

A Cyber Secure Communication Architecture for

Multi-Site Hardware-in-the-Loop Co-Simulation of

DER Control

Sri Nikhil Gupta Gourisetti1, Jacob Hansen1, William Hofer1, David Manz1, Karanjit Kalsi1, Jason Fuller1, Shwetha Niddodi1,

Holger Kley2, Christopher Clarke3,Keunmo Kang4, Hayden Reeve4, Massimiliano Chiodo4, Jesse Bishopric4

1Pacific Northwest National Laboratory, 2Spirae, 3Southern California Edison, 4UTRC

{srinikhil.gourisetti, jacob.hansen, karanjit.kalsi}@pnnl.gov

Abstract— Existing approaches coordinating distributed

energy resources (DERs) for grid services do not adequately

evaluate the performance of such DER integration. Most studies

are based on a single type of DER used for a single type of service,

rather than the real-world requirements of coordinating a

heterogeneous mix of DERs to provide multiple different grid

services at different time-scales. Facilities also often face

cybersecurity and interoperability challenges to experimenting

and testing methodologies in this area. To overcome all of these

challenges, Pacific Northwest National Laboratory, United

Technologies Research Center, Southern California Edison, and

Spirae coordinated to develop a federation between their

organizations. This federation implements a cybersecure

connection that facilitates near real-time communication between

the four different physical sites. This not only enables control of

DERs at different physical locations but also lets the software and

hardware objects perform control experiments in a cybersecure

environment at different time-scales. The hardware systems can

consist of microgrids, building management systems, and

emulated power systems objects. This paper provides a detailed

overview of the federation setup and describes what this

federation can be used for.

Keywords— hardware-in-the-loop, distributed co-simulation,

federation, cybersecurity, distributed energy resources, DERs

I. INTRODUCTION

The rapid growth of low-inertia renewable energy resources

represents an immense opportunity for the U.S. to minimize its

carbon footprint but presents a challenge for system operators

as traditional “spinning” generation resources are displaced [1-

2]. There is growing recognition that distributed energy

resources (DERs—loads, distributed generation, storage,

electric vehicles, etc.) represent great potential for performing

this function, but operators have concerns about the

controllability and dependability of DERs, especially when

they are not under the direct control of operators. Although

aggregation and control of DERs for various grid services have

been extensively studied in the literature, and various modeling

and control techniques have been proposed [3-8], most of the

current studies are limited to modeling, aggregation, and

control of a single type of DER and for a particular type of

service. They ignore the control and coordination of a

heterogeneous mix of flexible resources to provide multiple

ancillary services occurring at different time-scales to the

power grid. Moreover, some of the control strategies rely on

centralized direct load control methods [1-4], which are not

very scalable, to manage hundreds of millions of smart-grid

assets due to the stringent sensing, communication, and

computation requirements of such approaches.

To address these challenges, the authors have been

developing a holistic system called Network Optimized

Distributed Energy Systems (NODES). It will be a generalized,

incentive-based control and coordination framework for a

heterogeneous class of DERs, such as residential and

commercial buildings, electric vehicles, energy storage, and

distributed generation. The final outcome will be a distributed

hierarchical control framework that allows DERs to be

integrated seamlessly into operation of the traditional grid

infrastructure, and coordinated to produce the smooth, stable,

and predictable response required by grid operators. The

performance of the resulting system will be tested in a co-

simulation environment spanning transmission, distribution,

ancillary markets, and communication systems. Various classes

of actual DERs, (e.g., residential and commercial heating,

ventilation, and air-conditioning [HVAC] systems, smart

appliances, electric vehicles, etc.) and their control systems will

be used to perform hardware-in-the-loop (HIL) verification of

the proposed incentive-based control approach. The first step is

to establish a network architecture that enables such

experimentation. This network architecture needs to be capable

of handling a fully functional HIL co-simulation between the

control system (simulation framework) environment at Pacific

Northwest National Laboratory (PNNL) and the remote DER

locations at United Technologies Research Center (UTRC),

Spirae, and Southern California Edison (SCE). These facilities

need to be connected in a cybersecure fashion. Therefore, for

the NODES experiment, the research team decided to take a

federated approach in which the remote locations can be

connected over point-to-site, site-to-site, or across multi-vendor

VPN architectures.

Testbed federation is of international interest. Recently, the

National University of Singapore identified several issues with

This study was conducted at the Pacific Northwest National Laboratory,

which is operated for the U. S. Department of Energy by Battelle Memorial

Institute under Contract DE-AC05-75RL01830.

The information, data, or work presented herein was funded in part by the
Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of

Energy, under Award Number DE-AR0000700. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

978-1-5386-6913-6/18/$31.00 ©2018 IEEE 55

federation testbeds including intra-domain challenges [9].

Previous work demonstrated federations using testbeds across

the nation [10 – 12]. PNNL, the University of Illinois at Urbana

– Champaign (UIUC), and University of Southern California –

Information Sciences Institute (USC ISI) conducted a wide-

area federated experiment using resources at all three

institutions. The work culminated in a live demonstration

conducting a situation awareness attack on two substations and

a control center. Each facility was geographically distributed

and was federated with each other. This work ultimately

resulted in a shared definition of testbeds and federation among

the participating organizations [13]. Additionally, Iowa State

University has conducted research into remotely accessible

testbeds for power systems applications [14]. The (federation)

solution used in this paper leverages the previous experience to

develop a lightweight and interoperable approach based on

OpenVPN technology [15].

This paper explains the simulation framework, including all

the federates that are part of the framework, the hardware

messaging platform, and the methods of federation between the

federates and hardware. As stated above, necessary architecture

has been established to perform a cybersecure HIL co-

simulation [13, 14] with federated partners. Prior to the NODES

experiment, the federated approach was tested at prototype

level using hardware (Raspberry-Pi). But the system had never

been implemented on a large-scale experiment that involves

both hardware and software components across four

organizations. Because of the cybersecurity and reliability

advantages of the federated approach, the NODES research

team used it for this experiment, which led to the first multi-

organization (more than two participants) field deployment of

the system.

This paper is organized as follows: Section II discusses the

co-simulation environment and HIL components, along with

methods for connecting HIL and co-simulation. Section III

presents a federated cybersecure connection between test sites

located in distant geographical areas of different networks, and

finally, Section IV provides concluding remarks.

II. HARDWARE-IN-THE-LOOP CO-SIMULATION ENVIRONMENT

The experimental setup for NODES consists of two general

components: a simulation and a HIL framework. The

simulation framework is the family of simulators and required

data to run the simulations, etc. As shown in Fig. 1, HIL is

realized by connecting collaborators’ hardware systems to the

federates through VOLTTRON agents. VOLTTRON [19] is an

open-source platform that enables distributed sensing, data

exchange, and controls. It is a messaging bus, controller

platform, and hardware interface rolled into one package.

The workflow steps of the NODES experiment are:

• Each of the collaborators sends virtual battery model (VBM)

parameters representing the current state of their respective

connected hardware systems to the VOLTTRON instance on

their network.

• The VOLTTRON instance sends the VBM parameters to

PNNL’S VOLTTRON instance.

• PNNL’s VOLTTRON instance sends that information to the

simulators. Following the same communication route, the

simulators generate and dispatch a power profile, such as

setpoints, back to the collaborator’s hardware systems.

Fig. 1. Architectural Overview of the NODES Experiment

A. Simulation Environment

The simulation environment is the overarching framework

that brings together all the federates that are part of the

experiment. This co-simulation framework is built around

FNCS—an open-source co-simulation software [16]—to

integrate multiple simulators across multiple domains, ensuring

interoperability across many different commercial and open-

source tools. The primary role of FNCS is to transfer

information/data across different simulators in a time-

synchronized manner. This allows researchers to explore the

interactions of normally stove-piped planning and control tools,

while developing new control and optimization solutions in

tools with which they are familiar. The full simulation

framework is depicted in Fig.2.

Each block in the framework shown in Fig. 2 describes a

federate, some of which are simulators. The different

simulators interact with each other through FNCS. Note that

multiple instances of each box could be used for large-scale

complex simulations. The framework consists of five groups of

simulators described in this section:

Fig. 2. The NODES Simulation Environment

1. GridLAB-D: GridLAB-D simulator [17] is used to build

the distribution circuits. It also houses dynamic model of

all types of controllable devices. This layer receives

control signals broadcasted from the independent system

operator (ISO), along with control settings from the

Aggregator Agents. Each device in this layer provides its

56

DER flexibility parameters and state information back to

an Aggregator Agent.

2. California ISO: California ISO represents a static data

federate. It contains static recorded data that can be

injected into the FNCS stream. In this experiment, the

California ISO data federate provides four signals. The

first signal is a capacity reservation signal that is

communicated to the DRC optimizer inside Julia. This

signal describes the capacity the ISO is procuring from the

distributed resource controller (DRC) in each category.

Furthermore, the ISO broadcasts a 4-second regulation

signal directly to individual asserts inside GridLAB-D that

participate in the proposed control framework.

3. Julia: Julia is an open-source, high-performance, and

dynamic programming language. It is used for building the

multi-period power allocation optimization algorithm that

is proposed at the DRC level. Julia was chosen because it

provides an excellent framework for solving

computationally heavy optimizations algorithms. The

DRC receives the capacity reservation signal from the ISO,

along with aggregated flexibility parameters, also known

as the VBM, from each individual Aggregator Agent. The

DRC uses the collected VBMs to solve the resource

allocation algorithm, ensuring that the DRC aligns enough

resources to fulfill the capacity requirement set forth by the

ISO. Furthermore, this allocation calculates control

settings for each Aggregator Agent. The control setting

signal differs depending on what resource(s) the

Aggregator Agent is aggregating. In the case of purely

thermostatically controlled loads these settings will be

temperature setpoints.

4. MATLAB: MATLAB is used in the simulation framework

for two purposes. The first is to incorporate a transmission

system solver using MATPOWER. This allows the project

to couple distribution systems with a single transmission

system to allow for a more detailed co-simulation that can

evaluate control performance in the simulation of a truly

integrated system. Coordination of devices is handled by

the Aggregator Agents. This control entity is built using

MATLAB. Aggregator Agents receive control settings and

capacity requirements from the DRC, along with

individual DER flexibility parameters and state

information from each device in GridLAB-D. This allows

the Aggregator Agent to construct the aggregated

flexibility parameters and forward them to the DRC. It also

forwards control settings to each device in GridLAB-D.

Simulations frameworks similar to the one described above

have shown great potential for their flexibility and scalability.

Previous efforts performed under the Control of Complex

Systems Initiative at PNNL have shown that this framework

can easily support thousands of distribution systems along with

hundreds of thousands of controllable devices [18].

B. Hardware-in-the-Loop

The second part of the experiment setup is the HIL where

the hardware systems are located at various (geographical)

locations. These hardware systems are connected to send

flexibility parameters (VBM) to simulators. The VBM may

include any power systems and control systems parameters

such as base power, energy limits, power limits, and associated

scalars, etc. The simulators discussed in the previous section

generate the power profiles and send them back to the hardware

systems. By design, the simulation environment is independent

from the HIL environment—in other words, the simulations

can be run without the HIL—but the addition of the HIL adds

richness and any desired complexity to the experiments. To

enable such coordination between the software systems,

simulators, remote hardware systems, and independent

VOLTTRON instances are installed at remote hardware

locations. VOLTTRON agents are deployed on those instances

to exchange the data.

VOLTTRON: VOLTTRON is an innovative distributed

control and sensing software platform that supports modern

control strategies, including agent-based and transaction-based

controls. It enables mobile and stationary software agents to

perform information gathering, processing, and control actions.

VOLTTRON can be used to independently manage and control

a wide range of systems, such as HVAC systems, electric

vehicles, distributed energy, or entire building loads, leading to

improved operational efficiency and energy and cost savings.

The independent VOLTTRON agents receive state

information, building control setting, asset flexibility, etc. from

the hardware systems as VBMs. The VBM is then sent to the

VOLTTRON instance at PNNL. Through a FNCS broker, the

VBMs are sent from VOLTTRON to the simulators and control

agents (see Fig. 3). A calculated power profile is dispatched to

the remote hardware system through the same connection. This

full-duplex connection, as shown in Fig. 3, handles: 1)

exchanges the VBMs between remote VOLTTRON agents and

the PNNL VOLTTRON agent in an asynchronous queue-

/token-based fashion and 2) dispatches back the power profiles.

As mentioned above, the optimization algorithm in Julia or

MATLAB generates the power profile with control setpoints,

signals and sends to the remote hardware systems through

VOLTTRON.

Fig. 3. Description of VOLTTRON Message Bus Configuration

The next section highlights the software tunnel between

VOLTTRON and FNCS that lets a VOLTTRON agent forward

the data to FNCS.

C. FNCS VOLTTRON Bridge

Once the VOLTTRON instance receives data from remote

hardware systems, the data need to be forwarded to simulators,

as shown in Fig. 3, and this can be done through FNCS. The

FncsVolttronBridge is designed to send messages from the

VOLTTRON message bus to the FNCS message bus and vice

versa. As shown in Fig. 3, at the VOLTTRON stage, the VBMs

are subscribed as topics. The header is stripped, and the payload

57

is sent to FNCS. FNCS receives the payload, which is

subscribed as different topics. Then, the FNCS broker sends the

data to subscribers as it sees the data/message(s).

An initial test to exchange data between VOLTTRON and

FNCS was performed on an Ubuntu Linux virtual machine to

test the efficacy and latency of the FncsVolttronBridge. A pre-

created data file of FNCS-recognizable messages was

transmitted from a VOLTTRON instance using a forwarder

agent from the FNCS-installed machine to a VOLTTRON

instance that is located on a different machine/Virtual Machine.

The test file used has 60 data entries at 1-second intervals. Once

the VOLTTRON and FNCS instances were initiated to start the

data exchange, each data point in the test file was expected to

move from VOLTTRON to FNCS (and vice versa) at the

designated time interval (1 sec). As shown in Table. I, the data-

exchange stream test was conducted at 1-sec intervals. With a

latency typically less than ~100 msec, the data were received at

the expected ~1-second intervals. The base data transmission

rate requirements for the NODES experiment is much slower

(between a few seconds and up to ~5-minute intervals).

Because this stream/exchange test was conducted to transmit

the data at 1-second intervals, this validated that the

architecture will work seamlessly for this experiment.

TABLE I. DATA EXCHANGES BETWEEN VOLTTRON AND FNCS

Item Output

Data-sending agent VOLTTRON

Receiving agent FNCS

Sampling time (Data transmission

interval)
1 sec

Data packets sent 60 packets

Total transmission time 1 min

Latency/delay ≤ ~100 msec

Operating system Ubuntu Linux

Host
Virtual machine and a physical

machine

D. VOLTTRON to FNCS Timing Mechanisms

Based on the tests performed, it was evident that the

FncsVolttronBridge can handle messages at any speed at which

VOLTTRON is configured to send messages to FNCS and vice

versa. Fig. 4 demonstrates the routing process with an example.

As shown, the data packet/message (denoted as M1) sent from

VOLTTRON to FNCS at a simulation timestep is received by

the federates (example: GridLAB-D, Julia) at the next

simulation timestep. A numerical way to describe this example

is if M1 is sent by the remote VOLTTRON at 05:00:00 and M2

is sent at 10/10/2017 05:00:01, the federates receive M1 at

10/10/2017 05:00:01 and M2 at 10/10/2017 05:00:02.

Finally, to enable VOLTTRON-to-VOLTTRON data

exchange, a well-tested forwarder agent is activated on both the

instances. The final data flow architecture enables data

exchange between the remote VOLTTRON instance, local

VOLTTRON instance, FNCS, and the simulators/control

agents.

Fig. 4. VOLTTRON to FNCS ‒ Illustrative Data Exchange over 2 Timesteps

III. SECURE FEDERATED CONNECTION

Federated connection enables cybersecure data-exchange

capabilities between systems of different networks. In the case

of the NODES experiment, this connection was being

established in three different ways: 1) Layer-2 (Data Link

Layer) site-to-site; 2) Layer-3 (Network Layer) point-to-site; 3)

multi-vendor VPN connections. This section introduces the

core concepts of “Fed-in-a-box”—a virtual machine (VM) with

the ability to establish any of the above connections. Then, the

architectural elements and the connection methods with UTRC,

Spirae, and SCE are discussed.

A. Fed-in-a-box

Fed-in-a-box is a VM that has pre-scripted Open-SSH

scripts that enable it to connect to a client or a server. It is called

fed-in-a-box because the federated connection is established

through this VM (box). As an example, if two sites are on

different networks, Fed-in-a-box bridges the machines on these

two sites and makes it look like they are on same network. Fed-

in-a-box has two interfaces: in this experiment, one interface

faces PNNL and the other faces the world-wide web. The VPN

bridge allows a Layer-3 (the network layer) communication

between a computer on the PNNL network and a computer on

the collaborator’s network. Federated architecture comes with

several advantages. 1) At an organizational level, the PNNL IT-

Cybersecurity office strictly prohibits data routing from an

external entity. Through federation, the VPN bridge connects

selected/defined external devices to an organization’s computer

over a private connection. This way, neither of the sites is

exposed to each other (further explained in Sections III-C and

III-D). Therefore, during the data exchange, both sites (external

entities and PNNL) are secure from a cybersecurity perspective.

2) Laboratory-level prototype tests have been conducted using

the Fed-in-a-box approach with some hardware systems

(Raspberry-Pi) to evaluate its efficacy. 3) Through Fed-in-a-

box, the data are already encrypted during the

transfer/exchange that eliminates the possibilities of data

spoofing and stealing. 4) Based on the laboratory-level tests

using VMs on different networks, this architecture has proven

to be efficient and fast in exchanging data at high sampling

58

frequencies (less than sub-second sampling time). This

provides great flexibility to the NODES project to perform both

fast and slow experiments.

B. Challenges of Federation

Connecting systems that are in different proprietary

networks to perform experiments such as HIL co-simulation is

not a trivial task. The remote networked systems landscape is

completely different from connecting systems in the same

network. Some of the common policy barriers associated with

connecting systems between networks in two different

organizations include the following: 1) A given organization’s

network may not allow external traffic through firewalls. 2) If

firewall exceptions are added, the cybersecurity risk level

increases by allowing such traffic from another organization. 3)

There is risk of exposing the entire network of an organization

to another organization. 4) There is risk of accidental changes

to the network manager (often through administrative access)

that could potentially damage the entire network.

To go into more detail, each organization’s network is

behind a firewall that blocks any external traffic into their

systems. For illustrative purposes, the data-receiving

organization is referred to as the “host entity” and the data-

sending organization is referred to as “external entity”. External

entity traffic can reach the host entity only when the

administrator of the host entity permits the external entity to

cross the firewall to let the traffic in. One of the ways to do that

is to open a public-facing port for use by the external entity. But

doing so could risk exposure of the entire host network to an

external entity. From a cybersecurity perspective, an attacker

can attack the external entity and potentially gain access to the

host entity’s complete network. Therefore, connecting different

systems from different organizations poses hard challenges

both from the cybersecurity perspective and relative to strict

organizational policies.

As stated in the previous section, by using the Fed-in-a-box

concept, an organization would only expose a system to a

system in another organization instead of exposing the entire

network. PNNL is achieving this by opening a secure

OpenVPN tunnel and connecting Spirae’s and UTRC’s systems

to the NODES system at PNNL. When these systems are

connected through the OpenVPN tunnel, the

connection/authentication goes through a server in the

CyberNET testbed, a private cloud maintained by a research

team at PNNL, and complete visibility is maintained on all the

systems that are coming through this connection. The external

sites systems are only able to communicate with systems in an

isolated virtual network created in the cloud platform.

Therefore, a secure connection is established, and

organizational policies are not violated.

C. Layer-2 Connection between PNNL and UTRC

The current solution employed to federate with UTRC

involves a Layer-2 site-to-site VPN tunnel using an OpenVPN

access server and transport layer security (TLS) encryption.

The PNNL team has set up an OpenVPN access server in the

CyberNET testbed environment that is reachable by the internet

through Port Network Address Translation (PNAT) on a

designated public IP and port. We use a port that has been set

up with PNAT to be reachable by the internet.

On PNNL’s end, the OpenVPN access server is deployed

within an OpenStack cloud environment. It is dual-homed. The

first interface is attached to a private software-defined subnet

that is reachable externally via network address translation

(NAT). A second interface is attached to a private software-

defined subnet that houses the NODES VM. Using a Linux

bridge the VPN TAP interface created by OpenVPN and the

second interface on the server are bridged on Layer 2 of the

Open Systems Interconnection (OSI) model.

On UTRC’s end, a dedicated hardware system that is also

dual-homed is deployed. Similarly, one interface is attached to

a network that can reach out to the internet minimally to the

port listening on the VPN server, and a second interface is

connected to a private LAN segment managed by a switch. By

downloading a client configuration via the web frontend of

PNNL’s OpenVPN access server using a pre-shared key,

UTRC can use OpenVPN to connect to PNNL. The OpenVPN

client system then connects to the OpenVPN access server and

establishes a TLS tunnel. The client configuration file that is

downloaded specifies two scripts that get triggered when the

OpenVPN service starts and stops. These scripts configure the

OpenVPN client system to use the same bridging strategy as

the OpenVPN access server in PNNL’s OpenStack cloud. The

TAP interface of the OpenVPN connection and the private side

interface are housed on a Linux bridge.

Upon launching the OpenVPN service, a script to turn on

the bridge is executed. Upon stopping an OpenVPN service, a

script to turn off the bridge is executed.

Once this site-to-site bridge is set up, systems in the virtual

private LAN in PNNL’s OpenStack testbed and systems in the

private LAN segment at the client site can communicate over

Ethernet/Layer 2 in the OSI model. Fig. 5 shows a simple

network diagram of what the connection looks like and below

that is the step-by-step instructions for setting up the OpenVPN

client box using Ubuntu 16.04 as the operating system.

Fig. 5. Illustraive Network Diagram of Layer-2 Federation Connection

Software and Hardware Components at UTRC: On the

UTRC side the architecture consists of the following:

• a VOLTTRON agent running on a RedHat Linux machine

59

• a Python wrapper that provides an easy-to-use application

programming interface (API) to the ZeroMQ (ZMQ) [20]

layer needed to exchange communication with the

VOLTTRON agent

• a set of MATLAB functions that encapsulate and hide

details of the above Python layer. This allows sending and

receiving information with the VOLTTRON agent at a

level of abstraction suitable for driving the MATLAB

application.

• a MATLAB application that performs required elaboration

of data exchanged with VOLTTRON agent.

The communication between the Python/MATLAB code

and the UTRC VOLTTRON agent is handled via a ZeroMQ

publish/subscribe mechanism. The information exchange is

completely asynchronous; therefore, a simple application-level

protocol is defined to associate each message with its

corresponding response. Because the exchanges are typically

very infrequent (with period measured in minutes) the possible

overhead required to guarantee a non-lossy communication is

negligible.

The VOLTTRON agents at PNNL and UTRC also

communicate via a ZMQ-based publish/subscribe mechanism.

Because the two VOLTTRON instances are running on

separate machines, each instance provides a forwarder agent

that uses ZMQ to send messages to the other instance—PNNL

forwards to UTRC, and UTRC forwards to PNNL. Within each

VOLTTRON instance, agents subscribe to information that

allows them to participate in the hierarchical control

framework. For the PNNL VOLTTRON agent this means

subscribing to the VBM from the UTRC VOLTTRON agent,

and for the UTRC VOLTTRON agent this means subscribing

to the control setpoints from the PNNL VOLTTRON agent.

Fig. 6 shows one application using the communication

architecture described above. Using the collected data from

UTRC campus operation and simulated data from PNNL via

the communication described above, a MATLAB application

optimizes building operation.

Fig. 6. Fed-in-a-box Application Connected to Building Control Application

D. Layer-3 Connection Between PNNL and Spirae

The current solution employed to federate with Spirae

involves a Layer-3 point-to-site VPN tunnel using an

OpenVPN access server and TLS encryption. PNNL has set up

an OpenVPN access server in the CyberNET testbed

environment that is reachable by the internet through PNAT on

a public IP.

At PNNL’s end, the OpenVPN access server is deployed

within an OpenStack cloud environment. Similar to the Layer-

2 connection, it is dual-homed, and the first interface is attached

to a private software-defined subnet that is reachable externally

via NAT. A second interface is attached to a private software-

defined subnet that houses the NODES VM. By configuring

static routes in the OpenVPN access server settings, clients can

reach PNNL’s private network in the testbed on Layer 3 of the

OSI model.

Fig. 7. Illustrative Network Diagram of the Layer-3 Federation Connection

On Spirae’s end, a dedicated VM is deployed. One interface

is attached to a network that can reach out to the internet

minimally to the port the PNNL VPN server is listening on. By

downloading a client configuration via the web frontend of the

OpenVPN access server using a pre-shared key, Spirae can use

OpenVPN to connect to PNNL. The OpenVPN client system

then connects to the OpenVPN access server and establishes a

TLS tunnel. The client configuration file that is downloaded

specifies that the client can route to a private LAN behind the

OpenVPN access server.

Once this point-to-site tunnel is set up (Fig. 7), systems in

the virtual private LAN in PNNL’s OpenStack testbed and the

connected client system on the Spirae network can

communicate over TCP/IP, or Layer 3 in the OSI model. Fig. 7

is a simple network diagram of what the connection looks like

and below that are the step-by-step instructions for setting up

the OpenVPN client box using Ubuntu 16.04 as the OS.

Software and Hardware Components at Spirae: Under the

NODES project, Spirae is providing remote access to around

60 physical power system resources located at two sites

powered by the same distribution substation. Resources include

curtailable solar inverters, battery energy storage systems,

small generation, and a variety of interruptible single- and

three-phase loads, including a curtailable electric vehicle

charging station. Access is by means of APIs exposed by

60

Spirae’s Wave® microgrid control software, which delivers

asset- and group-based monitoring and control functionality.

Thus, the asset-specific interfaces are abstracted to a common

secure format. This way, the larger simulation can interact with

those assets, while limiting exposure of Modbus interfaces to

the Wave components. For initial testing purposes, Spirae has

emulated a version of the physical assets—communicating to

the microgrid software via the same Modbus points—thus

limiting the need to expose control of physical devices to high-

value testing times. This software and hardware architecture is

summarized in Fig. 8. The final experiment may involve

interaction and control using real hardware systems instead of

emulated software systems.

Wave Microgrid
Control Software

Emulator

Physical Assets Emulated AssetsOR

Modbus/

TCP (LAN)

Control
Host

Machine

https/

VPN

Emulator
Host

Machine

Fig. 8. Diagram of Components Hosted by Spirae

By participating in this project, Spirae will demonstrate

secure, remote control of assets and groups using its microgrid

software. Furthermore, because one of the sites is Spirae’s

InteGrid lab, NODES will serve to richly illustrate the

possibilities of future distributed lab activity for that facility

(including the possibility of physical/virtual hybrids).

E. Layer-2 Connection Using Existing Firewall VPN

The connection between PNNL and SCE is a work in

progress. Currently, the plan is to implement a Layer-2

connection using OpenVPN as a client and connect to Southern

SCE’s existing VPN server to gain access to their experimental

networks.

Software and Hardware Components at SCE: The core of

SCE’s controls testbed is a real-time power system simulator

combined with a supervisory control and data acquisition

(SCADA) protocol gateway. The simulator performs a three-

phase unbalanced dynamic RMS simulation synchronized to

the system time, and the SCADA gateway provides DNP3,

Modbus, ICCP, and 61850 MMS clients and servers that can be

configured to communicate with external systems. The real-

time power system simulator and SCADA protocol gateway

interface via OPC, and exchange measurement and control

points once per second. When the power system simulator and

SCADA protocol gateway are combined the resulting testbed

simulates the real-time performance of a distribution feeder,

including autonomous operation of DER assets, load changes

over time, and closed-loop response to external control system

commands.

SCE has interfaced the controls testbed with the

VOLTTRON platform via a Modbus Server at every DER and

telemetry monitoring point read and written to by the

VOLTTRON master driver agent. In this configuration, there

are over 100 Modbus sessions for simulated DERs on a single

feeder. VOLTTRON agents have been developed that interact

with the scheduler and actuator agents to send commands to the

DERs in the simulated feeder and subscribe to feeder telemetry

points. This architecture is summarized in Fig. 9.

Fig. 9. Connected Architectural View at SCE

F. Validation of Federatation Network Connections

The NODES experiment system is connected to UTRC’s and

Spirae’s systems through the defined federated approach. Each

of the systems is equipped with VOLTTRON. A full-duplex

data-exchange test was conducted between these systems by

deploying VOLTTRON agents that transmit illustrative

temperature data. A VOLTTRON listener agent was activated

on the receiving systems test if the data were received. These

tests concluded successfully as the data transmitted from PNNL

system were being received by UTRC’s and Spirae’s systems

and vice versa. Ongoing work is focused on developing the

VOLTTRON agents that can communicate with collaborators’

proprietary software/hardware and transmit the data to PNNL.

Upon using the data and running the controls system

experiment, PNNL will transmit the data back to the

collaborators.

IV. CONCLUSION

This paper detailed the software and hardware components

of the NODES experiment. The authors introduced a

sophisticated methodology for connecting various software

systems and power systems solvers. Then, an experimental

framework was shown using the solvers and software systems

that were connected to remote hardware systems. As

demonstrated, such network architecture is not only cyber-

secure but also widely scalable. In this paper, it was shown that

a federated connection between PNNL and UTRC, Spirae, and

SCE was established. The paper provided deep technical details

about the Layer-2 point-to-site connection between PNNL and

Spirae, Layer-3 site-to-site connection between PNNL and

UTRC, and the potential multi-vendor-VPN connection

between PNNL and SCE. From the demonstrations, it was clear

that each of the different types of federated connections has

61

unique advantages. In general, encrypted communication

provides more confidentiality and integrity than unencrypted

communication. The choice to use OpenVPN and TLS was

driven solely by cost and ease of use. To fully evaluate the

security of this type of communication channel, an end to end

transparency would be required. In any federated connection

using VPN software and an encryption method, the security of

the communications is directly related to the security of the

software itself. Using cybersecure federated connection and

intermediate VOLTTRON instances (and agents), the hardware

and software systems were able to exchange VBMs, power

profiles, and other flexibility parameters needed to perform

complex control system simulations. Using and building upon

this fully tested and implemented architecture, the ongoing

work is focused on remote DER control through Optimizer in

Julia, power systems simulation in GridLAB-D, and data

exchange through VOLTTRON agents across these

geographically distant facilities. Follow-on papers will present

the test results acquired from a co-simulated federated HIL

system with fully controllable DERs.

REFERENCES

[1] J. Smith, M. Milligan, E. DeMeo, and B. Parsons, “Utility wind inte-

gration and operating impact state of the art,” IEEE Trans. Power Syst.,
2007, vol. 22, no. 3, pp. 900–908

[2] Y. Makarov, C. Loutan, J. Ma, and P. de Mello, “Operational impacts of

wind generation on california power systems,” IEEE Trans. Power Syst.,
2009, vol. 24, no. 2, pp. 1039–1050

[3] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “Aggregate

flexibility of thermostatically controlled loads,” IEEE Transactions on
Power Systems, 2015, vol. 30, no. 1, pp. 189–198

[4] W. Zhang, J. Lian, C. Y. Chang, and K. Kalsi, “Aggregated modeling and

control of air conditioning loads for demand response,” IEEE
Transactions on Power Systems, 2013, vol. 28, no. 4, pp. 4655–4664

[5] H. Hao, Y. Lin, A. S. Kowli, P. Barooah, S. Meyn, “Ancillary service to

the grid through control of fans in commercial building HVAC systems,”
IEEE Transactions on Smart Grid, 2014, vol. 5, no. 4, pp. 2066-2074,

[6] S. Meyn, P. Barooah, A. Busic, Y. Chen, and J. Ehren, “Ancillary service

to the grid using intelligent deferrable loads,” IEEE Transactions on
Automatic Control, 2015, vol. PP, no. 99,

[7] Z. Ma, D. S. Callaway, and I. A. Hiskens, “Decentralized charging control

of large populations of plug-in electric vehicles,” IEEE Transactions on
Control Systems Technology, 2013, vol. 21, no. 1, pp. 67–78,

[8] S. Li, W. Zhang, J. Lian, and K. Kalsi, “Market-Based Coordination of

Thermostatically Controlled Loads - Part I: A Mechanism Design
Formulation,” IEEE Transactions on Power Systems, 2015,vol.PP, no.99.

[9] W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G.
Wainer, and E. Page, “A Conceptual Framework to Federate Testbeds for

Cybersecurity”, Winter Simulation Conference, 2017

[10] T. Edgar, D. Manz, and T. Carroll, “Towards an experimental testbed
facility for cyber-physical security research”, Proceedings of the Seventh

Annual Workshop on Cyber Security and Information Intelligence

Research, ACM, New York, USA, Article 53, 2011
[11] T. Benzel et al., “Experience with DETER: a testbed for security

research”, 2nd International Conference on Testbeds and Research

Infrastructures for the Development of Networks and Communities,
Barcelona, 2006, pp. 10 pp.-388

[12] D. C. Bergman, D. Jin, D. M. Nicol, and T. Yardley, “The virtual power

system testbed and inter-testbed integration”, Proc. 2nd Workshop Cyber
Security Experiment. Test, 2009, pp. 1–6

[13] A. Hussain, T. Faber, R. Braden, T. Benzel, T. Yardley, J. Jones, D. M.

Nicol, W. H. Sanders, T. W. Edgar, T. E. Carroll, D. O. Manz, and L.
Tinnel, “Enabling Collaborative Research for Security and Resiliency of

Energy Cyber Physical Systems”, IEEE International Conference on

Distributed Computing in Sensor Systems, Washington, DC, USA, 2014
[14] A. Ashok, S. Krishnaswamy and M. Govindarasu, “PowerCyber: A

remotely accessible testbed for Cyber Physical security of the Smart

Grid,” 2016 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), Minneapolis, MN, 2016, pp. 1-5

[15] OpenVPN Website. Accessed at: http://openvpn.net/

[16] S. Ciraci, J. Daily, J. Fuller, A. Fisher, L. Marinovici, K. Agarwal,
“FNCS: A Framework for Power System and Communication Networks

Co-simulation”, Proceedings of the Symposium on Theory of Modeling

and Simulation – DEVS Integrative Article No. 36, California, 2014
[17] D. P. Chassin, K. Schneider and C. Gerkensmeyer, "GridLAB-D: An

open-source power systems modeling and simulation environment," 2008

IEEE/PES Transmission and Distribution Conference and Exposition,
Chicago, IL, 2008, pp. 1-5.

[18] J. Hansen, T. Edgar, J. Daily and D. Wu, "Evaluating Transactive

Controls of Integrated Transmission and Distribution Systems using the
Framework for Network Co-Simulation," in 2017 American Control

Conference, Seattle, 2017.

[19] B. Akyol, J. Haack, B. Carpenter, S. Ciraci, M. Vlachopoulou, and C.
Tews, “Volttron: An agent execution platform for the electric power

system”, Third international workshop on agent technologies for energy

systems valencia, spain. 2012.
[20] ZeroMQ Website. Accessed at: http://zeromq.org/

62

Powered by TCPDF (www.tcpdf.org)

