
ACD++: a Domain Specific Language for Cell-DEVS Modelling

Chong Jiao and Baohong Liu

Abstract— This paper introduces a library ACD++ for mod-
eling and simulation of cellular models based on Cell-DEVS
formalism. The goal is to allow the modeling of cellular
models more flexible and adaptive. ACD++ is implemented in
Ruby programming language, providing an internal Domain
Specific Language (DSL) to simplify the construction of cellular
models. Ruby’s meta-programming characteristics and plentiful
syntactic sugar enables the easy expression of complex logics
behind the models. The Cell-DEVS formalism proved consistent
with the DEVS hierarchy, improving the description of com-
plex systems. Another strength lies in the extensibility of the
DSL, allowing the modelers to introduce their domain specific
vocabulary to facilitate the definition of specific models. The
use of this library has allowed the development more flexible
and adaptive, significantly reducing development time.

Index Terms— DSL; Cell-DEVS; cellular model; modeling
and simulation

I. INTRODUCTION

In recent years, the flexibility and adaptability of modeling

and simulation has become the main concern especially in the

area of decision-making. For instance, in the simulation of

complex systems for decision making, the decision makers

often expect the simulation to be adaptive to the dynamic

changing decision environment [1]. Many technologies have

been proposed to enable the flexibility of modeling from the

perspective of design pattern, aspect-oriented programming,

or modeling language. Our work should be placed at the

latter one, which aims to provide an internal Domain Specific

Language (DSL) to improve the description of complex

systems which can be represented by cell spaces. Cellular

Automata formalism (CA) has been widely used to describe

those systems which can be represented as cell spaces [2]-

[3]. CA is defined as n-dimensional lattices composed of

cells with discrete and finite states. It can be viewed as a

dynamic system, which evolves at separate points in time.

However, the discrete time paradigm poses constraints on

the precision and efficiency of the simulated models [4].

In addition, most cells would not update their states in

each iteration, which further reduce efficiency. To solve it,

the discrete event cellular models are proposed in paper

[5] and are specified as Cell-DEVS, which is an extension

of Discrete EVent System specification (DEVS). DEVS is

proposed by professor Zeigler in 1976 and used to specify

formally discrete event systems using a modular description.

The discrete event paradigm and formal specification of Cell-

DEVS formalism provide great advantage of being efficient,

The research work is supported by National Natural Science Foundation
of China under Grant No. 61374185.

Chong Jiao and Baohong Liu are with College of Information System
and Management, National University of Defense Technology, Changsha,
410073, P. R. China (jch email@qq.com; liubh@nudt.edu.cn)

accurate and easy to verify. Many simulation tools have

provided support for the Cell-DEVS formalism, such as

James-II, CD++, and ADEVS [6]. However, these tools are

either limited to the implemented programming language, or

constrained by the modeling methodology. Thus they cannot

provide enough flexibility and adaptability. To overcome it,

we expect the simulation tools can provide mechanism for

domain experts to create and modify the models according

to domain knowledge. DSL is competent for it. A Domain-

Specific Language (DSL) is a programming or description

language tied to a specific application domain [7]. Compared

with general programming language, DSL is more expres-

sive, easily verified, and provides a good way to enable the

flexibility of modeling. Ruby is a programming language

invented in 1993, whose meta-programming characteristics

and plentiful syntactic sugar provide strong support to grow

a DSL. In this paper, we propose a modeling and simulation

library, ACD++, based on Cell-DEVS specification. It is

implemented in Ruby programming language and is devote

to providing an internal DSL to improve the description of

complex systems which can be represented by cell spaces.

II. BACKGROUND

A. DEVS and Cell-DEVS formalism

DEVS formalism originates from system theory, providing

a framework for the construction of hierarchical models in

a modular manner [8]. In DEVS, basic models are specified

as black boxes with input and output ports. Several models

can be integrated together to form a hierarchical model.

The integrated model is either atomic (behavioral) model or

coupled (structural) model. The former models autonomous

behavior and is specified as:

AM =< X,Y, S, δint, δext, λ, ta >

Where

X is the set of inputs

Y is the set of outputs

S is the set of states

δint : S → S is the internal transition function

δext : Q×X → S is the external transition function, where

Q = {(s, e)|s ∈ S, 0 ≤ ta(s)} is the total state set and e is

the elapsed time since last transition

λ : S → Y is the output function

ta : S → R+
0 is the time advance function

On reception of external event, δext(s, e, x) is invoked

using input value x, elapsed time e, and current state s. In

the absence of external events, an atomic model will remain

in state s until ta(s) expires. Then the output function λ(s)
is called and the model will transform into the new state

The 9th International Conference on Modelling, Identification and Control
(ICMIC 2017), Kunming, China, July 10-12, 2017

277

δint(s). The coupled model is composed of child models,

each of them being atomic or coupled. Formally, the classical

coupled models are specified as:

N =< X,Y,D, {Md|d ∈ D}, EIC,EOC, IC, SELECT >

where

X is the input set of the coupled model

Y is the output set of the coupled model

D is the set of component references

{Md|d ∈ D} is the set of child models

EIC is the external input coupling set which connect inputs

to component inputs

EOC is the external output coupling set which connect

component outputs to outputs of N.

IC is the internal coupling set which connect component

outputs to component inputs

Select : 2Z − φ→ Z is the tie-breaking function

Therefore, a coupled model defines the components and

their interactions. Detailed description can be found in [8].

Cell-DEVS is an extension of DEVS formalism, which

defines each cell as an atomic model, and the cell space as

a coupled model. Each cell holds state variables and some

rules which are used to update its state using its present state

and neighborhoods. The formal specification of Cell-DEVS

atomic model can be found in [9]-[10]. It can be specified

as:

TDC =< X,Y, S,N, d, δint, δext, τ, λ, ta >

Where

X, Y, and S represent input set, output set and state set

respectively. N represents the number of inputs of a cell. The

delay function d is associated with each cell, after which, the

new state value is sent out. τ represents the local rules which

are responsible to compute the future state using its current

state and neighbourhoods’ state. A complete cell space model

can be defined as:

GCC =< Xlist, Ylist, X, Y, n, {t1, t2, · · · , tn}, N,C,B, Z >

Where

Xlist and Ylist represent input coupling list and output

coupling list, which are used to define the coupling relation

among external DEVS models. n defines the dimension of

the cell space.{t1, t2, · · · , tn} is the number of cells in each

dimension. N defines the number of inputs of each cell,

which is the same as the definition of TDC. C is an array

of atomic cells. B represents the border cells, which may

have different behaviours from the rest cells. Z represents

the transition rules.

Both of DEVS and Cell-DEVS provide a formal spec-

ification that can reduce the cost of development. Thus

they provide a good starting point to discuss flexibility of

modelling and simulation.

B. Domain Specified Language

A Domain-Specific Language (DSL) is a programming or

description language tied to a specific application domain.

Unlike general-purpose language, it is designed for a partic-

ular kind of problem.

A DSL can either be external or internal. The former exists

independently from other languages. The latter rely on the

hosting language, which can be viewed as an enhancement

of the hosting language [11]. In this paper, we provide an

internal DSL implemented in Ruby. Ruby’s dynamic binding

mechanism and closures (a function of block can capture its

referencing environment) makes you can execute the closure

with the context of arbitrary objects, which provides strong

support for the internal DSL.

Many simulation tools have provided support for the

Cell-DEVS formalism, such as ADEVS [12], CD++ [13]-

[14] and James-II [15]. Except for ADEVS that provides

API for modelers to create Cell-DEVS models, CD++ and

James-II both provide a DSL. However, both of them are

based on an external DSL, which poses constraints on the

extensibility and expressive power. Our work proposes an

internal DSL implemented in Ruby for the modeling of Cell-

DEVS models. Modellers can benefit from the convenience

brought by DSL, while defining complex logics using Ruby.

Another strength lies in the extensibility, allowing it to be

extended to the specified domain.

III. DESIGN AND IMPLEMENTATION

ACD++ has been implemented using Ruby. The ACD++

library itself focuses on the improvement of modelling

flexibility for cellular models. Our work is an extension of

DEVS-Ruby, which is a DEVS modelling and simulation

library implemented in Ruby proposed by paper [11].

In this section, we will first propose our design of DSL.

Then, we discuss our modelling architecture and implemen-

tation.

A. Design of DSL

To improve the flexibility of modelling, we propose some

requirements that an ideal DSL should possesses. (1) Be

consistent with the Cell-DEVS specification; (2) Support

the Cell-DEVS vocabulary, and be more accessible to the

non-experts; (3) The created models can be easily integrated

into the DEVS architecture; (4) Offer a way to extend the

DSL.

As ACD++ implements Cell-DEVS theory, our first

concern is to remain consistent with the specifications. The

vocabulary of our DSL includes all the elements in the

specification, such as neighbourhood, state, dimension.

Table I shows the specification of ‘Game of Life‘ [16].

From the specification, we can learn that the dimension of

the cell space is 20 × 20. Each cell owns a state variable

whose domain is [DEAD, ALIVE]. The state of cells whose

coordinator is beyond the dimension is regarded as DEAD.

Moreover, the behaviour of cells is defined as a set of

rules with the form {ACTION, DELAY, CONDITION}. These

indicate that when the CONDITION is satisfied, the cell

would take the ACTION after the DELAYed time expires.

This is similar to the definition in CD++, which is described

278

TABLE I

THE SPECIFICATION OF GAME OF LIFE

size 20,20
states :state=>[:DEAD,:ALIVE]
border :constant, :state=>:DEAD
neighbor_type :moore, 1
init_with_value state: :ALIVE
init_with_maps [0,0]=>{:state => :DEAD},

[0,1]=>{:state=> :DEAD}

TABLE II

THE RULES IN GAME OF LIFE

rule action{state(:DEAD)}, delay{1},
condition{state == :ALIVE and

count_range(2..3, :state => :DEAD)}
rule action{state(:ALIVE)}, delay{1},

condition{state == :DEAD and
count(:state=> :ALIVE) == 3}

in paper [13]-[14]. However, unlike CD++ which limits that

each cell can only hold one state variable, ACD++ allows

a cell having multi-variables. Thus, the ACTION can update

several state variables at the same time. The rules in ‘Game
of Life‘ are specified in Table II. A cell will transform into

dead if its 2 or 3 neighbourhoods are dead. If the cell is dead,

it will transform into alive when 3 of its neighbourhoods are

alive.

In fact, the rules specified in Table II are purely Ruby code.

The vocabularies such as rule, action and condition are just

functions in Ruby. Those in the braces are block parameter of

Ruby. This means modellers can define any logic conformed

to Ruby’s syntax, which provides convenience for models

with complex logics. Each cell space can be coupled with

other DEVS models. 1 presents the default structure of cell

space informally. The default cell space model has an input

port in and output port out. On reception of external event

from input port in, the received messages will be broadcast

to each cell. In this way, we can communicate with the cells

on the fly, providing a flexible way to influence the behaviour

of cells. Besides, each cell will send its current state when

its state changes. Fig.

Table III gives an example in which a cell space model is

coupled with a DEVS model, which receives messages from

the port out and then prints the states of the cell space. First,

we add the cell space model and the observer model into the

DEVS hierarchy. Then, we couple the output out of the cell

Fig. 1. The default structure of cell space

TABLE III

COUPLE THE CELL SPACE MODEL WITH OTHER DEVS

MODELS

DEVS.simulate do
duration 300
add_cellspace(name: :cellspace) do
size 20, 20
other specification of cell space
end
another DEVS model
add_model type: CellObserver, name::observer,

with_args: [[20,20]]
coupled the two mode
plug cellspace@out, with: observer@input
end

space with the input port in of the observer by calling the

function plug and finish our specification.

In addition, to further improve the flexibility and adap-

tation, ACD++ provides several hooks to customize the

behaviours of cell space. These hooks are listed is Table IV.

Modellers can customize the behaviours of cell space like

any other DEVS models.

Despite that we simplify the definition of Cell-DEVS

models, we encourage the modeler to extend our DSL to

introduce their own specific vocabulary. In this way, the end

user can focus on the specified domains. To extend our DSL,

TABLE IV

PROVIDED HOOKS TO CUSTOMIZE THE BEHAVIOURS OF CELLS

hooks description

cell control(&block) To customize the behavior of each cell. The block
will be executed when a cell is instantiated. You can
customize the cells behavior in the block the same as
other DEVS models.

execute before cells-
be established-(&block)

To customize the structure of cell space model. The
block will be executed before all cells established. You
can add sub-models, ports or coupling relations in the
block for the space model.

execute after cells-
be established-(&block)

To customize the structure of the cell space model. The
block will be executed after all cells established.

279

the modellers should define the specified vocabulary based

on our provided vocabulary, and then ACD++ provides a way

to integrate them into our modelling architecture.

B. Implementation

Fig. 2 shows the modelling architecture of ACD++. The

CellModel class represents the class of cells, and it is an

atomic model. The CellSpace class represents the class of

cell space and it is a coupled model.

Fig. 2. Modelling architecture

Each cell is associated with a delay. According to the

type of delay, the cell model can be divided into two kinds:

transport and inertial, which is represented by TDCellModel
and IDCellmodel in Fig. 2. Fig. 3 presents the informal

specification of a cell with transport delay and inertial delay.

When received an external event, the local rules are activated.

The result of this computation will be delayed during delay
time units. To do so, an internal event is scheduled. For a

cell with transport delay in Fig 3 (a), a queue is used to

preserve the result of computation. During the time of delay,

new external event can arrive. But for a cell with inertial

delay shown in Fig 3 (b), the result of computation is saved

in f. External event during the delay may change the value

of f.
Paper [9] proved these two kinds of models are both

consistent with DEVS specification.

To build a simulation, we propose an internal DSL aiming

to make the procedure of modelling and simulation more

convenient and flexible. Our implementation is on the basis

of DEVS-Ruby, which provides a DSL for DEVS modelling

Fig. 3. Informal specification of a cell with transport delay and inertial
delay. (a) transport delay (b) inertial delay

and simulation, whereas our work mainly focus on the

modelling of Cell-DEVS models.

As seen in Table III, the function simulate, defined

under the DEVS namespace, serves as the entry point

into our DSL. It will do two things. First, it instantiates a

SimulationBuilder, which is responsible to instantiate the

root coordinator and root model. Then, it will execute the

given block within the context of the builder.

The entry point of our DSL proposed for Cell-DEVS

models is the function add cellspace. Similarly, this will

do three things. First, it will instantiate a CellBuilder,

which is responsible to instantiate the cell space model

and its associated processor. Then it will execute the given

block within the context of the builder to complete the

specification. Finally, it instantiates the cells and their

associated processor according to the specification.

In addition, to improve the flexibility and adaptability of

modelling, we adopt several hooks which has been listed in

Table IV. The detailed procedures when establishing a Cell-

DEVS model are depicted in Table V.

The relationship among builders is shown in Fig. 4 .

The AtomicBuilder and CoupledBuilder are responsible for

the building of atomic model and coupled model. The

SimulationBuilder is inherited from CoupledBuilder, and

it defines some vocabulary relevant to simulation and is

responsible for the building of root model. The CellBuilder
is inherited from CoupledBuilder, which is responsible for

the building of Cell-DEVS models. Through the Mix-In

mechanism of Ruby, the function add cellspace can be mixed

into CoupledBuilder, thus each coupled model can add Cell-

DEVS model as its child model.

One of our strengths of our proposed DSL lies in its

extensibility. We encourage the modellers to extend our DSL

to introduce their own specific vocabulary. To extend our

DSL, the modeller should define a builder inherited from

our CellBuilder, which is responsible to instantiate the model

and its associated processor. Then, the modeller defines the

280

TABLE V

PROCEDURES OF ESTABLISHING A CELL-DEVS MODEL

1. the function add_cellspace is called with
a block parameter;

2. Instantiate the CellBuilder, and invoke
its constructor function using the given
block parameter;

2.1 Instantiate a coupled model as the
cell space as well as its processor;

2.2 Execute the block within the context
of CellBuider and complete the spec-
ification;

2.3 Invoke the before_establish hook to
customize the structure of cell space
model, which is described in hook
execute_before_cells_be_established;

2.4 Instantiate the cell model as the
child model of cell space according
to specification;

2.5 Establish the coupling relation among
the child models;

2.6 Invoke the after_established hook to
customize the structure of cell space
model.

3. Finish the specification.

Fig. 4. The relationship among builders

TABLE VI

EXTEND DSL TO DESCRIBE THE TERRAIN MODEL

1. Declare the TerrainBuilder inherited from
CellBuilder, and introduce the specified
vocabulary as the instance methods, for
example, side_length.

2. Define the entry point of DSL;
module Terrain
def add_terrain_model(name, &block)
TerrainBuilder.new(name: name, &block)

end
end

3. Mix the function add_terrain_model into the
CoupledBuilder.

DEVS::CoupledBuilder.send :include Terrain

specified vocabulary as the instance methods of this builder.

Third, the modeller should define an entry point similar to the

function add cellspace, which is responsible to instantiate the

CellBuilder. Similar to the provided function add cellspace,

the entry point should also be mixed into CoupledBuilder so

that each coupled model can add the specified model as its

child model. An example which is used to extend out DSL

to describe the terrain model is illustrated in Table VI.

On benefit of the abstract simulation mechanism of DEVS,

we just utilize the simulation algorithms implemented in

DEVS-Ruby [11], so that we can focus on the modelling

of Cell-DEVS models.

IV. USE CASE STUDY

One of the strength of ACD++ lies in that it provides

an internal DSL implemented in Ruby. Modellers can ben-

efit from the convenience brought by DSL, while defining

complex logics using Ruby. Another strength lies in the

extensibility, allowing it to be extended to the specified

domain. This section will illustrate a well-known model

for fire propagation of forest fires [13], [17]. This model

uses environmental and vegetation conditions to infer the

fire spread ratio. To simplify the model, we only take the

wind into account here. The state variable of each cell is a

continuous variable which represent the time when the cell

begin to burn. The fuel model, the speed and direction of the

wind, terrain of topology and dimensions of cell are used

to get the spread ratio in each direction. For instance, if

the current is not burning (ignite-time==0), and the north-

east neighbourhood (1,-1) has started to burn (whose ignite-
time>0), the state variable ignite-time will be set to the result

of the ignite-time of (1,-1) plus distance of the two cells

281

TABLE VII

FIRE SPREADING BUILDER

class FireSpreadBuilder < CellBuilder
#east spreading ratio
def east_speed(speed=nil)
@east_speed=speed unless speed.nil?
@east_speed

end
#other directions of spreading ratio are
omitted out

def fire_behavior
#east_spread
rule(
action{igniteTime(cell_igniteTime_at(

[1,0])+ side_length_of_cell/
east_speed)},

delay {side_length_of_cell/east_speed},
condition{ igniteTime==0 and

cell_igniteTime_at([1,0])>0}
)

north_east_spread
rule(
action{igniteTime(cell_igniteTime_at(

[1,-1])+Math.sqrt(2)*side_length-
_of_cell/north_east_speed)},

delay {Math.sqrt(2)*side_length_of_cell/
north_east_speed},

condition{ igniteTime==0 and cell_ignite-
Time_at([1,-1])>0}

)
#north, north_west, west, south_west,
south, and south_east

end
end

divided by north-east spreading ratio. To demonstrate the

extensibility of our DSL, we will extend our DSL for this

fire propagation simulation. As mentioned in section III, we

first define a builder inherited from CellBuilder. As seen in

the Table VII, we declare a builder FireSpreadBuilder which

defines the specified vocabulary as its instance methods.

For instance, the function fire behavior defines the rules

which are used to update their state. For instance, the

first rule defined in the function fire behavior indicates that

when the cell is not burning or burned (ignite-time==0) and

the east neighbourhood (1,0) is burning (ignite-time>0), it

will become burning after the delayed time (using distance

divided by east spread ratio). Due to the limitation of space,

we did not give all the instance methods.

Last, we should define the entry point, function ad-
d fire spread model, which is responsible to instantiate the

FireSpreadBuilder, and mix it into the CoupledBuilder. Thus,

we can add this fire propagation model as the child model

of any coupled model. Finally, we finish specification of our

simulation using the extended DSL in Table VIII.

TABLE VIII

SPECIFICATION OF THE FIRE PROPAGATION SIMULATION

DEVS.simulate do
duration 30
add_fire_spread_model(name: :fire_model) do
size 20,20
states :igniteTime=>[0,inf]
neighbor_type :moore, 1
border :constant, igniteTime: 0
init_with_value igniteTime: 0

init_with_maps [9,9]=>{igniteTime: 1}

north_speed 5.106976
north_west_speed 17.967136
west_speed 5.106976
south_west_speed 1.872060
south_speed 1.146091
south_east_speed 0.987474
east_speed 1.146091
north_east_speed 1.872060
side_length_of_cell 15.24

fire_behavior

end
add the observer
add_model type: CellObserver, name::observer
couple the two models
plug "fire_model@out", with:"observer@input"
end

As is shown is Table VIII , the length of simulation is set

to 30. The first cell to start burning is at (9,9) at time 1, and

Fig. 5 gives the 4 snapshots during the simulation.

Compared with CD++, one of strengths of our proposed

DSL lies in its extensibility, which providing a good way to

distinguish the role of modeller from the end-user. Thus the

end-user does not have to know a lot about the library but

focus on the domain knowledge.

V. CONCLUSION

This paper proposes a modelling and simulation library,

ACD++, based on Cell-DEVS specification. The start point

of our work is to allow the modelling of cellular models more

flexible and adaptive. To achieve this, we propose an internal

DSL allowing to easily express the modelling specification

of Cell-DEVS. By using the Cell-DEVS specification, the

cell model can be easily coupled with other DEVS models,

providing a flexible way to influence the behaviour of cells.

In addition, the internal DSL implemented in Ruby deter-

mines that modeller can easily define complex logics using

Ruby.

282

Fig. 5. snapshots during the simulation

REFERENCES

[1] B. Liu and L. Lin, “The collaboration and coevolution of experts
system and simulation system in agile modeling and simulation,”
in Third International Conference on Intelligent System Design and
Engineering Applications, 2013, pp. 1404–1407.

[2] M. Sipper, “The emergence of cellular computing,” Computer, vol. 32,
no. 7, pp. 18–26, 1999.

[3] S. Wolfram, Theory and applications of cellular automata. World
scientific, 1986.

[4] G. A. Wainer and N. Giambiasi, “Application of the cell-devs paradigm
for cell spaces modelling and simulation,” Simulation Transactions of
the Society for Modeling & Simulation International, vol. 76, no. 1,
pp. 22–39, 2001.

[5] ——, Timed Cell-DEVS: Modeling and Simulation of Cell Spaces.
New York: Springer, 2001.

[6] R. Franceschini, P.-A. Bisgambiglia, L. Touraille, P. Bisgambiglia, and
D. Hill, “A survey of modelling and simulation software frameworks
using discrete event system specification,” in Imperial College Com-
puting Student Workshop, 2014, p. 40C49.

[7] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” Acm Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[8] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation. Academic, 2000.

[9] G. A. Wainer and N. Giambiasi, “N-dimensional cell-devs models,”
Discrete Event Dynamic Systems, vol. 12, no. 2, pp. 135–157, 2002.

[10] A. Lpez and G. A. Wainer, “Improved cell-devs model definition in
cd++,” in Cellular Automata, International Conference on Cellular
Automata for Research and Industry, Acri 2004, Amsterdam, the
Netherlands, October 25-28, 2004, Proceedings, 2004, pp. 803–812.

[11] R. Franceschini, P.-A. Bisgambiglia, P. Bisgambiglia, and D. Hill,
“Devs-ruby: a domain specific language for devs modeling and simu-
lation (wip),” in Proceedings of the Symposium on Theory of Modeling
& Simulation-DEVS Integrative, Tampa, United States, 2014, p. 15.

[12] J. Nutaro. (1999) Adevs (a discrete event system simulator). [Online].
Available: http://www.ece.arizona.edu/nutaro/index.php

[13] G. A. Wainer, “Cd++: a toolkit to develop devs models,” Software:
Practice and Experience, vol. 32, no. 13, pp. 1261–1306, 2002.

[14] E. Glinsky and G. A. Wainer, “New parallel simulation techniques
of devs and cell-devs in cd++,” in Proceedings of the 39th annual
Symposium on Simulation, 2006, pp. 244–251.

[15] S. Zinn, J. Himmelspach, A. M. Uhrmacher, and J. Gampe, “Building
mic-core, a specialized m&s software to simulate multi-state demo-
graphic micro models, based on james ii, a general m&s framework,”
Journal of Artificial Societies and Social Simulation, vol. 16, no. 3,
p. 5, 2013.

[16] M. Gardner, “Mathematical games: The fantastic combinations of john
conways new solitaire game life,” Scientific American, vol. 223, no. 4,
pp. 120–123, 1970.

[17] R. C. Rothermel, “A mathematical model for predicting fire spread in
wildland fuels,” Usda Forest Service General Technical Report, vol.
115, 1972.

283

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

