
Simulation-as-a-Service with Serverless Computing

Kyriakos Kritikos∗
∗ICS-FORTH, Crete, Greece

kritikos@ics.forth.gr

Paweł Skrzypek†
∗AI Investments, Warsaw, Poland
pawel.skrzypek@aiinvestments.pl

Abstract—Simulations are the greatest means for evaluating
systems and producing knowledge related to their optimal config-
uration for production. Simulation systems support the execution
of simulations. These can be installed and executed internally
to an organisation or can be offered as a service in the cloud.
Current simulation-as-a-service (SimaaS) offerings rely on VM or
container-based deployments which lead to additional costs due to
the charging in an hourly basis. Further, such offerings cannot be
easily adapted at runtime to still be able to sustain their promised
service level. To resolve these issues, this paper proposes a novel
SimaaS architecture and solution which exploits the serverless
computing paradigm for reducing the simulation cost based on
the actual usage of resources as well as accelerating the simulation
time through the limitless, parallelised invocation of functions.
Further, this solution relies on the MELODIC/Functionizer multi-
cloud platform which enables adapting the simulation execution
at runtime in order to sustain the right service level according
to the user requirements and preferences. For the validation
of our solution, a real business application provided by AI
Investments has been used. It aims to optimise investment
portfolio using the most advanced AI-based methods and requires
heavy computational power to accomplish the respective tasks.

Index Terms—simulation, serverless, cloud, deployment, asyn-
chronous communication, massive parallelisation, task comput-
ing, queues

I. INTRODUCTION

Systems can be evaluated before entering the production by

utilising simulations, which enable to assess them under varied

conditions. The outcome of these simulations is an important

knowledge that can assist in improving these systems and

their configuration. The simulations are usually executed via

simulation tools and frameworks. Such tools can be deployed

in different ways. On-premise in case an organisation owns

and has capacity to deploy and run such tools. They can also

be deployed in the cloud, which not only offers the right,

powerful resources to execute them but also promises to scale

them on demand through the supply of additional resources.

Due to the advantages that cloud computing offers, a

certain line of work also considered realising the concept

of Simulation-as-a-Service (SimaaS) [1]–[5]. This can be a

SaaS offered to organisations in order to run their simulations

without caring about resource management details for them.

However, the current realisations of this concept suffer from

two main drawbacks. First, they are not always capable of

automatically exploiting additional resources to run simu-

lations, when the respective need arises. This means that

either simulations are run over a static resource set or this

set needs to be manually enhanced with the extra resources

needed. Second, such realisations usually exploit either virtual

machines (VMs) or containers as resource units. However,

such units are usually charged per hour and not based on

the amount of their usage leading to unnecessary, extra costs.

Further, their scaling is limited due to the overall resource

limit posed by providers per user account while it can lead to

the occupation of extra resources not actually needed for the

computation (in case of VM resource units).

Fortunately, cloud technologies evolve over time and new

ones come into play, giving rise to new resource management

opportunities and computing types. This is essentially true also

for serverless computing [6]. In this computing kind, users can

deploy and execute small pieces of software called functions

while they do not care about their scaling as this is handled

transparently by the provider operating the serverless platform.

This computing kind comes with several advantages [6],

which apart from zero administration also include flexible cost

models based on the actual function usage, leading to cost-

efficient solutions, as well as capabilities of infinite scaling

with much higher function limits with respect to other types of

resources. In this respect, service computing currently takes a

momentum and various applications have been migrated or are

currently under migration towards this new computing form.

Based on this latest cloud development, this paper proposes

to take SimaaS to the next level. In particular, it proposes a

novel SimaaS architecture which is centred around the notion

of functions. This architecture is quite flexible as it promises

to use message queues for the asynchronous orchestration of

simulation execution functions while it also caters for two

adaptation forms: (a) scaling the message queue to handle

the additional messaging load; (b) increasing the number of

function deployments to handle the extra simulation load. To

support both adaptation forms, the Functionizer platform is

exploited. This platform enables to deploy applications across

multiple clouds while it relies on the use of utility functions

for continuously finding the best deployment plans for these

applications. Adaptation is realised through the application’s

global reconfiguration which does include the identification of

the right number of instances per application component.

Based on the above analysis, our proposition surpasses

current SimaaS offerings for the following reasons. First, by

adopting serverless computing, it reduces the simulation cost

as the simulation execution is charged only based on its actual

resource usage time. Second, it enables to massively execute

thousands of simulation execution functions which can lead

to reduced overall simulation time. Third, through its global

reconfiguration ability, it can enable to adapt the SimaaS on

demand to respect the user requirements. This can allow, for

instance, to scale the SimaaS when it is estimated through

200

2019 IEEE World Congress on Services (SERVICES)

978-1-7281-3851-0/19/$31.00 ©2019 IEEE
DOI 10.1109/SERVICES.2019.00056

monitoring that it will not finish on time.
Our solution was evaluated according to a real business

application, dedicated to investment portfolio optimisation,

against traditional cloud computing resource management set

ups. The evaluation results highlight a significantly improved

simulation cost and time, highlighting the suitability and great

impact potentiality of our novel solution.
The rest of the paper is structured as follows. Section II

reviews the related work. Section III analyses our new SimaaS

proposition. Section IV showcases and discusses our solution’s

evaluation results. Finally, the last section concludes the paper

and draws directions for further research.

II. RELATED WORK

Related work takes two main forms: (a) current SimaaS

offerings; (b) frameworks which support data-intensive cloud

application execution through serverless computing. Each of

these forms is analysed in separate sub-sections.

A. SimaaS Approaches
The concept of Models and Simulation as a Service (MaSS)

has been proposed in [1]. The main rationale is that simulation

computation models can be shared, configured and executed

through a scientific research platform like the Galaxy one. To

demonstrate this, the authors have developed a tool suite which

supports the simulation of the high-spatial resolution model of

the cardiac Ca2+ spark.
The same concept is adopted in [2] with a focus on Petri-Net

models. To this end, the authors have integrated the simulation

tool Renew as a service and were able to simulate a traffic

control system as a Petri-Net model which can adjust its

parameters through reflective simulation.
The concept of SimaaS is promoted in [3] as a means to

reduce costs and as well as scale on-demand respective sim-

ulations in the manufacturing domain. Based on this concept,

they have realised the Polymer Portal, which is a SimaaS

platform that integrates the access to modelling, simulation and

training services. Interesting features of this platform include:

the capability to deploy simulations over both VM and HPC

resource units as well as the supply of an AAA service to

secure the access to its facilities.
[4] proposes a novel layered cloud architecture for Mod-

elling and Simulation as a Service as well as a middleware

supporting this architecture. This middleware is able to support

the deployment of models and simulations as services in

scalable infrastructures with hierarchical resource provisioning

as well as the integration of experimental frameworks.
A cloud-based simulation service is proposed in [5] which

supports container-based deployment of simulation compo-

nents instead of a VM-based deployment, adopted in the rest

of the above solutions, which incurs substantial overhead in

on-demand resource provisioning.
As it can be seen from the above analysis, no simulation

framework or SimaaS has adopted serverless computing. As

such, it is not able to feature the advantages of our proposition,

which include less cost, less simulation time as well as a better

and adaptive provisioning of the execution simulation.

B. Data-Intensive Application Frameworks

While serverless computing has been originally deemed

as appropriate for handling rare or highly-bursty workloads,

it has been recently advocated that it can also be used for

handling data-intensive workloads. The main rationale for the

latter relies on the capability to concurrently launch thousands

of functions in order to process such workloads, which can

really enable to better scale the data-intensive application

while reducing its overall execution time.

In this respect, three main data-intensive application execu-

tion frameworks have been proposed. All of these frameworks

seem to rely on Spark, which is considered as a state-of-

the-art data-intensive application execution engine. In [7],

Spark is extended with a new form of executor able to

execute functions on-demand based on the current way Spark

handles the separation of the data-intensive workload. The

main innovation lies on changing the way the data shuffling

phase is conducted. In particular, instead of using a distributed

file system, the approach in [7] proposes the use of message

queues, which allow the asynchronous delivery of the work to

executors that can take care of it once they become available.

This critical data shuffling phase seems to be also covered

by the other two frameworks. The framework in [8] uses S3

for realising this phase but, unfortunately, it can suffer from

performance problems due to the throttling behaviour of S3 for

high workloads. Further, S3 does not offer the best possible

throughput performance. This drawback has been picked up

by the framework in [9] which proposes the use of a three-

level emphemeral storage architecture which is configured and

dynamically provisioned according to the user requirements.

The use of this storage type is justified by the fact that the

internal data generated during the data-intensive computations

are needed only temporarily for computation purposes and

can be usually deleted once consumed by the next task in

computation order.

Our proposition is similar to the above with the sole

exception that it does not require the use of Spark libraries,

which consume considerable memory footprint. Compared to

[7] and [8], it does not depend on just one message queue

or storage service but is able to function in a multi-cloud

way, thus avoiding provider lock-in. Compared to [9], it is

less costlier as it does not require the use of multiple levels

for the storage of temporary information.

III. PROPOSED APPROACH

For novel machine learning applications the crucial element

is providing data for the training process. Data could be

provided based on the real usage; however, it is also very im-

portant to cover a wider range of all possible cases [10]. Also,

for some cases these data are not available based on the real

usage and thus need to be derived from simulation. Usually,

for complex problems the simulations require to be performed

in thousands or even hundred thousands of iterations to cover

the complete range of possible cases. Further, optimisation

methods, like evolutionary algorithms [11], require to execute

multiple simulations before finding the best solution. To this

201

end, for many practical applications, the ability to execute a

great number of simulations is a critical requirement.

For a typical deployment setup, based on HPC or servers

with multiple cores, the cost of performing simulations is sig-

nificant. In addition, HPC setups suffer from higher turnaround

time. As both the turnaround and execution time for a simula-

tion are significant, Cloud Computing accelerates the accessing

to resources while allows to parallelise the computation and

thus shorten the simulation time through the use of multiple

VMs with many cores. However, the cost still remains an issue

which is quite often blocking for many start-ups and SMEs

companies. As such, such an issue does not allow them to

effectively compete with large companies having higher IT

budgets. Besides, there exist extra opportunities for simulation

time optimisation which are restrained through current limita-

tions in number of VMs that can be simultaneously reserved

per cloud provider.

Thus, the ability to lower the cost by also extremely

parallelising the execution to reduce the simulation time are

crucial assets for the above type of applications and com-

panies. The introduction of new Cloud Computing models,

like the serverless1 one, allows to prepare a more optimal

solution to this problem which is both more cost-effective

while bypasses the resource limitation problems mentioned

above. To this end, in order to resolve the aforementioned

issues, we rely on the serverless computing model and propose

a novel approach towards building a SimaaS solution featuring

asynchronous communication using a queue messaging broker,

the aforementioned issues can be resolved.

Our approach fully supports multi-cloud deployments and

can be run on any combination of cloud providers supporting

both microservice and serverless components. It is based

on requirements defined for a generic, multi-cloud, hybrid

application provisioning method [12]. Due to this, it is possible

to avoid vendor lock-in and optimise the provisioning cost by

grabbing better opportunities through the use of multi-cloud

environments. Such an approach also increases the solution’s

reliability and availability, as it is not limited to one cloud

provider.

To support the multi-cloud hybrid application provisioning

method, the MELODIC2 platform with the Functionizer exten-

sion3 [13] has been utilised. This enhanced platform follows

model-driven engineering to automate the various activities

in the multi-cloud, hybrid application management lifecycle.

A cornerstone to this platform is the CAMEL (Cloud Appli-

cation Modelling and Executing Language) [14], [15] multi-

domain-specific-language (multi-DSL) which enables the rich

specification of a multi-cloud application covering all related

aspects to the multi-cloud application lifecycle. Another core

feature of the enhanced MELODIC platform is its ability to

dynamically and continuously provision an application within

multi-cloud environments in the most optimal way through

1https://serverless-stack.com/chapters/what-is-serverless.html
2www.melodic.cloud
3https://melodic.cloud/functionizer/

the use of utility functions [16], multi-level monitoring [17]

and global reconfiguration methods. It also features a great

repertoire in terms of the diversity in component deployment

and resource provisioning, including support for provision-

ing virtual machines and Docker4 containers as well as for

deploying big data applications based on Spark5 on top of

cloud computing resource clusters plus serverless compo-

nents. The following cloud providers are currently supported:

Amazon AWS6, Microsoft Azure7, Google Cloud Platform8,

Oktawave9, ProfitBricks10 and any OpenStack11-based cloud

provider.

Using the above platform with our approach allows to

achieve the most optimal SimaaS solution in terms of resource

cost and computation time. The proposed approach, due to its

distributed and asynchronous architecture, allows for almost

unlimited scalability. Thanks to multi-cloud deployment, it is

possible to run multiple thousands of simulations in parallel.

It also allows to fully utilise available resources in given

time, to run as many instances as possible within a given

cloud provider. Thanks to that the simulations execution could

be massively paralellized and, thus, the total execution time

of all simulations could be shortened. The usage of very

lightweight component types - serverless - allows to minimise

costs significantly. The above reasons demonstrate that our

proposed approach is novel and features a unique way of

executing simulations, which allows start-ups and SMEs to

effectively compete with large enterprises and organisations.

The key elements of our approach are the following:

1) GUI module – The control module for operating a

SimaaS application. It features a graphical UI via which

user simulation requests can be formulated and issued

to the Simulation Orchestrator as well simulation results

can be presented. Each simulation request is trans-

formed into a CAMEL model which is then fed to

the MELODIC platform in order to optimally deploy

a proper instance of the SimaaS application.

2) Simulation Orchestrator (SimOrch) – component re-

sponsible for orchestrating the execution of SimaaS

instances and gathering back the results of simulations.

A SimmaS instance execution orchestration involves cre-

ating appropriate work items, by dividing the simulation

work, and submitting them to the Multi-Cloud Message
Queue Broker.

3) Simulation Launcher (SimLauncher) – component re-

sponsible for starting the Simulation Executor based on

a given simulation work item.

4) Simulation Executor (SimExecutor) – serverless compo-

nent which executes the simulation work mapping to an

4https://www.docker.com/
5https://spark.apache.org/
6https://aws.amazon.com/
7https://azure.microsoft.com/pl-pl/
8https://cloud.google.com/
9https://www.oktawave.com/pl
10https://www.profitbricks.com/en-us/products/cloud-computing-pricing/
11https://www.openstack.org/

202

item. This component can be deployed in any serverless

platform where this is determined based on the user

requirements (part of the user request).

5) Multi-Cloud Message Queue Broker (MCBroker) – The

broker configures two queues, one for sending execution

requests / work items (requestsQueue) and another for

gathering the results of the simulations (resultsQueue).

MCBroker could be distributed through many cloud

providers creating an effective multi-cloud environment

for message passing.

Our approach’s overall architecture is presented in Fig. 1. All

components apart from the Melodic platform and the GUI

are modelled in CAMEL and deployed through the Melodic

platform.

The sequence action flow in our approach, which is depicted

in Fig. 2, is as follows:

1) The GUI collects the simulation request from the user.

After that prepares a CAMEL model for the MELODIC

platform to optimally deploy an instance of the SimaaS

solution. Final step is passing the simulation request to

SimOrch and presenting the results after the simulation

is executed.

2) SimOrch prepares the work items for the requested

simulation, which needs to be executed according to a

specific amount of times. Each work item needs to be

dispatched to one Simulation Executor. Each work item

includes a set of parameters required for executing the

simulation.

3) Each work item is sent to the requestsQueue.

4) Work items are collected from requestsQueue by Simu-
lation Launcher. For each collected work item, one in-

stance of the Simulation Executor serverless component

is invoked.

5) The Simulation Executor executes the simulation for a

given set of parameters and returns the results to the

resultsQueue.

6) SimOrch gathers the results of all conducted simulations

into a coherent whole which is then supplied back to the

GUI.

The listed components have been implemented using the

following technologies and component types:

1) GUI – implemented in Java12 and Angular13; deployed

in a Docker container.

2) Simulation Orchestrator – implemented in Java, as a

Spring application14. It is deployed in a Docker con-

tainer.

3) Simulation Launcher – implemented also in Java as a

Spring application. For general purposes, it is deployed

in a Docker container. For specific deployments, like

on AWS, to additional limit the number of resources

used, it could be deployed using the native feature of

12https://www.oracle.com/java/
13https://angular.io/
14https://spring.io/

AWS SQS15 to trigger serverless components on each

incoming SQS message.

4) Simulation Executor – implemented in Java and de-

ployed as a serverless component.

5) Multi-Cloud Message Queue Broker – implemented

using RabbitMQ16 framework with JMS17 extension

plugin. For specific deployments on AWS, it could be

replaced by native AWS’s SQS messaging service. It is

also considered to replace RabbitMQ by Kafka18 in case

of quite demanding, in terms of number of simulations,

deployments.

IV. COMPARATIVE EVALUATION

A. Use Case Presentation

The validation of our approach has been performed using

a real business application called AI Investments19. It is a

solution using AI for investment portfolio optimisation. This

solution is offered by the AI Investments start-up, aiming at

creating a complete trading solution, including a diversified

way of signalling transactions, determining market conditions

and managing exposition, with the goal to develop a software

platform for advanced investments in the global markets. The

key assumption for the AI Investments platform is diversifica-

tion. Thus, the platform should be able to operate on over 200

markets (stocks, bonds, commodities, currencies) using over

10 investment strategies on 4 different time intervals (hourly,

4 hours, daily, weekly). This can create a total number of 8000

unique investment strategies (200 markets times 10 investment

strategies times 4 time intervals).

One of the critical issues for the AI Investments platform

is optimisation of the investment strategies parameters. It is

currently conducted by using evolutionary algorithms [18].

The use of evolutionary algorithms requires the execution of

many simulations which simulate the results of the investment

strategies with given parameters on the extensive time period.

Based on the simulated results, a new population is created and

the process is repeated. This approach requires to run multiple

simulations to find the most optimal solution.

For the purposes of AI Investments, the most typical pa-

rameters for optimisation are as follows:

1) The size of population per each generation is 5000.

2) The average number of iterations is 20000.

3) The average execution time per single simulation is 0.7

seconds.

For each member of the population (set of investing strategies

parameters) the simulation on the given historic period is

executed. The results of the strategy are then calculated (return

of the investments, maximal draw down and Sharpe ratio [19]).

Based on the calculated results of the all members of current

generation, the new generation is created by the evolutionary

15https://aws.amazon.com/sqs/
16https://www.rabbitmq.com/
17https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
18https://kafka.apache.org/
19https://www.aiinvestments.pl/

203

Fig. 1. Serverless SimaaS architecture

Fig. 2. Serverless SimaaS sequence flow

algorithm and the process repeats. The total number of the

simulations to execute is 100 000 000 per each trading strategy

on a given market.

B. Evaluation
This sub-section presents results, in terms of time and cost

of the execution of the proposed approach based on a certain

configuration scenario according to the aforementioned use

case. It covers also two other configuration scenarios utilised

for comparison reasons with our solution mapping to the usage

of traditional cloud resources (i.e., VMs) for the simulation

execution. One of the latter scenarios is a baseline one with

a single core simulation execution. The second scenario is a

real example of running simulations on a powerful VM with

128 cores in the cloud.
Based on the application and setup presented in the previous

sub-section, the total time of running the simulations using the

presented approach with up to 1000 serverless components

running in parallel on AWS takes on average approximately

20 hours20. The execution cost of that type of simulation is on

20For the AWS deployment the Simulation Launcher component is replaced
by the native AWS SQS serverless component launching.

average 450 usd (based on real measurements). The estimated

cost of using serverless components on AWS gives very similar

results21. The estimated execution time for the given parame-

ters (size of population: 5000, number of iterations:20000 and

average simulation time 0.7 second) is 19.44 hours. It shows

that additional overheads, like the communication one, have

low impact on the total computation time.

For comparison reasons, with respect to the same parameters

of evolutionary algorithm and simulation time, the execution

of all simulations on the single-core VM is estimated to take

810 days (5000 members of population times 20000 iterations

times 0,7 seconds of execution simulation). It will cost 1866

usd, based on the cost of the smallest m5.large VM offer on

AWS, which costs 0,096 usd per hour.

On the other hand, the more realistic scenario with the

128-core VM took approximately 6.3 days to finish. It was

charged with, based on the current Amazon (AWS) pricing of

the x1.32xlarge VM with 128 cores (the only VM offer with

this number of cores), approximately 2500 usd. Summary of

the estimated results for the (3) setups is presented in Table I.

21https://dashbird.io/lambda-cost-calculator/

204

TABLE I
RESULTS FOR THE THREE SETUPS

Scenario Execution Execution Num of Parallel
Cost (USD) Time (Hours) Executions

1-core server 1866 19440 1
128-core server 2500 151 128

Serverless solution 450 19.4 1000
with 1000 instances

For comparison reasons, we also tried to deploy a similar

SimaaS framework on Spark with serverless support using the

version of Spark with serverless provided by Databricks22. Due

to issues of configuration, unstable behaviour, the results were

much worse than for a solution without Spark. Also, for this

type of usage, the map-reduce operations, which are the core

of the big data frameworks, caused additional overhead.

V. CONCLUSIONS AND CONTRIBUTIONS

This paper has proposed a novel form of a simulation-as-a-

service (SimaaS), which is able to exploit the main advantages

of serverless computing in order to finish on time its delegated

simulations. Compared to other SimaaS offerings, it is less

costlier, it accelerates the simulation execution time while it is

adaptive to the current workload and context. At its backbone,

it exploits the MELODIC/Functionizer multi-cloud application

management platform which is able to deploy and dynamically

provision applications that comprise both micro-service, data-

intensive and serverless components.

As proven in Section IV-A, the proposed novel form of

SimaaS is very beneficial for described AI-based portfolio

optimisation application. It is worth to note that our solution is

applicable for a more general type of applications which use

simulations at large scale. This solution is also implemented by

Optimali23, the company which optimises operations of vehicle

sharing operators. It is simulating a complete environment

(e.g., city, municipal area) to find the most optimal way of

using sharing vehicles. It optimises a multi dimensional and

multi criteria problem, based on a stochastic environment, such

that the number of simulations and required computational

power is even much higher than in case of AI Investments.

The cost savings ratio is similar to the benefits achieved

by AI Investments. Also the time of simulation is shortened

significantly. The proposed solution could be also applicable

to many other areas, like health, mobility, customer analysis,

sales, and telecommunication, which require the execution of

a significant number of simulations. The presented benefits in

terms of cost savings and computation time shortening are thus

meaningful also for these areas while allow to fully leverage

the benefits of modern, machine learning based applications.

The following directions of work are envisioned. First, we

plan to finish the realisation of the proposed SimaaS. Second,

we will thoroughly evaluate it against other SimaaS and data-

intensive serverless computing frameworks. Third, we will

22https://databricks.com/
23https://www.optimali.io/

further investigate the exact conditions and requirements for

scaling message queues and how these can be transformed into

a certain part of the application’s utility function. Fourth, we

will explore how our proposition can be enhanced to cover the

handling of other kinds of data-intensive applications, possibly

through its integration with data-intensive workflow engines.

Acknowledgements. This work has received funding from

the Functionizer Eurostars project and from AI Investments

Fast Track to innovation project.

REFERENCES

[1] M. A. Walker, R. Madduri, A. Rodriguez, J. L. Greenstein, and R. L.
Winslow, “Models and Simulations as a Service: Exploring the Use of
Galaxy for Delivering Computational Models,” Biophysical journal, vol.
110, no. 5, pp. 1038–1043, 2016.

[2] P. Polasek, V. Janousek, and M. Ceska, “Petri Net Simulation as a
Service,” in PNSE @ Petri Nets, vol. 1160. Tunis, Tunisia: CEUR,
2014.

[3] T. Bitterman, P. Calyam, A. Berryman, D. E. Hudak, L. Li, A. Chalker,
S. Gordon, D. Zhang, D. Cai, C. Lee, and R. Ramnath, “Simulation as a
service (SMaaS): a Cloud-Based Framework to Support the Educational
Use of Scientific Software,” IJCC, vol. 3, pp. 177–190, 2014.

[4] S. Wang and G. A. Wainer, “Modeling and simulation as a service
architecture for deploying resources in the cloud,” IJMSSC, vol. 7, no. 1,
2016.

[5] S. Shekhar, H. Abdel-Aziz, M. E. Walker, F. Caglar, A. S. Gokhale,
and X. D. Koutsoukos, “A simulation as a service cloud middleware,”
Annales des Télécommunications, vol. 71, pp. 93–108, 2016.

[6] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
Serverless Computing: Current Trends and Open Problems. Singapore:
Springer Singapore, 2017, pp. 1–20.

[7] Y. Kim and J. Lin, “Serverless Data Analytics with Flint,” CoRR, vol.
abs/1803.06354, 2018.

[8] V. Sowrirajan, B. Bhushan, and M. Ahuja, “Qubole announces Apache
Spark on AWS Lambda,” Qubole, Tech. Rep., 2017. [Online]. Available:
http://www.qubole.com/blog/spark-on-aws-lambda/

[9] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Serverless An-
alytics,” in OSDI. Carlsbad, CA, USA: USENIX Association, 2018,
pp. 427–444.

[10] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[11] M. Tomassini, “Parallel and distributed evolutionary algorithms: A
review,” 1999.

[12] K. Kritikos and P. Skrzypek, “A review of serverless frameworks,”
in 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion). IEEE, 2018, pp. 161–168.

[13] ——, “Towards an Optimized, Cloud-Agnostic Deployment of Hybrid
Applications,” in BIS. Springer, 2019.

[14] A. Rossini, K. Kritikos, N. Nikolov, J. Domaschka, F. Griesinger,
D. Seybold, and D. Romero, “D2.1.3—CAMEL Documentation,”
PaaSage project deliverable, October 2015.

[15] K. Kritikos, C. Zeginis, F. Griesinger, D. Seybold, and J. Domaschka,
“A Cross-Layer BPaaS Adaptation Framework,” in FiCloud. Prague,
Czech Republic: IEEE Computer Society, 2017, pp. 241–248.

[16] G. Horn and P. Skrzypek, “Melodic: utility based cross cloud deployment
optimisation,” in WAINA. IEEE, 2018, pp. 360–367.

[17] V. Stefanidis, Y. Verginadis, I. Patiniotakis, and G. Mentzas, “Distributed
Complex Event Processing in Multiclouds,” in ESOCC, ser. Lecture
Notes in Computer Science, vol. 11116. Como, Italy: Springer, 2018,
pp. 105–119.

[18] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
Trans. Evol. Comp, vol. 6, no. 5, pp. 443–462, Oct. 2002.

[19] T. H. Goodwin, “The information ratio,” Financial Analysts Journal,
vol. 54, no. 4, pp. 34–43, 1998.

205

