
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Scheduling Methods in HPC System: Review

Lett Yi Kyaw
Cloud Computing Lab, UCSY

University of Computer Studies, Yangon (UCSY)

Yangon, Myanmar
lettyikyaw@ucsy.edu.mm

Sabai Phyu
Cloud Computing Lab, UCSY

University of Computer Studies, Yangon (UCSY)

Yangon, Myanmar
sabaiphyu@ucsy.edu.mm

Abstract— Parallel and distributed computing is a research

area that is complex and rapidly evolving. Researchers are

trying to get more and more methods and technologies in

parallel and distributed computing. Most users who use Pay as

you do go design, elasticity, and virtualization mobility and

automation make cloud computing an attractive option to meet

the development needs of some HPC users. Over the years, the

research algorithm has also changed accordingly. The basic

principles of parallel computing, however, remain the same,

such as inter - process and inter - processor communication

schemes, parallelism methods and performance model. In this

paper, HPC system, scheduling methods and challenges are

discussed and given some potential solutions.

Keywords— parallel and distributed computing, high

performance computing, methods, challenges

I. INTRODUCTION

Scheduling technology is very important role in
Information Era. Data input is processing in various ways
and displaying. High Performance Computing (HPC)
performs and demands many computers to work multiple
tasks concurrently and efficiently. For a long time, the
preparation of work for parallel computers has been subject
to study. For a long time, the preparation of jobs since
parallel computers has been subject to study. Job execution
time is defined as the amount of processors allocated to it or
requires users to provide estimated time for execution of
jobs. The simulation software produces the estimation
runtime attribute based on the specified range of estimation
errors. The proposed method is to estimate and reduce
execution time in a system.

Today, a super computer is and will always be a one-of -
a-kind framework. Only a small number of users can use it.
The operating mode can be compared to an experimental
facility's exclusive use. A supercomputer does not usually
have free resources. Typically the client has to wait, not the
other way, to use a supercomputer program. During the past
few years, supercomputers have been widely used in
scientific research and industrial development. The
architectures of such systems have varied during time.
Today, to construct a real scientific grid, the main building
blocks are mostly in place. The requisite communication
quality is given by high speed wide area networks.

HPC system such as Grid computing [11], grid
computing is a distributed network of large numbers of
connected computers to solve a difficult problem. Servers
and personal computers perform different functions in the
grid computing model and are loosely connected to the
internet and low-speed networks. Computers may connect
through scheduling systems or directly. Grid computing
involves dynamic digital organization (doctors, scientists
and physicists), sharing of resources (reliable and unreliable
collection of resources) and peer-to-peer computing. The
grid also aims to provide access to computing power,

scientific data resources and analytical facilities and is a grid
computing challenge.

The key issue for high-performance computing is
executing computational processes on a specific set of
processors. Although the literature has also proposed a large
number of schedules for heuristics, most of them target only
homogeneous resources [19]. Future computing systems are
most likely as the computational grid to be widespread and
highly heterogeneous.

To achieve their performance goals, the development of
research applications running on these systems has typically
complicated new structural changes and new technology
capabilities. Growing demand for new resources generation
of HPC systems (computing nodes, memory, power, etc.)
need to be supported by the ability to run more and larger
applications with increased resource utilization as well as
HPC system job turnaround time.

The traditional purpose of scheduling algorithms is as
follows: find a mapping of processor tasks and order tasks to
fulfill a task graph and a set of computer resources: (i) task
precedence constraints are met; (ii) resource constraints are
met; (iii) a minimum schedule is established. A divisible job
is a job that randomly divides the cab into any number of
processors in a linear fashion. It applies to a parallel job
perfectly: every sub-task can be performed in parallel on
any number of processors.

II. BACKGROUND

Parallel systems are valuable resources, such as
supercomputers, which are widely shared by user groups.

A. Parallel Computing

The early standardization on a single machine device, the
von Neumann computer, gave a lot to the rapid penetration
of computer systems into commerce, research, and
education. A von Neumann pc incorporates a principal
processing unit (CPU) connected to a storage unit (memory).
The CPU executes a saved application that specifies a chain
of study and writes operations at the memory. This easy
model has proved remarkably robust. Its endurance over
more than forty years has allowed the look at of such
important subjects as algorithms and programming languages
to proceed to a big volume independently of developments in
laptop architecture.

High performance computing investigates the parallel
algorithm and strengthens the parallel computing
architecture. Parallel computation could be a kind of
calculation in which at one time different enlightenment is
performed. The goal is to extend computation speed to
possibly understand complex assignments of computing.
There are two different loads and loads of parallelism, time
parallelism, and space parallelism. Time parallelism refers to

pipeline, whereas space parallelism involves numerous
synchronous computing processors.

B. Scheduler

Scheduling is defined as a method through which a task,
specified by some means, is assigned to resources required
to carry out the specified task. The research can be virtual
computing components such as threads, processes or data
streams, which in turn are built on hardware resources such
as processors, network connections or expansion cards. The
scheduling in CPU is difficult to control others. Multiple
processors have to be scheduled in parallel computing and
to manage the resources for all processors any overlapping
of the resources to produce any conflicting results are
needed. So the scheduling in multiprocessors is more
complex than scheduling in a single processor unit. In HPC
system, parallel computing is using to get high performance.
In scheduling of multiple processors it should be ensured
that any processor should not be overloaded and any
processor should not be under loaded. There will be multiple
processors; there will be multiple queues, so there is need of
scheduling multiple queues simultaneously.

TABLE I. TYPES OF HPC SCHEDULER

Scheduler

Name

Description

Slurm[9] One of the HPC scheduler, a highly scalable,
fault-tolerant resource cluster manager and
massive computer systems job scheduler. A
commonly used plugin-based job scheduler that
provides several optimization options, either by
adjusting the configuration parameters or by
implementing new plugins and new scheduling
and policy collection.

LSF[3] It is a tool for task management, a job scheduler
for high-performance distributed computing. It
also allows users to access vast amounts of
computing resources distributed around the
network in large, heterogeneous distributed
systems and can provide major performance
upgrades to applications.

Loadlever It schedules jobs and offers functions for the
faster and more efficient production, submission
and processing the jobs in a dynamic
environment [21].

Moab [22] A method of task planning and management for
use on clusters, supercomputers, and grids. It
can support a wide range of policy planning and
fairness dynamic priorities, and substantial
reservations.

Torque It is an open source resource manager [23] that
enables batch job control and distributed
compute nodes.

The primary purpose of the job scheduler is to assign

resources to work for users and ensure that jobs are
operating at their highest performance. It prevents the
overloading of a given compute node and puts jobs on hold
before resources are available.

The scheduler’s secondary purpose is to monitor usage to
ensure fair distribution of HPC resources over time. To run
multiple applications concurrently, HPC schedulers order to
execution of batch jobs to achieve high utilization while
controlling their turnaround times. In HPC schedulers, the
balance between utilization and turnaround time is controlled
by the scheduler prioritization system and the scheduling
algorithms.

Turnaround Time: Time from submission to completion
of process

Production HPC system uses different workload manager
that combine scheduling and resource management. The
following table 1 is most popular schedulers.

Modern HPC tools usually consist of a cluster of
computing nodes that provide the user with the ability to
coordinate tasks and substantially reduce the time it takes
for complex operations to be performed. Usually, a node is
defined as a discrete unit of a computer system running its
own operating system case. Modern nodes have several
processors, also referred to as Central Processing Units or
CPUs, each of which contains multiple cores that can
process a separate instruction stream.

All things considered, in spite of which strategy is
used, the idea of a high-performance system is stable. The
management of a high-performance system (referred to as
part of a single gadget or multi-computer cluster by multiple
processors) is treated as a single computing commodity,
placing demands on unmistakable hubs. The HPC
framework could be a partitioned unit created and actualized
unequivocally as an effective computing device.

C. Time-sharing and Space-sharing

Time sharing refers to any scheduling approach that
allows others to preempt and restart threads later during
execution. The amount of jobs that each processor can
perform at the equal time is defining as the level of multi-
programming. Future HPC systems will be much noisier,
with much greater competition and heterogeneity, requiring
the use of new, asynchronous programming models [5].

Space-sharing procedures only offer a string that uses a
processor until its execution is complete or the most extreme
period of time has been reached and the string is done.
Space sharing techniques [14] control time by putting that
work in a line and at the same time running all its strings
when discharged from that line.

D. HPC Scheduling

Parallel computing has become most important issue
right this time but because of the high cost of computer it is
not accessible for everyone. Cluster is only technique that
provides parallel computing, scalability and high availability
at low cost, in fig 1. Cluster collection provides high-
performance computing, while individual computers work
to solve a problem at the same time. Clusters are designed as
they provide computation and availability of high
performance over a single computer. A cluster is a group of
connected devices, such as computers and switches that
function as a single system together. Each and every node of
a cluster is associated with a single system. Each and every
cluster node is either connected by wire (Ethernet) or
wireless that transfers data between nodes. A strong cluster
provides distributed computing consisting of standard
desktop computers linked through a network like Ethernet.
Linux operating system can be used to control the cluster. In
this way, we can build high performance computing (HPC)
at low-cost price.
 Scheduling method is mainly divided into two types:
static and dynamic. With static scheduling, the consideration
concerning processor placement and task assignment is made

at the onset of the job execution. Static policies have low
run-time overhead and the scheduling costs are paid only
once, during the compilation time, for instance. As a
consequence, static scheduling policies can afford to be
based on sophisticated heuristics that lead to efficient
allocations. Parallelism can be well exploited by spreading
different tasks over different processors statically. Static
scheduling needs to know in advance detailed information
about the job's run-time profile which is relied on the input
data, static scheduling carries some degree of unsure. The
consequence may be an unbalanced load resulting in longer
parallel execution time and low utilization of the network.

 Dynamic scheduling, during execution, the number of
processors assigned to a job can vary. The allocated
processors are also assigned tasks during the execution of a
job. In both their advantages and disadvantages, dynamic
scheduling policies complement static policies. Typically,
complex policies generate high overhead run-time, which
can lead to performance degradation. But there are dynamic
scheduling processes and adaptive behavior, which results in
a high degree of load balancing.

HPC scheduling research [7] relates to how such
research should be performed, because such research
requires information, methodology, and resources that are
not always available. Some of three basic methods for job
scheduling research:

• Theoretical analysis

• Real system experiments

• Simulation

Theoretical Analysis

 By defining boundary cases reflecting the best and worst-
case results, algorithm behavior is analyzed. This approach
may provide insight into the actions of the algorithm, but
may not reflect the performance anticipated when
performing a real workload. In HPC method, percentage of
execution time spent in inter-process communication,
congestion of memory bandwidth and performance of
FLOPs are evaluating various ways to determine the degree
of performance degradation when running practical HPC
workloads.

Real System Experiments

 Simple measurements of the behavior of the algorithm
with a real system and workload still involve several
different experiments [3] to be performed, which can be
difficult for several reasons. However, a single experiment
only produces evidence for one workload and process state,
which is usually not enough to rationalize the general case or
test a general hypothesis. Eventually, the conditions of
workload are difficult to control, so evaluating specific
scenarios can be challenging.

Simulation

 A process is emulated, the emulated system runs a batch

scheduler, and the scheduler receives a synthetic workload.

This method allows the development of various

experimental scenarios and the execution of large-scale

experiments to produce information that enable general

conclusions to be induced. Nevertheless, their findings are

only true if they are indicative of the recreated workloads,

processes and scheduling behaviors.

Fig. 1. A cluster used to run a parallel program

 No interaction with the administrator is needed through

the usage of HPC program, jobs are completed sequentially

without delays created by human interaction, which saves

processing time this is generally wasted with human

interaction. An application usually uses a parallel algorithm

to run on a high performance cluster. A big task can be

divided into several sub-duties, running on cluster-based

exclusive nodes. The knowledge collected, resulting from

the sub-duties, is translated into the special challenge's quit

end result.

E. Need of Job Scheduling

 Through a planning system responsible for defining
available resources, a task is allocated to tools: matching job
requirements with resources, making work ordering
decisions and goals. Usually, the use of HPC resources is
strong. In this manner, assets are not quickly accessible and
employments are lined for future execution time until
execution is regularly very long (numerous generation
frameworks have and normal delay until execution of >1h),
employments may run for a long time (a few hours, days or
weeks).

Job Steps

A user job enters a job queue, the scheduler (its

technique) chooses on begin time and asset properties of the

work. The occupations can come at the shape of batch or

interactive type.

• A batch job is a script is used to submit the job. A
shell script may be a given list of shell commands
to be executed in a given arrange.

• Today's shells are so modern simply can make
scripts that are genuine programs with a few factors,
control structures, circles.

• An interactive job is typically an assignment of one
or more nodes where one of the cluster nodes
receives a shell from the user.

Job scheduling is a mapping mechanism from the tasks
of users to the proper selection and execution of resources
[1].A scheduler may aim at one or more goals, for example:
minimizing throughput, minimizing wait time, minimizing
latency or response time or maximizing fairness [2].The
following job scheduling algorithms are: First come first
serve (FCFS), Shortest first job (SJF), Round - robin (RR),
Priority scheduling, Min - min, Max - min, Genetic
algorithm (GA) and so on which are using for job
management.

One Parallel Program

Cluster

Result

A good scheduling algorithm allocates suitable

resources to workflow tasks in order to complete the

application and at the same time satisfy user requirements.

Job Scheduling Algorithms

Genetic Algorithm: A method for solving constrained and

unconstrained problems of optimization foundation on

natural selection, the mechanism that evolved biological

process. A population of individual solutions is repeatedly

updated by the genetic algorithm. The genetic algorithm

selects individuals from the current population at random to

be parents at each stage and uses them to produce the babies

for the next generation. The genetic algorithm can be used

to solve a variety of optimization issues that are not suitable

for conventional optimization algorithms where objective

function is discontinuous, non-differentiable, stochastic, or

highly nonlinear. By using GA, each iteration generates a

population of points and selects an optimal solution for the

best point in the population. And then, by calculation, select

the next population using random number generators.

 GA is used in a number of different fields of usage.
Hence, by providing arrays of bits or characters to represent
the chromosomes, most researchers can introduce this
genetic model of computation. Simple operations of bit
manipulation allow crossover, mutation and other operations
to be performed.

First come first serve (FCFS): FCFS is similar to the data
structure of the FIFO (First in First out) queue, where the
first data element added to the queue is the first element to
exit the queue. In Batch Systems, this is used. Using a queue
data structure, where a new process works through the
queue's tail, it is easy to programmatically understand and
execute, and the scheduler selects the process from the
queue end. Purchasing tickets at the ticket counter is a
perfect example of FCFS planning in real life. But there is
an issue with FCFS, system priority is not taken into
account. Parallel use of resources is not feasible and use of
bad resources (CPU, I / O, etc.).

Shortest Job First (SJF): A scheduling strategy that chooses
the process of waiting to execute next with the smallest
execution time. Second, the system is completed, which
takes the shortest time to complete the execution. Using
ordered FIFO queue, this rule can be enforced. All processes
in a queue are sorted on the basis of their CPU bursts. When
the CPU is available, a system will be selected to run from
the first position in a queue [16].

Round - robin (RR): When the process can be executed,
procedures are given an equal slice of time. The execution is
carried out one after another on a circular order. So every
work has a quantity when it can be done. If this quantity is
not sufficient to complete the execution of the process, it will
be stopped and the next process will be performed. Upon
completing a full round, its turn will come again and so on. If
a process is completed, it will go off the list and if another
arrives, it will be put at the end of the list waiting for its turn.

 There is no hunger in this algorithm, but it can often be
too long. This is a typical and conventional load balancing

algorithm, but the challenge in round robin is setting the
time quantity. To calculate the dynamic quantity of time,
various optimization algorithms can be combined with RR
[4].
Priority scheduling: It gives a well-defined priority to each
system. This way, each process has its own priority,
depending on whether it will be run or wait. The first to run
is going to be the highest priority operation, while others are
going to wait for their turn. First will be handled high-
priority activities [20]. Therefore, the low priority tasks
would have to wait a long time in the queue. If the system
crashes, all non-performing low-priority tasks will be lost.

Min – Min: This algorithm is based on the resource
assignment principle that has the shortest completion time
(fastest resource), a minimum completion time (MCT)
functioned [8]. It is a sample algorithm but it gives the quick
result when the size of the task in the task group that deals
with other tasks is small compared to the large size task, on
the other hand, when large size tasks are performed, it gives
poor use of the resource and large maximum completion
time of the task since larger tasks have to wait for smaller
tasks to be completed. For all tasks to be performed, the Min
- Min algorithm first finds the minimum time. Then, it
selects the task with the least execution time among all tasks.
The algorithm proceeds by assigning the task to the resource
generating the minimum completion time. Min - Min repeats
the same procedure until all tasks are planned. Min - Min
algorithm's limitation is that it first selects smaller tasks that
make use of high computational power resource. As a result,
when the number of smaller tasks exceeds the large ones,
Min-Min's schedule is not optimal.

Max – Min: This algorithm is bottomed on the concept of

assigning to the asset, which has the maximum completion

time (fastest resource), a task with maximum completion

time (MCT). It is a test algorithm but it gives the fast result

when the size of the task in the metatask is big compared to

the small size task. On the other hand, if small size tasks are

performed, it gives poor use of the resource and a large

maximum completion time of the task as smaller tasks have

to wait for larger tasks to be completed. The purpose of this

algorithm is to prioritize tasks with optimum completion

time by executing them first before assigning other tasks

with minimum completion time [13].

F. Components of HPC Scheduling

 High-performance computing has five components:
CPUs, memory, nodes, internodes in the network, and
storage (disks, tape). Single-core CPU (processors) is no
longer being used today. To date, all CPUs (processors)
consist of the configuration used on the motherboard
(multiple' cores' on a single' chip'). For a number of reasons,
the trend of even more ' core ' per unit will rise. The node
plays a major role in linking CPUs, memory, interfaces,
computers and other nodes in a physical way. For a high-
performance computing system, shared memory is often
necessary.
 There are five different node types: user node, control
node, node of management, node of processing and node of
computation, in Fig 2. The client node is the only portal to
reach the cluster network for outsiders. Users typically have
to log in to compile and run the tasks from the node. Fault-

tolerant architecture is accomplished with hardware
redundancy to be built in the system to ensure the client
node is highly accessible. Control node is mainly
responsible for delivering computer node to basic network
services such as DHCP (Dynamic Host Control Protocol),
DNS (Domain Name Service), NFS (Network File Service)
and the distribution of computer node tasks.

Fig. 2. A High Performance Computing Cluster

III. CHALLENGES

In recent study, as the chosen platform for execution as
the optimal medium for a wide range of workloads to be
performed, there are four major challenges for
heterogeneous computing clusters to address.

First, the majority of business applications currently in
use were not designed to run on such large, open and
heterogeneous computing clusters. To move these
applications to heterogeneous computer clusters, particularly
with significant performance improvements or improvements
in energy efficiency, is a quest and attempt to solve problem.
Second, it is also overwhelming to generate new, ground-up
enterprise applications to run on the different, heterogeneous
computing framework. It is extremely challenging to write
high-performance, energy-efficient programs [12]for these
architectures to die on an unprecedented scale of parallelism,
as well as difficulty in scheduling, interconnecting and
sorting. Third, cost savings for utilization and distribution of
IT services from the new shared network architecture are
only feasible if multiple business applications can share
resources in the heterogeneous computing cluster.
Nonetheless, allowing multi-tenancy without adversely
affecting that application's stringent performance service
metrics needs complex scalability and virtualization of a
wide variety of different computing, processing and
interconnect devices, and this is yet another unresolved issue.
Fourth, enterprise systems with unusually heavy load spikes
experience greatly variable user loads. Meeting service
metrics quality across multiple loads includes the use of an
application's elastic computing resources in response to
increasing user demand. There are no good solutions to this
problem at the moment. There are no good solutions to this
obstacle at the moment. The resource management dynamics
in HPC are evolving. New application innovations and
technical transitions introduce the scheduling models and
process architecture with new concepts and specifications.

 Another problem is that multicore chips are relatively
simple processor core and will be underused if user
programs are unable to provide enough parallel thread
speed. It is the responsible of the programmer to write
parallel high-performance software to make maximum use
of the processor core. The new parallel multicore
technology should have two characteristics to achieve high
performance:

 Fine grain thread: a high degree of parallelism is needed
to keep each core processor busy. Another factor is that a
core often has to operate on a small-size cache or scratch
buffer that allows developers to break down a task into
smaller tasks.

 Asynchronous program execution: The existence of a
synchronization point can seriously affect the performance
of the program when there are many processor cores. And
reducing unnecessary points of synchronization can
subsequently increase the degree of parallelism.

IV. CONCLUSION

We present HPC framework, its scheduling and
research challenges in this paper as express in table 2. Task
scheduling on parallel machines is a research field that has
been well explored and has led to widespread use and there
are several methods, including automatic calculations of
runtime, partial executions, and smarter allocation schemes
for processors. Parallel processing builds on existing
technologies implemented in new scenarios and serving
diverse users and priorities. Max-min algorithms is the
execution of tasks with maximum completion time may first
increase the total response time of the system and thus make
it inefficient and it has these drawbacks so that researchers
may consider the different methods to implement this
algorithm. Min-min algorithm is first considered to be the
shortest jobs, so it fails to efficiently leverage the resources
that lead to a load imbalance, so efficient methods are
needed to solve this problem. FCFS which can be a long
waiting time if the short request is waiting for the long
process [15]. It is not ideal for a system of time sharing
where it is critical that each user receives the CPU for the
same time interval.

The through in round robin largely depends on the
selection of the size of the time quantum. If time quantum is
too large it behaves as FCFS. If time quantum is too short
much of the time is spent in process switching and hence
low throughput and one cannot assign priority to any
process which can be a drawback. Priority scheduling will
have to consider which parameters are set to high priority
within system.

Genetic algorithm has different parameters (size of
population, times, rates of mutation, etc.) and there are many
problems not well defined (parameters are not well defined
or not known).Researchers are need to decide which
optimization method to use for research environment to solve
problem. Longer processes in shortest job first algorithm
have more waiting time, so starvation occurred and need to
solve this issue. Some are used average waiting time to
reduce long waiting time. We agree that several areas of
HPC still need the attention of the researcher. We will have a
detailed study of HPC problems and challenges in the future.

TABLE II. COMPARISON OF EACH METHOD

Algorithm Comparison Advantages Disadvantages

Genetic
Algorithm
(GA)[18]

It is necessary to
use as a tool to
solve the
problems of
optimization and
search. GA
includes several
operations to
execute the
algorithm with
several
techniques.

This combines
good solutions
and optimizes
towards a goal
over time.

Without through
too much time for
GA to check for
optimum results,
some new genetic
values should be
incorporated into
the population.

First Come
First Serve
(FCFS)[15]

FCFS starts
imply the first
task to be done.

For long
process, FCFS
is suitable than
others and one
of the easiest
methods.

Each and every
small process
should wait for its
turn to utilize the
CPU also,
throughput is not
emphasized.

Shortest Job
First
(SJF)[16]

Shortest job
starts to be
process.

It is optimized
for average
waiting time.

There is more
number of short
jobs in a system,
the long jobs will
be starvation.

Round-
Robin (RR)
[10]

Time is to be
allocated to
resources in a
time slice manner
in this scheduling
algorithm.

In a general-
purpose, time-
sharing or
transaction
processing
system, RR is
successful.
There is also a
small overhead
on the
processor.

Care must be taken
when determining
the quantity value,
and if the quantity
time is too high,
the result is also
weak.

Priority
scheduling

A well-defined
priority to each
system.

A handled high-
priority activity,
so user defines
process is more
suitable.

The low priority
tasks would have
to wait a long time
in the queue of the
system.

Min-min
[6]

Chooses smaller
tasks first to be
done.

One resource
can execute
only one at a
time and
resources are
known in prior.

This is caused load
imbalance between
large task and
small task to
execute in the
system.

Max-min
[6]

Chooses bigger
tasks to be
completed first.

Prioritize tasks
with optimum
completion time
by executing
them first
before
assigning other
tasks with
minimum
completion
time.

Execution of task
with maximum
completion time
first might
increase the total
response time of
the system thus
making it
inefficient.

REFERENCES

[1] W. Bradley, S. Ramaswamy, R.B.Lenin and D. Hoffman, “Modelling

and Simulation of HPC Systems Through Job Scheduling Analysis”,
January 2011.

[2] M. A. Obaida, J. Liu, “Simulation of HPC Job Scheduling And
Large-Scale Parallel Workloads”, 978-1-5386-3428-8,IEEE,2017.

[3] IBM LSF & HPC User Group @SC18, LSF&HPC User
Group/SC18/@2018 IBM Corporation .

[4] N. K.C Das, M. S. George and P. Jaya, “Incorporating weighed
Round Robin in Honeybee Algorithm for Enhanced Load Balancing
in Cloud Environment”, 978-1-5090-3800-8, IEEE,2017.

[5] S. Hofmeyr,C. Iancu, J. A. Colmenares, E. Roman and B. Austin,”
Time-Sharing Redux for Large-scale HPC systems”, 978-1-5090-
4297-5, IEEE,2016.

[6] N. Thakkar,.R. Nath,”Performance Analysis of Min-Min, Max-Min
and Artificial Bee Colony Load Balancing Algorithm in Cloud
Computing”,IJACS,ISSN 2347-8616, Volume 7, Issue 4, April 2018.

[7] G. P.R. Alvarez, P. Ostberg, E. Elmroth, K. Antypas, R. Gerber, and
L.Ramakrishnan, “Towards Understanding Job Heterogeneity in
HPC: A NERSC Case Study”, In Proceeding of the 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’16), IEEE/ACM 2016.

[8] G. Sharma, P. Bansal,”Min-Min Approach for Scheduling in Grid
Environment”, IJLTET, ISSN: 2278-621X, Vol.1, Issue 1, May 2012.

[9] A. Jokanovic,M. D’Amico,J. Corbalan,”Evaluating SLUM Simulator
with real-machine SLUM and vice versa”,
https://www.researchgate.net/publication/328886964, November
2018.

[10] B. Mohamed, N. E.AL-Attar, W. Awad, F. A. Omara, “Dynamic Job
Scheduling Algorithms Based on Round Robin for Cloud
Environment”, Research Journal of Applied Sciences, Engineering
and Technology 14(3): 124-131, 2017.

[11] F. Xhafa, A. Abraham,"Computational models and heuristic methods
for Grid scheduling problems", Future Generation Computer Systems
26 (2010) 608_621, doi:10.1016/j.future.2009.11.005, Elsevier, 2009.

[12] S. Wallace, X.Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M.
E. Papka, Z. Lan,"A Data Driven Scheduling Approach for Power
Management on HPC Systems", 978-1-4673-8815-3,IEEE,2016.

[13] C. Diaz, J. E. Pecero, P. Bouvry, “Scalable, low complexity, and fast
greedy scheduling heuristics for highly heterogeneous distributed
computing systems”, Journal of Supercomputing 67(3), 837–
853(2014),2014.

[14] T. Li, V. K.Narayana, T. EI-Ghazawi,”Exploring Graphics Processing
Unit(GPU) Resource Sharing Efficiency for High
PerformanceComputing”,https://www.researchgate.net/publication/26
0422348,November,2013.

[15] A. P. U. Siahaan,"Comparison Analysis of CPU Scheduling: FCFS,
SJF and Round Robin", IJEDR,Volume 4,Issue 3, ISSN: 2321-
9939,2016.

[16] M. A.Alworafi, A. Dhari, A. A. Al-Hashmi, "An Improved SJF
Scheduling Algorithm in Cloud Computing Environment",
,International Conference on Electrical, Electronics, Communication,
Computer and Optimization Techniques (ICEECCOT), , 978-1-5090-
4697-3,IEEE,2016.

[17] L. Kishor, D. Goyal, "Comparative Analysis of Various Scheduling
Algorithms", International Journal of Advanced Research in
Computer Engineering& Technology (IJARCET), Volume 2,
Issue4,April 2013.

[18] S. P. Lim, H. Haron,"Performance Comparison of Genetic Algorithm,
Differential Evolution and Particle Swarm Optimization Towards
Benchmark Functions", Conference on Open Systems (ICOS), 978-1-
4799-0285-9,IEEE,December2-3,2014.

[19] S. Razzaq, A. Wahid, F. Khan, N. u. Amin, M. A. Shah, A.
Akhunzada, I. Ali ,"Scheduling Algorithms for High-Performance
Computing: An Application Perspective of Fog Computing",
https://doi.org/10.1007/978-3-319-99966-1_10,Springer,2019.

[20] https://en.wikipedia.org/wiki/Scheduling_(computing)#Scheduling_di
sciplines .

[21] https://www.ibm.com/support/knowledgecenter/en/SSFJTW_5.1.0/co
m.ibm.cluster.loadl.v5r1.load100.doc/am2ug_ch1.htm

[22] https://computing.llnl.gov/tutorials/moab/,
https://computing.llnl.gov/tutorials/dataheroes/moab/

[23] https://en.wikipedia.org/wiki/TORQUE,https://hpc-
wiki.info/hpc/Torque

