
Auto-scaling a Defence Application across the Cloud using Docker and Kubernetes

S. Kho Lin, U. Altaf, G. Jayaputera, J. Li,
D. Marques, D. Meggyesy, S. Sarwar, S. Sharma,

W. Voorsluys, R.O. Sinnott

School of Computing and Information Systems
University of Melbourne

Melbourne, Victoria, Australia
victorsankho.lin@unimelb.edu.au

A. Novak, V. Nguyen, K. Pash

Defence Science and Technology Group
Melbourne, Victoria, Australia

Abstract—The Australian Defence Forces (ADF) including the army,
navy and air force often share resources. This is the case for helicopter
training where the resources are often people, e.g. instructors. Under-
standing the current and future needs of the helicopter pilot training
continuum is challenging. New students are continually entering
the Defence services as trainees/cadets; passing or failing exams at
specialist flying schools; progressing through or leaving the Defence
services and potentially becoming trained pilots or instructors that can
subsequently train future students. This continuum has an associated
optimisation challenge. The ATHENA platform has been developed as
a strategic discrete event simulation, optimisation and analysis system
for manpower planning with specific focus on addressing the needs
and demands of this helicopter pilot training continuum for the ADF.
ATHENA has been developed as a simulation platform running on a
Cloud infrastructure. This paper introduces ATHENA and describes
the way in which the platform leverages container technologies to auto-
scale across the Cloud with focus on the Kubernetes orchestration
technology.

Keywords-Auto-scaling, Container orchestration, Docker, Kuber-
netes, OpenStack

I. INTRODUCTION

Cloud Computing [1] and more recently container-based ap-

proaches [2] have changed the way software packaging and

deployment are now achieved. Containerised Applications [3],

Infrastructure-as-Code (IaC) and associated systems administration

and DevOps [4] underpin modern deployment practices. Advances

in virtualization technologies have changed the Operating System

landscape and it is now commonly required to support complex

software systems/stacks for many enterprises. Several studies [5]

[6] have shown that container-based virtualization has numerous

advantages over traditional Cloud/hypervisor-based virtualization

including reducing the performance overheads that arise when

creating new instances.

One of the core advantages of Cloud-based solutions is to

scale up and down with demand. For many applications it is

essential to support auto-scaling [7], i.e. dynamically scaling to

up/down to meet on-demand computing. Ideally this whole process

should be fully automated and not require any manual intervention.

There are a range of technologies and approaches that have been

taken to support auto-scaling using container-based technologies.

This project investigates auto-scaling solutions that have been

implemented for a software stack supporting the helicopter training

continuum of the Australian Defence Forces (ADF). Specifically

we consider containerised application scaling of a strategic discrete

event simulation, optimisation and analysis system for manpower

planning (ATHENA) with specific focus on addressing the needs

and demands of the helicopter pilot training continuum. We present

ATHENA and demonstrate the use of Docker and Kubernetes to

build a cloud-native application with orchestration on the Cloud.

The remainder of this paper is organised as follows. Section 2

covers related work focused on auto-scaling. Section 3 provides

an overview of the ATHENA platform and its core functionality.

Section 4 discusses the ATHENA deployment, containerisation and

scaling using Docker. Section 5 presents the auto-scaling solution

that is supported and Section 6 discuss the results of the solution.

Finally section 7 give concluding remarks and identifies areas for

future work.

II. RELATED WORK

The concept of auto-scaling is not new. Early research on auto-

scaling dates back to IBM’s MAPE-K architecture to support

Autonomic Computing – computing systems that were able to

manage themselves given high-level objectives from administrators

[8]. They identified key autonomic elements – Monitor, Analyse,

Plan, Execute, Knowledge – which provided the reference model

for autonomic control loops used for self-managed autonomic

computing systems.

In [9] further challenges were identified for auto-scaling in

each of the MAPE-K phases. They created a taxonomy for auto-

scaling web applications in clouds. [9] presented a survey of auto-

scaling surveys covering scaling indicators and different types of

metrics such as resource estimation with rule and threshold based

approaches, multi-tier application scaling and container-based auto-

scaling. Although not specific to auto-scaling, [10] provides a

survey and taxonomy on resource optimisation for executing Bag-

of-Task applications on Public Clouds. [11] discusses dynamic

provision with Aneka to burst out to Public Clouds from on-

premise Private Clouds (Hybrid Cloud) to off-load deadline-driven

data intensive applications required for big data processing tasks.

Auto-scaling techniques are also discussed in [12] where they

focus on auto-scaling algorithm designs. According to [12], the

Kubernetes Horizontal Pod Autoscaling (HPA) offers a reactive-

approach where HPA is implemented as a threshold-based reactive

controller that automatically adjusts the required resources based on

application demand, e.g. through a control loop. Other approaches

discussed include threshold-based rules which scale up/down based

on observed CPU load or average response times.

Queuing theory is another approach that has been widely ex-

plored. It is based on a model of virtual machines, containers

and/or application tiers as the basis for forming queues of requests.

327

2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)

978-1-7281-0359-4/18/$31.00 ©2018 IEEE
DOI 10.1109/UCC-Companion.2018.00076

When the queues are filled, the system needs to scale-out. When

the queues are empty, the system can scale-down. This approach

has also been considered for large-scale stream processing on the

Cloud and automatic scaling on demand using technologies such

as STORM and Heron [13].

Time-series analysis is a further proactive auto-scaling approach

that uses the past history of time-series data, e.g. CPU use,

to predict future values. Reinforcement learning is a machine

learning based approach that supports automatic decision-making

with no prior knowledge of the system model. [14] also reviews

cloud auto-scaling approaches and presents a combination of

fuzzy logic controller with reinforcement learning for auto-scaling

Cloud/OpenStack-based infrastructure based on HTTP traffic load.

It proposes a model-driven approach that focuses on attempting to

converge resource utilisation to an optimal policy.

There has been a variety of efforts that have measured the

performance of container technologies [15]. These have mostly

focused on either comparing the performance of running container-

ised applications against that achieved by running the standard

versions of the same applications on virtual machines VMs, and/or

physical servers, or assessing their isolation capabilities, i.e. how

the performance of an application running on a container or on

a VM is impacted by external load in the same computing node.

Quetier et al. [16] were among the first to highlight the perfor-

mance advantages of using kernel-level virtualization of computing

resources. They showed that this approach provides much better

start-up time for applications, thus helping to achieve flexibility

and scalability.

Other works focused on assessing the performance penalties

incurred by container based technologies and virtual machines

when particular physical resources are under load. Morabito et

al. [17] showed that container-based solutions perform better than

their VM-based counterparts. Felter et al. [18] used the SysBench

OLTP benchmark on a single instance of the MySQL database

management system, considering virtualized environments based

on containers and VMs. Their results showed that the use of

containers gives rise to a very small degradation in performance,

when compared to a system that uses no virtualization technology.

On the other hand, using vanilla Infrastructure-as-a-Service (IaaS)

platforms and creating, configuring and deploying instances, this

overhead can be as high as 40%.

Xavier et al. [19] compared the performance isolation capabili-

ties of several container technologies, and compared them against

the performance isolation provided by virtualization technologies.

They used benchmarking suites with stress tests related to CPU,

memory, disk and network. Their results showed that container

technologies experience minimal interference regarding the CPU.

On the other hand, other resources suffered more interference when

container technology was used, as compared to the interference

that occurs when a VM was used. In a later work, Xavier et al.

[20] performed a deeper evaluation of the performance interference

that disk-intensive containerised applications suffer under different

stress scenarios. Their results show that in some scenarios, the

performance degradation could be as high as 38%.

There has been minimal work in assessing the overheads induced

by the use of tools to orchestrate the execution of multiple

containers. [15] assesses the start up time of containers for both

Docker Swarm and Kubernetes in experiments with as many as

30,000 containers on a cluster of a thousand nodes. The results

showed that more than half of the Docker Swarm nodes could

start a container in less than 0.5s when the cluster was no more

than 90% full, whilst over half of the Kubernetes nodes could only

start a container in over 2s when the cluster was 50% full. They

identified that if the cluster of Kubernetes nodes was over 90% full,

the start-up time of containers could exceed 124s and ultimately

require manual intervention.

In supporting auto-scaling, numerous factors need to be con-

sidered. One key area of concern is the notion of state of the

application to be scaled. As a case study, we present the ATHENA

application and how it was developed and ultimately refactored to

support auto-scaling across the Cloud.

III. ATHENA PLATFORM

ATHENA is a state-of-the-art, purpose-built system developed

for the Australian Defence Science and Technology Group (DSTG

- www.dstg.defence.gov.au) [21] [22]. ATHENA is a strategic

simulation and analysis system focused on manpower planning.

The aim of the system is to tackle workforce planning challenges

of the ADF across their training continuum. ATHENA provides a

framework designed to address the needs of ADF to perform what-
if scenario analysis based on computationally intensive simulations,

e.g. what if we close a flight school, what if the number of

instructors do not need the needs and demands of the ADF in

5 years time, what should the intake of new students be in the next

few years? To address these issues, ATHENA provides facilities for

simulation, visualisation and analysis of personnel, e.g. instructors,

flight crew and cadets/trainees, and resources, e.g. flying schools

and the courses/examinations that pilots must pass to progress in

their flying careers within the ADF.

The ATHENA architecture is a multi-user, multi-tier microser-

vices web application. The major components comprise the user

interface, a backend web service, databases, a message broker and

simulation workers. The backend service is based on a Spring

framework-based modular application, written in Java. The backend

service provides logic related to the strategic aircrew training

continuum. It supports management interfaces, business logic, data

persistence and distributed computation tasks. The data layer is

composed of a PostgreSQL database which stores access control

data, as well as a document-oriented NoSQL MongoDB for storing

all data related to the simulation model. Computation of simulations

are performed by a network of lightweight workers, also written

in Java, which communicate with the backend via Java Message

Service (JMS). Apache ActiveMQ is used for reliable delivery of

messages containing simulation requests, results and status updates.

The user interface is based on a AngularJS JavaScript Single-Page

Application. The UI communicates with the backend application

server using both the HTTP REST API and WebSocket channels.

Figure 1 shows an example of ATHENA used for a 10 year

simulation of the ADF helicopter pilot continuum. The Scenario

view (top) is given as a Sankey diagram. The upper part shows

a visualisation of the layered flow structure for the flow of the

training continuum (left to right). In this, students/cadets enter from

the left from a variety of locations, e.g. University graduates in

aeronautics, and undertake a variety of courses, e.g. basic flight

training, advanced training at specialist schools. These are typically

at locations around Australia. Students may pass or fail these

328

Figure 1. ATHENA Scenario View

Figure 2. ATHENA Remote Job Execution

courses and if they fail then they typically cease their career in the

ADF. As seen there are numerous pathways/careers in the training

continuum, e.g. for those that wish to become pilots or navigators.

Trained pilots may well go on active service duty or eventually

become instructors. Too few or too many instructors impacts on the

continuum, e.g. intake of future cadets/trainees will be impacted or

courses will pass or fail more students depending on the flow of

personnel. It is important to note that this is challenging since there

are limited resources, e.g. typically only a hundred or so individuals

that become fully trained pilots in the ADF. The Scenario timeline

(bottom) shows the statistics of trainees and/or instructors over

the whole simulation time span. Monte Carlo simulations and

recruitment optimisation algorithm are used to create these results.

The ATHENA simulations can be computationally intensive,

especially if one of the optimisation algorithms is activated. For

this reason, a master-worker remote execution system has been

designed that offers high-performance, scalable simulations as

shown in Figure 2. Monte Carlo simulations, composed of many

repetitions of the same process, are inherently a good fit for

this system due to their embarrassingly parallel nature. In the

master node, the job execution system is composed of a modular

set of services. Once a scenario is submitted for simulation, the

Scenario Service deals with assembling a simulation model with

the correct inputs and creates one sub-scenario for each Monte

Carlo repetition. Effectively, the simulation is parallelised into N
independent jobs, created by the Job Service, which is responsible

for managing the job state, i.e. creating, updating and cancelling

job executions. The Remote Job Executor interfaces to the message

broker via the JMS protocol. At this point, the Job Request Queue
will contain multiple job definitions, ready to be consumed by

workers.

There can be many worker nodes, which consume messages from

the Job Request Queue. These can interpret the job definition, read

job inputs, and execute parts of the simulation model. As jobs

are dequeued, start and finish execution, the worker sends status

updates via the Job Status Queue, which are in turn consumed

by the master node to provide progress updates to the end-user.

Each individual simulation produces one result. These are sent

via the Results Queue and consumed by an Aggregator Service
that performs statistical aggregation, thus producing the mean and

confidence intervals of all model statistics over all simulation runs.

The status of simulations is shown in bottom left of Figure 1 with

running (orange) and completed (green) boxes shown. It is the

ability to scale these simulations in near real time across the Cloud

that form the basis for the cloud-native auto-scaling of ATHENA

application that is the focus of this paper.

IV. REQUIREMENTS FOR SCALING ATHENA

For the initial use case of ATHENA, a monolithic, vertically

scalable setup was suitable. As more organisations within the

ADF showed interest in using ATHENA, a robust horizontally

scalable platform was needed. Furthermore, certain advanced use

cases were identified, which were meant to rigorously inspect and

test the simulation and optimisation engine. These experiments

required running the simulations a large number of times (typically

329

1,000-10,000 times) with different values for all input parameters.

The results of these simulations were then analysed to explore

relationships between inputs and bottlenecks in the operational

pipelines. The existing architecture was not feasible for this work

load, and elastically scaling ATHENA became essential to running

these benchmarks within a reasonable time period.

ATHENA can be computationally expensive and should ide-

ally leverage scalable and flexible infrastructure. ATHENA has

been deployed on the National eResearch Collaboration Tools

and Resources (NeCTAR - www.nectar.org.au) Research Cloud.

NeCTAR is a federally funded project that offers an OpenStack-

based Cloud infrastructure that is free to all academic researchers

across Australia. NeCTAR currently offers 30,000 physical servers

accessible through multiple availability zones across Australia.

This is complemented by large-scale data storage solutions offered

(again free!) to Australian academics as part of the Research Data

Services (RDS - www.rds.edu.au) program. As part of the RDS pro-

gram, the University of Melbourne currently makes available over

5 Petabytes of data storage to researchers. NeCTAR itself provides

an Infrastructure-as-a-Service platform where instances of virtual

machines can be created either through the NeCTAR dashboard (ac-

cessible through the Internet2 Shibboleth-based Australian Access

Federation (AAF - www.aaf.edu.au)) or through associated tooling,

e.g. use of libraries such as Boto (https://pypi.python.org/pypi/boto)

for instance creation and management and libraries such as Ansible

(https://pypi.python.org/pypi/ansible) for deployment and configu-

ration of software systems.

ATHENA uses NeCTAR as an IaaS Cloud provider. The

ATHENA deployment leverages two tenancies with total num-

ber of 300 vCPU cores ranging between 4 cores to 16 cores

per instance. Unlike typical IaaS uses of NeCTAR, ATHENA

uses a container-based approach focused predominantly around

the Docker technology (www.docker.com) for auto-scaling. The

ATHENA stack was originally deployed in a traditional IaaS

manner, e.g. using scripting technologies such as Ansible to create

instances and configure/deploy the ATHENA software through

Ansible Playbooks. Initially ATHENA was deployed onto a single

large VM instance (16 cores and 64Gb RAM). The advantage

of this approach was the almost zero network latency between

software component communications. However this approach had

vertical scaling limitations, e.g. it could only run on a single VM

and larger scale simulations were not possible. Horizontal scaling

was thus essential. The first step to scale horizontally was to

identify the State of the software stack and separate out stateful
and stateless components. The components were then built into

Docker images and run as containers using a pool of worker nodes

as shown in Figure 3. With this arrangement, horizontal scaling was

possible. The solution allowed more database nodes to be supported

for MongoDB sharding and replication to handle the terabytes of

simulation data that can be generated. Further worker nodes could

also be added into the dedicated worker pool for higher throughput.

Unlike use of IaaS scaling where VM instance creation, con-

figuration and activation can take several minutes, the ATHENA

solution was required to be far more performance-oriented and

reactive to ensure the user experience was not diminished. A

dockerised version of ATHENA including orchestration capabilities

to meet this dynamic scaling was thus need. We utilise Kubernetes

for this purpose, based on experiences comparing Docker Swarm

Figure 3. ATHENA worker on different nodes to form a pool of workers

Figure 4. Kubernetes Cluster across different Cloud Providers

and Kubernetes in other work.

V. AUTO-SCALING ATHENA ON THE CLOUD

As noted ATHENA leverages container-based technologies for

auto-scaling. As market leader, Docker was used as the core

container-based solution and Kubernetes was used as the con-

tainer orchestration. Docker was thus an empirical choice based

on the maturity of the software and built-in auto-scaling sup-

port through Kubernetes (https://kubernetes.io). Kubernetes is a

production grade container orchestration system designed for the

deployment, scaling, management, and composition of application

containers across clusters of hosts. It provides a robust container-

management system that creates a virtual abstraction layer on top of

Cloud platforms that is used for deploying and maintaining scalable

distributed systems. This abstraction enables developers to deploy

their applications consistently across different Cloud providers.

Figure 4 shows this concept.

Kubernetes is the third incarnation of Google’s own container-

management systems [23]. Since the process of containerisation

encapsulates the application, Kubernetes introduces an Application-
Oriented Infrastructure to abstract away details of hardware and

operating systems from application developers. Kubernetes has

a breadth of functionality that grows daily and it’s associated

documentation is outdated quickly. Every layer of Kubernetes

provides several ways to setup and configuration clusters that can

be used for a particular cloud deployment. For ATHENA, we

explored numerous options and eventually selected kubeadm to

bootstrap the Kubernetes cluster for ATHENA deployment.

330

In Kubernetes, the concept of a Pod is used to encapsulate

containers. A Kubernetes Pod object holds one or more containers

and, introduces an IP-per-Pod network model. This implies IP

addressing is at the Pod scope. Therefore, containers within a

Pod share their network namespaces including their IP address.

The Pod networking requirement states that nodes and containers

can communicate each other without Network Address Translation

(NAT) [24]. Therefore, the IP that a container sees itself as is

the same IP as others see it. The Kubernetes network model bars

usage of intentional network segmentation policies such as NAT.

Kubernetes documentation offers several ways for overcoming this

and overlay network using kube-flannel add-on was adopted as the

ATHENA solution.

In Kubernetes, Pods are ephemeral. That is, a Kubernetes cluster

can replicate Pods (destroy and re-create new ones) for dynamically

scaling up or down, for self-healing and/or for self-managing

purposes. As a given Pod can be destroyed or recycled, the

Pod IP address may subsequently change. This is challenging for

application developers to keep track of. The Kubernetes Service is

a network abstraction layer used to maintain a consistent endpoint

within a cluster. The Kubernetes Service can be also seen as a

front-end service proxy for other Kubernetes objects such as Pod,

Deployment, ReplicaSet, etc.

For Service Discovery purposes, Kubernetes runs internal DNS.

This comes in as Add-ons. Kubeadm deploys a kube-dns Pod

for this purpose. Kubernetes offers several possibilities including

NodePort, LoadBalancer, HostNetwork, HostPort, Ingress to ex-

pose a service endpoint to the outside world. For the ATHENA

production setup, the cloud provider’s LoadBalancer or Ingress
should be used, however, on NeCTAR, every VM instances gets a

Public IP address. Hence HAProxy routing was adopted. As with

Docker containers, volumes in Kubernetes are ephemeral, i.e. data

will be lost if the Pod is restarted. As such, the ATHENA produc-

tion system utilises a combination of MongoDB and PostgreSQL to

persist data, both of which exist outside of the Kubernetes cluster.

To support auto-scaling, it is essential to have access to real-

time monitoring information from the underlying applications

and infrastructure. Kubernetes core components are instrumented

and exposed at /metrics. By default, metrics are given in

Prometheus format1. When making requests to /metrics on the

component being monitored, a set of line delimited metrics are

returned. Amongst the Kubernetes core components, kubelet is

one of the most important. A kubelet supports containers running

inside a Pod. They support probing of containers and returning the

status back to the kube-apiserver. A kubelet also comes with an

embedded cAdvisor2 instance which collects, aggregates, processes

and exports metrics such as CPU, memory and network usage of

running containers. A kubelet also exposes cAdvisor metrics at

/metrics/cadvisor.

Before Kubernetes v1.9, the most popular stack for consuming

these metrics and storing them as timeseries data was Heapster +

InfluxDB. However, as of v1.10, Heapster has been deprecated

based on an overhaul of the Metrics API used in the Kuber-

netes instrumentation and monitoring architecture. The Prometheus
Operator and kube-prometheus stack are now extensively used.

1https://prometheus.io/docs/instrumenting/exposition formats/
2https://github.com/google/cadvisor

Figure 5. HPA and Monitoring for ATHENA

Prometheus is primarily a pull-style monitoring platform and hence

it has less intrusive performance implications, i.e. it does not

impose stress and load on the monitored application. Furthermore,

Prometheus offers many third-party metrics exporters3 such as the

JMX exporter which can export from a wide variety of JVM-

based applications (e.g. ActiveMQ, Kafka) as well as timing and

monitoring HTTP Requests/Responses through Apache, Nginx and

HAProxy metrics and workloads.

The Prometheus Operator creates, configures, and manages

Prometheus monitoring instances and supports the monitoring of

related namespaces. It includes additional resources such as an

Alert Manager and Service Monitor to the Kubernetes API. The

Service Monitor uses Kubernetes’s Label and Selector to intercept

Kubernetes Services and their exposed Prometheus-based format.

The Metrics Server (Heapster replacement) is used to observe

cluster-wide metrics and monitoring from the Kubelet Summary

API.

The Kubernetes Horizontal Pod Autoscaler (HPA) dynamically

adjusts the number of Pod replicas in a given deployment based

on the observed CPU utilisation. The HPA is implemented as a

Kubernetes API resource with an associated controller. The first

version of HPA scaling of Pods was based on observed CPU

utilization and memory usage. In Kubernetes 1.6, the Custom

Metrics API was introduced that enabled HPA to access arbitrary

metrics through the REST API. In Kubernetes 1.7, the API server

aggregation layer allowed third party applications to extend the

Kubernetes API by registering themselves as API Add-ons.

Figure 5 depicts the full orchestration of Prometheus metrics

monitoring stack for ATHENA using HPA. In the Core Metrics

pipeline, the Metrics Server retrieves node and container met-

rics from the Kubelet cAdvisor. In the Monitoring pipeline, the

Prometheus Operator collect metrics through its Service Monitor

and stores them in Prometheus. The Kubernetes Custom Metrics

API along with the API Aggregation Layer make it possible for

monitoring systems like Prometheus to expose application-specific

metrics to the HPA controller. For applications like the ATHENA

API service, it is relatively straight forward to expose metrics on

JVM stats, embedded Tomcat (HTTP Requests/Responses traffic

load) and any application-specific metrics (e.g. workload and num-

ber of Jobs in queue) using Spring Boot Actuator (www.spring.io)

and Micrometer (www.micrometer.io).

3https://prometheus.io/docs/instrumenting/exporters/

331

Figure 6. Kubernetes Cluster for ATHENA: Architecture

Figure 6 depicts the architectural view of ATHENA deployment

within the Kubernetes cluster. The Docker Registry is a container

image registry hosted through the Nexus repository manager.

A. HPA Auto-scaling Algorithm

According to [24], the HPA implementation of the ATHENA

auto-scaling algorithm works in the following manner:

1) A Control Loop is set for 30 seconds by default, however

this is configurable;

2) Periodically Pods are queried to collect information on their

CPU utilization;

3) The arithmetic mean of the Pods’ CPU utilization with a

given target is compared;

4) The number of Pod replicas required is checked to match the

target based on:

• MinReplicas ≤ Replicas ≤ MaxReplicas

• CPUutilization (C) = recent CPU usage of a Pod (av-

eraged over the last 1 minute) / CPU requested by the

Pod;

• TargetNumOfPods = ceil(sum(CurrentPodsCPUUtilization)

/ TargetCPUUtilizationPercentage (T)), i.e.

TargetNumOfPods =

⌈(
n∑

n=1

Cn

)
/T

⌉

5) Scale-up can only happen if there was no rescaling within

the last 3 minutes to avoid temporary CPU fluctuations;

6) Scale-down will wait for 5 minutes from the last rescaling

to avoid temporary CPU fluctuations, and

7) Any scaling will only be made if within 10% tolerance such

that: avg(CurrentPodsConsumption) / TargetCPUUtilization-

Percentage drops below 0.9 or increases above 1.1.

VI. RESULTS AND FINDINGS

Figure 7 shows the Kubernetes cluster running the ATHENA

software stack. The ATHENA Kubernetes cluster was comprised

of five VMs (each with 12 vCPU, 48GB RAM) from the NeCTAR

Research Cloud and one experimental node (4 vCPU, 16GB RAM)

from the Microsoft Azure cloud.

Figure 7. Kubernetes Cluster for ATHENA: Terminal

Figure 8. ATHENA Worker Runtime Benchmarking

To experiment with the auto-scaling setup and benchmarking of

ATHENA, we configured the ATHENA Worker HPA to use 80%

target CPU utilisation with 1 CPU resource request for each Worker

Pod instance. We set the HPA replication factor to a minimum of

one Pod to a maximum of six Pods. It is noted that the Azure VM

node was excluded in the ATHENA runtime benchmarking.

Figure 8 shows the ATHENA Worker runtime for a simulation

of 10, 20 and 30 years and different number of Monte Carlo

repetitions. The integers next to lines show the maximum number

of Pods spawned by the HPA algorithm. The runtime chart clearly

shows that as we increase the workload (i.e. the number of

repetitions and the simulation span) HPA successfully spawns

more compute resources (Pods). The trend lines for each class of

‘simulation year span’ indicate that the rate of increase in runtime

decreases as we add more resources, this is a clear indication that

auto-scaling has been successful. However during the experimental

runs, it was noted that the auto-scaler doesn’t react immediately to

usage spikes. By default, the metric synchronisation happens once

every 30 seconds and scaling up/down can only happen if there

was no rescaling within the last 3-5 minutes. In this way, the HPA

prevents rapid execution of conflicting decisions (oscillation).

It was also found that auto-scaling based on observed CPU

332

Figure 9. Visualisation of Auto-scaling of ATHENA through the Grafana Dashboard

utilisation alone was not sufficient for ATHENA workers, due to

the dynamics of the different simulation runs, i.e. when selecting

simulation alone or simulation + optimisation algorithm. CPU

utilisation scaling works better with the optimisation algorithm

activated. However, simulation alone with Monte Carlo jobs ex-

ecutes rapidly, and hence it missed the scaling observation period

delay time and consequently, it missed the HPA replication trigger

cycle. As a result there was only one worker Pod instance used

for the simulations. This can be tuned accordingly to the target

threshold and CPU utilisation feedback control loop, however, it

is still an imperfect solution. Further refinements to the system

are also possible, e.g. in addition to CPU utilisation, observing

job queue metrics could be implemented for improved workload

balancing.

Figure 9 shows a screenshot of the Grafana (www.grafana.com)

front-end monitoring system. The auto-scaling dashboard was

custom built with Grafana for observing the ATHENA Worker Pod

replication created by the Kubernetes HPA controller. The auto-

scaling dashboard is vertically split into two parts. On the right
hand side, the HPA status is shown in boxes such as the number

of Current Replicas and the number of Desired Replicas. These are

derived from the HPA algorithm and the minimum and maximum

HPA replication factor that has been set. The HPA Replica graph

shows the discrete steps of the ATHENA Worker Pods scaling

up/down during a simulation run based on demand. On the left hand

side, the API CPU graph shows the CPU usage of the ATHENA

API server. The PODs CPU graph shows the associated CPU usage

of the ATHENA Worker Pods.

Since we set the minimal computation resource required for

simulation Workers to one Pod unit, there will be at least one

simulator engine running constantly, which we denote as the

primary Worker. The primary Worker Pod’s CPU usage (‘athena-

worker-69f77b9586-fmwtm’) is represent as the Yellow trend in

Figure 9. Whereas, the CPU usage of the additional elastically-

scaled Worker Pods come and go as the HPA controller spins up

or evicts the Pods as required based on real time work load.

VII. CONCLUSIONS AND FUTURE WORK

In order to produce a reliable auto-scaling system, it is important

to understand the target application. In this paper we presented

an overview of the defence-oriented ATHENA system and how

it was designed to exploit Docker-based scaling across the Cloud

through separation and consolidation of stateless and stateful con-

siderations. To support auto-scaling we described the capabilities

of Kubernetes and how it can be used for auto-scaling of pods.

It is important to note that this system is a live and functional

system that is used by all parts of the ADF. At present the platform

is in the process of being refined to accommodate the particular

training needs and demands of submarine personnel and the issues

of onshore/offshore constraints.

Auto-scaling system cannot meet the user performance demands

by simply relying on CPU utilisation and memory usage metrics

alone. Most web and mobile applications require auto-scaling based

on Requests Per Second to handle bursty traffic and stochastic

user load. With the new Custom Metrics API feature introduced in

Kubernetes, we intend to extend the API and expose ATHENA’s

metrics to Prometheus, so that it can be consumed by the HPA

controller and auto-scaled better. Auto-scaling can also be triggered

by the ActiveMQ job queue length exceeding some empirical

threshold. Threshold-based Reactive approach with Control Theory
auto-scaling techniques can be explored.

Effective monitoring and use of a range of metrics is essential

for auto-scaling. Auto-scaling with Kubernetes is a non-trivial task

to setup, especially for Production Ready systems that are required

333

to operate in Private Clouds (such as the ADF Azure Cloud) and

public Clouds such as the NeCTAR Research Cloud.

For the future, instrumenting ATHENA with Prometheus and

exposing metrics to fine tune the auto-scaling will be explored

to accommodate bursty usage whilst offering high availability and

quality of service. We also intend to explore and design a range of

other auto-scaling algorithms and exploit different techniques based

on Time-series Analysis for Kubernetes, as well as implementing

Docker Swarm based auto-scaling. To accommodate infrastructure

scaling, we are already able to observe metrics produced by

Kubernetes and Prometheus and offer auto-scaling nodes based on

these metrics.

The use of Kubernetes here is not unique, however the applica-

tion domain and combining defence-based services with dynamic

Cloud-based technologies is unique. There are many challenges

in prototyping on public clouds to meeting the robust, enterprise

level services and infrastructure demands on private and often

mission critical systems. Through close work with the DSTG

many of these non-technical issues are being overcome. There

are numerous other potential end users of these systems including

defence forces outside of Australia and other application domains

where manpower planning is required.

A. Acknowledgments

The authors would like to thank the National eResearch Collab-

oration Tools and Resources (NeCTAR - www.nectar.org.au) for

the (free) access to and use of the Cloud resources that were used

in this paper. Acknowledgments are also made to the Australian

Research Data Services (RDS - www.rds.edu.au) project for the

(free) data storage systems that were utilised in this paper.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp.
50–58, Apr. 2010.

[2] M. J. Scheepers, “Virtualization and containerization of appli-
cation infrastructure: A comparison,” in 21st Twente Student
Conference on IT, vol. 1, no. 1, 2014, pp. 1–7.

[3] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, 2014.

[4] M. Httermann, DevOps for Developers, ser. Expert’s voice in Web
development. Apress, 2012.

[5] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison
of container-based technologies for the cloud,” Future Generation
Comp. Syst., vol. 68, pp. 175–182, 2017.

[6] J. Che, C. Shi, Y. Yu, and W. Lin, “A synthetical performance
evaluation of openvz, xen and kvm,” in 2010 IEEE Asia-Pacific
Services Computing Conference, Dec 2010, pp. 587–594.

[7] R. O. Sinnott and W. Voorsluys, “A scalable cloud-based system
for data-intensive spatial analysis,” Int. J. Softw. Tools Technol.
Transf., vol. 18, no. 6, pp. 587–605, Nov. 2016.

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[9] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web
applications in clouds: A taxonomy and survey,” CoRR, vol.
abs/1609.09224, 2016.

[10] L. Thai, B. Varghese, and A. Barker, “A survey and taxonomy of
resource optimisation for executing bag-of-task applications on
public clouds,” CoRR, vol. abs/1711.08973, 2017.

[11] A. N. Toosi, R. O. Sinnott, and R. Buyya, “Resource provisioning
for data-intensive applications with deadline constraints on hybrid
clouds using aneka,” Future Generation Comp. Syst., vol. 79, pp.
765–775, 2018.

[12] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review
of auto-scaling techniques for elastic applications in cloud envi-
ronments,” J. Grid Comput., vol. 12, no. 4, pp. 559–592, 2014.

[13] T. M. Truong, A. Harwood, and R. O. Sinnott, “Predicting the
stability of large-scale distributed stream processing systems on
the cloud,” in Proceedings of the 7th International Conference on
Cloud Computing and Services Science - Volume 1: CLOSER,,
INSTICC. SciTePress, 2017, pp. 603–610.

[14] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A compari-
son of reinforcement learning techniques for fuzzy cloud auto-
scaling,” in Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, ser. CCGrid
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 64–73.

[15] J. Nickoloff. (2016, Nov) Evaluating container plat-
forms at scale. Retrieved from Medium, June
2018. [Online]. Available: https://medium.com/on-docker/
evaluating-container-platforms-at-scale-5e7b44d93f2c

[16] B. Quetier, V. Neri, and F. Cappello, “Scalability comparison of
four host virtualization tools,” Journal of Grid Computing, vol. 5,
no. 1, pp. 83–98, Apr. 2007.

[17] R. Morabito, J. Kjllman, and M. Komu, “Hypervisors vs.
lightweight virtualization: A performance comparison,” in 2015
IEEE International Conference on Cloud Engineering, March
2015, pp. 386–393.

[18] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux contain-
ers,” in 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015, pp. 171–172.

[19] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. F. D. Rose, “Performance evaluation of container-based
virtualization for high performance computing environments,”
in 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2013, pp. 233–240.

[20] M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos,
K. J. Matteussi, and C. A. F. D. Rose, “A performance isolation
analysis of disk-intensive workloads on container-based clouds,”
in 2015 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, March 2015, pp.
253–260.

[21] V. Nguyen, M. Shokr, A. Novak, and T. Caelli, “A reconfigurable
agent-based discrete event simulator for helicopter aircrew train-
ing,” in Proceedings of the 2016 ISMOR Conference, 2016.

[22] V. Nguyen, A. Novak, M. Shokr, and K. Pash, “Aircrew manpower
supply modeling under change: An agent-based discrete event
simulation approach,” in 2017 Winter Simulation Conference
(WSC), Dec 2017, pp. 4070–4081.

[23] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, omega, and kubernetes,” Queue, vol. 14, no. 1, pp. 10:70–
10:93, Jan. 2016.

[24] K. Developers. (2018) Kubernetes documentation. V1.10, Access
June 2018. [Online]. Available: https://kubernetes.io/docs/

334

