy as CH enhances the connection time between CH and
CMs and improves the load balancing. Moreover, using the
residual energy as a clustering metric declines the re-clustering
occurrence. Thus, it can significantly enhances the clusters
stability. The normalized residual energy of ri is denoted as

Eri

Einitial
.
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B. Cluster Formation

To form the D2D multicast clusters we provide a greedy
method consisting of the following steps.
Step 1: The SBS receives the communities set Λ according
to the requested content by UEs. For each community gl, we
initialize the set yl = ΛU (gl).
Step 2: The SDN controller selects a UE rgl,i as CH for each
community. The SDN controller evaluates each active UE in
yl based on the centrality degree, node density, and residual
energy to find the optimal CH. The selected CH is announced
to the community to form a cluster for sharing the requested
content.
Step 3: Each active UE rgl,i 6= rgl,j can join the formed
cluster c(rgl,i) if it simultaneously satisfies two conditions.
First, the social strength between UE and CH should be bigger
than their minimum strength relation requirements. Second,
UE has a proper achievable data rate with CH or any UE who
is connected to CH through the D2D link.
Step 4: After yl = yl − c(rgl,i) , if |yl| > 1 the SDN selects
additional CH among the rest of active UEs in yl and Step 3
is repeated; otherwise, the cluster formation terminates.

V. PROBLEM FORMULATION

To maximize the efficiency of content sharing through D2D
multicat communication, the key is the formation of proper
clusters, in which CHs are the UEs with strong centrality, high
node density, and high residual energy. Thus, we formulate an
optimization problem as below.

max
Φ

{Θhn
(Φ),Γhn

(Φ), λhn
(Φ), Ehn

(Φ)}

subject to :
(8)

C1 :

n
∑

i=1

αhi
rj
≤ 1, ∀rj ∈ Ψ, (8a)

C2 :

m
∑

j=1

αhi
rj
≤ ω, ∀hi ∈ Υ, (8b)

C3 : ϕhi,rj > ϕmin, ∀rj ∈ Ψ, hi ∈ Υ (8c)

C4 : εhi,rj > εmin, ∀rj ∈ Ψ, hi ∈ Υ (8d)

C5 : Dhi,hj
> ζ, ∀hi, hj ∈ Υ. (8e)

Constraint C1 ensures that each CM only joins one cluster.
Constraint C2 limits the cluster size to ω, which is the
maximum size of a cluster. Since coordination within a dense
cluster is very complicated, limiting the size of clusters avoids
wasting CH resources and reduces the signaling overhead.
Constraint C3 and C4 ensure the transmission rate and the
social strength should be greater than their minimum require-
ments. Constraint C5 states that each CH must keep the
minimum distance ζ from each other to avoid wasting their
capacity.

A. Solution For Optimization Problem

Since the objectives in (8) are non-conflicting, the optimiza-
tion problem can be solved as a single objective problem.
Thus, we employ the genetic algorithm (GA) to find the
optimal CH, since GA can guarantee the convergence to the
global optima for single objective optimization problems. GA
is an iterative metaheuristic approach inspired by the natural

Table I: An example of problem encoding.

Centrality degree Node density Residual energy CH
u1 0.6 0.1 0.4 0
u2 0.45 0.3 0.6 0
u3 0.73 0.6 0.58 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

uk 0.58 0.4 0.45 0

process of generating chromosomes to produce new solutions
in a real search space. The formal model of using GA to search
the optimal solution is introduced in the GA Schema Theorem
[23].

In GA, a potential solution is represented in the form of a
chromosome-like structure. The population comprises a set of
solutions (individuals), which is randomly initialized within
the search space. The individuals are evaluated based on a
fitness function. In each iteration of GA, the individuals that
present superior fit are chosen as the parents to produce the
new solutions. To do that, the crossover operator is applied to
the selected parents for generating the offsprings. Then, the
mutation operator randomly modifies the offsprings with the
aim of achieving a better generation. The offsprings replace
weaker solutions in the population to progressively evolve the
population toward the optimal solution.

1) Problem Encoding: To implement the GA, there is a
need to specify the individuals and chromosomes structure. For
the formulated problem, the centrality degree, node density,
and residual energy of each UE are encoded by a chromosome
structure. Thus, the number of chromosomes in the search
space is equal to the number of UEs. The structure of an
individual for our problem with k chromosomes is presented
in Table I.

2) Fitness Function: The most important issue to design
an effective GA is the definition of a proper fitness function
to distinguish the superiority of solutions into the search
space. Since it forms the basis of the selection process, it
can facilitate population improvements. Fitness function is a
cost function, which basically is a mathematical expression
for any performance metric that should be optimized. In our
optimization problem, the fitness function includes the CH
transmission rate, centrality degree, node density, and residual
energy as the fitness parameters. The objective functions in
(8) and the constraints (8.a)-(8.e) can be used to build up the
fitness function. First, we use the weighted sum method [24]
to integrate the objectives into a single objective as below.

max
Φ

f(Φ) =
(

αΘhn
(Φ) + βΓhn

(Φ) + γλhn
(Φ) + ǫEhn

(Φ)
)

(9)

subject to:C1 − C5. (9a)

where α, β, γ, and ǫ assign the weight to each objective, such
that α+ β+ γ+ ǫ = 1. To convert the maximization problem
to a minimization problem, the equation (9) is multiplied by
−1 as follows.

min
Φ

f(Φ) = max
Φ

−f(Φ) (10)

subject to:C1 − C5. (10a)

According to [25] the constraints are relaxed through the
penalty function method, in which the infeasible solutions are
penalized in proportion to their constraints violation. Thus,
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relaxing the constraints C1 − C5, the unconstrained function
can be derived as given

f(τ,Φ) = −

(

αΘhn
(Φ) + βΓhn

(Φ) + γλhn
(Φ) + ǫEhn

(Φ)

)

+τ

[(

max
{

0,
∑n

i=1
αhi
rj
− 1

}

)2

+

(

max
{

0,
∑m

j=1
αhi
rj
− ω

}

)2

+

(

max
{

0, ϕhi,rj − ϕmin

}

)2

+

(

max
{

0, εhi,rj − εmin

}

)2

+

(

max
{

0, dhi,hj
− ζ

}

)2]

(11)

where τ is a coefficient value for the penalty terms.

3) Selection: To preserve the most fit individuals to gen-
erate the best offsprings, we employ the ranking selection
method, in which the rank of each solution is determined
based on its measured cost by the fitness function. Moreover,
the elitist strategy [26] is applied to the ranking selection
method to ensure the quality of the selected parents for the
next iteration. Thus, after ranking the eligible solutions, elitism
[26] is applied to preserve the current CH until there is a richer
new solution better than the current one, which decreases the
signaling overhead.

4) Genetic Operators: GA operators are applied to the
selected parents to generate better new solutions (offsprings).
The crossover is a binary operator in the GA theorem, which
performs the mating process of two selected parents. In this
work, we utilize a crossover based on a single point, in
which the chromosomes exchange the bitstream after reach the
single point. The crossover rate determines whether the CH is
periodically changed or not. By applying the crossover to the
selected parents, the new generation inherits the characteristics
of the parental chromosomes. Hence, the search space remains
similar to local solutions. To escape from this issue, the
mutation is applied to ensure the arising of new genes into the
solutions leading the search space toward the optimal solution.

5) Termination: The termination of the GA occurs after
predefined iterations. Moreover, during each iteration the fit-
ness value of each chromosome is compared with the value of
the last iteration. Thus, the best chromosome or UE is selected
as CH, but if there is no better solution than current CH, it
will be preserved.

The GA steps to select the optimal CH are explained in
Algorithm 1. First, the GA parameters are initialized including
the number of chromosomes into the search space (NGA),
population size (SGA), GA crossover rate (Pc), mutation rate
(Pm), generation number (Gen), and weight coefficient for
fitness parameters. After initialization, a set of chromosomes
are chosen for further operations. The selected chromosomes
are evaluated by the fitness function in (11). To find the
best CH, the GA continues until the termination criteria is
reached. The rank selection method is applied to select the
fittest chromosomes. Then, 1-point crossover is applied to
generate new individuals by the mating of two parents with

Algorithm 1: Proposed GA for CH selection

Result: Optimal CH
Initialize the parameters of GA:

N ←The number of UEs
IterMax ←The maximum number of iteration
Pc ← The crossover rate
Pm ← The mutation rate

Initialize the parameters of fitness function:
Θhn

(Φ)← The cluster transmission rate
Γhn

(Φ)← Centrality degree
λhn

(Φ)← Node density
Ehn

(Φ)← Residual energy
Gen ← 0
CH ← Current CH
Initialize A set of chromosomes into X

X={ x1, x2, ..., xSGA
}

Evaluate Fitness value of X={ x1, x2, ..., xSGA
}

while (Termination criteria reached) do
Gen← Gen+ 1
Rank X based on the fitness values
Select the most fit chromosomes by rank selection

FitX(a, b)← Rank − selection(X)
Apply Crossover operator into FitX

Crossover(FitXa, F itXb, Pc)⇒ a, b
Apply mutation operator over new chromosomes

Mutation( a, Pc)⇒ ã

Mutation(b, Pm) ⇒ b̃
Update The Population with new generations

end

Apply The elitist strategy
If (fittest(X) is better than CH) Then

Optimal CH ← fittest(X)
end

predefined crossover rate. The new chromosomes are applied
over the mutation operator to escape from getting stuck to the
local solutions. In the end, the population is updated by the
new solutions and the fittest is retained by the elitist strategy.
Hence, if the current CH is more fit than the selected one by
the GA, it remains as CH until a better solution is found.

VI. PERFORMANCE ANALYSIS

In this section, simulations are conducted to study the be-
havior of the proposed clustering strategy for content sharing.
We carry out the simulations in a single cell scenario within
a 400 ∗ 400 m2 area, where BS is located in the middle
of cell and UEs are randomly distributed. The simulations
parameters and corresponding values are given in Table II.
The performance of content sharing through D2D multicast
communication relies on the CHs selection and clusters for-
mation. Thus, we analyze the results of cluster formation with
respect to the remaining cellular UEs, admitted D2D UEs,
D2D multicast clusters, and average size of clusters.

Fig. 3 presents the number of cellular mode UEs versus the
active UEs after performing the proposed cluster formation
with different maximum D2D distances (d) and minimum
social strengths (εmin). It is clear that the number of cellular
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Table II: NETWORK PARAMETERS.

PARAMETERS VALUE

Network Size 400*400 m2

Number of UEs 20-100

mmWave BS Transmission Power 30 dbm

UE Transmission Power 20 dbm

Bandwidth 2.16 GHz

Path Loss 140.7+36.7Log1(r)

Background Noise Density -174 dBm/Hz

Fitness Parameters Weight α=0.3, β=0.3, γ=0.2, ǫ = 0.2

GA Parameters Pm = 0.04, Pc = 0.3

Population Size 50

UEs that can not join any D2D clusters grows as the number
of active UEs increases. As it can be seen, the curves for
the maximum D2D distance d = 60m are below the ones
for d = 20m, because more UEs that have shown interest
to specific content can join to D2D multicast clusters. Thus,
a larger d can reduce the number of UEs in cellular mode,
causing to improved spectral efficiency. Moreover, by com-
paring the curve, it can be seen that increasing the value of
minimum social strength requirement for establishing a D2D
link between two UEs or between a UE and CH, leads to
an increase of the number of UEs in cellular mode. On the
other hand, considering a small value for εmin significantly
decreases the efficiency of D2D communication.

Fig. 4 presents the admitted D2D UEs per given active UEs.
It is obvious that the admitted D2D UEs grow along with the
increment of active UEs. By comparing the curves, it can be
seen that considering a large value for d leads to an increment
in the admitted D2D UEs, because a higher number of UEs
could establish a D2D link to join a D2D multicast cluster.

Fig. 5 illustrates the number of D2D multicast clusters
versus the active UEs. It can be observed that the number
clusters decreases as the εmin increases with d = 20m,
because it applies a strong constraint for communication of
UEs through a D2D link. On the other hand, in the case of
d = 60m, the number of D2D multicast clusters increases
when εmin increases for a large number of active UEs, while
it decreases when εmin increases for a small number of active
UEs. Thus, a small εmin in an area with a large number of
UEs decreases the impact of d, causing more UEs to join
each cluster that results in a lower number of D2D multicast
clusters. Alternatively, enhancing εmin leads more UEs to be
rejected to establish the D2D link; thus, these UEs can either
form other small clusters or switch communication mode to
cellular. As a consequence, the number of clusters is enlarged,
and the average size of the clusters is reduced.

Moreover, we study the impact of the minimum distance
among CHs ζ on the cluster formation. Fig. 6 presents the
D2D multicast clusters versus given ζ for two scenarios of the
proposed clustering with maximum D2D distance d = 20m
and d = 60m, respectively. It is clear that the number of D2D
multicast clusters decreases as ζ increases. This highlights
the fact that applying the minimum distance constraint for
selecting multiple CHs avoids selecting CHs that are so phys-
ically close to each other. Reducing the number of clusters,
more UEs join each formed cluster, leading to an increase in
the size of clusters. As depicted in Fig. 7, the average size
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Fig. 3: Number of cellular UEs vs Active UEs.
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Fig. 4: Admitted D2D UEs vs Active UEs.
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Fig. 5: D2D multicast clusters vs Active UEs.

of clusters grows with increasing ζ. However, considering a
big value for ζ, the average size of clusters declines. This is
due to the limitations of the cluster’s size and the maximum
D2D distance. In case the cluster capacity is full and there
is no relay within D2D communication range, the UE has to
switch to the cellular mode. As it can be observed from Fig.7,
the curve d = 20m declines after ζ = 40m, and the curve
d = 60m declines after ζ = 70m.

In general, the aim of D2D multicast clustering is to
improve spectral efficiency. According to this objective and
the observed behavior of our proposed clustering strategy, to
reach a maximized performance of the proposed clustering
strategy there is a need to jointly optimize the maximum D2D
communication distance d, minimum social relation εmin, and
minimum distance among CHs ζ.
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Fig. 6: D2D multicast clusters vs minimum distance among CHs,
number of active UEs=100, εmin = 0.5.
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Fig. 7: Average size of D2D multicast clusters vs minimum distance
among CHs, number of active UEs=100, εmin = 0.5.

VII. CONCLUSION

In this paper, we proposed a social-aware D2D multicast
communication for content sharing in 5G networks. We specif-
ically designed a D2D multicast clustering strategy, which
simultaneously takes into account the CH transmission rate,
centrality degree, node density, and residual energy to select
the optimal CH among the active UEs. Moreover, we formu-
lated an optimization problem to maximize the efficiency of
the cluster formation by solving a constrained problem. We
proposed a GA to solve the formulated problem. Finally, we
conducted a performance analysis through simulation study
to evaluate the proposed cluster formation strategy. As future
work, we would study the network performance in detail and
jointly optimize the maximum D2D communication distance,
the minimum social relation, and the minimum distance among
CHs so to maximize the efficiency of content sharing through
it applies a strong constraint for communication of UEs
through the D2D communication in 5G networks.
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