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Abstract— Existing approaches coordinating distributed 

energy resources (DERs) for grid services do not adequately 

evaluate the performance of such DER integration. Most studies 

are based on a single type of DER used for a single type of service, 

rather than the real-world requirements of coordinating a 

heterogeneous mix of DERs to provide multiple different grid 

services at different time-scales. Facilities also often face 

cybersecurity and interoperability challenges to experimenting 

and testing methodologies in this area. To overcome all of these 

challenges, Pacific Northwest National Laboratory, United 

Technologies Research Center, Southern California Edison, and 

Spirae coordinated to develop a federation between their 

organizations. This federation implements a cybersecure 

connection that facilitates near real-time communication between 

the four different physical sites. This not only enables control of 

DERs at different physical locations but also lets the software and 

hardware objects perform control experiments in a cybersecure 

environment at different time-scales. The hardware systems can 

consist of microgrids, building management systems, and 

emulated power systems objects. This paper provides a detailed 

overview of the federation setup and describes what this 

federation can be used for.  

  

Keywords— hardware-in-the-loop, distributed co-simulation, 
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I. INTRODUCTION 

The rapid growth of low-inertia renewable energy resources 

represents an immense opportunity for the U.S. to minimize its 

carbon footprint but presents a challenge for system operators 

as traditional “spinning” generation resources are displaced [1-

2]. There is growing recognition that distributed energy 

resources (DERs—loads, distributed generation, storage, 

electric vehicles, etc.) represent great potential for performing 

this function, but operators have concerns about the 

controllability and dependability of DERs, especially when 

they are not under the direct control of operators. Although 

aggregation and control of DERs for various grid services have 

been extensively studied in the literature, and various modeling 

and control techniques have been proposed [3-8], most of the 

current studies are limited to modeling, aggregation, and 

control of a single type of DER and for a particular type of 

service. They ignore the control and coordination of a 

heterogeneous mix of flexible resources to provide multiple 

ancillary services occurring at different time-scales to the 

power grid. Moreover, some of the control strategies rely on 

centralized direct load control methods [1-4], which are not 

very scalable, to manage hundreds of millions of smart-grid 

assets due to the stringent sensing, communication, and 

computation requirements of such approaches. 

To address these challenges, the authors have been 

developing a holistic system called Network Optimized 

Distributed Energy Systems (NODES). It will be a generalized, 

incentive-based control and coordination framework for a 

heterogeneous class of DERs, such as residential and 

commercial buildings, electric vehicles, energy storage, and 

distributed generation. The final outcome will be a distributed 

hierarchical control framework that allows DERs to be 

integrated seamlessly into operation of the traditional grid 

infrastructure, and coordinated to produce the smooth, stable, 

and predictable response required by grid operators. The 

performance of the resulting system will be tested in a co-

simulation environment spanning transmission, distribution, 

ancillary markets, and communication systems. Various classes 

of actual DERs, (e.g., residential and commercial heating, 

ventilation, and air-conditioning [HVAC] systems, smart 

appliances, electric vehicles, etc.) and their control systems will 

be used to perform hardware-in-the-loop (HIL) verification of 

the proposed incentive-based control approach. The first step is 

to establish a network architecture that enables such 

experimentation. This network architecture needs to be capable 

of handling a fully functional HIL co-simulation between the 

control system (simulation framework) environment at Pacific 

Northwest National Laboratory (PNNL) and the remote DER 

locations at United Technologies Research Center (UTRC), 

Spirae, and Southern California Edison (SCE). These facilities 

need to be connected in a cybersecure fashion. Therefore, for 

the NODES experiment, the research team decided to take a 

federated approach in which the remote locations can be 

connected over point-to-site, site-to-site, or across multi-vendor 

VPN architectures. 

Testbed federation is of international interest. Recently, the 

National University of Singapore identified several issues with 
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federation testbeds including intra-domain challenges [9]. 

Previous work demonstrated federations using testbeds across 

the nation [10 – 12]. PNNL, the University of Illinois at Urbana 

– Champaign (UIUC), and University of Southern California – 

Information Sciences Institute (USC ISI) conducted a wide-

area federated experiment using resources at all three 

institutions. The work culminated in a live demonstration 

conducting a situation awareness attack on two substations and 

a control center. Each facility was geographically distributed 

and was federated with each other. This work ultimately 

resulted in a shared definition of testbeds and federation among 

the participating organizations [13]. Additionally, Iowa State 

University has conducted research into remotely accessible 

testbeds for power systems applications [14]. The (federation) 

solution used in this paper leverages the previous experience to 

develop a lightweight and interoperable approach based on 

OpenVPN technology [15].  

This paper explains the simulation framework, including all 

the federates that are part of the framework, the hardware 

messaging platform, and the methods of federation between the 

federates and hardware. As stated above, necessary architecture 

has been established to perform a cybersecure HIL co-

simulation [13, 14] with federated partners. Prior to the NODES 

experiment, the federated approach was tested at prototype 

level using hardware (Raspberry-Pi). But the system had never 

been implemented on a large-scale experiment that involves 

both hardware and software components across four 

organizations. Because of the cybersecurity and reliability 

advantages of the federated approach, the NODES research 

team used it for this experiment, which led to the first multi-

organization (more than two participants) field deployment of 

the system.   

This paper is organized as follows: Section II discusses the 

co-simulation environment and HIL components, along with 

methods for connecting HIL and co-simulation. Section III 

presents a federated cybersecure connection between test sites 

located in distant geographical areas of different networks, and 

finally, Section IV provides concluding remarks.  

II. HARDWARE-IN-THE-LOOP CO-SIMULATION ENVIRONMENT 

The experimental setup for NODES consists of two general 

components: a simulation and a HIL framework. The 

simulation framework is the family of simulators and required 

data to run the simulations, etc. As shown in Fig. 1, HIL is 

realized by connecting collaborators’ hardware systems to the 

federates through VOLTTRON agents. VOLTTRON [19] is an 

open-source platform that enables distributed sensing, data 

exchange, and controls. It is a messaging bus, controller 

platform, and hardware interface rolled into one package. 

The workflow steps of the NODES experiment are:  

• Each of the collaborators sends virtual battery model (VBM) 

parameters representing the current state of their respective 

connected hardware systems to the VOLTTRON instance on 

their network. 

• The VOLTTRON instance sends the VBM parameters to 

PNNL’S VOLTTRON instance. 

• PNNL’s VOLTTRON instance sends that information to the 

simulators. Following the same communication route, the 

simulators generate and dispatch a power profile, such as 

setpoints, back to the collaborator’s hardware systems.  

 

Fig. 1. Architectural Overview of the NODES Experiment 

A. Simulation Environment 

The simulation environment is the overarching framework 

that brings together all the federates that are part of the 

experiment. This co-simulation framework is built around 

FNCS—an open-source co-simulation software [16]—to 

integrate multiple simulators across multiple domains, ensuring 

interoperability across many different commercial and open-

source tools. The primary role of FNCS is to transfer 

information/data across different simulators in a time-

synchronized manner. This allows researchers to explore the 

interactions of normally stove-piped planning and control tools, 

while developing new control and optimization solutions in 

tools with which they are familiar. The full simulation 

framework is depicted in Fig.2. 

Each block in the framework shown in Fig. 2 describes a 

federate, some of which are simulators. The different 

simulators interact with each other through FNCS. Note that 

multiple instances of each box could be used for large-scale 

complex simulations. The framework consists of five groups of 

simulators described in this section: 

 

Fig. 2. The NODES Simulation Environment 

1. GridLAB-D: GridLAB-D simulator [17] is used to build 

the distribution circuits. It also houses dynamic model of 

all types of controllable devices. This layer receives 

control signals broadcasted from the independent system 

operator (ISO), along with control settings from the 

Aggregator Agents. Each device in this layer provides its 
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DER flexibility parameters and state information back to 

an Aggregator Agent.  

2. California ISO: California ISO represents a static data 

federate. It contains static recorded data that can be 

injected into the FNCS stream. In this experiment, the 

California ISO data federate provides four signals. The 

first signal is a capacity reservation signal that is 

communicated to the DRC optimizer inside Julia. This 

signal describes the capacity the ISO is procuring from the 

distributed resource controller (DRC) in each category. 

Furthermore, the ISO broadcasts a 4-second regulation 

signal directly to individual asserts inside GridLAB-D that 

participate in the proposed control framework. 

3. Julia: Julia is an open-source, high-performance, and 

dynamic programming language. It is used for building the 

multi-period power allocation optimization algorithm that 

is proposed at the DRC level. Julia was chosen because it 

provides an excellent framework for solving 

computationally heavy optimizations algorithms. The 

DRC receives the capacity reservation signal from the ISO, 

along with aggregated flexibility parameters, also known 

as the VBM, from each individual Aggregator Agent. The 

DRC uses the collected VBMs to solve the resource 

allocation algorithm, ensuring that the DRC aligns enough 

resources to fulfill the capacity requirement set forth by the 

ISO. Furthermore, this allocation calculates control 

settings for each Aggregator Agent. The control setting 

signal differs depending on what resource(s) the 

Aggregator Agent is aggregating. In the case of purely 

thermostatically controlled loads these settings will be 

temperature setpoints. 

4. MATLAB: MATLAB is used in the simulation framework 

for two purposes. The first is to incorporate a transmission 

system solver using MATPOWER. This allows the project 

to couple distribution systems with a single transmission 

system to allow for a more detailed co-simulation that can 

evaluate control performance in the simulation of a truly 

integrated system. Coordination of devices is handled by 

the Aggregator Agents. This control entity is built using 

MATLAB. Aggregator Agents receive control settings and 

capacity requirements from the DRC, along with 

individual DER flexibility parameters and state 

information from each device in GridLAB-D. This allows 

the Aggregator Agent to construct the aggregated 

flexibility parameters and forward them to the DRC. It also 

forwards control settings to each device in GridLAB-D.  

Simulations frameworks similar to the one described above 

have shown great potential for their flexibility and scalability. 

Previous efforts performed under the Control of Complex 

Systems Initiative at PNNL have shown that this framework 

can easily support thousands of distribution systems along with 

hundreds of thousands of controllable devices [18]. 

B. Hardware-in-the-Loop 

The second part of the experiment setup is the HIL where 

the hardware systems are located at various (geographical) 

locations. These hardware systems are connected to send 

flexibility parameters (VBM) to simulators. The VBM may 

include any power systems and control systems parameters 

such as base power, energy limits, power limits, and associated 

scalars, etc. The simulators discussed in the previous section 

generate the power profiles and send them back to the hardware 

systems. By design, the simulation environment is independent 

from the HIL environment—in other words, the simulations 

can be run without the HIL—but the addition of the HIL adds 

richness and any desired complexity to the experiments. To 

enable such coordination between the software systems, 

simulators, remote hardware systems, and independent 

VOLTTRON instances are installed at remote hardware 

locations. VOLTTRON agents are deployed on those instances 

to exchange the data. 

VOLTTRON: VOLTTRON is an innovative distributed 

control and sensing software platform that supports modern 

control strategies, including agent-based and transaction-based 

controls. It enables mobile and stationary software agents to 

perform information gathering, processing, and control actions. 

VOLTTRON can be used to independently manage and control 

a wide range of systems, such as HVAC systems, electric 

vehicles, distributed energy, or entire building loads, leading to 

improved operational efficiency and energy and cost savings. 

The independent VOLTTRON agents receive state 

information, building control setting, asset flexibility, etc. from 

the hardware systems as VBMs. The VBM is then sent to the 

VOLTTRON instance at PNNL. Through a FNCS broker, the 

VBMs are sent from VOLTTRON to the simulators and control 

agents (see Fig. 3). A calculated power profile is dispatched to 

the remote hardware system through the same connection. This 

full-duplex connection, as shown in Fig. 3, handles: 1) 

exchanges the VBMs between remote VOLTTRON agents and 

the PNNL VOLTTRON agent in an asynchronous queue-

/token-based fashion and 2) dispatches back the power profiles. 

As mentioned above, the optimization algorithm in Julia or 

MATLAB generates the power profile with control setpoints, 

signals and sends to the remote hardware systems through 

VOLTTRON. 

 

Fig. 3. Description of VOLTTRON Message Bus Configuration 

The next section highlights the software tunnel between 

VOLTTRON and FNCS that lets a VOLTTRON agent forward 

the data to FNCS. 

C. FNCS VOLTTRON Bridge 

Once the VOLTTRON instance receives data from remote 

hardware systems, the data need to be forwarded to simulators, 

as shown in Fig. 3, and this can be done through FNCS. The 

FncsVolttronBridge is designed to send messages from the 

VOLTTRON message bus to the FNCS message bus and vice 

versa. As shown in Fig. 3, at the VOLTTRON stage, the VBMs 

are subscribed as topics. The header is stripped, and the payload 
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is sent to FNCS. FNCS receives the payload, which is 

subscribed as different topics. Then, the FNCS broker sends the 

data to subscribers as it sees the data/message(s). 

An initial test to exchange data between VOLTTRON and 

FNCS was performed on an Ubuntu Linux virtual machine to 

test the efficacy and latency of the FncsVolttronBridge. A pre-

created data file of FNCS-recognizable messages was 

transmitted from a VOLTTRON instance using a forwarder 

agent from the FNCS-installed machine to a VOLTTRON 

instance that is located on a different machine/Virtual Machine. 

The test file used has 60 data entries at 1-second intervals. Once 

the VOLTTRON and FNCS instances were initiated to start the 

data exchange, each data point in the test file was expected to 

move from VOLTTRON to FNCS (and vice versa) at the 

designated time interval (1 sec). As shown in Table. I, the data-

exchange stream test was conducted at 1-sec intervals. With a 

latency typically less than ~100 msec, the data were received at 

the expected ~1-second intervals. The base data transmission 

rate requirements for the NODES experiment is much slower 

(between a few seconds and up to ~5-minute intervals). 

Because this stream/exchange test was conducted to transmit 

the data at 1-second intervals, this validated that the 

architecture will work seamlessly for this experiment. 

TABLE I.  DATA EXCHANGES BETWEEN VOLTTRON AND FNCS 

Item Output 

Data-sending agent  VOLTTRON 

Receiving agent FNCS 

Sampling time (Data transmission 

interval) 
1 sec 

Data packets sent 60 packets 

Total transmission time 1 min 

Latency/delay ≤ ~100 msec 

Operating system Ubuntu Linux 

Host 
Virtual machine and a physical 

machine 

D. VOLTTRON to FNCS Timing Mechanisms 

Based on the tests performed, it was evident that the 

FncsVolttronBridge can handle messages at any speed at which 

VOLTTRON is configured to send messages to FNCS and vice 

versa. Fig. 4 demonstrates the routing process with an example. 

As shown, the data packet/message (denoted as M1) sent from 

VOLTTRON to FNCS at a simulation timestep is received by 

the federates (example: GridLAB-D, Julia) at the next 

simulation timestep. A numerical way to describe this example 

is if M1 is sent by the remote VOLTTRON at 05:00:00 and M2 

is sent at 10/10/2017 05:00:01, the federates receive M1 at 

10/10/2017 05:00:01 and M2 at 10/10/2017 05:00:02. 

Finally, to enable VOLTTRON-to-VOLTTRON data 

exchange, a well-tested forwarder agent is activated on both the 

instances. The final data flow architecture enables data 

exchange between the remote VOLTTRON instance, local 

VOLTTRON instance, FNCS, and the simulators/control 

agents. 

 

Fig. 4. VOLTTRON to FNCS ‒ Illustrative Data Exchange over 2 Timesteps 

III. SECURE FEDERATED CONNECTION 

Federated connection enables cybersecure data-exchange 

capabilities between systems of different networks. In the case 

of the NODES experiment, this connection was being 

established in three different ways: 1) Layer-2 (Data Link 

Layer) site-to-site; 2) Layer-3 (Network Layer) point-to-site; 3) 

multi-vendor VPN connections. This section introduces the 

core concepts of “Fed-in-a-box”—a virtual machine (VM) with 

the ability to establish any of the above connections. Then, the 

architectural elements and the connection methods with UTRC, 

Spirae, and SCE are discussed. 

A. Fed-in-a-box 

Fed-in-a-box is a VM that has pre-scripted Open-SSH 

scripts that enable it to connect to a client or a server. It is called 

fed-in-a-box because the federated connection is established 

through this VM (box). As an example, if two sites are on 

different networks, Fed-in-a-box bridges the machines on these 

two sites and makes it look like they are on same network. Fed-

in-a-box has two interfaces: in this experiment, one interface 

faces PNNL and the other faces the world-wide web. The VPN 

bridge allows a Layer-3 (the network layer) communication 

between a computer on the PNNL network and a computer on 

the collaborator’s network. Federated architecture comes with 

several advantages. 1) At an organizational level, the PNNL IT-

Cybersecurity office strictly prohibits data routing from an 

external entity. Through federation, the VPN bridge connects 

selected/defined external devices to an organization’s computer 

over a private connection. This way, neither of the sites is 

exposed to each other (further explained in Sections III-C and 

III-D). Therefore, during the data exchange, both sites (external 

entities and PNNL) are secure from a cybersecurity perspective. 

2) Laboratory-level prototype tests have been conducted using 

the Fed-in-a-box approach with some hardware systems 

(Raspberry-Pi) to evaluate its efficacy. 3) Through Fed-in-a-

box, the data are already encrypted during the 

transfer/exchange that eliminates the possibilities of data 

spoofing and stealing. 4) Based on the laboratory-level tests 

using VMs on different networks, this architecture has proven 

to be efficient and fast in exchanging data at high sampling 
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frequencies (less than sub-second sampling time). This 

provides great flexibility to the NODES project to perform both 

fast and slow experiments. 

B. Challenges of Federation 

Connecting systems that are in different proprietary 

networks to perform experiments such as HIL co-simulation is 

not a trivial task. The remote networked systems landscape is 

completely different from connecting systems in the same 

network. Some of the common policy barriers associated with 

connecting systems between networks in two different 

organizations include the following: 1) A given organization’s 

network may not allow external traffic through firewalls. 2) If 

firewall exceptions are added, the cybersecurity risk level 

increases by allowing such traffic from another organization. 3) 

There is risk of exposing the entire network of an organization 

to another organization. 4) There is risk of accidental changes 

to the network manager (often through administrative access) 

that could potentially damage the entire network.  

To go into more detail, each organization’s network is 

behind a firewall that blocks any external traffic into their 

systems. For illustrative purposes, the data-receiving 

organization is referred to as the “host entity” and the data-

sending organization is referred to as “external entity”. External 

entity traffic can reach the host entity only when the 

administrator of the host entity permits the external entity to 

cross the firewall to let the traffic in. One of the ways to do that 

is to open a public-facing port for use by the external entity. But 

doing so could risk exposure of the entire host network to an 

external entity. From a cybersecurity perspective, an attacker 

can attack the external entity and potentially gain access to the 

host entity’s complete network. Therefore, connecting different 

systems from different organizations poses hard challenges 

both from the cybersecurity perspective and relative to strict 

organizational policies. 

As stated in the previous section, by using the Fed-in-a-box 

concept, an organization would only expose a system to a 

system in another organization instead of exposing the entire 

network. PNNL is achieving this by opening a secure 

OpenVPN tunnel and connecting Spirae’s and UTRC’s systems 

to the NODES system at PNNL. When these systems are 

connected through the OpenVPN tunnel, the 

connection/authentication goes through a server in the 

CyberNET testbed, a private cloud maintained by a research 

team at PNNL, and complete visibility is maintained on all the 

systems that are coming through this connection. The external 

sites systems are only able to communicate with systems in an 

isolated virtual network created in the cloud platform. 

Therefore, a secure connection is established, and 

organizational policies are not violated. 

C. Layer-2 Connection between PNNL and UTRC 

The current solution employed to federate with UTRC 

involves a Layer-2 site-to-site VPN tunnel using an OpenVPN 

access server and transport layer security (TLS) encryption. 

The PNNL team has set up an OpenVPN access server in the 

CyberNET testbed environment that is reachable by the internet 

through Port Network Address Translation (PNAT) on a 

designated public IP and port. We use a port that has been set 

up with PNAT to be reachable by the internet.  

On PNNL’s end, the OpenVPN access server is deployed 

within an OpenStack cloud environment. It is dual-homed. The 

first interface is attached to a private software-defined subnet 

that is reachable externally via network address translation 

(NAT). A second interface is attached to a private software-

defined subnet that houses the NODES VM. Using a Linux 

bridge the VPN TAP interface created by OpenVPN and the 

second interface on the server are bridged on Layer 2 of the 

Open Systems Interconnection (OSI) model. 

On UTRC’s end, a dedicated hardware system that is also 

dual-homed is deployed. Similarly, one interface is attached to 

a network that can reach out to the internet minimally to the 

port listening on the VPN server, and a second interface is 

connected to a private LAN segment managed by a switch. By 

downloading a client configuration via the web frontend of 

PNNL’s OpenVPN access server using a pre-shared key, 

UTRC can use OpenVPN to connect to PNNL. The OpenVPN 

client system then connects to the OpenVPN access server and 

establishes a TLS tunnel. The client configuration file that is 

downloaded specifies two scripts that get triggered when the 

OpenVPN service starts and stops. These scripts configure the 

OpenVPN client system to use the same bridging strategy as 

the OpenVPN access server in PNNL’s OpenStack cloud. The 

TAP interface of the OpenVPN connection and the private side 

interface are housed on a Linux bridge.  

Upon launching the OpenVPN service, a script to turn on 

the bridge is executed. Upon stopping an OpenVPN service, a 

script to turn off the bridge is executed. 

Once this site-to-site bridge is set up, systems in the virtual 

private LAN in PNNL’s OpenStack testbed and systems in the 

private LAN segment at the client site can communicate over 

Ethernet/Layer 2 in the OSI model. Fig. 5 shows a simple 

network diagram of what the connection looks like and below 

that is the step-by-step instructions for setting up the OpenVPN 

client box using Ubuntu 16.04 as the operating system. 

 

Fig. 5. Illustraive Network Diagram of Layer-2 Federation Connection 

Software and Hardware Components at UTRC: On the 

UTRC side the architecture consists of the following:  

• a VOLTTRON agent running on a RedHat Linux machine 
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• a Python wrapper that provides an easy-to-use application 

programming interface (API) to the ZeroMQ (ZMQ) [20] 

layer needed to exchange communication with the 

VOLTTRON agent 

• a set of MATLAB functions that encapsulate and hide 

details of the above Python layer. This allows sending and 

receiving information with the VOLTTRON agent at a 

level of abstraction suitable for driving the MATLAB 

application. 

• a MATLAB application that performs required elaboration 

of data exchanged with VOLTTRON agent. 

The communication between the Python/MATLAB code 

and the UTRC VOLTTRON agent is handled via a ZeroMQ 

publish/subscribe mechanism. The information exchange is 

completely asynchronous; therefore, a simple application-level 

protocol is defined to associate each message with its 

corresponding response. Because the exchanges are typically 

very infrequent (with period measured in minutes) the possible 

overhead required to guarantee a non-lossy communication is 

negligible. 

The VOLTTRON agents at PNNL and UTRC also 

communicate via a ZMQ-based publish/subscribe mechanism. 

Because the two VOLTTRON instances are running on 

separate machines, each instance provides a forwarder agent 

that uses ZMQ to send messages to the other instance—PNNL 

forwards to UTRC, and UTRC forwards to PNNL. Within each 

VOLTTRON instance, agents subscribe to information that 

allows them to participate in the hierarchical control 

framework. For the PNNL VOLTTRON agent this means 

subscribing to the VBM from the UTRC VOLTTRON agent, 

and for the UTRC VOLTTRON agent this means subscribing 

to the control setpoints from the PNNL VOLTTRON agent. 

Fig. 6 shows one application using the communication 

architecture described above. Using the collected data from 

UTRC campus operation and simulated data from PNNL via 

the communication described above, a MATLAB application 

optimizes building operation. 

 

Fig. 6. Fed-in-a-box Application Connected to Building Control Application 

D. Layer-3 Connection Between PNNL and Spirae 

The current solution employed to federate with Spirae 

involves a Layer-3 point-to-site VPN tunnel using an 

OpenVPN access server and TLS encryption. PNNL has set up 

an OpenVPN access server in the CyberNET testbed 

environment that is reachable by the internet through PNAT on 

a public IP.  

At PNNL’s end, the OpenVPN access server is deployed 

within an OpenStack cloud environment. Similar to the Layer-

2 connection, it is dual-homed, and the first interface is attached 

to a private software-defined subnet that is reachable externally 

via NAT. A second interface is attached to a private software-

defined subnet that houses the NODES VM. By configuring 

static routes in the OpenVPN access server settings, clients can 

reach PNNL’s private network in the testbed on Layer 3 of the 

OSI model. 

 

Fig. 7. Illustrative Network Diagram of the Layer-3 Federation Connection 

On Spirae’s end, a dedicated VM is deployed. One interface 

is attached to a network that can reach out to the internet 

minimally to the port the PNNL VPN server is listening on. By 

downloading a client configuration via the web frontend of the 

OpenVPN access server using a pre-shared key, Spirae can use 

OpenVPN to connect to PNNL. The OpenVPN client system 

then connects to the OpenVPN access server and establishes a 

TLS tunnel. The client configuration file that is downloaded 

specifies that the client can route to a private LAN behind the 

OpenVPN access server.  

Once this point-to-site tunnel is set up (Fig. 7), systems in 

the virtual private LAN in PNNL’s OpenStack testbed and the 

connected client system on the Spirae network can 

communicate over TCP/IP, or Layer 3 in the OSI model. Fig. 7 

is a simple network diagram of what the connection looks like 

and below that are the step-by-step instructions for setting up 

the OpenVPN client box using Ubuntu 16.04 as the OS. 

Software and Hardware Components at Spirae: Under the 

NODES project, Spirae is providing remote access to around 

60 physical power system resources located at two sites 

powered by the same distribution substation. Resources include 

curtailable solar inverters, battery energy storage systems, 

small generation, and a variety of interruptible single- and 

three-phase loads, including a curtailable electric vehicle 

charging station. Access is by means of APIs exposed by 
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Spirae’s Wave® microgrid control software, which delivers 

asset- and group-based monitoring and control functionality. 

Thus, the asset-specific interfaces are abstracted to a common 

secure format. This way, the larger simulation can interact with 

those assets, while limiting exposure of Modbus interfaces to 

the Wave components. For initial testing purposes, Spirae has 

emulated a version of the physical assets—communicating to 

the microgrid software via the same Modbus points—thus 

limiting the need to expose control of physical devices to high-

value testing times. This software and hardware architecture is 

summarized in Fig. 8. The final experiment may involve 

interaction and control using real hardware systems instead of 

emulated software systems. 
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Fig. 8. Diagram of Components Hosted by Spirae 

By participating in this project, Spirae will demonstrate 

secure, remote control of assets and groups using its microgrid 

software. Furthermore, because one of the sites is Spirae’s 

InteGrid lab, NODES will serve to richly illustrate the 

possibilities of future distributed lab activity for that facility 

(including the possibility of physical/virtual hybrids). 

E. Layer-2 Connection Using Existing Firewall VPN 

The connection between PNNL and SCE is a work in 

progress. Currently, the plan is to implement a Layer-2 

connection using OpenVPN as a client and connect to Southern 

SCE’s existing VPN server to gain access to their experimental 

networks.  

Software and Hardware Components at SCE: The core of 

SCE’s controls testbed is a real-time power system simulator 

combined with a supervisory control and data acquisition 

(SCADA) protocol gateway. The simulator performs a three-

phase unbalanced dynamic RMS simulation synchronized to 

the system time, and the SCADA gateway provides DNP3, 

Modbus, ICCP, and 61850 MMS clients and servers that can be 

configured to communicate with external systems. The real-

time power system simulator and SCADA protocol gateway 

interface via OPC, and exchange measurement and control 

points once per second. When the power system simulator and 

SCADA protocol gateway are combined the resulting testbed 

simulates the real-time performance of a distribution feeder, 

including autonomous operation of DER assets, load changes 

over time, and closed-loop response to external control system 

commands. 

SCE has interfaced the controls testbed with the 

VOLTTRON platform via a Modbus Server at every DER and 

telemetry monitoring point read and written to by the 

VOLTTRON master driver agent. In this configuration, there 

are over 100 Modbus sessions for simulated DERs on a single 

feeder. VOLTTRON agents have been developed that interact 

with the scheduler and actuator agents to send commands to the 

DERs in the simulated feeder and subscribe to feeder telemetry 

points. This architecture is summarized in Fig. 9. 

 

 

Fig. 9. Connected Architectural View at SCE 

F. Validation of Federatation Network Connections 

The NODES experiment system is connected to UTRC’s and 

Spirae’s systems through the defined federated approach. Each 

of the systems is equipped with VOLTTRON. A full-duplex 

data-exchange test was conducted between these systems by 

deploying VOLTTRON agents that transmit illustrative 

temperature data. A VOLTTRON listener agent was activated 

on the receiving systems test if the data were received. These 

tests concluded successfully as the data transmitted from PNNL 

system were being received by UTRC’s and Spirae’s systems 

and vice versa. Ongoing work is focused on developing the 

VOLTTRON agents that can communicate with collaborators’ 

proprietary software/hardware and transmit the data to PNNL. 

Upon using the data and running the controls system 

experiment, PNNL will transmit the data back to the 

collaborators. 

IV. CONCLUSION 

This paper detailed the software and hardware components 

of the NODES experiment. The authors introduced a 

sophisticated methodology for connecting various software 

systems and power systems solvers. Then, an experimental 

framework was shown using the solvers and software systems 

that were connected to remote hardware systems. As 

demonstrated, such network architecture is not only cyber-

secure but also widely scalable. In this paper, it was shown that 

a federated connection between PNNL and UTRC, Spirae, and 

SCE was established. The paper provided deep technical details 

about the Layer-2 point-to-site connection between PNNL and 

Spirae, Layer-3 site-to-site connection between PNNL and 

UTRC, and the potential multi-vendor-VPN connection 

between PNNL and SCE. From the demonstrations, it was clear 

that each of the different types of federated connections has 
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unique advantages. In general, encrypted communication 

provides more confidentiality and integrity than unencrypted 

communication. The choice to use OpenVPN and TLS was 

driven solely by cost and ease of use. To fully evaluate the 

security of this type of communication channel, an end to end 

transparency would be required. In any federated connection 

using VPN software and an encryption method, the security of 

the communications is directly related to the security of the 

software itself. Using cybersecure federated connection and 

intermediate VOLTTRON instances (and agents), the hardware 

and software systems were able to exchange VBMs, power 

profiles, and other flexibility parameters needed to perform 

complex control system simulations. Using and building upon 

this fully tested and implemented architecture, the ongoing 

work is focused on remote DER control through Optimizer in 

Julia, power systems simulation in GridLAB-D, and data 

exchange through VOLTTRON agents across these 

geographically distant facilities. Follow-on papers will present 

the test results acquired from a co-simulated federated HIL 

system with fully controllable DERs. 
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