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Abstract—The large size and complexity of the modern digital hardware impose great challenges to design and validation. Hardware
Description Languages (HDLs) and System-Level Description Languages (SLDLs) rely on sequential discrete event semantics. Parallel
Discrete Event Simulation (PDES) has recently gained extensive attention for parallelizing these languages due to the ever-increasing
complexity of embedded and cyber physical systems. However, PDES application has not yet reached acceptable maturity and
pervasiveness for accelerating computer architecture problems. This is due to inherent complexity of hardware components that require
using different advanced PDES techniques. In this paper, we look at the main problem from a radically different angle. First, we suppose
there is only a single universal discrete event model of computation for simulation purely defined by distributed optimistic PDES, i.e.,
logical-process-based event scheduling worldview. Second, we construct a new parallel system-level simulation language called OSML
for ESL. Third, we propose a unified Cloud-based CAD tool called Troodon to automatically parallelize existing hardware languages atop
OSML. To the best of our knowledge, OSML is the first work on optimistic synchronization applied to hardware-specific SLDLs and
hardware models at different levels of abstraction in ESL, which contain complex data structures by proposing a hybrid checkpointing

scheme.

Index Terms—~Parallel discrete event simulation (PDES), optimistic synchronization, system-level description languages (SLDLs),

electronic system level (ESL), hybrid checkpointing

1 INTRODUCTION

TODAY’S System-On-Chip (SoC) designs and embedded
systems contain a great number of processing elements
(such as multi-core processors, GPUs, DSPs and other IP
cores) connected to themselves, and other elements, includ-
ing, RAM and peripheral I/O devices. Traditionally, Hard-
ware Description Languages (HDLs)—including Verilog and
VHDL—and hardware-specific System-Level Description
Languages (SLDLs)—in particular SystemC and SystemVeri-
log [1], [2]—have been used for modeling and describing an
embedded system at different levels of abstraction. The
models are turned into executables by a hardware-aware
compiler. The compiled code is linked with a sequential sim-
ulation kernel that manages its behavior at runtime. Conven-
tionally, the syntax and simulation semantics of all of these
languages have been defined by sequential Discrete Event
Simulation (DES). Today, computer simulation is a well-
accepted approach to verify embedded systems. It has a myr-
iad of other applications, for example, power and perfor-
mance estimation, and design space exploration.
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Parallel Discrete Event Simulation (PDES) has been
exploited to speed up DES programs since its advent in the
late 1970s, which is broadly divided into conservative and
optimistic [3], [4]. The parallelization of hardware languages
has also occasionally been under focus over the past two dec-
ades, and has been recently gaining momentum with the
emergence of multi-core microprocessors. However, PDES
application has not yet reached acceptable maturity and per-
vasiveness for accelerating computer architecture problems.
This is due to the inherent complexity of hardware compo-
nents that requires using different advanced PDES techni-
ques. Time Warp [5] is widely known as the most common
optimistic PDES protocol in the simulation community
because it can scale up to millions of cores [6]. In hardware
design, the large majority of reported works have been
concentrated on conservative PDES, mainly, synchronous.
Optimistic synchronization, of course, has been applied to
Gate-Level (GL) models and a limited synthesizable subset
of HDLs. For instance, there is no report on optimistic simu-
lation of a comprehensive hardware blueprint, made up of
processors, RAM, buses, and routers in higher levels like
Register Transfer Level (RTL) and System Level (SL) beside
GL. On the other hand, with the popularity of Cloud Com-
puting [7], Electronic Design Automation (EDA) tools are
moving to the Cloud [8]. Moreover, the existence of a com-
prehensive architectural parallel modeling and simulation
platform is important to accelerate hardware/software code-
sign for exascale computing [9]. To address these challenges
and significantly reduce the complexity, we introduce an
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optimistic PDES language and CAD tool for Electronic Sys-
tem Level (ESL). Consequently, the key contributions of this
article are as follows:

1)  For the first time, we apply optimistic PDES [5] to hard-
ware-specific system-level description languages in ESL,
including, SystemC, SystemVerilog and SpecC [10].

2)  For the first time, we allow different hardware models
at different electronic abstraction levels to be executed
by optimistic synchronization, including, many-state
processors, memories, buses, routers, and so on. This
is achieved by proposing a hybrid state saving scheme
for optimistic execution of HDLs and SLDLs.

3) We propose a new optimistic PDES language called
Optimistic System Modeling Language (OSML) along
with its distributed simulation kernel, which have
built-in support for existing HDL and SLDL features.
Two PDES'’s systems programming and application pro-
gramming models are precisely defined. We benefit
from OSML as an intermediate parallel simulation
language (PSL) in where other hardware languages
are translated into OSML. Therefore, OSML can also
provide cross-language interoperability through lan-
guage compilers and tools for co-simulation.

4)  We implement a unified Cloud-based ESL CAD tool
called Troodon to automate the tasks of description,
visualization, compilation, massively distributed par-
allel simulation and performance monitoring of all the
mainstream HDLs and SLDLs on many-core HPC
clusters.

The rest of the paper is organized as follows. In Section 2,
we study some basics, our motivation behind this article, and
related work within the context of HDL/SLDL paralleliza-
tion. We introduce OSML language in Section 3. Section 4
mainly discusses optimistic OSML simulation semantics and
the implementation of its distributed PDES simulation kernel.
Section 5 focuses on Troodon’s overall architecture and tool
flow. A series of Troodon and OSML case studies is described
in Section 6 on a Cloud-based HPC cluster with a 40 Gb/s
fiber-optic network fabric. Section 7 concludes the paper and
presents our direction for further research on OSML.

2 BaAsics AND MOTIVATIONS

In this section, the principal concepts needed for this paper
are discussed, and then the main problem is clearly defined.

2.1 Optimistic PDES Fundamentals

In PDES, the entire simulation is divided into a collection of
smaller sub-tasks referred to as Logical Processes (LPs), and
each of them is executed by a processor or node. These LPs
communicate with each other by exchanging time-stamped
event messages in simulated time. These events are used to
synchronize the execution of LPs in parallel. An event refers
to an update to simulation system state at a specific simula-
tion time instant. LPs do not share any state variables and
solely communicate through these time-stamped messages.
Synchronization between LPs is violated when one of the
LPs receives an out-of-order event. To overcome this prob-
lem, a lot of synchronization protocols have been proposed
that are mainly fallen into synchronous and asynchronous

[4]. In synchronous simulation, all LPs see a single clock
and synchronize with one another through a global heavy
barrier mechanism after processing events in current simu-
lation time. In asynchronous algorithms, LPs process events
at different times, namely, different local clocks. Asynchro-
nous conservative algorithms strictly avoid causality viola-
tions. Asynchronous optimistic algorithms allow events to
be processed out of order, but use a rollback mechanism to
recover from such errors.

Time Warp (TW) was the first optimistic synchronization
algorithm and remains the most widely used optimistic
approach to this day [5]. Undoing modification of state vari-
ables can be accomplished by taking a snapshot of the state
of each LP prior to processing each event. A TW-LP does
need to hold a record of past input and output events. The
state saving introduces the problem that one must be able to
later recover the memory utilized to keep the checkpointed
states. This problem is addressed by computing a lower
bound on the timestamp of any future rollback that might
occur, also known as global virtual time (GVT). Memory
used for saved state variables older than GVT can be
reclaimed. Optimistic synchronization is much more com-
plicated than conservative ones, but reaches much higher
speed and strong scaling [6] because processors process
events with different timestamps and the property of pipe-
line execution is observed. It also improves the load balance
by keeping idle processors busy to process future events.
Effective extraction of the parallelism from simulation mod-
els has a significant impact on parallel simulation, which is
usually attained by proper breaking down the design into
finer processes and using a good fine-grained partitioning
algorithm to balance the load and minimize inter-process
communication.

One of the central issues in Time Warp synchronization
is how to support fast state restoration with low-overhead
checkpointing. The main proposed strategy is based on
Copy State Saving (CSS). In this protocol, the state of an LP
is stored into the state queue for each event execution. To
reduce CSS overhead, we can save the state of an LI after
executing multiple events periodically, which is referred to
as Periodic State Saving (PSS). In PSS, a state to be restored
may not exist. In this case, it must be computed using a pre-
viously saved state and replaying intermediate events in a
coast forward, which adds a penalty time to recovery. A rel-
atively different scheme is based on a checkpoint protocol
known as Incremental State Saving (ISS). Compared to CSS,
this protocol decreases both checkpoint overhead and mem-
ory usage. It keeps a history of the before-images of state
variables that are added during event execution. Each
before-image is recorded prior to updating that state vari-
able. The process of restoring the associated memory
requires a backward re-traversal of the recorded history
and copying the before-images into their original state loca-
tions until the state to be restored is found. An important
alternative technique to checkpointing is Reverse Computa-
tion (RC). In RC, the system state is recovered not by relying
on memory to restore the state, but by computing backward
paths from a current point of execution to the rollback point
in the past. This noticeably requires the computation to be
reversible, and compels the reverse code to be invoked to
reach the desired point in the past at runtime.
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Fig. 1. Architecture of the OSML environment.

2.2 SLDL Concepts

In hardware-specific system-level design, abstract models
are built to better understand the system, refinement and
optimization for final implementation. Different fully-
fledged object-oriented system-level languages, like SystemC,
SystemVerilog and SpecC, exist for modeling and system-
level description of embedded systems at various levels of
abstraction. They provide a set of extensions to support
system-level modeling requirements, such as executability,
behavioral and structural hierarchy, concurrency, communi-
cation, synchronization, and scheduling. All of these lan-
guages benefit from a common conceptual strategy and only
differ in language syntax. Their simulation semantics is
defined by evaluate/update paradigm using delta cycles as a
way of deterministic execution atop sequential DES.

2.3 Problem Definition

HDLs and SLDLs are collectively an integral part in the
design process of hardware components. Since these compo-
nents are becoming very complex, parallel simulation is one
of the main ways for verification. Existing hardware lan-
guages have been designed heavily reliant on sequential DES
and the same simulation semantics (delta cycles), and so they
raise several obstacles for parallelization by asynchronous
PDES. This paper directly addresses the complexity of the
parallel simulation for electronic systems by proposing a new
PDES language, which supports necessary abstractions to
describe software and hardware components of a complex
design. In other words, there should be a parallel simulation
language for electronic systems rather than seeking how to
parallelize existing languages separately. Such a PSL allows
us to easily implement compilation tools in order to convert
those languages to our PSL and avoid basic discoveries.

As discussed in Section 2.4, optimistic synchronization
has only been applied to a limited subset of HDLs, more
precisely, only synthesized models or synthesizable data
paths. In addition, optimistic PDES has not yet been
employed for the simulation of hardware-specific SLDLs.
The main reason can be attributed to the complexity of these
languages. A hardware model at abstraction levels higher
than the gate has a variety of state variables in form of com-
plex data structures that must be handled by PDES execu-
tive. With a little analysis of hardware models written in an
HDL or SLDL consisting of data and control path, bus, and
memory, we find they have different state variables that
cannot be expressed singly by one of CSS, PSS, ISS and RC
techniques for optimal simulation. Fig. 1 illustrates architec-
ture of the OSML environment. User describes the model
using optimistic PDES-aware primitives of the OSML lan-
guage and makes right decisions for optimal execution. The
OSML's parallel programming model is the only thing that
the modeler needs to be aware of. The model is mapped
onto the logical process pattern by distributed optimistic
OSML kernel, which implements the Time Warp protocol.
Each LP executes OSML simulation semantics. This seman-
tics is purely defined for optimistic synchronization and
guarantees deterministic simulation. As outlined in Fig. 1,
let us consider how designer can specify a many-core het-
erogeneous NoC on top of the OSML language for an opti-
mistic run. This model is made up of different components,
which are modeled at various levels of abstraction, detailed
in Table 1. Those components that contain a few state

TABLE 1
Specifications of the Heterogeneous Platform

Component Abstraction Specification Details Checkpointing Mode
CPU Behavioral RTL Single process, FSM: 200 state variables, synchronous Hybrid (PSS+ISS)
GPU Structural RTL Multiple processes, Pipeline, synchronous PSS

L1 Cache/L2 Bank Behavioral RTL Single process, asynchronous Hybrid (PSS+ISS)
Router Behavioral RTL Multiple processes, array-based buffer, synchronous Hybrid (PSS+ISS)
Arbiter Behavioral RTL Multiple processes, synchronous Hybrid (PSS+IS5+RC)
Network Interface (NI)  System Level - BFM Multiple processes, synchronous Hybrid (PSS+ISS+RC)
Off-Chip Memory Behavioral RTL Single process, synchronous Hybrid (PSS+ISS)
Buffer Behavioral RTL Single process, array-based buffer, asynchronous Hybrid (PSS+ISS)
MUX Structural RTL Multiple processes, asynchronous PSS

Memory Map Behavioral RTL Single process, synchronous Hybrid (PSS+IS5+RC)
Scheduler System Level - BEM Single process, synchronous Hybrid (PSS+ISS+RC)
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TABLE 2
Comparison Between OSML and Other PSLs
Language Domain Protocol ~ Worldview  Programming State Granularity Mapping Abstract PDES-aware Visualization
Saving Data Type  Compiler
OSML ESL, ™, LP, Process Fully dynamic Hybrid, Process Automatic & Reversible Notneeded, Cloud-
General  distributed interaction OO, System & Adaptive Manual: HWG/ containers PDES-aware based,
user levels profile-driven & memory language UML/XML
APOSTLE General BTB, Process Basic static OO, ISS Entity Round-robin Basic Mandatory ~ None
shared interaction  User level
Parsec General  Spacetime, Process Structured, User CSS Entity Manual Basic Mandatory ~ C-based
distributed interaction IDE
TeD Telecom. TW, shared Process Basic static OO, 1SS Entity Round-robin Basic Mandatory  Java-based
interaction  User level IDE

variables are implemented using PSS checkpointing. We
take advantage of HSS for the rest of components. As an
example, a processor modeled using FSM, a router with an
internal queue for packet requests modeled as an array-
based priority queue and a synchronous clocked memory
are described by a hybrid checkpointing scheme. Here,
component pins and other state variables are introduced to
the OSML kernel respectively by PSS, and ISS/RC.

2.4 Related Work

In hardware design, PDES has predominantly been used for
parallel simulation of gate-level logic circuits expressed by
netlists due to its simplicity. Numerous works explore dif-
ferent conservative and optimistic protocols along with par-
titioning and load-balancing algorithms at GL [11], [12],
[13], [14], [15], [16]. PDES has also applied to a limited syn-
thesizable subset of HDLs (e.g., data path) that are close to
GL using Time Warp through CSS and PSS [17], [18]. For
instance, a complete system written in an HDL has not yet
been simulated by Time Warp that consists of processors,
memory modules and buses at RTL. Recently, the paralleli-
zation of hardware-specific SLDLs (i.e., SystemC, System-
Verilog and SpecC) has gained widespread attention mostly
using the synchronous PDES on multi-core hosts [19], [20],
[21], [22], [23], [24], [25], [26]; and of course, there is no opti-
mistic implementation of SLDLs (SystemC, SystemVerilog
and SpecC) in ESL yet. Furthermore, there are a number of
reports that utilize conservative PDES to accelerate various
computer architecture simulations, including, multi-core
and many-core systems, NoC and CMP [27], [28], [29], [30],
[31]. A complete survey can be found in [32].

As stated by Fujimoto in 2016, one of the six major
research challenges in Parallel and Distributed Simulation
(PADS) is to make it widely accessible to the general Model-
ing and Simulation (M&S) community by simplifying
the development of simulation models and supporting
Cloud Computing services [3]. Three main approaches
used to address this problem are: (1) PDES kernel libraries;
(2) development of automatic parallelization methods for
sequential simulation languages (SSLs); and (3) new parallel
simulation languages (PSLs). To date, progress has been
made greatly in areas (1) and (2). There are three low-level
optimistic PDES libraries in the public domain [33], [34],
[35], each of which thoroughly supports only a single state-
saving scheme. These libraries facilitate the development of
simulation models to some degree, although working with
them is hard even for experts in parallel computing who are

unfamiliar with PDES. A fundamental issue is that the opti-
mal development of a model, as discussed throughout this
paper, is heavily dependent on the use of a combination of
state-saving techniques. In this paper, we present a layered
methodology based on operating system concepts for sepa-
ration of concerns to build PDES kernels, in which many
low-level parallel processing functionalities and optimistic
PDES remain in the PDES kernel layer and the rest of the
services like state management are moved to OSML kernel.
On the other hand, since programming with PDES libraries
is cumbersome for modelers unaccustomed to PDES and
they do not support modular design, a few of PSLs were
created in the 1990s. However, their development was aban-
doned because they did not cover the broad requirements of
underlying parallel processing (such as the lack of a uni-
form infrastructure for state saving, and reversible complex
data structures) and fully-fledged object-oriented program-
ming constructs available in languages like C++ and Java.
If they resolved these problems, it would be greatly favor-
able to convert SSLs, such as SystemC, DEVS, etc., into those
PSLs. For example, parallelization techniques of all the
hardware languages either use a third-party optimistic
PDES library or extend their kernel relied on conservative
PDES. Therefore, new modeling languages coupled with
mechanisms to automatically translate modeling abstrac-
tions to efficient parallel simulation code are an important
avenue for M&S community. Suitable intermediate repre-
sentations are needed to provide descriptive yet precise
specifications of model state and behavior [3]. OSML is an
essential attempt to develop a new optimistic PDES lan-
guage for ESL in this regard, of course, OSML defines a
powerful programming interface that can be used to model
other DES problems like large-scale networked systems
[36]. PSLs were usually built by adding primitives or library
functions to a sequential simulation language to specify par-
allel execution. However, OSML has been designed from
the ground up with the aim of exposing explicit parallelism
in mind.

Table 2 compares OSML with other PSLs. Objected-
oriented (OO) PSLs only supports a very basic part of OO
concepts, in which each entity contains a set of processes
communicating by exchanging messages. They are deficient
in common OO concepts such as templates, virtual methods,
operator overloading, polymorphism, abstract classes, etc.,
which are compulsory for system-level design. They need a
PDES-aware compiler that is used to generate the underlying
LP code atop a typical PDES library written in a language
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OSML Core Language

like C or C++. Consequently, the user is prohibited from
low-level access to PDES engine if he is willing to make
changes for performance optimization. Provided that the
intermediate code is available, it is difficult to be understood
and modified (because the user has no knowledge of its
execution semantics). In addition, the extra emitted code
can cause significant cache misses and hurt the efficiency,
because each process has a different LP implemented in the
source code. More precisely, this approach injects and repli-
cates PDES simulator codes into the model code. Cache read
misses from an instruction cache generally cause the largest
delay, because the processor, or at least the thread of execu-
tion, has to wait (stall) until the instruction is fetched from
main memory. They lack a model elaboration phase and so
we call them as static languages. This exposes the limitation
on the models that cannot be created dynamically at runtime.
This feature is essential for reusing third-party model librar-
ies and design space exploration (e.g., an NoC to be reconfig-
ured at runtime). The granularity of these languages is at the
entity level in which an entire entity is mapped to an LP, and
thus they can dramatically reduce the degree of parallelism
in hierarchical models. All of them provide only a single
state-saving scheme, simple data types and fixed-size one-
dimensional arrays at compile time. Namely, they make it
impossible to allocate dynamic memory and thus to build
complex data structures such as lists, trees and queues that
are required in system-level and hardware design (because
the modeler also has no low-level PDES access to build them
on his own right, and even there were no compiler support
for this). They hand the model-to-processor mapping over
to the user (due to lack of an elaboration phase, he is made
map entities to processors manually, which is a very time-
consuming task for large-scale models) or use the round-
robin algorithm of the underlying PDES simulator. APOS-
TLE and Parsec languages extended the C language [37],
while TeD was a domain-specific language for telecommuni-
cation networks and used a mixture of the two VHDL and C
languages [38] (which was problematic for the user, because
two different languages must be learnt and used to write
structures and behaviors of the models). The GUI of these
languages only supports visualizing the structure of the
models not their behaviors through simple tools built before
the current-day status of web and cloud computing [39], [40].

The OSML language directly targets the above issues.
OSML is a fully-fledged object-oriented language (with a
dedicated elaboration phase) and has a PDES-aware syntax,
and therefore can be compiled by a PDES-unaware compiler
like GCC. On the one hand, OSML is a PDES systems program-
ming language that allows systems programmers and com-
piler writers (of SSLs) to write and emit optimized codes
with direct access to OSML exokernel. OSML implements a
wide range of reversible data containers using an optimistic
dynamic memory manager, in where system programmers
can extend them for PDES application programmers. On the
other hand, OSML is a PDES application programming lan-
guage that lets the users unfamiliar with PDES easily develop
their own models by instantiating the OSML'’s reversible
objects and primitive data types for parallel simulation. In
OSML, there is only a single instance of the LP code at any
moment of time that is shared among all the model processes
at runtime on each physical core. OSML takes advantage of a
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Fig. 2. OSML language architecture.

profile-driven sequential execution for partitioning purposes
and choosing the appropriate type of state saving for state
variables of the model in parallel simulation. The structure
of amodel is accessible to the modelers and OSML exokernel
as a hierarchical weighted graph (HWG) in elaboration phase,
which is used to implement automatic and manual partition-
ing algorithms reliant on the weight information of graph
nodes. This mapping is performed at the granularity of pro-
cess level not OSML components. OSML, in addition to
being a general-purpose PDES language, provides a broad
spectrum of language constructs for ESL, including, parallel
hardware execution semantics, hardware-specific data
types, hardware timing models, interfaces, and optimistic
VCD trace files. Furthermore, powerful OSML primitives
allow the programmer to use the facilities present in com-
mon parallel programming languages like MPI—including,
data marshaling for distributed execution, efficient resource
allocation on network nodes when partitioning, parallel exe-
cution statistics at different levels such as PDES and MPI for
adaptive runs in optimistic mode, and hybrid PDES and
OpenMP (or CUDA) parallel programming model for data-
parallel applications (e.g., we can program a system-level
accelerator for signal processing in this style).

3 OSML LANGUAGE

In this section, we examine the syntax and structures of
OSML. We show how the designer can leverage the under-
lying parallelism and explicitly specify process states in a
hybrid fashion based on OSML primitives. One of the pri-
mary goals of OSML language is to enable optimistic,
explicitly parallel system-level modeling—that is, real par-
allel modeling of systems above the RTL that might be
implemented in hardware, software or a combination of the
two. Of course, RTL and GL modeling are also possible in
OSML. Fig. 2 illustrates OSML language architecture.
OSML syntax is aware of PDES. In the design of OSML, we
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TABLE 3
Osml Language Primitives

Feature PDES-aware OSML Constructs
Hierarchy/Modularity osml_component: register_subcomponent(), osml_pin: register_pin()
Processes osml_process p = register_process(method,mode name), osml_port(osml_inport,

osml_outport,osml_gport), p.register_port()

Interfaces /Channels

osml_connector, osml_nonshared_interface: osml_wire, Offload(p), fetch(), put(val,p),

osml_shared_interface(osml_fifo, osml_mutex, osml_semaphore)

System-Level Synchronization
osml_notify(expr,p)

Distributed osml_event:register_initiator, register_subscriber, osml_wait(expr,p),

sensitivity list (p.register_sensitivity)

Optimistic Execution Semantics

PSS: osml_process_state(clone_state, restore_state, free_state), p.register_state(),

ISS: osml_iss_state_manager, save_address(addr,len), RC: reverse callbacks,
optimistic dynamic memory, reversible ADTs

Distributed Shared Memory
Execution Semantics

Serializable composite data type system (serialize, deserialize), interface function calls
(Createlnstance/Destroylnstance, CloneValue, CopyValue, DeleteValue)

Model Partitioning/ osml_partitioner(partition), osml_mapper(map), osml_profiler
Processor Mapping
Simulation osml_simulator: start(cores time,partitioner,mapper), pause(), stop()

decided to minimize PDES kernel services and transfer the
remains to OSML kernel, which could be implemented at
higher layers. This enabled us to seamlessly implement dif-
ferent checkpointing mechanisms in OSML kernel to sup-
port hybrid state saving. As a result, OSML kernel is
independent of a particular PDES kernel. The least-defined
services for an optimistic PDES engine make up a microker-
nel. State-saving operations are totally moved to OSML ker-
nel, and so we refer to it as OSML exokernel—since OSML
allows the programmer to directly access to state-saving
utilities without knowing the complex details of the under-
lying parallel mechanisms. PAL defines a standard wrapper
facade for interaction between both the kernels, which can
be implemented simply on top of various PDES libraries.
PDES kernel informs the OSML kernel of rollback and GVT
points through two callbacks. Therefore, OSML kernel will
be able to easily manage different state-saving schemas and
implement fossil collection by itself. The language introdu-
ces two PDES systems and application programming mod-
els to the user for the sake of OSML exokernel. In the
former, programmer has direct access to state-saving rou-
tines (PSS, ISS and RC), and subsequently can implement
his application optimally. In the latter, modeler can reuse
reversible containers and data types implemented by
OSML. Moreover, OSML hardware data types are reversible
and support distributed execution through data marshaling.
OSML also implements widely used hardware components
as reusable optimistic templates.

3.1 Language Constructs

OSML language has been crafted in C++17 and so inherits
all C++ features, such as inheritance and encapsulation.
Table 3 lists OSML primitives. It introduces a component-
based hierarchical worldview to the modeler. Components
can include any number of processes or sub-components.
The hierarchy of a model is constructed by connecting com-
ponent pins, which are undirected and not used for data
transfer between components. The programmer must regis-
ter pins and sub-components of each component to it. A

process represents the behavior of a part of the system and
communicates with other processes through ports. The user
must register ports to processes, and makes the processes
sensitive to the input ports if necessary. Processes are split
into two types of stackless and stackful. A stackful process
has memory (state) and allows context switches through
osml_wait routine. Ports and pins are connected through a
pair of connector/interface. Interfaces actually describe a
part of the design connectivity and are containers to store
data. An interface equips OSML for creating new instances
of its own for those ports that have been bound to it at paral-
lel runtime (Createlnstance method). It also provides some
methods for copying their data and sending to their pro-
cesses through OSML kernel and applying them to the
receipt processes’ ports (e.g., the osml_wire interface imple-
ments such functionalities). All OSML data types must
override and implement two methods of serialize/deserialize,
which are used to convert data into a format suitable to be
transferred over a network, for distributed execution.

The structure of a model is accessible to the user as a pro-
cess graph, which is obtained by traversing model hierarchy
through pin and ports during OSML elaboration phase.
Therefore, the modelers can develop different partitioning
algorithms to optimally assign processes to partitions by
extending OSML primitives. Ports also guarantee the
sender/receiver relationship for logical processes in PDES
layer. OSML events provide a flexible mechanism for inter-
process communication. Because the source and target of
these events must also be present in PDES layer, they define
an initiator-subscriber pattern. Subsequently, an OSML
event has a number of initiators and subscribers that must be
registered to it (register_initiator and register_subscriber meth-
ods). A process can suspend itself on an OSML event by call-
ing the osml_wait method and return control to the kernel,
and wake up when another process triggers it through notify
method. Since the source of PDES messages must be present,
all OSML primitives that generate system-level events
whether directly or indirectly must specify the reference of
issuer process (such as notify, put and timed-wait functions).
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Fig. 3. A many-core architecture of PEs and its interaction with optimistic PDES engine by hybrid checkpointing. All processors are connected to a
single accelerator. We assume that components reside on different physical cores for parallel simulation.

Each process has a set of state variables that must be
registered by the user to the kernel based upon their char-
acteristics. By default, all input ports of a process are con-
sidered as a part of its state and handled by PSS manager
at runtime. We can explicitly define state variables of a
process based on PSS scheme by extending osml_process_
state class, where the programmer must implement meth-
ods to prepare a copy of the state, restore the state and
free the memory allocated for the state (these are auto-
matically done for primitive C++ and OSML data types).
If modelers want to use hybrid checkpointing for a pro-
cess, they can associate an instance of osml_iss_state_
manager class to that process. ISS manager stores a range-
based memory location from an address in memory relied
on the length that the user specifies through save_address
method to the kernel. OSML kernel uses this information
to prepare a checkpoint or restore the state when a roll-
back occurs. RC callbacks can be registered with each
process as well.

3.2 The OSML’s PDES Systems Programming
Model to Build Optimistic Hardware
Components Using Explicit Hybrid
Checkpointing

In this section, we examine how a user can benefit from

OSML'’s PDES systems programming model with low-level

access to optimistic dynamic memory and hybrid state sav-

ing for developing hardware models. The interactions of
the model with PDES layer are also discussed. Fig. 3 por-
trays an overall view of a many-core architecture in some
parts. Each processor component with its local memory is
considered as a Processing Element (PE) arranged in a grid
topology. All processors are connected to a single accelera-
tor and communicate with each other through a router not
shown. The accelerator serves incoming requests by two

scheduling algorithms: FIFO and priority queue (where a

PE identifier is regarded as a priority). Each processor has

a state made up of one register file (as an array) and a pro-

gram counter (PC). Let’s first consider optimistic modeling

of the memory component in detail. An abstract memory
module has a collection of inputs, output and an internal
memory region requested from the host RAM to load and
store hardware words. Accordingly, this component cannot
be modeled by CSS or PSS because of the internal memory

as an immensely large state variable. To solve this prob-
lem, the internal memory is manually checkpointed by ISS
using rewriting the original model. All other inputs are
automatically checkpointed by PSS. The memory compo-
nent modeled by optimistic PDES appears in Fig. 4. Fig. 4a
is a synchronous memory module described in Verilog
with a large internal array. Fig. 4b shows a snapshot of
state variables recorded by CSS. Within 10 clock cycles, at
least 10 GB of states is accumulated in the host RAM by

MEM —1GB

= -

rag [63:0] MEM[O:MAX] ;
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= bagin
= if (mode) 54 B
o
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Fig. 4. Modeling an optimistic memory component in OSML: (a) a typical
Verilog implementation, (b) the state snapshots of the memory model
captured by CSS, and (c) the state snapshots of the memory model
recorded by HSS.
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1 template <class T, int size>
2 class osml_sync _memory : public osml_component {
// Pin and port definitions
3 osml_pin<osml_wire<bool >> clk; ...
4 osml_inport<osml_wire<bool >> _clk;...
5 process_state pss_state; / PSS-based state definition
6 T *array = nullptr; osml_process *p;
7 osml_sync_memory(const std::string &name){
8 register_pin(clk, _clk); ... / Register pins to ports
9 // Register a stackful process and do its settings
10 p = register_process(process, true, &pss_state, name);
11 p->register_on_partitioning(on_partitioning);
12 p->register_port(_clk); ...
13 p->register_sensitivity(_clk, OSML_POS_EDGE);

// This method is invoked after partitioning
15  static void on_partitioning(osml_process &owner){
16 auto myComp = (osml_sync_memory *)owner.get_component();
17 myComp->array = new T|[size|;
18 3}

Fig. 5. Definition of an optimistic memory written in OSML.

OSML kernel, while only about 400 bytes of RAM for states
are occupied by the hybrid protocol in Fig. 4c.

Fig. 5 depicts definition of the optimistic memory class
implemented in OSML. A number of pins and input and
output ports are declared for this component (lines 3
through 4). The PSS-based state includes the interfaces
bound to input ports in addition to an integer indicating the
number of stores (lines 5). Because OSML considers the con-
tents of input ports as part of the process state, we do not
lay them in process_state class. Pins are registered to the
component inside the class constructor, and then a stackful
process is defined. Each process has an associated ISS man-
ager. Since an OSML model is fully instantiated on all pro-
cessors in an HPC cluster (this is due to the MPI
programming model used in the implementation of OSML
kernel), the internal memory of our component can waste
intrusively physical memory of the hosts. To cope with this
issue, a callback can be registered with every process to
specify which processor activates it so that the programmer
can only once allocate internal objects of that process (line
11, and lines 15 through 18). The implementation of the
memory process comes in Fig. 6. Loading a word from
memory is normally done in lines 7 to 8; however, when
writing to a memory location if its content is being updated,
we must perform a checkpoint of this location by ISS man-
ager before the real write to it (line 10). OSML processes
allow context switches in a model. This is achieved through
fibers in which the registers and stack of the process must
be saved before switching. Thus, stackful process check-
pointing is very costly in terms of pressure on the RAM of
host nodes. To tackle this new dilemma, OSML proposes
extremely lightweight stackful processes and explicitly
gives the full control over context switches to the user,
including, saving the current execution location and local
variables of the process before suspension, and restoring
the full process state after awakening. Since each process
accesses to its own state by get_state method, there is no
need for a heavily inexplicit context switch. This means we
no longer need to allocate a fiber of execution for each pro-
cess, but rather this is the user who decides which part of a
process should be executed by adding control transfer
instructions to the code. The osml_process_state class

1 static void process(osml_process &owner){
2 auto myComp = (osml_sync_memory *)owner.get_component();
3 auto myState = (process_state *)owner.get_state();
4 int addr = myComp->address->fetch();
5 switch(myState->get_label()) { case 0: goto LO; }
6  while(true) {
7 if(!myComp->_we->fetch() ...) / Read from memory
8 myComp-> data_out->put(myComp->array[addr], owner);
9 else if(myComp->_we->fetch() ...) { / Write to memory
// We must checkpoint before performing the real write
10 owner.iss_save(&myComp->array[addr], sizeof(T));
/I Now, we perform the write to the memory
11 myComp->array[addr] = myComp->data_in->fetch();
12 myState->writes++;
13
14 osml_wait(owner); myState->set_label(0);return;L0:
15 3}
}

Fig. 6. The process implementation of the memory component.

embraces two get_lable and set_lable methods that can be
used to load and store the address of current program loca-
tion when a suspension/resumption is issued by the osml_
wait function. In Fig. 6, we implement this mechanism by
using switch and goto commands.

Now, we are interested in Fig. 3 to examine a transaction
issued by the processor for storing a word in memory and
sending a job to the accelerator to be computed. P, first saves
its state (updated registers and PC) by issuing a system call
to OSML kernel using the ISS manager. Then, P, delivers the
contents to the interfaces bound to Py by PUT system call,
which are stored by OSML in a list as serialized prior to real
delivery. After osml_wait function is invoked by the model,
control of execution is transferred from userspace to OSML
exokernel. OSML kernel implements parallel hardware exe-
cution semantics. First, the messages stored in step 3 are
turned into an aggregate event. Next, OSML tie-breaker, to
deal with simultaneous events, attaches a unique timestamp
to the event. Extra information such as sender and receipt
identifiers is added to the event as well, and the message is
offloaded to PDES microkernel via PAL. PDES kernel con-
veys this event to LP; through MPI—output manager also
maintains a copy of the message to send anti-messages later.

On the LP; side, PDES kernel fetches and executes the
events one by one. The events are delivered by invoking a
callback pre-registered to OSML kernel. OSML kernel ini-
tially gives control of execution to PSS manager in order to
check if a PSS checkpoint is needed, which is done by call-
ing the clone routine of state variables and input port-bound
interfaces. The received event is then de-aggregated. For
instance, messages accompanying interface-related data are
first deserialized by invoking the methods written in user-
space interfaces (like wires) and then committed to the
interface. During this operation, OSML kernel processes the
messages one by one based on OSML execution semantics
to see whether P is triggered or not. If triggered, control of
execution is returned to the point in userspace where P; has
already suspended itself by calling osml_wait. At this
moment, the user code is executed as seen in Fig. 6. When
the processor sends a request to the accelerator, actions sim-
ilar to steps 1 to 10 are taken in LP; and LP;. The accelerator
puts requests in a queue. Since the queue uses an internal
data structure much more complex than the memory com-
ponent, we cannot merely benefit from the described mech-
anism for arrays using ISS. We need optimistically
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Fig. 7. Typical steps needed to prepare a model to run in osml_main
function.

synchronized dynamic memory to implement a linked-
list-based FIFO queue. Fig. 3 shows some fragments of a
modified FIFO algorithm for reversible enqueue and dequeue
operations. In enqueue, we allocate an optimistic memory
block by calling the onew operator from P;. OSML keeps one
heap associated with each process for memory allocations.
The optimistic memory manager returns blocks of the heap
marked by odelete operator to the free list when an OnGV'T-
Callback occurs. Also, when a rollback is performed, all
memory blocks are freed to the point of rollbacked event.
After allocating the node 7, addresses of the two rear and
rear.next nodes are recorded using ISS, and the remaining
operations are followed routinely. To implement a priority
queue through an array-based heap sort, we cannot use ISS
alone, because many ISS requests must be made when
swapping array elements, which is not efficient. Instead, we
make careful use of a combination of both ISS and RC tech-
niques. Priority values are saved, and we associate a reverse
computation callback with Pj. If P; is rollbacked, the reverse
callback is concurrently executed in conjunction with ISS.
This callback performs the inverse function of insertion, i.e.,
removal. A coalescence of the priority and current P; simu-
lation time (which has three flags, see Section 4) is used to
break potential ties within the queue elements in parallel
execution. Following the development of optimistic compo-
nents, the programmer connects them together in a function
called osml_main. The typical steps come in Fig. 7.

3.3 The OSML’s PDES Application Programming
Model Using Transparent Hybrid Checkpointing
The PDES systems programming model introduced in the
previous section provides low-level access to state manage-
ment capabilities of a process for optimal implementation.
Working with this style of system modeling may be a bit
challenging for users unfamiliar with PDES in most cases.
To solve this problem, OSML proposes the PDES application
programming model. The key idea is that the user must com-
ply with a standard way to define state variables so that
OSML kernel can manage process states transparently. In
this model, each stackful process must define its state as an
optimistic thread-local storage (TLS). This TLS is actually a
global memory visible to a process, and all used objects and
called functions inside it. A modeler cannot use primitive
C++ data types or data structures built by them inside a

TLS. Instead, this model implements all the C++ data types
as reversible (like rint, rstring, etc.). They can be handled as
PSS or ISS/RC based on OSML kernel statistics or user
adjustment. Additionally, relied on the rules studied in
Fig. 3, OSML presents a wide variety of reversible data
structures using the PDES systems programming model,
including, multi-dimensional arrays, lists, queues, trees and
graphs. Also, OSML supplies an immensely lightweight
fiber facility to hide the explicitly emulated fiber in Fig. 6.
The central idea here is to use the instruction pointer (IP)
register (such as EIP and RIP registers in x86 architecture)
for performing context switches, because TLS is available to
all execution paths of a process. The optimistic fiber check-
points the IP register into the PSS state region of a stackful
process. When that process should be woken up, OSML ker-
nel will jump to the address of IP using the goto command.
Accordingly, the user has no knowledge of fiber details. If
the modeler wants to build a new reversible data container,
he can extend the PDES systems programming interfaces.

4 THE OPTIMISTIC OSML SIMULATION
EXOKERNEL

The system-level description written in OSML language
must finally be simulated by a kernel that implements
OSML'’s parallel execution semantics. This kernel must be
aware of the LP pattern and exposes the underlying paral-
lelism to the modeler by hiding the details of optimistic syn-
chronization. Additionally, it must support the language
extensions introduced in Section 3. The life cycle of the
distributed OSML exokernel is made up of several tasks,
including, (i) running sequential simulation on a single pro-
cessor to obtain some information for partitioning and HSS
techniques used at parallel runtime, (ii) distributing the
model on processor nodes, performing OSML elaboration
phase to flatten the model hierarchy, discover processes
and build HWG, (iii) executing the partitioning phase on
HWG to get a process-to-processor mapping, and invoking
user-defined routines to allocate resources during partition-
ing, (iv) allocating internal data structures per process (e.g.,
instantiating interfaces, the state variables of OSML execu-
tion semantics, optimistic TLS and heap), (v) setting up the
rollback and GVT callbacks with PDES microkernel, (vi)
running the simulation, and (vii) termination. Fig. 8 shows
the UML class diagram of the optimistic OSML kernel. The
OSML kernel provides an interface to construct logical pro-
cesses through PAL. The definition of LogicalProcess class is
divided into two parts. The first part is a set of methods
that PDES kernel provides to that LP. These methods are
presented by PDES kernel for communication to the LPs
(SendEvent and GetNextEvent), querying the kernel for inf-
ormation (GetSimulationTime) and accessing to its state
(GetState). The second part includes those methods that
must be overridden. Initialize and Finalize methods are
invoked before simulation starts on each LP and at the end
of simulation respectively, which allow LPs to perform ini-
tialization and clean-up. ExecuteProcess method is invoked
by the PDES kernel when each LP has at least one event to
process. Time is expressed using the PdesTime class to deal
with simultaneous events. These classes provide merely a
low-level model definition for simulation, and the OSML
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Fig. 8. UML class diagram of the optimistic OSML simulation kernel.

kernel implements control structures of the real simulation,
which is presented through SimulationManager class. It must
perform any kind of setup tasks and preparing the simula-
tion environment through PDES kernel. For partitioning
effectively, the kernel requires that LPs store their neighbors
in a map through ModelPartitioner class. WARPED optimis-
tic simulation kernel [35], which only implements PSS, was
extended to conform to the PAL wrapper APIs. We modi-
fied WARPED to support a minimum set of PDES services
and made it as a PDES microkernel. OSML simulation man-
ager makes use of a hybrid state saving for each LP as pro-
posed in Fig. 9. When a straggler message is received,
rollback is performed in three mixed steps. First, ISS man-
ager restores the before-images of state variables by a
reverse traversal from the end of ISS log to the event greater
than the last checkpointed event and ahead of the straggler
message (each LP has a callback named OnRollback, which

O OSML PAL APIs
osml_profiler

is invoked upon receiving a straggler by ISS manager). Sec-
ond, RC manager invokes the reverse event handlers upon
completion of every ISS operation to backtrack the computa-
tion. Third, PSS manager is activated and performs coast for-
ward in which the LP is executed up to the rollback point to
generate intermediate process states. We should disable ISS
manager, to save ISS-based updated states throughout the
coast forward, and RC event handlers; because it is unneces-
sary to mess up the ISS log, with those states that are already
there, and forward computation. Fossil collection also consists
of two parts where PSS and ISS managers release the memory
up to GVT point. OSML kernel works in three main PDES-
aware phases: distributed initialization, optimistic simulation
and distributed termination. OSML elaboration phase pre-
pares a model to run on a PDES environment. It must trans-
form high-level structures of a hierarchical, modular model
into a low-level representation that is only understood by LP-

Fossil collection from the beginning of
state queue to GVT time

ISS-based PSS-based
Checkpoint Checkpoint
[ \I u \

Event /

processed

onGVvVT
Callback

Straggler message:
OnRollback Callback

Virtual Time
for LP;

ISS: Reverse traversal to
restore before-images

! RC: Executing reverse event handlers

Fig. 9. Hybrid state saving in OSML exokernel.
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Fig. 10. The main algorithm of parallel OSML execution semantics when an event is received from PDES microkernel for an LP

based event-scheduling world view. This is performed by tra-
versing the model hierarchy, which is made by pin-to-pin
binding and port-to-pin binding through connectors. The
resultant output of this stage is a logical process network
(LPN). Finally, a new instance of a non-shared interface (NSI)
by Createlnstance method is associated with each port.

After preparing the internal data structures of the OSML
kernel to build LPN in elaboration phase, the parallel simu-
lation begins. Since OSML kernel is a decentralized sched-
uler due to the inherent requirement of optimistic PDES,
OSML semantics is accomplished by each LP that locally
manages a single system-level process. The lifespan of an
individual LP consists of multiple concurrent stages: (i) ini-
tialization, (ii) consuming an event, extracting messages
from the event, decision making on the type of the mes-
sages, applying changes to input ports, updating LP (simu-
lator) state variables to satisfy OSML execution semantics;
invoking the process, managing PSS/ISS/RC routine calls
for state management and collecting generated events dur-
ing process execution; serializing generated events and
aggregating them into a contiguous event, and flushing the
event to PDES microkernel, (iii) executing the semantics of
PSS/ISS/RC managers upon being invoked rollback and
GVT callbacks from PDES microkernel, (iv) and cleanup.

When the processes run for the first time at initialization
stage, they generate events which are captured by OSML
and sent. These initial events cause the kernel to execute the
ExecuteProcess method of other LPs. Fig. 10 shows the steps
taken by this method. Each process retrieves its next event to
process by the GetNextEvent method. Then, PSS state man-
ager is executed. If the process is triggered by processing the
event through the ProcessAggregateEvents method, different
decisions are made. If the process is stackful and has already
suspended itself by the function osml_wait(expr), it is acti-
vated by invoking its function. For osml_wait(int n) mode, an
additional step is required to check whether the number of
events occurred on that stackful process has reached the
value 7 or not. If the process is stackless, its function is called
directly. While a process is executing, the kernel gathers gen-
erated events and also intercepts ISS or RC routine calls. An
aggregation mechanism is used to reduce traffic congestion
of the transmitted events. If a process schedules several
events for another process (e.g., issuing multiple put or notify
operations), these events can be sent as a single aggregate
message. For this purpose, when events are issued in

processes, they are placed into a list. Upon returning the con-
trol of execution from the process to OSML kernel, these
events are flushed and sent. The structure of an aggregate
message is shown in Fig. 11. It is made up of two parts. The
first part contains the message information sent. The second
part has the actual aggregate events. Current OSML kernel
defines three types of events, (i) NSI events that are created
by committing non-shared interfaces, (ii) those events that
originate from osml_wait(T) (in this case, an LP schedules a
timed event for itself), and (iii) OSML events that are issued
by notify(expr). Each NSI event includes port number of the
destination process and the contents committed to its inter-
face, where the data length is obtained from the interface’s
ValueSize method in target, and therefore it is not required to
be specified in the message header. Fig. 12 depicts the flow of
Flush function for NSI events. An array-based bounded hash
table, to increase locality of reference, is used to store events
sent to adjacent LPs. The key of each node in the hash
Table 1s the destination process identifier. Because OSML
uses a unique event ordering mechanism, the order of sched-
uled events is preserved in this table, and events are sent in
the order that appear in the code. The time of events must be
prepared by the tie-breaker before dispatch in order to deal
with simultaneous events. Fig. 13 demonstrates the algo-
rithm of processing the aggregated events. All events are
extracted from the aggregate message and are handled based
on the type of events. For example, the port interface of the
receipt process is determined, and the event data is copied to
the interface for an NSI event. OSML events are divided into
three groups: single-event, and-event list and or-event list.
For a single-event type, it is checked to see if the event identi-
fier is equal to the OSML event already registered by
osml_wait(e), then the process must be triggered. A similar
technique is used for event lists, although we must examine
a vector of events instead.

my bytes 2bytes 1 byte M bytes 1 byte m;bytes

1byte_ m,bytes
——>—>

fami_paos_ovor [ e [ 50 [p [ 302 - [ o
¥

Type ¢ {NSI_EVENT, WAIT_SELF_EVENT, OSML_EVENT}

/
Data: {PortID,Value} Data: {NumOfEvents,EventlD1,EventiD2,...}

Fig. 11. The header format of an aggregate OSML message.
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if any item in flush_list

Add in ort.nlf to
hashtab e with key
inport.DestProcessID

Next item in
flush_list

Next inport in
item.connector.inports

Prepart
receive time
by tie breaker

—

Insert
inport.DestProcessiD
into orders vector if
not available
T any inport in INpol

Copy the item as
PortiD and Value
into the event

if any item in table_item
Send the event by = N
i
table_item

Next
processiD
in orders

Find a table_item
from hash_table
with key processiD

Allocate an
agg regate
event

Fill the event
with receipt
information

if any process in orders vector

Fig. 12. The algorithm of scheduling and flushing an aggregate event, generated by the process execution, down the PDES microkernel.

Two or more events that are scheduled to occur at
the same point in time are called simultaneous events. They
are seen in SLDL simulations frequently. A number of
tie-breaking rules are necessary to decide which simulta-
neous event should be executed first for a deterministic
simulation. Particularly, optimistic protocols allow the
time to creep into the past and make the problem more
critical. In OSML kernel, time is represented by the triplet
t = (T, LC, Pr) in parallel simulation, where tie-breaking
can be performed in a straightforwardly decentralized
fashion. T is the occurrence time of an event. Pr is the LP
priority scheduling the event. LC is calculated based on
Lamport algorithm [41] in which each LP before sending
an event increments a counter associated with the LP.
When an LP sends an event, this value is attached to the
message. On receiving an event, the receipt LP updates
its counter to the maximum of its current counter and the
received LC, and then increments it by 1. Logical clocks
only establish the happened-before relations. Two events
that are processing by an LP may have equal LCs
received from adjacent LPs. For example, when two
sender LPs do not communicate with each other due to
data independence, their logical clocks are not synchro-
nized. To break the ties in this state, the third flag Pr is
added to this definition. Sorting is preformed based on
the following rule:

if port sensitive
and value
changed

Copy message
content to interface
at portfm.PortiD]

Extract a message
m from the event e

Single
event

event list

I m.EventID ==id_registered BI

Add triggers

to n_counter Increment

triggers

if there are any
other messages
ine

Fig. 13. The algorithm of processing an aggregate event.

th <tb T <Th \/(T1:T2AL01 < LOQ)
\/(T1=T2AL01=LC'2/\Pr1 < ]3/‘2)

5 TRooODON’S TooL FLow

Fig. 14 shows Troodon’s tool flow. Designers write their
model’s blueprint using one of the hardware description
languages such as OSML, SystemC and UML. They are con-
nected to the Cloud-based Troodon tool through a browser
and do their time-consuming simulation tasks. Models are
graphically displayed to the users, and they can view
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Model R | S 5 =%
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Fig. 14. The design flow of Troodon.




440

UML Activity

-m | aﬂll]nlntll.leHUUB EE
Diagram ; : £

D -E@B -0

Initialize lJe

Perform FIR opeartion

ouLwrite(sop) h| I [etsa] BI

#include =systemc.h>
SC_MODULE (FIR) {

[[mnl:lls—u By |sou~=a-(r[|'|'z>ne||'|

Ok

1077

sc_in<sc _uint<i> > in[5];
sc_out<sc uint<i> > out;
SC_CTOR(FIR) {

SC_THREAD (process3) ; P emops
sensitive<<clk.pos(): |

Designer

T .,,i

" r ]
- 4——i\.|"isual UML Description ]

XML-based UML
Representation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.2, FEBRUARY 2019

#include <osml.h>
class FIR : public osml_component{
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Fig. 15. UML-based design flow for optimistic simulation in Troodon.

simulation wave forms and performance monitoring plots
inside a single window in real time. They can edit their mod-
els by Graphical User Interface (GUI) components in addition
to uploading their files. Upon submission of a design to the
Cloud, Troodon automatically carries out the remaining tasks
for parallel simulation. SystemC is considered as a high-level
intermediate language in this flow. The models specified in
UML, VHDL, Verilog and SystemVerilog are first converted
into equivalent SystemC codes by source-to-source transla-
tors. If the model is entirely written in OSML, no extra work is
done on it at this stage. Then, an optimistic compiler devel-
oped atop LLVM/Clang [42], which meets the requirements
of OSML semantics, is invoked to transform the SystemC
model into OSML. It is composed of a frontend and a back-
end: the former constructs an abstract syntax tree (AST), and
the latter performs the AST mapping to OSML codes. Because
none of the mentioned languages, including SystemC, can
directly be mapped into OSML, multiple transformations are
made on the input SystemC codes. Section 3 highlighted
some OSML functionalities that are not available in traditional
languages. OSML codes are compiled by a conventional C+4-+
compiler and linked with parallel runtime libraries (e.g.,
OSML kernel), and a parallel simulation executable is gener-
ated. OSML cloud manager runs on the laaS-based OpenStack
platform [43], which distributes PDES executive across the
data center and does monitoring tasks.

6 CASE STUDIES

We study a number of experiments to evaluate the capability
and performance of Troodon. The tests were carried out on
an HPC cluster of 17 nodes managed by OpenStack. Each
machine had 12 cores operating at 3.33 GHz, 12 GB RAM
and 12 MB L3 cache. The machines were connected to a 40
GB/s fiber-optic network. Each node ran CentOS 7 Linux
with a kernel 3.10.0-327. OSML speedups are reported in
comparison with Accellera sequential SystemC reference
simulator. All tested models were compiled by GCC with
the O3 flag. MVAPICH2.3 was installed in the cluster and all

the models on compute nodes had access to test bench files
via NFS. The hardware components used in all benchmarks
are written by the rules mentioned in Section 3.

6.1 UML-Based Hardware Modeling and Simulation
in Troodon

As the first example, we look at how Troodon helps the
designer automatically prepare a model from a high level of
abstraction for optimistic simulation. Fig. 15 shows Troodon’s
complete design flow to transform a model described in Uni-
fied Modeling Language (UML) and generate a parallel exe-
cutable file. Troodon benefits from the utilities of StarUML
tool to translate a model specified in UML to a kind of Sys-
temC coding style which is OSML compliant. To enable the
modeling and specification of a design by supporting trans-
latable extensions to OSML language, a UML profile was
developed for SystemC in StarUML. Each element of the Sys-
temC model has a relationship with UML metaclasses. To
translate a model written on top of the Troodon’s standard
UML profile, we exploit the ability of StarUML to generate
code using its templates. The developed translator includes
all the code generation rules that are written in JavaScript lan-
guage and uses the available functions in StarUML to access
the elements and symbols in it. Now, let’s assume the user
intends to specify and verify an FIR filter. He must first draw
the static structure of his design through UML Class Diagram
by using Troodon’s schematic tools. The model’s subsystems
must be derived from component class and can be connected
through UML ports. The model hierarchy is constructed by
binding UML interfaces to the ports at the UML Model top.
Each component can define different processes. The behavior
of each process is expressed by using the UML Activity Dia-
gram. Fig. 15 depicts the activity diagram of third process for
FIR component. The details about each step of the flow,
namely the operations that must be performed, are precisely
defined by UML Note. Also, if the modeler uses complex data
structures such as queues and trees, he must reuse from
reversible ADT counterparts of the UML profile. The next
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Fig. 16. Architecture of the many-core accelerator.

steps in Troodon’s design flow are done automatically. The
UML structure of a hardware model is stored and retrieved
as an XML file to be processed by Troodon. This XML repre-
sentation is turned into a C++-based SystemC description by
a textual translator. In fact, SystemC is treated as a common
high-level intermediate language for OSML among existing
languages such as UML and Verilog. Because OSML has been
developed atop the C++ standard, the transformation of Sys-
temC codes to OSML can be straightforward. However, a
new critical problem emerges; because C++ is a complex lan-
guage, requires developing a complete C++ frontend that
must be able to understand SystemC structural semantics as
well. On the contrary, since SystemC is a sequential simula-
tion language, has not been founded upon the notion of logi-
cal processes and has no way to define process states; this
frontend gets more complicated. Troodon implements an
optimistic PDES-aware compiler infrastructure to map the
codes of a SystemC model into OSML. Compilation is per-
formed in three stages:

Preprocessing Phase. Because SystemC models uses C mac-
ros to define a part of the model structure and Troodon
frontend can only process the C++ language, the program
code is first preprocessed and expanded with its libraries.
Since the final code is a large file, which includes the decla-
rations of the model code and SystemC library, it is ana-
lyzed in an additional step using its metadata, and the
original model code is reconstructed without macros by
removing extra parts such as SystemC library and STL.

Compiler Analysis Phase (Frontend). Troodon primarily
needs to analyze the structure of a SystemC model and
extract it as an IR. Since Clang is only able to parse C+-+
and does not understand SystemC structures, Troodon

B MPEG Encoder [ Mat. Mul. Kernel Equation Solver

| Async. Dual Port Local Memory |

Fig. 17. Architecture of the many-core BFM platform.
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Fig. 18. Speedups of the different system level models.

frontend was implemented on top of the Clang frontend.
For each SystemC model file, Troodon visits all AST nodes
using pre-order depth-first search (DFS). This procedure is
done with syntactic knowledge of a SystemC model. Fur-
thermore, this frontend performs a comprehensive analysis
on a SystemC model in order to discover necessary informa-
tion unavailable inside the original model—for example, to
determine the ports of an OSML process accurately—and
construct an OSML equivalent model.

Source-to-Source Transformation Phase (Backend). After arich
IR is constructed in phase 2, SystemC transformation phase
into OSML begins, which is the most complex part of the
Troodon compiler. For this transformation, Troodon utilizes
the Rewrite library of the Clang frontend. Only those parts of
the input source file that require applying transformations
are rewritten. An OSML model embodies far more informa-
tion than its SystemC representation that is compulsory for
parallel simulation by the OSML simulation kernel. Troodon
extracts the whole state variables of a SystemC design for
optimistic execution by analyzing module members, global
variables, and local variables inside threads. The backend
puts these state variables down separately into a state class
for each process. Finally, OSML codes, with OSML exokernel,
PDES microkernel and MPI library, are converted to a paral-
lel executable by a traditional C+4- compiler.

6.2 Performance Evaluation

Figs. 16 and 17 show high-level architecture of the developed
benchmarks. In the many-core accelerator, controller broad-
cast tasks to different cores for processing. Two sets of experi-
ments are performed by this accelerator. In the first set, each
core implements a behavioral model of an algorithm, includ-
ing, Sobel filter, quick sort for integer lists, and AES cryptog-
raphy. In the second set, each core contains a cycle-accurate
RTL model of a pipeline triple DES IP core. Fig. 17 imple-
ments a buss functional model (BFM) in which each PE exe-
cutes a computational kernel. Each PE has a local memory
connected to a functional processor via wires. The estimated
time of each processor is modeled by inserting timed-waits
into the code. All the models are partitioned directly using
METIS [44] except for the BEM model and mapped to physi-
cal processors through MPI. In the BEM model, due to heavy
interactions of each processor with its local memory, a
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Fig. 19. Speedups of the BFM model with respect to the number of PEs.

customized partitioner was developed. It first assigns all pro-
cesses of each PE to a single partition, and then the new
mapped model is re-partitioned by METIS for load balancing,.
In fact, the resultant processes from each PE are considered as
asuper LP and the final partitioning is done reliant on it.

Fig. 18 illustrates simulation results of the behavioral
models for three algorithms. As seen, these models show
super-linear speedups. The behavior can be attributed to
large processor caches, in which the model fits into them in
parallel simulation unlike sequential simulation on a single
core. The speedup is almost constant with a large increase
in the number of processors. The reason is related to the
reduction in the number of processes that can be assigned
to processors. Because every processor does not have
enough workload to run, it will spend much of its time for
inter-processor communication; of course, this can lead to
load imbalances. Fig. 19 shows the results of the BEM model
with respect to the different number of PEs, where the
increase in the model complexity results in higher simula-
tion speedups. As seen, the speedup behavior is close to lin-
ear for larger models; in fact, super-linear speedup is not
observed. This is because the memory module does not per-
form any useful computation, and PEs use it solely for load-
ing and storing memory words.

For PSS mode, there is no speedup gain as the simulation
is out of memory and abnormally terminated even with 17
PEs. To demonstrate the impact of PSS on performance, we
performed a simple test to copy 1 GB buffer into another by
the memcpy C function on one of the HPC nodes. It took
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Fig. 20. Speedups of the many-core triple DES RTL model with respect
to the number of PEs.

0.3 second until completion. If we assume that the memory
component receives 100-milion clock events and PSS fre-
quency is 100, state saving is activated at least one million
times and the simulation of a single memory process takes
83 hours to complete! Fig. 20 demonstrates the results of the
RTL model with respect to the number of PEs. This model
has much higher processes than the previous models due to
low level of abstraction and its fine granularity. Super-linear
speedups are observed by increasing the model complexity.
Unlike previous tests, this model has fluctuations in speed-
ups specially by increasing the number of processors. This is
because of the small amount of RAM installed per node on
the cluster. The DES model involves a highly irregular topol-
ogy surrounded by many feedback loops. Accordingly, the
METIS partitioner that treats the resultant directed LP graph
as an undirected one cannot perform uniform mapping for
large processor counts, and then it can result in load imbal-
ances, especially when activity is high around the feedback
loops. We observed that the fine granularity of the RTL
model and the load imbalance caused by the partitioner for
large processor counts (and in a number of specific counts)
leads to increased rollbacks and also lack of enough memory
space (because the simulation is not time-bound, but input-
data-bound; therefore, LPs advances their virtual times too
much fast giving rise to many extra primary and secondary
rollbacks), which hurt performance significantly.

Table 4 shows sequential and parallel execution times,
and simulation efficiency for some of the bench-marks.

TABLE 4
Some Runtime Statistics for Sequential and Parallel Simulations

Parallel Execution Time (PET) (sec) and Simulation Efficiency (%)

Sequential ~ Sequential

Model

SystemC (sec) OSML (sec) 34 cores 64 cores 80 cores 96 cores 112 cores
PET Efficiency PET Efficiency PET Efficiency PET Efficiency PET Efficiency
SOBEL 1147 1468 23 98.1 10.7 97.8 9.1 97.9 7.9 97 .4 8.6 97.5
AES 519 652 11.8 99.8 6.1 99.62 53 99.35 49 99.29 48 97.52
BFM (1020) 6375 6249 187 97.16 108 98.22 83 95.49 76 95.66 61 93.82
DES (512) 555 531 17.3 97.2 7.6 95.6 9.5 82.39 14.4 79.8 16 72.35
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Simulation efficiency is defined by decrementing one by the
ratio of rollbacked events to the total processed events, and
the result multiplied by one hundred. It is worth noting that
for large-scale models like SOBEL and AES, sequential
OSML execution time is slightly larger than sequential Sys-
temC. This is because OSML makes use of the sequential
WARPED simulation manager that instead emulates the exe-
cution of the LP-based model as an event list-based imple-
mentation. Since the sequential OSML simulator maintains
additional data structures for the LP pattern, it cannot benefit
from cache locality on a single core. Therefore, the reported
speedups in Figs. 18 through 20 are the worst-case scenarios
calculated with respect to the sequential SystemC runs.
Moreover, the low efficiency of the DES RTL model in a large
number of processors accompanies the analysis for the oscil-
lations given in the previous paragraph.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new optimistic PDES language
called OSML that inherits all the features of existing hard-
ware languages, and discussed the details of its distributed
simulation kernel. Because optimistic PDES has significant
potential to harness maximum degree of parallelism from
DES programs on many-core microprocessors and super-
computers, as well as current-day hardware models are
intractable to be simulated by optimistic synchronization, a
hybrid checkpointing scheme was developed for OSML. To
address parallelization challenges of the existing HDLs and
SLDLs, we presented a unified CAD tool, referred to as Troo-
don, to automatically accelerate them on Cloud-based HPC
clusters. The introduced architecture allows researchers to
easily explore different asynchronous PDES algorithms for
distributed OSML simulation. On this basis, we plan to
investigate various simulation optimizations for SLDLs,
including dynamic load balancing and adaptive PDES proto-
cols. In addition, further research will be devoted to build
comprehensive simulation models specific to other domains
like computer networks in OSML.
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