
Test Generation and Test Prioritization
for Simulink Models with Dynamic Behavior
Reza Matinnejad, Shiva Nejati , Lionel C. Briand , Fellow, IEEE, and Thomas Bruckmann

Abstract—All engineering disciplines are founded and rely on models, although they may differ on purposes and usages of modeling.

Among the different disciplines, the engineering of Cyber Physical Systems (CPSs) particularly relies on models with dynamic

behaviors (i.e., models that exhibit time-varying changes). The Simulink modeling platform greatly appeals to CPS engineers since it

captures dynamic behavior models. It further provides seamless support for two indispensable engineering activities: (1) automated

verification of abstract system models viamodel simulation, and (2) automated generation of system implementation via code

generation. We identify three main challenges in the verification and testing of Simulink models with dynamic behavior, namely

incompatibility, oracle and scalability challenges. We propose a Simulink testing approach that attempts to address these challenges.

Specifically, we propose a black-box test generation approach, implemented based on meta-heuristic search, that aims to maximize

diversity in test output signals generated by Simulink models. We argue that in the CPS domain test oracles are likely to be manual and

therefore the main cost driver of testing. In order to lower the cost of manual test oracles, we propose a test prioritization algorithm to

automatically rank test cases generated by our test generation algorithm according to their likelihood to reveal a fault. Engineers can

then select, according to their test budget, a subset of the most highly ranked test cases. To demonstrate scalability, we evaluate our

testing approach using industrial Simulink models. Our evaluation shows that our test generation and test prioritization approaches

outperform baseline techniques that rely on random testing and structural coverage.

Index Terms—Simulink models, search-based software testing, test generation, test prioritization, test oracle, output diversity,

signal features, structural coverage

Ç

1 INTRODUCTION

MODELING has a long tradition in software engineering.
Software models are particularly used to create

abstract descriptions of software systems from which
concrete implementations are produced [27]. Software
development usingmodels, also referred to as Model Driven
Engineering (MDE) [27], is largely focused around the idea
of models for code generation [26] or models for test genera-
tion [75], [101]. Code or test generation, although important,
is not the primary reason for software modeling when soft-
ware development occurs in tandem with control engineer-
ing. In domains such as the Cyber Physical System (CPS)
domain where software closely interacts with physical
processes and objects, one main driving force of modeling is
simulation, i.e., design time testing of systemmodels. Simula-
tion aims to identify defects by testing models in early stages
and before the system has been implemented and deployed.

In the CPS domain, we are interested in models that
have dynamic behavior (i.e., models that exhibit time-varying

changes) [39], [47], [104]. These models can be classified
based on their time-base (i.e., time-discrete versus time-
continuous) and based on the values of their output variables
(i.e., magnitude-discrete versus magnitude-continuous).
Specifically, these models might be time-continuous magni-
tude-continuous, time-discrete magnitude-continuous,
time-continuous magnitude-discrete, and time-discrete
magnitude-discrete [20], [104] (see Fig. 1).

Models built for the purpose of simulation are heteroge-
neous, encompassing software, network and physical parts,
and are meant to represent as accurately as possible the real
world and its continuous dynamics. These models may
build on one or a combination of the four different modeling
paradigms shown in Fig. 1. But, most often, Simulation
models include time-continuous or magnitude-continuous
abstractions to be able to capture plant models (i.e., environ-
ment) and the interactions between software systems and
plant models [20], [104]. On the other hand, models built for
the purpose of code generation capture software parts only
and are described using time-discrete magnitude-discrete
models [44], [93]. This is because the generated software
code from these models receives sampled input data in
terms of discrete sequences of events and has to run on
platforms that support discrete computations only.

CPS development often starts with building simulation
models capturing both continuous and discrete behaviors
of a system [20], [104]. These models enable engineers
to explore and understand the system behavior and to start
system testing very early. Simulation models are then
discretized by replacing continuous calculations with their

� R. Matinnejad, S. Nejati, and L. Briand are with the SnT Centre for
Security, Reliability, and Trust, University of Luxembourg, Luxembourg
L-2721. E-mail: {reza.matinnejad, shiva.nejati, lionel.briand}@svv.lu.

� T. Bruckmann is with the Delphi Automotive Systems, Luxembourg 4940.
E-mail: thomas.bruckmann@delphi.com.

Manuscript received 25 Aug. 2016; revised 8 Feb. 2018; accepted 20 Feb. 2018.
Date of publication 28 Feb. 2018; date of current version 25 Sept. 2019.
(Corresponding author: Shiva Nejati.)
Recommended for acceptance by M. Whalen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2018.2811489

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019 919

0098-5589� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0281-8231
https://orcid.org/0000-0002-0281-8231
https://orcid.org/0000-0002-0281-8231
https://orcid.org/0000-0002-0281-8231
https://orcid.org/0000-0002-0281-8231
https://orcid.org/0000-0002-1393-1010
https://orcid.org/0000-0002-1393-1010
https://orcid.org/0000-0002-1393-1010
https://orcid.org/0000-0002-1393-1010
https://orcid.org/0000-0002-1393-1010
mailto:
mailto:

corresponding discrete approximation calculations. This
results in models from which software code can be automat-
ically generated. Simulation models may, in addition, serve
as test oracles (formal specifications) for testing and verifica-
tion of software code.

It is important to develop effective verification and test-
ing techniques to ensure correctness of both simulation and
code generation models in the CPS domain. In our work,
we focus on models developed in Matlab/Simulink/State-
flow (or Simulink for short) [96]. Simulink is an advanced
platform for developing both simulation and code genera-
tion models and is prevalently used by the CPS industry. In
the past years, we have been studying existing verification
and testing techniques developed for Simulink models
within the context of a research collaboration with Delphi
Automotive. Drawing on our combined experiences and
knowledge from research and practice, we have identified
three key challenges concerning existing testing and verifi-
cation techniques for Simulink models. We discuss these
challenges below.

The Incompatibility Challenge. The existing approaches to
testing and verification of Simulink models entirely focus
on magnitude-discrete time-discrete models, i.e., code gen-
eration models [73], [76], [117], and are not compatible, and
hence not applicable, to Simulink models with continuous
behaviors (i.e., simulation models). This is because these
techniques often require to translate Simulink models into
an intermediate discrete behavior model to be analyzed by
model checkers (e.g., DiVine [11], KLEE [18] and JavaPath-
Finder [42]) or by SAT/Constraint/SMT solvers (e.g.,
PVS [69], Prover [77]). The incompatibility challenge some-
times extends to some features that are commonly used in
the Simulink code generation models [82], [117]. Specifically,
existing techniques have difficulties to handle library code
or system functions (implemented as Matlab S-Functions).
For example, Simulink Design Verifier (SLDV) [97], a com-
mercial Simulink testing tool that is a product of Mathworks
and a Simulink toolbox, can handle only some restricted
forms of S-Functions. Finally, due to limitations of existing
constraint/SAT/SMT solvers [46], techniques that rely on
these solvers to verify or test Simulink [8], [24], [35], [40], [97]
often fall short when the underlying model contains floating

point and non-linearmath operators (e.g., square root or trig-
onometry functions).

The Oracle Challenge. The second challenge mostly has to
do with unrealistic assumptions about test oracles for Simu-
link models (both simulation and code generation ones) in
practical settings. Several existing techniques rely on auto-
matable test oracles described as assertions (specified test
oracles [12], [60]) or runtime errors (implicit test oracles [12],
[60]) to identify faults in Simulink models [66], [67]. How-
ever, formal specifications from which assertions can be
derived are expensive and are often not available in prac-
tice. Runtime errors such as integer over-/underflows are
not sufficient as many faults may not lead to runtime
crashes. Even in the presence of formal requirements and
runtime errors, engineers tend to inspect system outputs
manually to identify unforeseen failures. As a result, test
oracles for Simulink models are to a great extent manual.

In the absence of automatable test oracles, existing
approaches seek to reduce the manual oracle cost by gener-
ating small test suites that achieve high structural cover-
age [98], [99]. Such test suites are able to execute most of the
source code or the model under test, suggesting that the
code or the model is unlikely to contain undetected bugs.
Further, when test suites are small, their outputs can be
inspected manually without requiring a lot of effort. How-
ever, several studies demonstrate that structural coverage
criteria alone may not be effective at finding faults in soft-
ware models and programs [32], [41], [65], [91].

A further limitation is that test oracles in the literature are
largely focused on verifying discrete system properties (e.g.,
invariants or reachability). Several important CPS require-
ments concern continuous dynamic aspects [16], [37], [73]. For
example, these requirements may constrain the time it takes
for a controlled variable to stabilize sufficiently close to a refer-
ence value (set-point), or they may constrain the frequency
and the amount of changes of a controlled variable over a con-
tinuous period of time. Note that these requirements concern
both simulation and code generation models. There is little
work on verifying or testing Simulink models against CPS
continuous dynamics requirements [16], [37], [73], [76].

The Scalability Challenge. There is almost no study that
demonstrates scalability of existing testing and verification
Simulink tools to large industrial models. Even commercial
tools such as SLDV do not scale well to large and complex
models, an issue explicitly recognized by Mathworks [35].
Further, as models grow larger and become more compli-
cated, they are more likely to contain features or math-
ematical operations not supported by existing tools (the
incompatibility challenge). In addition, existing tools may
fail to effectively identify faults in practical settings due to
their unrealistic assumptions about test oracles (the oracle
challenge). Hence, scalability remains an open problem for
Simulink testing and verification.

In this article, we provide automated techniques to gener-
ate effective test suites for Simulink models. Our goal is to
alleviate the above three challenges. First, in order to deal
with the incompatibility challenge, we address both continu-
ous and discrete behaviors in Simulinkmodels by generating
test inputs as signals, i.e., functions over time, in an entirely
black-box manner. Our strategy attempts to maximize chan-
ces to find unacceptable worst-case behavior by building on

Fig. 1. Four different modeling paradigms for cyber physical systems.

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

a combination of a single-state search optimizer [52] and the
whole test suite generation approach [28], [29].

Second, instead of focusing on structural coverage alone as
done in most existing approaches, we propose a test genera-
tion approach that aims to maximize diversity in output sig-
nals of Simulink models. Our intuition is that by diversifying
test output signals we are more likely to find cases where
there are large discrepancies between expected and actual sig-
nals, thus making it more likely for engineers to detect fail-
ures. We introduce a new notion of diversity for output
signals that is defined based on a set of representative and dis-
criminating signal feature shapes. We show how this notion
guides our heuristic search-based test generation algorithm to
generate test suites with diversified output signals.

We propose a test prioritization algorithm to automati-
cally rank test cases generated by our test generation
algorithm according to their likelihood to reveal a fault. Engi-
neers can then select, based on their time constraints, a subset
of the most highly ranked test cases. This is expected to lead
to more failure detections within time and resource con-
straints. Existing test prioritization techniques mainly rely on
dynamic test coverage information to prioritize test
cases [115], [122]. As a result, test cases that achieve higher
structural coverage are likely to be prioritized higher. In our
work, to rank test cases, we use a combination of test cov-
erage and fault-revealing probabilities of test cases. Specifi-
cally, we use the degree of output diversity of a test suite
as a proxy for the fault-revealing probabilities of test cases
in that test suite. We note that a number of recent studies
performed in different contexts have shown that test suites
generating diverse outputs are more effective in fault find-
ing [2], [3], [38].

Third,we evaluate our test generation and our test priori-
tization algorithms using two industrial Simulink models.
We assess the effectiveness of these algorithms and system-
atically compare them with baseline techniques that rely on
random testing and the decision coverage criterion.

Contributions. This article extends a conference paper [58]
and a tool paper [59] both published at the 38th Interna-
tional Conference on Software Engineering (ICSE’16). In
this article, we present a consolidated Simulink model test-
ing approach by putting all our existing findings together in
a coherent form. Further, as specified below, we refine and
extend ideas from our previous work and provide a number
of new contributions in this article:

1) We propose a test generation algorithm for both sim-
ulation and code generation Simulink models. Our
approach does not rely on automatable test oracles
and is guided by heuristics that build on a new
notion of diversity for output signals. We demon-
strate that our approach outperforms random base-
line testing, coverage-based testing and an earlier
notion of signal output diversity proposed in our
previous work [54].

Contribution (1) extends our earlier work [58] as fol-
lows: (1) We provide new experimental results com-
paring our test generation algorithm with coverage-
based testing based on the decision coverage criterion.
(2) Our earlier test generation approach was applied
to single-output Simulink models [58]. This can be

seen as a limitation since Simulink models often con-
tain several outputs, each of which can be tested and
evaluated independently. To eliminate this limitation,
we adapted and refined the formal notations and con-
cepts to deal with multiple outputs in Simulink mod-
els. This extension significantly increased the amount
of data we had to gather in our experiments and the
time it took to carry out those experiments.

2) We propose a test prioritization algorithm that com-
bines test coverage and test suite output diversity to
rank test cases. Our algorithm generalizes the exist-
ing coverage-based test prioritization based on total
and additional structural coverage [115], [122]. We
show that our test prioritization algorithm outper-
forms random test prioritization and a state-of-the-
art coverage-based test prioritization [122].

Contribution (2) is completely new.
3) We describe our Simulink testing tool (SimCoTest)

and report on three real faults that we were able to
identify in industrial Simulink models.

Contribution (3) extends the earlier work [59] as fol-
lows: The new version of SimCoTest presented here
supports test case prioritization. The discussion on
the real faults identified in industrial Simulink mod-
els is new.

We have made the SimCoTest tool available online [80].
The results of our experiments are also available online [81].
We are not able to make the industrial models available due
to a non-disclosure agreement.

Organization. This article is structured as follows. Section 2
presents examples of simulation and code generationmodels
and motivates our output diversity approach by comparing
it with test generation driven by structural coverage.
Section 3 provides background on Simulink models and
Simulink test inputs, and defines our formal notation.
Sections 4 and 5 describe our test generation and our test
case prioritization algorithms, respectively. Section 6 expli-
cates test oracle assumptions in our approach. Our test
generation and prioritization tool, called SimCoTest, is
presented in Section 7. Sections 8 and 9 present our experi-
ments setup and experiments results, respectively. Section 10
reports on the three real faults we identified in industrial
Simulink models, and further discusses limitations of some
existing Simulink testing tools when they are used to reveal
these faults. Section 11 compares our work with related
work. Section 12 concludes the article.

2 MOTIVATION

In this section, we provide examples of simulation and code
generation models. We then motivate our output diversity
test generation approach by contrasting it with the test gen-
eration approach based on structural coverage using an
illustrative example.

2.1 Simulation and Code Generation Models

We motivate our work using a simplified Fuel Level Con-
troller (FLC) which is an automotive software component
used in cars’ fuel level management systems. FLC computes
the fuel volume in a tank using the continuous resistance
signal that it receives from a fuel level sensor mounted on

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 921

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

the fuel tank. The sensor data, however, cannot be easily con-
verted into an accurate estimation of the available fuel vol-
ume in a tank. This is because the relationship between the
sensor data and the actual fuel volume is impacted by the
irregular shape of the fuel tank, dynamic conditions of the
vehicle (e.g., accelerations and braking), and the oscillations
of the indication provided by the sensors. Hence, FLC has to
rely on complex filtering algorithms involving algebraic and
differential equations to accurately compute the actual fuel
volume [95].

Simulation Models. Fig. 2a shows a very simplified simu-
lation model for FLC adopted from the book of Zander et al.
[117] and implemented in Simulink. This model captures
the behavior of a software component that receives continu-
ous resistance signals from a fuel level sensor and computes
the level of fuel in the tank. The model in Fig. 2a exhibits
time-discrete magnitude-continuous behavior. More specifi-
cally, this model receives continuous signals from sensors.
However, since the model represents a piece of software,
signal values should be sampled at discrete time steps and
the sampled values are passed to the model in Fig. 2a. As
shown in the figure, this model contains a (continuous) inte-
gral operator (

R
) to accurately compute the fuel level. The

Simulink model in Fig. 2a is executable. Engineers can run
the model for any desired input signal and inspect the out-
put. Examples of input and output signals for this model
are shown in Figs. 2c and 2e, respectively. Note that both

signals represent continuous functions sampled at discrete
time steps. Automotive engineers often rely on their knowl-
edge of mechanics and control theory to design simulation
models. These models, however, need to be verified or sys-
tematically tested as they are complex and may include sev-
eral hundreds of blocks.

Code Generation Models. Fig. 2b shows an example FLC
code generation model, (i.e., the model from which software
code can be automatically generated). The code generation
model is time-discrete and magnitude-discrete. Further,
note that the continuous integrator block (

R
) in the simula-

tion model is replaced by a discrete integrator (sum) in the
code generation model. Examples of input and output sig-
nals for the code generation model are shown in Figs. 2d
and 2f, respectively. Both signals represent discrete func-
tions sampled at discrete time steps. Due to the conversion
of magnitude-continuous signals to magnitude-discrete sig-
nals, the behavior of code generation models may deviate
from that of simulation models. Typically, some degree of
deviations between simulation and code generation model
outputs are acceptable. The level of acceptable deviations,
however, have to be determined by domain experts.

Simulation and Code Generation Model Behaviors. Fig. 2c
shows a continuous input signal for the simulation model
in Fig. 2a over a 10 sec time period. Fig. 2d shows the dis-
crete version of the signal in Fig. 2c that is used as input for
the code generation model in Fig. 2b. Models in Figus. 2a
and 2b produce the outputs in Figs. 2e and 2f once they are
provided with the inputs in Figs. 2c and 2d, respectively. As
shown in the figures, the percentages of fuel level in the con-
tinuous output signal (Fig. 2e) differ from those in the dis-
crete output signal (Fig. 2f). For example, after one second,
the output of the simulation model is 91.43, while that of the
code generation model is 88.8. As is clear from this example,
we lose precision as we move from simulation models (with
continuous behavior) to code generation models (with dis-
crete behavior). For our specific FLC example, we explain
the loss of precision using the diagrams in Fig. 3. The grey
area in Fig. 3a shows the value computed by the continuous
integral (

R
) used in the FLC simulation model after three

seconds, while the value computed by the discretized sum
operator used in the FLC code generation model corre-
sponds to the grey area in Fig. 3b.

Conclusion. As the FLC example shows, due to discretiza-
tion, simulation and code generation models of the same

Fig. 2. A Fuel Level Controller (FLC) example: (a) A simulation model of
FLC; (b) a code generation model of FLC; (c) an input to FLC simulation
model; (d) an input to FLC code generation model; (e) output of (a) when
given (c) as input; (f) output of (b) when given (d) as input.

Fig. 3. Comparing outputs of (a) continuous integral
R
and (b) discrete

integral sum from models in Figs. 2a and 2b, respectively.

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

component are likely to exhibit different behaviors. It is
important to have verification and testing techniques that
are applicable to both kinds of models because (1) verifying
one kind does not necessarily imply correctness of the other
kind, and (2) for non-software components (e.g., physical
components), only simulation models are available. In this
article, we provide a testing technique that is applicable to
both simulation and code generation models.

2.2 Limitations of Existing Simulink Testing Tools

A number of commercial tools are available to verify or test
Simulink models. The most notable ones are SLDV and
Reactis [84], [97]. These tools typically have two usage
modes corresponding to two different assumptions about
test oracles: (1) The first usage mode is essentially a verifica-
tion activity. To verify a given Simulink model, formal
properties (i.e., automatable test oracles) must be provided
(e.g., in the form of assertions or runtime errors). The tools
then attempt to generate test cases that can reveal violations
of assertions or formal properties. Some tools such as SLDV
can further generate a proof of correctness, e.g., through
SMT-based model checking [35], demonstrating that given
assertions or formal properties can never be violated.
(2) The second usage mode assumes that automatable test
oracles are not available. In this case, these tools generate
test suites that achieve some notion of structural coverage
(i.e., Decision, Condition, and MC/DC) [98].

In order for our approach to be widely applicable, our
goal in this paper is to provide a Simulinkmodel testing tech-
nique that does not rely on automatable test oracles. Hence,
our work is comparable in objective to approaches that are
guided by structural coverage i.e., the second usage mode
described above. As discussed in Section 1, one main limita-
tion of existing Simulink testing tools is that they typically
have incompatibility issues with continuous blocks of Simu-
link, floating point and non-linear arithmetic operations and
S-Functions. Focusing on the subset that is supported by
existing Simulink testing tools, the main difference between
our approach and existing tools lies in their underlying test
generation algorithms. Typically a test generation algorithm
has two main dimensions: (1) The test objective, and (2) a
mechanism for test input generation. Below, we contrast our
work with test generation algorithms used in Simulink test-
ing tools along these two dimensions1:

� Low effectiveness of structural coverage criteria for testing
Simulink models.Many existing Simulink testing tools
(e.g., Reactis and SLDV) attempt to generate test cases
that achieve high structural coverage. Recent studies
show that, for Simulink models, test cases generated
based on structural coverage criteria exhibit low
fault finding abilities [32], [54], [58]. This is because,
in Simulink models, structural coverage criteria
such as MC/DC are defined on a “block level”, and
hence, the test cases focus on covering individual

intermediary conditional blocks. However, covering
conditional blocks individually may not impact the
observable model outputs in a visible manner [32],
[107]. In addition, effectiveness of test cases driven by
structural coverage is likely to worsen further for
Simulink models containing a large number of
numerical computations such as lookup tables, inte-
grator blocks, unit convertors and trigonometry and
logarithmic functions. This is because faulty or wrong
outputs of intermediary blocks may be masked or
their magnitude may be modified by subsequent
numeric computations. As a result, observable model
outputs are unlikely to exhibit visible and sufficiently
large deviations from their expected behaviors.

� Lack of diversity in test inputs generated by model check-
ing. Many Simulink testing tools (e.g., SLDV) rely on
SMT/SAT/constraint solvers to generate test inputs.
As observed in recent studies and based on our expe-
rience, SMT-based model checkers tend to generate
test inputs by leaving all non-essential inputs at some
default values and only changing what is absolutely
necessary [32]. In particular, in our earlier experience,
we noticed that model checkers mostly change the
values of the generated test input signals during the
very first simulation steps, and then, the input signals
remain constant for the most part and until the end of
the simulation time [58]. In other words, test inputs
generated by model checkers lack diversity, and
many of them look almost identical. The outputs gen-
erated by similar test inputs are likely to be similar as
well andmay not help engineers detect faults.

To alleviate the above two limitations, in this paper, we
propose a test generation approach for Simulink that
(1) aims to maximize diversity among test output signals,
and (2) generates test input signals in a randomized way
using search algorithms.

In the remainder of this section, we use an example to
contrast test generation based on structural coverage and
output diversity for Simulink models. Consider a faulty ver-
sion of the simulation model in Fig. 2a where the line start-
ing from point A is mistakenly connected to point B. We
generate a test case (TC1) that achieves full structural cover-
age for this faulty model. Since the model in Fig. 2a does not
have any conditional behavior, a single test case can execute
all the model. Fig. 4a shows the output of TC1 along with
the expected behavior where the actual output is shown by

Fig. 4. (a) A test output of a faulty version of model in Fig. 2a; and
2b another test output of the same faulty model.

1. We note that the MathWorks license prevents publication of
empirical results comparing our test generation approach with the test
generation approach of SLDV. Further, we were not able to automate
large experiments as our version of Reactis lacks APIs allowing such
automation, hence preventing us comparing our test generation
approach with that of Reactis.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 923

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

a solid line and the correct one by a dashed line. As shown
in the figure, the output of TC1 is very close to the expected
behavior, making it very difficult for engineers to notice any
failure since, in practice, they only have a rough idea about
what to expect. Further, given that in this domain small
deviations from oracles are expected, engineers are unlikely
to identify any fault when they use TC1.

Now suppose we use our proposed output diversity
approach to generate test cases. In our work, the test suite
size is not determined by structural coverage and is an
input set by the engineer. Suppose we choose to generate
three test cases for the given faulty model. Fig. 4b shows the
output of one of the generated test cases (TC2). As shown in
the figure, the output of TC2 drastically deviates from the
expected behavior, making the presence of a fault in the
model quite visible to the engineer. When the goal is to
achieve maximum structural coverage, TC1 and TC2 are
equally desirable as they both achieve full structural cover-
age. But TC2 is more fault-revealing than TC1. Our
approach attempts to generate a set of test cases that yield
diverse output signals to increase the probability of diver-
gence from the expected result, and hence, the chance of
revealing latent faults.

3 BACKGROUND AND NOTATION

This section provides background on our test generation
approach for Simulink models. We further define our for-
mal notation in this section.

3.1 Models and Signals

Let M ¼ ðI ;N ;OÞ be a Simulink/Stateflow model where
I ¼ fi1; . . . ; ing is a set of input variables, N ¼ fn1; . . . ; nbg
is a set of nodes (i.e., Simulink blocks or Stateflow states),
and O ¼ fo1; . . . ; olg is a set of output variables.

Each input/output variable ofM, irrespective ofM being
a simulation or a code generation model, is a signal, i.e., a
function of time. Assuming that the simulation time is T , we
define a signal sg as a function sg : ½0::T � ! RwhereR is the
signal range. The signal range R is bounded by its min and
max values denoted byminR andmaxR, respectively.

In our test generation approach, in order to be able to
generate input signals and to analyze output signals, we
assume that signals are discretized based on a sampling
rate (or time step) Dt. This allows us to convert a signal with
a continuous domain and a continuous range into a vector
of values. Note that in order to analyze signals, it is common
to discretize them based on a sampling rate. At the end of
this section, we discuss how we choose the sampling rate in
our experiments. Let k be the number of time steps in the
simulation time interval ½0::T �. A discretized signal sg can
be specified using the values of sg at time points 0, Dt,
2� Dt; . . . ; k� Dt. We denote these values by sg0, sg1,
sg2; . . . ; sgk, respectively.

For simulation models, every signal segment between sgi

to sgiþ1 is a linear function, while for code-generationmodels,
every signal segment between sgi to sgiþ1 is a constant func-
tion. For example, Fig. 2e represents a signal for a simulation
model, while Fig. 2f represents a signal for a code generation
model. For signals in Figs 2e and 2f, we have Dt ¼ 1s. The sig-
nals for code-generationmodels take their values from a finite

(discrete) set (i.e., the signal range is finite), while the signals
for simulation models take their values from an infinite (con-
tinuous) set (i.e., the signal range is infinite). For example, the
range for the signal in Fig. 2e is an interval ½50::100� of real
numbers, while the range for the signal in Fig. 2f is the set of
fixed point values specified in the figure.

For the models used in our evaluation in Section 8, based
on the guidelines provided by engineers, we set Dt ¼ 1 ms
and the simulation time T ¼ 2s. That is, each (discretized)
signal is a vector of 2000 points. According to the Nyquist-
Shannon sampling theorem [33], with a sampling rate of
1 ms, we can discretize continuous signals with a frequency
of up to 500 HZ without any information loss. If signals
appear to have very high frequencies (� 500 HZ), then the
sampling rate may have to be much smaller to not lose any
data. However, we note that, in the automotive domain, we
mostly deal with input signals that are aperiodic, e.g., driv-
er’s commands, and do not have high frequencies. Further,
in this domain, in contrast to the telecommunication domain
for example, engineers are not typically interested in sam-
pling rates lower than 1ms, and they consider any potential
loss of data due to the 1ms sampling rate negligible.

3.2 Test Inputs and Outputs

Simulink models typically have multiple outputs. For a
given test case, engineers may inspect signal values for some
or all of the outputs to assess the model behavior. Our goal is
to generate test cases that diversify output signals as much
as possible. In our work, we focus on diversifying signal val-
ues for each output individually and independently from
other model outputs. Specifically, we generate one test suite
TS for each Simulink model output o such that the test cases
in TS generate diverse output signals for o. In total, for a
Simulink model with l outputs, we generate l test suites TS1

to TSl such that each test suite TSi focuses on diversifying
output signals for oi. In our work, we consider the size of test
suites TS1 to TSl to be the same and be equal to q.

Each test suite TSi contains q test inputs I1 to Iq such that
each test input Ij is a vector ðsgi1 ; . . . ; sginÞ of signals for the
input variables i1 to in of M. To test the model behavior
with respect to output oi, engineers simulate M using each
test input Ij 2 TSi and inspect the signals generated for out-
put oi. Typically, all input and output signals generated
during testing a model M share the same simulation time
interval and simulation time steps, i.e., the values of Dt, T ,
and k are the same for all of the signals.

To generate test inputs for Simulink models, we need to
generate signals sgi1 to sgin . As discussed in Section 3.1,
each signal sgij is characterized by a set of values for
sg0ij , sg

1
ij
, sg2ij ; . . . ; sg

k
ij
specifying the values of signal sgij at

time steps 0, Dt, 2� Dt; . . . ; k� Dt, respectively. Therefore,
we can generate arbitrary complex input signals by generat-
ing random values for sg0ij , sg1ij , sg2ij ; . . . ; sg

k
ij
. However,

automotive engineers typically test Simulink models using
input signals with specific shapes. Further and as we will
discuss in Section 6, checking the correctness of test outputs
for signals with arbitrary shapes is difficult.

In our work, we consider two types of input signals:
piece-wise constant signals and piece-wise linear signals. A sig-
nal specified by a sequence sg0; sg1; . . . ; sgk is piece-wise
constant (linear respectively) if it can be partitioned into a

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

sequence of constant (linear respectively) signals. Fig. 5
illustrates piece-wise constant signals and piece-wise linear sig-
nals for simulation and code generation models. The four
signals shown in Fig. 5 consist of three pieces each.

Generally speaking, input signals with fewer pieces are
easier to generate but they may fail to cover a large part of
the underlying Simulink model. By increasing the number
of pieces in input signals, structural coverage may increase,
but the outputs generated by such test inputs become more
complex, and engineers may find it difficult to predict
expected outputs (test oracles). In our test generation algo-
rithm discussed in Section 4.3, we ensure that, for each
input variable, the generated input signals achieve high
structural coverage while the number of pieces in each sig-
nal remains lower than a limit provided by domain experts.

Abbas et al. [1] provide a detailed and formal characteri-
zation for most commonly used input signals for control
systems. Their characterization includes the piece-wise con-
stant and piece-wise linear signals exemplified in Fig. 5 as
well as spline and sine-shaped input signals. Our approach
can be easily extended to spline and sine-shaped input sig-
nals using the characterization provided by Abbas et al. [1].

Finally, we note that aswewill discuss in Section 6, for our
case study models, we generate piece-wise constant input
signals for code generation models (i.e., signals similar to the
one in Fig. 5b). This is because our case study models are all
code-generation models. Further, according to our domain
experts, due to difficulties of predicting expected output sig-
nals (test oracles), engineers typically use piece-wise con-
stants signals to test their models. We intend to consider
simulation models and more complex input signals such as
piece-wise linear signals in our future experiments.

4 TEST GENERATION ALGORITHMS

We propose a search-based test generation algorithm, fol-
lowing the whole test suite strategy [29], for Simulink

models. We define two notions of diversity among output
signals: vector-based and feature-based. We first introduce our
two notions of output diversity and will then describe our
test generation algorithm. In this section, we focus on gener-
ating a test suite for a single output of M. For a model with
multiple outputs, we apply our test generation algorithm to
each output of the model separately to generate a test suite
for each model output.

4.1 Vector-Based Output Diversity

This diversity notion is defined directly over output signal
vectors. Let sgo and sg0o be two signals generated for output
variable o by two different test inputs of M. In our earlier
work [54], we defined the vector-based diversity measure
between sgo and sg0o as the normalized Euclidean distance
between these two signals. We define the vector-based
diversity between sgo and sg0o as follows:

^distðsgo; sg0oÞ ¼

ffiPk
i¼0ðsgoði � DtÞ � sg0oði � DtÞÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
� ðmaxR �minRÞ

; (1)

where minR and maxR are the min and max values of the
range of signals sgo and sg0o. Note that sgo and sg0o are both
generated for output o, and hence, they have the same range.
It is easy to see that ^distðsgo; sg0oÞ is always between 0 and 1.

Our vector-based notion, however, may have a draw-
back. A search driven by vector-based distance may gener-
ate several signals with similar shapes whose vectors
happen to yield a high Euclidean distance value. For exam-
ple, for two constant signals sgo and sg0o,

^distðsgo; sg0oÞ is rela-
tively large when sgo is constant at the maximum of the
signal range while sg0o is constant at the minimum of the sig-
nal range. A test suite that generates several output signals
with similar shapes may not help with fault finding.

4.2 Feature-Based Output Diversity

In machine learning, a feature is an individual measurable
and non-redundant property of a phenomenon being
observed [113]. Features serve as a proxy for large input data
that is too expensive to be directly processed, and further, is
suspected to be highly redundant. In our work, we define a
set of basic features characterizing distinguishable signal
shapes. We then describe output signals in terms of our pro-
posed signal features, effectively replacing signal vectors by
feature vectors. Feature vectors are expected to contain rele-
vant information from signals so that the desired analysis
can be performed on them instead of the original signal vec-
tors. To generate a diversified set of output signals, instead
of processing the actual signal vectors with thousands of ele-
ments, we maximize the distance between their correspond-
ing feature vectors with tens of elements.

Fig. 6a shows our proposed signal feature classification.
Our classification captures the typical, basic and common
signal patterns described in the signal processing literature,
e.g., constant, decrease, increase, local optimum, and step
[72]. The classification in Fig. 6a identifies three abstract sig-
nal features: value, derivative and second derivative. The
abstract features are italicized. The value feature is extended
into: “instant-value” and “constant-value” features that are
respectively parameterized by ðvÞ and ðn; vÞ. The former

Fig. 5. Different patterns for input signals: (a) A piece-wise constant
signal for simulation models; (b) a piece-wise constant signal for code-
generation models; (c) a piece-wise linear signal for simulation models;
and (d) a piece-wise linear signal for code-generation models. The
number of pieces for all the four signal examples is three.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 925

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

indicates signals that cross a specific value v at some point,
and the latter indicates signals that remain constant at v for n
consecutive time steps. These features can be instantiated by
assigning concrete values to n or v. Specifically, the “constant-
valueðn; vÞ” feature can be instantiated as the “one-step
constant-valueðvÞ” and “always constant-valueðvÞ” features
by assigning n to one and k (i.e., the simulation length),
respectively. Similarly, specific values for v are zero, and max
andmin of signal ranges (i.e.,maxR andminR).

The derivative feature is extended into sign-derivative
and extreme-derivative features. The sign-derivative feature
is parameterized by ðs; nÞ where s is the sign of the signal
derivative and n is the number of consecutive time steps
during which the sign of the signal derivative is s. The
sign s can be zero, positive or negative, resulting in
“constantðnÞ”, “increasingðnÞ”, and “decreasingðnÞ” fea-
tures, respectively. As before, specific values of n are one
and k. The extreme-derivatives feature is non parameterized
and is extended into one-sided discontinuity, one-sided dis-
continuity with local optimum, one-sided discontinuity
with strict local optimum, discontinuity, and discontinuity
with strict local optimum features.

The second derivative feature is extended into sign-
second-derivative parameterized by ðs; nÞ where s is the
sign of the second derivative, and n is the number of conse-
cutive steps during which the sign of the second derivative
remains s. The sign s can be zero, positive or negative, result-
ing in “derivative-constantðnÞ”, “derivative-increasing ðnÞ”,
and “derivative-decreasingðnÞ” features, respectively. We
set n to k to instantiate these features to “always derivative-
constant”, “always derivative-increasing”, and “always
derivative-decreasing” features, respectively. Note that the

second derivative is undefined over a signal with one time-
step length and, hence, n ¼ 1 does not yield a signal feature.

Figs. 6b, 6c, 6d, and 6f respectively illustrate the “instant-
valueðvÞ”, the “increasingðnÞ”, the “one-sided discontinuity
with local optimum”, the “discontinuity with strict local
optimum”, and the “derivative-decreasingðnÞ” features.
Specifically, the signal in Fig. 6b takes value v at point A.
The signal in Fig. 6c is increasing for n steps from B to C.
The signal in Fig. 6d is right-continuous but discontinuous
from left at point D. Further, the signal value at D is more
than the values at its adjacent point, hence making D a local
optimum. The signal in Fig. 6e is discontinuous from both
left and right at point E. It is also decreasing on one side of
E and increasing on the other side, making E a strict local
optimum. Finally, the derivative of the signal in Fig. 6f is
decreasing, i.e., the second derivative is negative, for n steps
from G to H.

We define a function Ff for each (non-abstract) feature f
in Fig. 6a. We refer to Ff as feature function. The output of
function Ff when given signal sg as input is a value that
quantifies the similarity between shapes of sg and f . More
specifically, Ff determines whether any part of sg is similar
to feature f .

We provide two feature function examples related to the
signal features in Figs. 6b and 6c. Specifically, the feature
function Ffb related to the signal feature “instant-valueðvÞ”
in Fig. 6b is defined as follows:

Ffbðsg; vÞ ¼ min
k

i¼0
jsgði � DtÞ � vÞj:

This function computes the minimum difference between
a given value v and the values of signal sg at every simulation

Fig. 6. Signal Features: (a) Our signal feature classification, and (b)–(f) Examples of signal features from the classification in (a).

926 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

step. The lower Ffb , the closer the shape of sg to the feature in
Fig. 6b. Particularly, if Ffb becomes zero for some v, it implies
that signal sg exhibits the feature instant-valueðvÞ.

As another example, the feature function Ffc related to the
signal feature “increasing(n)” in Fig. 6c is defined as follows:

Ffcðsg; nÞ ¼ max
k

i¼n

Xi
j¼i�nþ1

ldsðsg; iÞ
 !

;

where ldsðsg; iÞ denotes the sign of the left derivative of sg
at step i. Specifically, ldsðsg; iÞ is zero when sg is constant at
step i when compared with its left point at step i� 1, one
when its value at i is more than its value at i� 1, and -1
when its value at i is less than its value at i� 1. Function Ffc

computes the largest sum of the left derivative signs of sg
over any segment of sg consisting of n consecutive simula-
tion steps. The higher the value of Ffc , the more likely that
sg exhibits the increasing(n) feature (i.e., the more likely
that sg contains a segment of size n during which its values
are increasing). The formal definitions for all the features in
Fig. 6 are available online [81].

Having defined features and feature functions, we now
describe how we employ these functions to provide a mea-
sure of diversity between output signals sgo and sg0o. Let
f1; . . . ; fm be m features that we choose to include in our
diversity measure. We compute feature vectors FvðsgoÞ ¼
ðFf1ðsgoÞ; . . . ; FfmðsgoÞÞ and Fvðsg0oÞ ¼ ðFf1ðsg0oÞ; . . . ; Ffmðsg0oÞÞ
corresponding to signals sgo and sg0o, respectively. Since the
ranges of the feature function values may vary widely, we
standardize these vectors before comparing them. Specifi-
cally, we use feature scaling which is a common standardi-
zation method for data processing [113]. Having obtained
standardized feature vectors F̂ vðsgoÞ and F̂ vðsg0oÞ corre-
sponding to signals sgo and sg0o, we compute the normalized
Euclidean distance between these two vectors, (i.e., ^dist
ðF̂ vðsgoÞ; F̂ vðsg0oÞÞ), as the measure of feature-based diversity
between signals sgo and sg0o. In the next section, we discuss
how our diversity notions are used to generate test suites
for Simulink models.

4.3 Whole Test Suite Generation Based on Output
Diversity

We propose a meta-heuristic search algorithm to generate a
test suite TS ¼ fI1; . . . ; Iqg for a given model M to diversify
the set of output signals generated by TS for a specific out-
put of M. As discussed in Section 3.2, we generate a sepa-
rate test suite containing q test inputs for each output of M.
We will then apply our test prioritization algorithm (see
Section 5) to generate a ranking of all the generated test
inputs to help engineers identify faults by inspecting a small
number of test outputs.

We denote by TSO ¼ fsg1; . . . ; sgqg the set of output
signals generated by TS for an output o of M. We cap-
ture the degree of diversity among output signals in
TSO using objective functions Ov and Of that correspond
to vector-based and feature-based notions of diversity,
respectively:

OvðTSOÞ ¼
Pq

i¼1MIN8sg2TSOnfsgig
^distðsgi; sgÞ

q
(2)

OfðTSOÞ ¼
Pq

i¼1MIN8sg2TSOnfsgig
^distðFvðsgiÞ; F vðsgÞÞ

q
: (3)

Function Ov computes the average of the minimum distan-
ces of each output signal vector sgi from the other output
signal vectors in TSO. Similarly, Of computes the average
of the minimum distances of each feature vector FvðsgiÞ
from feature vectors of the other output signals in TSO. Our
test generation algorithm aims to maximize functions Ov

and Of to increase diversity among the signal vectors and
feature vectors of the output signals, respectively.

Our algorithm adapts the whole test suite generation
approach [29] by generating an entire test suite at each itera-
tion and evolving, at each iteration, every test input in the test
suite. Thewhole test suite generation approach is a recent and
preferred technique for test data generation specially when,
similar to Ov and Of , objective functions are defined over the
entire test suite and aggregate all testing goals. Another bene-
fit of this approach for ourwork is that it allows us to optimize
our test objectives while fixing the test suite size at a small
value due to the cost ofmanual test oracles.

Our algorithm implements a single-state search opti-
mizer that only keeps one candidate solution (i.e, one test
suite) at a time, as opposed to population-based algorithms
that keep a set of candidates at each iteration [52]. This is
because our objective functions are computationally expen-
sive as they require to simulate the underlying Simulink
model and compute distance functions between every test
input pair. When objective functions are time-consuming,
population-based search may become less scalable as it may
have to compute objective functions for several new or
modified members of the population at each iteration.

Fig. 7 shows our output diversity test generation algo-
rithm for Simulink models. We refer to it as OD. The core of
OD is based on an adaptation of the Simulated Annealing
search algorithm [52]. Specifically, the algorithm generates
an initial solution (lines 2-3), iteratively tweaks this solution
(line 11), and selects a new solution whenever its objective

Fig. 7. Our output diversity (OD) test generation algorithm for Simulink
models.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 927

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

function is higher than the current best solution (lines 15-17).
The objective function O in OD is applied to the output sig-
nals in TSO that are obtained from test suites. The objective
function can be either Of or Ov, respectively generating test
suites that are optimized based on feature-based and vector-
based diversity notions.

Like the simulated annealing search algorithm, our OD
algorithm in Fig. 7 is more explorative at the beginning and
becomes more exploitative as the search progresses. In the
simulated annealing search, the degree of exploration/
exploitation is adjusted using a parameter called tempera-
ture. Typically, the temperature is set to a high value at the
beginning of the search, making the search behaves simi-
larly to a random explorative search. As time passes, the
temperature is lowered, eventually to zero, turning the
search into an exploitative search algorithm such as Hill
Climbing [52]. We take a similar approach in our OD algo-
rithm where the parameter s acts like the temperature
parameter in simulated annealing. The difference is that the
value of s in our algorithm is adjusted based on the accu-
mulative structural coverage achieved by all the generated
test suites.

The reason that we opt for such search solution is that,
based on our existing experience of applying search algo-
rithms to continuous controllers [56], a purely explorative
or a purely exploitative search strategy is unlikely to lead to
desirable optimal solutions. Given that the search space of
input signals is very large, if we start by a purely exploit-
ative search (e.g., s ¼ 0:01), our result will be biased by the
initial randomly selected solution. To reduce this bias, we
start by performing a more explorative search (e.g.,
s ¼ 0:5). However, if we let the search remain explorative, it
may not converge fast enough to desired solutions. Hence,
we reduce s iteratively in OD such that the amount of
reduction in s is proportional to the increase in the accumu-
lative structural coverage obtained by the generated test
suites (line 21).

While being a Simulating Annealing search in essence,
OD proposes two novel adaptations: (1)Our input signal gen-
eration mechanism. Our algorithm initially generates input
signals that contain a small initial number of signal pieces P
(e.g., one piece). It then increases P as needed while ensur-
ing that P always remains less than the limit provided by
the domain expert Pmax. Recall that, on one hand, increasing
input signal pieces makes the output more difficult to ana-
lyze, but on the other hand, input signals with few pieces
may not reach high model coverage. In OD, we initially gen-
erate test inputs with one piece (lines 1-2). We increase P
only when the accumulative structural coverage achieved by
the existing generated test suites reaches a plateau at a value
less than %100. In other words, we increase P only when we
are not able to improve structural coverage using the current
test input signals that have P pieces (lines 19-20). After
increasing P on line 20, the tweak operator on line 11
increases the number of pieces in the newly generated sig-
nals. Further, although not shown in the algorithm, we do
not increase P if the last increase in P has not improved the
accumulative coverage.

(2) Our tweak operator for input signals. In Fig. 8, we illus-
trate our tweak operator (line 11 of the algorithm in Fig. 7).
We distinguish two cases.

Case-1: When the number of pieces in signals generated by
the tweak operator does not need to be increased: In
this case, the tweak operator is similar to that used in (1
+1) EA [52]. The operator simply shifts input signals by
a small value selected from a normal distribution with
mean m ¼ 0 and variance s � ðmaxR �minR) where R
is the range of the signal being tweaked. Our tweak
operator for Case-1 is shown in Fig. 8a.

Case-2: When the number of pieces in signals generated
by the tweak operator should be increased: This
means that the structural coverage achieved by the
current set of signals has not increased over the past
few iterations (see Lines 18–20). In this case, the
operator first increases the number of pieces in sig-
nals, and then similar to Case-1, the operator shifts
the signals. Our tweak operator for Case-2 is shown
in Fig. 8b.

To conclude this section, we discuss the asymptotic
time complexity of individual iterations of the OD algo-
rithm when we use Ov and Of functions, respectively.
Let q be the size of the generated test suites, k be the
number of simulation steps, and TM be the time it takes
to simulate the underlying Simulink model for k steps.
In general, TM depends on the size of the model, the number
of model inputs and outputs, and the number of simulation
steps. The time complexity of one iteration of OD with Ov is
Oðq � TMÞ þOðq2 � kÞ.2

The time complexity of one iteration of OD with Of is
Oðq � TMÞ þOðq �m� kÞ þOðq2 �mÞ where m is the
number of signal features that we use to compute feature
vectors. Note that the time complexity of computing fea-
tures in Fig. 6 is OðkÞ. This is mainly because in those fea-
tures we consider the parameter n to be either one or k. In
our problem, k is considerably larger than m and larger
than q. For example, in our experiment, we have k ¼ 2000,
while we use 23 features (m ¼ 23), and we typically choose
q to be less than 10. In Section 9, we will provide the average
time for model simulations (TM) and for executing one itera-
tion of the OD algorithm using Ov and Of functions based
on our empirical evaluation.

Fig. 8. Illustrating our tweak operator (line 11 of the algorithm in Fig. 7)
on an example constant piecewise signal for simulation models from
Fig. 5a: (a) Shifting the signal based on a randomly selected value
(Case-1), and (b) shifting the signal and increasing the number of signal
pieces (Case-2).

2. Note that the O here refers to the bigO time complexity and
should not be mistaken by objective function O used in the OD
algorithm.

928 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

5 TEST PRIORITIZATION ALGORITHM

Our OD test generation algorithm discussed in Section 4 gen-
erates a test suite (with q test cases) for eachmodel output. To
help engineers effectively inspect model behavior with
respect to all the generated test cases, we provide a test priori-
tization technique. The goal of our prioritization algorithm is
to generate a ranked list of test cases such that the most fault-
revealing test cases are ranked higher in the list, helping engi-
neers identify faults faster by inspecting a few test cases.

We take a dynamic test prioritization approach based on
greedy algorithms to rank test cases. This choice is driven
based on the following two main considerations: First, in
our work, test prioritization occurs after the test generation
step where all the test cases are already executed. Hence,
test coverage information is already available. Therefore, to
prioritize test cases, we do not need to resort to static techni-
ques that, due to unavailability of test coverage information,
are restricted to static analysis of code or other artifacts [78],
[100]. Second, based on our experience, typical industrial
Simulink models have less than 50 outputs, and in our
work, we consider to generate less than 10 test cases for
each output. Hence, the total number of test cases that we
need to rank is relatively small (less than 500). Therefore,
we chose to consider greedy-based prioritization algo-
rithms. These algorithms iteratively compare all the test
cases with one another to identify the best locally optimal
choice at each iteration. Other implementation alternatives
include adaptive random test prioritization and search-
based test prioritization [78]. These are mainly proposed to
improve efficiency by comparing only a subset (not all) of
test cases or test case rankings at each iteration. Neither
of these approaches, however, outperform the greedy
approach in terms of the ability to find faults faster [49], [78].

Our test case prioritization algorithm is shown in Fig. 9.
The algorithm generates an ordered list Rank of test cases
in TC where TC is the union of all the generated test suites
for a given Simulink model M ¼ ðI ;N ;OÞ. In addition to
the aggregated test suite TC and the model M, the algorithm
receives the following three functions as input and uses
them to compute the test case ranking: (1) The test coverage

information for each individual test case tc 2 TC, denoted
by function covers : TC ! 2N . (2) The fault-revealing proba-
bility of test cases in TC, denoted by FRP : TC ! ½0::1�.
(3) The faultiness probability of individual Simulink nodes
ofM, denoted by faultiness : N ! ½0::1�.

Our algorithm aims to reward and prioritize test cases that
are likely to find more faults in models. To achieve this, it
relies on functions FRP (fault-revealing probability of test
cases) and faultiness (faultiness probability of individual
Simulink nodes). In reality, however, we do not have any a
priori knowledge about the fault-revealing ability of a test
case (FRP), and we do not know the likelihood of a node
being faulty (faultiness) at the time of test prioritization.
Therefore, similar to existing approaches on test case prioriti-
zation, our reward functions can only be based on surrogate
criteria [115]. Most test prioritization techniques primarily use
test coverage as the surrogate for fault-revealing ability of test
cases. Given that test coverage alone may not be a good indi-
cator for fault-revealing ability, in our algorithm (Fig. 9), we
define functions FRP and faultiness based on a combination
of test coverage and other criteria described below.

For faultiness, initially we assume that the nodes are all
equally probable of containing a fault. So, we initialize the
faultiness probability of each node with one. This is just to
ensure that all the nodes have the same relative faultiness
probability at the beginning. The faultiness probabilities
are then iteratively reduced depending on the selected test
cases and their FRP values. We note that our decision to ini-
tialize the faultiness values by one is consistent with the test
prioritization algorithm presented by Zhang et al. [122].

We use the output diversity functions defined in Section 4
as a proxy for test case fault-revealing ability (FRP). We
note that output diversity (i.e., output uniqueness) has been
shown to correlate to fault finding [2], [3], [54], [58] and to
act as an effective complement to test coverage [2], [3].
Recall that we defined output diversity functions over test
suites generated by our test generation algorithm in Fig. 7,
and that TC in Fig. 9 is the union of all these test suites.
Indeed output diversity is a property of individual test
suites, and not a property of test cases inside test suites.
However, based on our previous results [54], [58], we know
that if a test suite TS has a high output diversity, it likely
contains some test cases that are effective in fault finding.
Of course, we have no way of telling apart the more effec-
tive test cases in TS from the less effective ones. But since
TS is typically small (less than 10 elements), by giving a pri-
oritization boost to all test cases in TS including both effec-
tive and ineffective test cases, we are still likely to have
some effective test cases to be ranked high. Hence, we
assume all the test cases in TS have the same fault-revealing
ability equal to the output diversity of TS. More specifically,
given a test case tc such that tc 2 TC \ TS, we set FRP ðtcÞ to
be equal to OðTSÞ where O can be either the vector-based
Ov or the feature-based Of output diversity functions
described in Equations (2) and (3), respectively.

In the remainder of this section, we first describe how the
test coverage function, covers, used in our algorithm is com-
puted for Simulink models. We then describe how our pro-
posed prioritization algorithm works. Recall from Section 4
that each test suite TS generated by the OD algorithm is
related to a specific output o of the underlying Simulink

Fig. 9. Our test prioritization algorithm for Simulink models.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 929

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

model. Let tc 2 TS be a test case generated for an output o.
We write testðtc; oÞ to denote that test case tc is related to
output o. Note that each test case is related to exactly one
output, but an output is related to a number of test cases
(i.e., q test cases). For Simulink models, test coverage is the
set of Simulink nodes (i.e., Simulink blocks or Stateflow
states) executed by a given test case tc to generate results for
the output o related to tc. Given a Simulink model
M ¼ ðI ;N ;OÞ and a test case tc 2 TC, we denote the test
coverage of tc by coversðtcÞ and define it as follows:

coversðtcÞ ¼ fn jn 2 static sliceðoÞ ^ testðtc; oÞ ^ tc executes ng;

where o 2 O and static sliceðoÞ is the static backward slice of
output o and is equal to the set of all nodes in N that can
reach output o via data or control dependencies.

Note that our notion of test coverage is specific to a model
output. The set coversðtcÞ includes only those nodes that are
executed by tc, and further, appear in the static backward
slice of the output related to tc. The nodes that cannot reach
that output (via Simulink control or data dependency links)
are not included in coversðtcÞ even if they happen to be exe-
cuted by tc. Our notion of test coverage is the same as the
notion of test execution slices defined in our previous work
on fault localization of Simulink models [51]. There, we pro-
vided a detailed discussion on how the sets static sliceðoÞ
and coversðtcÞ can be computed for Simulink models. There-
fore, we do not discuss the implementation details of these
concepts for Simulinkmodels in this article.

As discussed earlier, the algorithm in Fig. 9 takes a
greedy approach to rank test cases. At each iteration, it iden-
tifies the test case that yields the highest aggregated fault-
revealing ability among the unprioritized test cases and
adds it to the top of the ranked list Rank (lines 4–7). In par-
ticular, the algorithm first computes the aggregated fault-
revealing probabilities for every unprioritized test case tc
by multiplying the fault-revealing probability of tc and the
summation of faultiness probabilities of the nodes that are
covered by tc. Note that the fault-revealing probability of a
test case and the faultiness probability of a node are inde-
pendent, and their cross product indicates the probability
that a test case reveals a fault in a node. The test case that
yields the highest aggregated fault-revealing probability is
added to the ranked list Rank as the best locally optimal
choice (line 7). After that, the algorithm updates the faulti-
ness probabilities of the nodes covered by the test case that
was just added to Rank (lines 8–10). Specifically, the faulti-
ness probabilities of each of the nodes covered by that test
case is multiplied by ð1� FRP Þ, i.e., the probability that the
test case fails to reveal a fault. The algorithm terminates
when all the test cases in TC are ranked.

Our proposed test prioritization algorithm (Fig. 9) gener-
alizes and extends the existing dynamic test prioritization
techniques [78], [115], [122]. These techniques rank test
cases using either total or additional structural coverages
achieved by individual test cases. Specifically, in the case of
total coverage, a test case is ranked higher if it yields higher
structural coverage independently from other test cases.
However, in the case of additional coverage, a test case is
ranked higher if it produces larger additional structural cov-
erage compared to the accumulative structural coverage

achieved by the already ranked test cases. Our algorithm in
Fig. 9 turns into a test prioritization algorithm based on
additional coverage if we set FRP ðtcÞ to one for every
tc 2 TC. If, in addition, we remove lines 8 to 10 from our
algorithm in Fig. 9 (i.e., the part related to updating
faultiness with respect to the already ranked test cases), the
result will be a test prioritization algorithm based on total
coverage. In Section 9, we compare our test prioritization
algorithm in Fig. 9 with the test prioritization algorithms
based on additional and total coverage [122].

6 TEST ORACLE

In our work, we make three important assumptions about
test oracles: First, we assume that no automatable test oracle
is available, a common situation in practice. Second, test
oracles are typically inexact. In particular, during design
time testing of cyber-physical systems, small deviations
between test outputs and expected outputs are often toler-
ated and not considered failures. Third, the correctness of a
test output is not only determined by evaluating discrete
output values at a few discrete time instances, but the cor-
rectness also depends on the frequency and the amount of
changes of output values over a period of time. Our
assumptions have the following two implications on our
approach that we discuss in this section.

First, since we assume that test outputs are evaluated
manually, we need to provide a way to estimate the oracle
cost pertaining to a test suite generated by a test generation
technique. This is particularly important for comparing dif-
ferent test generation strategies. Specifically, test suites gen-
erated by two different strategies can be used as a basis for
comparing the strategies only if the test suites have similar
test oracle costs, i.e., evaluating their test outputs requires
the same amount of effort. The oracle cost of a test suite
depends on the following:

� The total number of outputs that are generated by
that test suite and are required to be inspected by
engineers. For example, our test generation algorithm
(Fig. 7) generates a test suite TS with size q to exercise
a specificmodel output o. Let TC ¼

S
TS be the union

of all such test suites. Assuming that the underlying
model M has l outputs, the number of output signals
that are generated by TC and need to be inspected is
l� q. Alternatively, another techniquemay generate a
test suite TS0 containing q test inputs for model M
such that all the output signals generated by each test
input in TS0 are expected to be inspected by engineers.
In this case, the number of output signals that are gen-
erated by TS0 and need to be inspected is the same as
that number for TC, i.e., l� q.

� The complexity of input data. Recall from Section 3
that test input signals in our approach are piece-
wise. The fewer pieces the input signals have, the
easier to determine whether their outputs are correct
or not. In the automotive domain, constant signals
are considered the least complex and the most com-
mon test inputs for Simulink models. Moving from
constant input signals to linear signals or to piece-
wise constant signals causes the resulting output sig-
nals to become more complex, and hence, the cost of

930 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

manual test oracles to increase. To ensure that test
suites TS ¼ fI1; . . . Iq1g and TS0 ¼ fI 01; . . . I 0q2g have
the same input complexity, the input signals in TS
and TS0 should have the same number of pieces. That
is, for every test input Ii ¼ ðsg1; . . . ; sgnÞ in TS (respec-
tively TS0), there exists some test input Ij ¼
ðsg01; . . . ; sg0nÞ in TS0 (respectively TS) such that sgl and
sg0l (for 1 � l � n) have the same number of pieces.

In our experiments described in Section 8.5, we ensure
that the test suites used to compare different test generation
algorithms have the same test oracle costs, i.e., (1) the num-
ber of outputs generated by these test suites and are required
to be inspected by engineers are the same, and (2) the signals
related to their test inputs have the same number of pieces.

Second, we define a heuristic test oracle function that has
these two characteristics: (1) To address the fact that test
oracles are inexact, we define our test oracle function as a
quantitative measure comparing test outputs and the
expected results. (2) We define the test oracle function over
the entire vectors of signal outputs to account for output
changes over the entire simulation time interval.

Let sgo be a test output signal. We define a (heuristic) test
oracle function, denoted by oracle, that maps a given output
signal to a value in ½0::1�. The higher the value of oracleðsgoÞ,
the more likely the signal sgo is to reveal a fault in the under-
lying Simulink model. In our work, we compute oracleðsgoÞ
as the normalized Euclidean distance between sgo
and the ground truth oracle signal denoted by g. That is,
oracleðsgoÞ ¼ ^distðsgo; gÞ (see Equation (1) for definition of
^dist). The ground truth oracle is a conceptual oracle that

always gives the “right answer” [12]. In practice, signal g is
supposed to be created manually, while in our experiments,
we use fault-free models to automatically produce the
ground truth oracle signals (see Section 8.3).

In Section 8.3, we will use our heuristic oracle function,
oracle, to provide a metric to measure the fault-revealing
ability of test generation techniques. Our fault-revealing
measure attempts to capture impacts of faults on output sig-
nal vectors over the entire simulation time interval as
opposed to focusing on violation of discrete properties over
model outputs.

The alternative fault revealing metric used in existing
research on testing Simulink models (e.g., [32], [121]) is a
binary measure assuming that correct test outputs should
exactly match the reference output and otherwise, they
reveal a failure. Any slight deviation without any regard to
signal shapes or the deviation degree is assumed to be suffi-
cient enough to reveal a failure. We believe a fault revealing
metric should be quantitative and not binary as engineers
typically do not inspect test outputs in a binary manner and
tolerate small deviations.

Finally, we note that the oracle function is only used as a
heuristic to assess how easily engineers will be able to identify
failures while analyzing output signals. Although not studied
in this paper, the oracle function could also be defined as a
measure comparing the shapes of test output signals and the
ground truth oracle signals, for example using the signal fea-
ture taxonomy in Fig. 6. We leave to future work to develop a
more comprehensive fault revealing measure for Simulink
testing approaches that accounts for differences between both
signal distances and signal shapes.

7 TOOL SUPPORT

We have implemented our approach in a tool called Simu-
link Controller Tester (SimCoTest) (https://sites.google.
com/site/simcotesttool/) [59]. Fig. 10 shows an overview
of SimCoTest. Specifically, SimCoTest takes a Simulink/
Stateflow model M as input. It, then, (1) automatically
extracts the information required for test generation from
the model including the names, data types and data ranges
of the input and output variables of the model (data extrac-
tion), (2) generates one test suite for each output of model
M using our output diversity test generation algorithm in
Fig. 7 (test generation), and (3) prioritizes the generated test
cases obtained for different model outputs based on our pri-
oritization algorithm in Fig. 9 (prioritization).

SimCoTest is implemented in Microsoft Visual Studio
2010 andMicrosoft .NET 4.0. It is an object-oriented program
in C# with 92 classes and roughly 25K lines of C# code. In
addition, the key functions of SimCoTest, including the data
extraction, test generation and test prioritization, are partly
implemented using MATLAB script functions, which are
called from SimCoTest using theMLAppCOM interface [94].
Specifically, 64 MATLAB functions are implemented in
roughly 7K lines of MATLAB script and are called from Sim-
CoTest. SimCoTest source code is available online [81]. The
main functionalities of SimCoTest have been tested with a
test suite containingmore than 100 test cases [81]. SimCoTest
requires Matlab/Simulink to be installed and operational on
the same machine to be able to execute Simulink/Stateflow
models and generate test suites. We have tested SimCoTest
onWindows XP andWindows 7, andwithMatlab 2011b and
Matlab 2015b. Matlab 2011b was selected to ensure back-
ward compatibility of our tool with (legacy) industry mod-
els. We have made SimCoTest available to Delphi, and have
presented it in a hands-on tutorial to Delphi function engi-
neers. Finally, we note that using SimCoTest, wewere able to
find three real faults in Simulink models from Delphi, which
had not been previously found by manual testing based on
domain expertise.We discuss these faults in Section 10.

8 EXPERIMENT SETUP

In this section, we present the research questions and our
study subjects. We further describe metrics to measure
fault-revealing ability and effectiveness of our test genera-
tion and test prioritization algorithms. Finally, we provide
our experiment design.

8.1 Research Questions

RQ1 (Comparing Test Generation with State-of-the-art). How
does the fault-revealing ability of the OD test generation
algorithm compare with that of a random test generation

Fig. 10. An overview of SimCoTest.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 931

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/site/simcotesttool/
https://sites.google.com/site/simcotesttool/

strategy or a coverage-based test generation strategy? How
does the fault-revealing ability of these test generation tech-
niques compare with their degree of structural coverage?
We investigate whether OD test generation is able to per-
form better than random testing, which is a baseline of com-
parison, and a coverage-based test generation strategy. For
coverage-based test generation, we replace the objective
function O in our OD algorithm in Fig. 7 with an objective
function that computes the accumulative dynamic test cov-
erages of all the test cases in TS. In both comparisons, we
consider the fault-revealing ability of the test suites gener-
ated by OD when used with each of the Ov and Of objective
functions. We further compare the degree of structural cov-
erage (more specifically decision coverage) achieved by OD,
coverage-based testing and random testing to investigate
any relationship between the fault-revealing ability and
structural coverage for these techniques.

RQ2 (Comparing Ov and Of). How does the Of diversity
objective perform compared to the Ov diversity objective?
We compare the ability of the test suites generated by OD
with Ov and Of in revealing faults in Simulink models. In
particular, we are interested to know if, irrespective of the
size of the generated test suites, any of these two diversity
objectives is able to consistently reveal more faults across dif-
ferent study subjects and different fault types than the other.

RQ3 (Comparing Test Prioritization with State-of-the-Art).
How does the effectiveness of our test prioritization algo-
rithm compare with that of a random test prioritization
strategy? How does the effectiveness of our test prioritiza-
tion algorithm compare with that of coverage-based test pri-
oritization strategies? We compare the effectiveness of our
test prioritization techniquewith a random test prioritization
algorithm (baseline) and with the state-of-the-art coverage-
based test prioritization. Specifically, we investigate whether
engineers can identify faults faster by inspecting the test case
rankings generated by our algorithm compared to inspecting
test case rankings generated randomly or by coverage-based
techniques. As for the coverage-based test prioritization, we
compare with both the additional and total coverage-based
test prioritization alternatives [122].

8.2 Study Subjects

We use two industrial Simulink models in our experiments:
a Clutch Position Controller (CPC) and a Flap Position Con-
troller (FPC) developed by Delphi Automotive Systems.
Table 1 shows the key characteristics of these models. CPC
and FPC are representative models from the automotive
domain with many input variables and blocks. In Table 1,
we report the total number of Simulink blocks and Stateflow
states as well as input/output variables and configuration
parameters for each model.

We further report in Table 1 the total number of decision
goals in our study subjects. This is because in RQ1 and RQ3

we compare our approach with (baseline) coverage-based
test generation and test prioritization algorithms that work
based on decision coverage [98]. Specifically, the baseline
algorithms aim to cover each one of the decision goals in a
model under analysis at least once and thereby ensuring that
all reachable blocks are executed. Decision goals in Simulink
models are data inputs to switch blocks and conditional tran-
sitions emanating from the same state in a Stateflowmodel.

As discussed earlier, Simulink models have multiple out-
put variables. These outputs can be categorized based on
their function into control, status, or diagnostic outputs. Con-
trol outputs are commands applied to physical objects.
These, for example, include physical signals representing a
voltage applied to a DC motor to rotate a drive shaft in a
car. Control outputs can be of type float (e.g., representing
an analogue voltage signal), integer (e.g., representing a dig-
ital voltage signal) or enum/boolean (e.g., enabling or dis-
abling a device). Status outputs report the system state
variables, e.g., if a gate is open or close. They can be of type
float (e.g., measurements such as estimated gas emission),
integer (e.g., timer) or enum/boolean (e.g., gate open or
close). Diagnostic outputs provide access to intermediary
signal values and are used solely for debugging purposes.
They can be of type float, integer or enum/boolean.

The CPC and FPC models are organized into five and six
levels of subsystems, respectively. Both models contain var-
ious types of Simulink blocks including numerical and logi-
cal operations, from and goto blocks, lookup tables and
S-Functions. Most of the computations are done by
S-Functionswhich receive as input, configurable parameters,
outputs of lookup tables or results of other computations.
Both FPC and CPC are controller models and do not include
a plant model. CPC controls the status of a clutch using a rel-
atively large StateFlow including 13 states and 17 transitions.
FPC implements five PIDs to control movements of a flap.

In our earlier work [58], our experiments focused on one
main control output of CPC and FPC models. In this article,
we account for all outputs of the CPC and FPCmodels except
for those of type enum and boolean. The number of CPC and
FPC outputs (excluding enum/boolean outputs) are 15 and
37, respectively (Table 1). We did not consider enum/boolean
outputs because our notion of oracle is not meaningful for
them. For ordinal values (i.e., enumvalues), the actual numer-
ical quantities are meant to define some relative ranking over
data points. Euclidean distances between vectors of ordinal
values as prescribed by our oracle function would be mean-
ingless.We note thatwhile CPC and FPC have only four bool-
ean and one enum outputs in total, they have 52 float and
integer outputs. Based on our experience [57], Simulink mod-
els developed in the automotive industry tend to have several
float and integer outputs, but few enumand boolean outputs.

8.3 Measuring Fault-Revealing Ability

We use our heuristic test oracle function, oracle, defined in
Section 6 to automatically assess and compare the fault-
revealing ability of test suites in our experimental setting.
For the purpose of experimentation, we use fault-free ver-
sions of our subject models to produce the ground truth ora-
cle signals (i.e., signal g in Section 6). Let TC be the set of all
generated test cases for a given Simulink model M by a par-
ticular test generation technique, and let SG be the set of all

TABLE 1
Characteristics of Our Study Subject Simulink Models

Name No.
Inputs

No.
Configs

No.
Outputs

No. Blocks/
States

No. Decision
Goals

CPC 10 41 15 590 126
FPC 21 65 37 810 120

932 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

signals sgtco that are generated by a test case tc 2 TC for an
output o ofM and are required to be inspected by engineers.
We define an aggregated oracle function Oracle over the set
TC as follows:

OracleðTCÞ ¼ MAXsg2SGoracleðsgÞ:

That is, the aggregated oracle function, Oracle, returns
the largest deviation between the ground truth oracle signal
and all the output signals that are generated by TC and are
expected to be checked by engineers. In order to reveal a
fault, it is sufficient to have one fault-revealing test case
among the test cases in TC. Hence, we define Oracle as
the maximum of the deviations from the ground truth ora-
cle generated by the test cases in TC. We use a threshold
value THR to translate the aggregated oracle Oracle into a
boolean fault-revealing measure denoted by FR. Specifi-
cally, FR returns true (i.e., OracleðTCÞ > THR) if some out-
put signal in SG sufficiently deviates from the ground truth
oracle such that a manual tester can conclusively detect a
failure. Otherwise, FR returns false. In our work, we set
THR to 0.2. We arrived at this value for THR based on our
experience and discussions with domain experts. In our
experiments, in addition, we obtained and evaluated the
results for THR ¼ 0:15 and THR ¼ 0:25 and showed that
our results were not sensitive to such small changes in THR.

8.4 Measuring Test Prioritization Effectiveness

To compare the effectiveness of different prioritization
algorithms, we measure how early faults can be detected
when engineers inspect the test case rankings generated by
alternative test prioritization algorithms. We use a metric,
referred to as the Number of Tests to be Evaluated (NTE),
that computes the number of test cases that need to be eval-
uated by engineers so that they can identify a fault. Lower
NTE values denote faster fault detection, hence, more
effective test prioritization. NTE directly counts the num-
ber of tests that need to be evaluated to find a fault, and
provides a more intuitive measure to compare different
test case rankings than existing evaluation metrics for test

prioritization, such as APFD measure [115]. Finally we
note that NTE values are impacted by the threshold THR
used to compute the fault-revealing measure FR (see Sec-
tion 8.3). Hence, in our experiments we report NTE values
corresponding to the three different thresholds of 0.2, 0.15
and 0.25 used to compute FR.

8.5 Experiment Design

We developed a comprehensive list of Simulink fault pat-
terns. We identified these patterns through our discussions
with senior engineers from Delphi Automotive and by
reviewing the existing literature on mutation operators for
Simulink models [14], [17], [114], [120]. Tables 2 and 3 report
these fault patterns. We note that these fault patterns repre-
sent the most common faults observed in practice.

To seed faults into the CPC and FPC models, we used an
automated fault seeding program to generate the mutant can-
didates for the CPC and FPC models. We also developed a set
of mutation operators corresponding to the fault patterns in
Tables 2 and 3. Our fault seeding program enumerated each
model element in each of these models, and mutated that ele-
ment using mutation operators that were applicable to that
element. Our fault seeding program generated 141 mutant
candidates for CPC and 136 mutant candidates for FPC such
that each mutant candidate has one fault. We then generated
10,000 test inputs for each of the CPC and FPC models using
the adaptive random testing algorithm. We executed each
mutant candidate of CPC and FPC using the 10,000 test cases.
We discarded those mutant candidates whose output signals
for all the 10,000 test cases exactly matched the corresponding
reference model output signals. From the remaining mutant

TABLE 2
Simulink Fault Patterns Identified at Delphi

Fault Pattern Corresponding Mutation Operator

Incorrect signal data
types in math
operations

Replacing a signal data typewith a
different data type, e.g., theMTALB
“double” data typewithMATLAB
“single” data type, orMATLAB
“fixdt(0,8,3)” data typewith
MATLAB “fixdt(0,8,2)” data type

Missing a “GoTo” block
of a “From” block

Removing the “GoTo” block
corresponding to a “From” block

Missing “Saturate on
integer overflow” in
math operations blocks

Unchecking the “Saturate on inte-
ger overflow” property for the
blocks with this property checked

Missing “Signal name
must resolve to Simu-
link signal object” in
properties of a signal

Unchecking the “Signal name
must resolve to Simulink signal
object” property for the signals
with this property checked

Improper “Merge”
block utilization

Adding a Merge block for two
signals that should not be merged

TABLE 3
Simulink Fault Patterns Identified in the

Literature [14], [17], [114], [120]

Fault Pattern. Corresponding Mutation Operator

Incorrect signal
data types

Replacing the MTALB “double” data
type with MATLAB “single” data
type, or MATLAB “fixdt(0,8,3)” data
type with MATLAB “fixdt(0,8,2)”
data type.

Incorrect constant
values

Replacing constant cwith constant
c� 1 or cþ 1; Negating boolean
constants.

Incorrect Simulink
blocks

Modifying arithmetic operators, e.g.,
replacing + with - or replacing + with
�. Modifying relation operators, e.g.,
replacing �with 	 or ¼with 6¼.
Modifying logical operator, e.g.,
replacing ^with _. Introducing
boolean negation operators.

Incorrect
connections

Switching the input lines of the
“Switch” block

Incorrect transition
conditions in
Stateflow models

Modifying relation and logical
operators.

Incorrect actions in
Stateflow models

Modifying arithmetic operators,
modifying constants

Wrong initial
conditions and delay
values

Changing the initial value in
“Integration” and “Unit Delay”
blocks

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 933

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

candidates, we randomly selected 44 mutants for CPC and 30
mutants for FPC as chosen mutants to be used in our experi-
ments. We did so in such a way that among the chosen
mutants we have a balanced and sufficient number of
mutants for different fault pattern categories in Tables 2
and 3. We note that our experiments based on the 74 mutants
were expensive and took 20 days to execute, excluding the
process of removing equivalent mutants. So we had to limit
the number ofmutants in our experiments.

We then performed two experiments, EXP-I and EXP-II,
to answer RQ1 to RQ3, described below.

EXP-I focuses on answering RQ1 and RQ2. Fig. 11a shows
the overall structure of EXP-I. We ran the OD algorithm in
Fig. 7 with vector-based (Ov) and feature-based (Of) objec-
tive functions. We also ran our random and coverage-based
(Cov) test generation algorithms. As mentioned in Section
8.1, for the Cov algorithm, we use an objective function that
computes the set of Simulink blocks covered by test cases.
Specifically, we use the covers function described in Section 5
for this purppose.

As shown in Fig. 11a, OD and Cov generate l separate
test suites for l outputs of the model under test, while the
random test generation algorithm generates one test suite
for all the model outputs. For each faulty model and each
objective function, we ran OD, Cov and Random for 600 sec
and created test suites with the following sizes: 3, 5 and 10.
We chose to examine the fault-revealing ability of small test
suites to emulate current practice where test suites are small
so that the test results can be inspected manually. We
repeated the test generation algorithms in EXP-I for 20 times
to account for their randomness. Specifically, for 44 faulty
versions of CPC model with 15 outputs and 30 faulty
versions of FPC model with 37 outputs, we sampled 16152
(i.e., 44� 3� 3� 15þ 30� 3� 3� 37þ 74� 3) different
test suites and repeated each sampling 20 times (i.e., in total,
323040 different test suites were generated for EXP-IEXP-I).
Overall, EXP-I took around 20 days to run on our High Per-
formance Clusters (HPC) [102]. Thanks to our HPC, we were
able to parallelize EXP-I execution. Otherwise, it would have
taken more than four years to complete EXP-I on a single
core CPU system.EXP-II answers the research question RQ3
and evaluates our test prioritization algorithm. Fig. 11c

shows the overall structure of EXP-II. We used our prioriti-
zation algorithm in Fig. 9 to rank the test cases generated by
OD for the 74 faulty versions of the CPC and FPC models.
We also used a random prioritization algorithm as well as
the total and additional coverage-based test prioritization
strategies [122] to rank the same test cases. We repeated
EXP-II for all the fault-revealing test suites obtained by the
20 different runs of OD in EXP-I. We ignored those test suites
obtained in EXP-I that were not able to detect any fault since
test prioritization is irrelevant for them.

Recall from Section 5 that our prioritization algorithm in
Fig. 9 turns into an additional coverage-based prioritization
algorithm by setting the fault-revealing probability function
to one for all the test cases. If, in addition, we remove the part
updating the faultiness probabilities of the covered nodes,
the algorithm turns into a total coverage-based prioritization
algorithm. When multiple test cases are equally desirable
with respect to coverage, we select a test case randomly. Fur-
ther, additional coverage strategy usually reaches a point
where nodes are covered by at least one of the prioritized
test cases and none of the remaining test cases can add any
additional coverage. At this point, we reset the accumulative
coverage and reapply the additional coverage strategy to
order the remaining test cases. Overall, EXP-II took around
half an hour to run on our HPC clusters. It would have taken
more than a month on a single node. Note that, all the test
caseswere already executed during EXP-I and their dynamic
test execution information, including coverage and output
signals, were available before running EXP-II.

9 RESULTS

This section provides responses, based on our experiment
results, for research questions RQ1 to RQ3 described in
Section 8. We have made the result data files available
online [81].

RQ1 (Comparing OD with State-of-the-art). To answer RQ1,
we ran EXP-I to compare our OD algorithm with Random
and Cov. We ensured that the test suites generated by differ-
ent algorithms have the same oracle cost (see Section 6).
Figs. 12a, 12b, and 12c compare the fault-revealing ability of
Random (R), Cov, andODwith the objective functionsOv and
Of . Each distribution in Figs. 12a, 12b, and 12c contains 74
points. Each point relates to one faulty model and represents,
for the 20 test suites with size q obtained for that faulty model,
the average aggregated oracle (i.e.,Oracle) in the diagrams on
the leftmost column, and the average fault revealing measure
(i.e., FR) in the other diagrams. Note that the FR values are
computed based on three different thresholds THR of 0.2,
0.15, and 0.25. For example, a point with (x = R) and (y = 0.149)
in theOracle plot of Fig. 12a indicates that the 20 different ran-
dom test suites with size three generated for a faulty model
achieved an average aggregated oracle of 0.149. Similarly, a
point with (x = OD(Of)) and (y = 0.85) in any of the FR plots
of Fig. 12b indicates that, among the 20 test suites with size
five obtained for each output of a faultymodel using ODwith
objective function Of , 17 test suites had some fault-revealing
test case (i.e., FR = 1), while three test suites had no fault-
revealing test case (i.e.,FR = 0).

To statistically compare theOracle andFR values, we per-
formed the non-parametric pairwise Wilcoxon signed-rank

Fig. 11. Our experiment design: (a) EXP-I to answer RQ1 and RQ2: test
generation algorithms are repeated for 20 times to account for their ran-
domness. (b) EXP-II to answer RQ3: EXP-II is repeated for all the fault-
revealing OD test suites from EXP-I. Further, random prioritization is
repeated for 20 times.

934 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

test [19], and calculated the effect size using the Cohen’s
d [25]. The level of significance (a) was set to 0.05, and,
following standard practice, d was labeled “small” for
0:2 � d � 0:5, “medium” for 0:5 � d � 0:8 and “high” for
d 	 0:8 [25].

Comparing fault-revealing ability of OD, R and Cov. The
average Oracle and FR values obtained by OD, with both
objective functions Of and Ov, for all the three thresholds
and with all the three test suite sizes, are significantly better
than those obtained by Random and Cov. Further, for all
the comparisons between OD and Random, the effect size is
consistently “high” for OD with both Of and Ov. As for
comparing OD with Cov, the effect size is “high” for all the
comparisons except for the comparisons of FR distributions
for OD(Ov) with test suite sizes five and ten, where the effect
size is “medium”.

Comparing decision coverage achieved by OD, R and Cov.
Fig. 13 compares the average percentages of decision cover-
age achieved by the 20 different runs of R, Cov, OD(Of) and
OD(Ov) over the faulty CPC and FPC models. As discussed

in Section 5, in our work, the test coverage for a test case is a
subset of the static backward slice of the output related to
that test case. Therefore, we computed the values reported in
Fig. 13 by taking the average percentage of decision coverage
for each test case in the fault-revealing test suite over the
static backward slice of the output related to that test suite.
As shown in Fig. 13, Cov is able to achieve higher structural
coverage than the two other algorithms across all the test
suite sizes. Specifically, it achieves, on average, 89, 91 and
93 percent decision coverage for the test suite sizes 3, 5 and
10, respectively. As shown in the figure, this is at least 3 per-
cent points higher than the structural coverages achieved by
the other algorithms across all the test suite sizes. Neverthe-
less, as shown in Fig. 12, achieving higher structural cover-
agewith Cov does not result in higher fault-revealing ability.

In summary, the answer to RQ1 is that while OD’s deci-
sion coverage is on average 4 percent points lower than the
decision coverage achieved by Cov, the fault-revealing abil-
ity of OD significantly outperforms that of both Cov and
Random.

RQ2 (Comparing Of with Ov). The results in Fig. 12 enable
us to compare the average Oracle and FR values for the
feature-based, OD(Of), and the vector-based, OD(Ov), out-
put diversity algorithms.

Comparing fault-revealing abilities of OD(Of) and OD(Ov).
As for the average Oracle distributions, the statistical test
results indicate that OD(Of) performs significantly better
than OD(Ov) for the test suite sizes 5 and 10 with a “small”
effect size. For the test suite size 3, there is no statistically
significant difference, but OD(Of) achieves higher mean
and median Oracle values compared to OD(Ov). As for the
FR distributions, the improvements of OD(Of) over OD(Ov)
are not statistically significant. However, for all the three

Fig. 12. Boxplots comparing average aggregated oracle values (Oracle) and fault revealing measures (FR) of OD (with both diversity objectives), cov-
erage-based (Cov) and random test suites (R) for different thresholds and different test suite sizes.

Fig. 13. The percentages of dynamic test coverage achieved by different
test generation algorithms over the faulty versions of CPC and FPC sub-
ject models for different test suite sizes.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 935

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

thresholds and with all the test suite sizes, OD(Of) consis-
tently achieves higher mean and median FR values com-
pared to OD(Ov). Specifically, with threshold 0.2, the
average FR is .63, .66 and .71 for OD(Of), and .51, .52 and
.61 for OD(Ov) for the test suite sizes 3, 5, and 10, respec-
tively. That is, across all the faults and with all the test suite
sizes, the average probability of detecting a fault is at least
%10 points higher when we use OD(Of) instead of OD(Ov).

Why does OD(Of) perform better than OD(Ov)? Here, we
provide more insight as to why OD(Of) achieves higher
fault-revealing ability than OD(Ov). Specifically, our investi-
gation of OD execution in our experiments indicated that
OD ran for the same number of iterations with both Ov and
Of within the given test execution time budget. Recall that
in Section 4.3, we discussed the asymptotic time complexity
of individual iterations of OD(Of) and OD(Ov). According
to our experimental results, the time required to run the
underlying model for q test cases (i.e., TM � q in Section 4.3)
significantly dominates the time required to compute Of

and Ov. Specifically, a single model execution TM takes on
average 1.1 second, while computing Of or Ov takes on
average 0.012 and 0.005 second, respectively. Since OD(Of)
and OD(Ov) are given the same test execution time budget
in EXP-I, on average, they ran for the same number of itera-
tions in our experiments. As a result, we conjecture that the
reason for better fault-revealing ability of OD(Of) lies in
providing a better landscape for the search. That is, the
feature-based diversity objective function provides a better
surrogate for fault-revealing ability of the generated test
suites compared to the vector-based output diversity objec-
tive function.

In summary, the answer to RQ2 is that the fault-revealing
ability of OD with the feature-based diversity objective is
higher than that of OD with the vector-based diversity
objective.

RQ3 (Comparing Test Prioritization with state-of-the-art). To
answer RQ3, we performed EXP-II using the fault-revealing
samples of the test suites generated by OD(Of) (i.e., the best
performing algorithm) in EXP-I. Figs. 14 and 15 compare
the average NTE distributions obtained by the random pri-
oritization (R), total (Tot) and additional (Add) coverage-
based prioritization, and our test prioritization (PrioAlg)
algorithms for the CPC and FPC models, respectively. Note
that in contrast to the Oracle and FR measures used in EXP-
I, NTEmeasure is not normalized (e.g., it can go up to 45 for
Fig. 14a, and up to 75 for Fig. 14b). Hence, we present the
results of EXP-II in separate plots for CPC and FPC case
studies. Each distribution in Figs. 14a, 14b, and 14c (resp. in
Figs. 15a, 15b, and 15c) contains 44 (resp. 30) points. Each
point relates to one faulty model and represents the average
NTE values obtained by applying a test prioritization algo-
rithm to the combined set of test cases generated by OD(Of)
for that faulty model. Further, the results for random priori-
tization represent the average NTE values obtained over 20
different runs of the random prioritization algorithm. For
example, a point with (x = Tot) and (y = 12.35) in any of the
plots in Fig. 14c indicates that among the 150 (i.e., 15� 10)
test cases generated for 15 outputs of CPC model, on aver-
age, when test cases are prioritized using the total coverage
algorithm, 12.35 test cases need to be evaluated to find a
fault. Similarly, a point with (x = PrioAlg) and (y = 9.8) in
any of the plots in Fig. 15b indicates that among all the 185

Fig. 14. Boxplots comparing average NTE values obtained by our prioritization algorithm (PrioAlg), coverage-based prioritization algorithm (Tot and
Add) and random prioritization algorithm (R) with different thresholds and different test suite sizes for CPC case study.

936 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

(i.e., 37� 5) test cases generated for the 37 outputs of FPC,
on average, when test cases are prioritized using our test
prioritization algorithm, 9.8 test cases need to be evaluated
to find a fault.

To statistically compare the NTE values, we used the
same setting as in EXP-I. Recall that lower NTE values
denote faster fault detection and hence more effective test
prioritization. Testing differences in the average NTE distri-
butions for both CPC and FPC models, for all the three
thresholds, and with all the three test suite sizes, shows that
PrioAlg performs significantly better than the other three
algorithms. In addition, for all the comparisons between
PrioAlg and both R and Tot, the effect size is consistently
“high’. For the comparisons between PrioAlg and Add, the
effect size is “high’ for the test suite sizes 5 and 10, and
“medium’ for the test suite size 3.

The NTE results shown in Figs. 14 and 15, in addition to
demonstrating statistical significance, are practically signifi-
cant as well. Specifically, across all the faults and with all
the test suite sizes, on average, engineers inspect 12.1 fewer
test cases (i.e., 48 percent fewer test cases) to find a
fault when they use our prioritization (PrioAlg) algorithm
instead of the additional coverage-based (Add) algorithm,
the second best prioritization algorithm. That is, PrioAlg
reduces the time required to inspect test cases to almost half
when compared with the existing state-of-the-art prioritiza-
tion algorithms.

In summary, our prioritization algorithm significantly out-
performs the random, and the total and additional coverage-
based prioritization algorithms. Further, it reduces the
inspection time by almost half compared to the second best
performing prioritization algorithm.

Validity Considerations and Threats. Internal and external
validity threats are the most relevant validity aspects in our
experiments.

Internal validity. We mitigated the factors that could
potentially cause confounding effects in our experiments.
We repeated all of our experiments for three different test
suite sizes of three, five and ten. In addition, our results are
not impacted by small changes made to the fault revealing
threshold THR and are consistent with the results obtained
based on the quantitative fault revealing measure, i.e., Ora-
cle, that does not rely on a threshold. We also note that in
our experiments, we have reported the quantitative fault
revealing measures obtained for the OD, Random and Cov
algorithms without considering any threshold.

For our experiments, we obtained a comprehensive list of
fault patterns for Simulink models based on our discussions
with Delphi engineers as well as by surveying the literature.
To discard mutants that are semantically equivalent to the
reference model (i.e., the non-faulty model), we relied on an
adaptive random testing algorithm. The issue that arises
here is that we may have spuriously discarded some stub-
born mutants, i.e., the mutants that are unlikely to be found
by random (or adaptive random) testing. First, to mitigate
this issue, in our work, we generated a large number of test
inputs (i.e., 10,000 test inputs) and used adaptive random
testing which attempts to maximize diversity among test
inputs. Second, we note that the CPC and FPC models used
in our evaluation contained complex S-Functions. The
Simulink toolboxes that can perform Simulink model equiv-
alence checking based on formal methods, e.g., SLDV, could
not run on neither CPC nor FPC. Third, we note that our
experiments compared our OD approach with two other

Fig. 15. Boxplots comparing average NTE values obtained by our prioritization algorithm (PrioAlg), coverage-based prioritization algorithm (Tot and
Add) and random prioritization algorithm (R) with different thresholds and different test suite sizes for FPC case study.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 937

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

randomized baseline algorithms: a random testing (Random)
algorithm and a search-based coverage-based test genera-
tion (Cov) algorithm. The (potential) removal of stubborn
mutants may impact the absolute fault finding of all three
approaches reported in the experiment. Nevertheless, it is
very unlikely this (potential) removal would have signifi-
cantly impacted our comparison results with the Cov and
Random algorithms and biased the results in favor of our
OD approach.

External validity. To account for the cost of manual test
oracles in practice, we considered small test suites that do
not contain more than ten test cases. The test input signals
used in our experiments were piecewise constant signals.
According to our domain experts, such test inputs were suf-
ficient for testing our study subjects. While we considered
two industrial case studies in our experiments and we antic-
ipate them to be representative of Simulink models in the
automotive domain, additional case studies, in particular
from other domains, will be essential in the future.

10 REAL FAULTS IN INDUSTRY SIMULINK MODELS

In this section, we discuss three real faults that we were able
to identify using our black-box output-based Simulink test-
ing tool. We found these faults during a pilot study con-
ducted in collaboration with Delphi engineers where we
applied SimCoTest to a number of Simulink models that
were under development at Delphi. We further argue why
existing tools are unlikely to reveal these faults.

The three outputs that revealed these faults are shown in
Figs. 16, 17 and 18c. Specifically, (1) Fig. 16 shows quick and
frequent oscillations of a controller output over a time inter-
val between 6.4 and 6.9 sec. These oscillations violate the
controller stability requirement. (2) Fig. 17 shows an output
with a discrete jump at 0.1 sec. According to engineers, this

jump is undesirable and indicates a fault. This fault was gen-
erated due to an output saturation of a Simulink block. (3)
The third fault is related to a faulty delay buffer (Fig. 18). The
fault was due to an integer overflow inside the buffer. The
impact was that some output signals (e.g., the output signal
in Fig. 18c) were not correctly-shifted copies of their corre-
sponding input signals (e.g., the input signal in Fig. 18b).
These three faults were identified when engineers inspected
test outputs generated by our black-box output diversity
algorithm. These faults had not been previously found via
manual expertise-based testing nor by commercial tools.

One important question is whether existing Simulink
testing tools, given their underlying technology, can possi-
bly find the above faults. In the remainder of this section,
we try to answer this question considering the first usage
mode of these tools that we discussed in Section 2.2 (i.e.,
checking Simulink models against formal properties). We
note that the second usage mode of these tools was already
discussed in Section 2.2. In this comparison, we consider
the Reactis tool since it can test Simulink models against for-
mal properties/assertions, and further, the Reactis license,
in contrast to the license of Mathworks toolboxes, permits
such comparisons.

Assertions Capturing Dynamic Properties. Since Reactis was
not applicable to the model in which the fault in Fig. 16 was
originally observed, we created the Simulink model in
Fig. 19 to check if the fault in Fig. 16 could be identified by
Reactis. The model in Fig. 19 includes a subsystem that
returns zero if it identifies the behavior in Fig. 16. Our
implementation for the subsystem in Fig. 19 is available
at [79]. The output of this subsystem is connected to a Simu-
link assertion block. We used Reactis to generate an input
signal such as the one in Fig. 16 to trigger the assertion
block. We let the tool execute for 24 hours but it did not gen-
erate any results. We conjecture that due to its underlying
technology, Reactis is not able to find faults that manifest late
during the simulation time (e.g., after 6000 steps in our

Fig. 16. An output signal containing instability failure caused by a real
fault in an industrial Simulink model.

Fig. 17. A faulty output signal generated by output saturation on overflow.

Fig. 18. A delay buffer that uses overflow as the underlying implementa-
tion mechanism, and an input signal and a faulty output signal of the
delay buffer.

Fig. 19. A Simulink model to check if the fault in Fig. 16 could be identi-
fied by Reactis.

938 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

example in Fig. 16).Runtime Errors. Relying on runtime
crashes as test oracles may not help with fault finding in
practice due to some particular engineering practices in
Simulinkmodel development. Specifically, in Simulinkmod-
els, to prevent runtime crashes, engineers often enable output
saturation on under/overflow for all the blocks that may poten-
tially lead to an under/overflow. Enabling this property gen-
erates a safety check for the respective block that sets the
block’s output to the maximum (resp. minimum) of its value
range if the block produces an output larger (resp. less) than
the maximum (resp. minimum) of the output range. This
eliminates runtime crashes due to under/overflows in Simu-
link models. Nevertheless, engineers still need to ensure that
saturating outputs do not lead to incorrect behaviors such as
the erroneous signal jump in Fig. 17 or the delay buffer error
in Fig. 18. Tools such as Reactis, however, do not address the
identification of such erroneous behaviors since they focus
on triggering runtime errors and assertions.

11 RELATED WORK

As explained in Section 1, this article considerably extends
and improves our previous papers [54], [58] and further pro-
vides a comprehensive exposition of our approach. In this
section, we focus on comparing our approach with the most
related research threads to our work on software testing, test
case prioritization, controller testing and signal processing

11.1 Software Testing

A large part of existing test automation techniques rely on
program analysis and focus on testing software implemen-
tation (source code). Our work, in contrast, aims to test
models capturing both software and its environment. Hav-
ing said that, we have used the following two specific ideas
from the research focused on testing software code: (1)
Whole test suite generation: Our algorithm uses whole test
suite generation [29] that was proposed for unit testing
software code. This approach evolves an entire test suite,
instead of individual test cases, with the aim of covering all
structural coverage goals at the same time. Our algorithm,
instead, attempts to diversify test outputs by taking into
account all the signal features (see Fig. 6) at the same time.
(2) Output uniqueness/diversity: The notion of output diver-
sity in our work is inspired by the output uniqueness crite-
rion [2], [3]. As noted by Alshahwan and Harman [3],
effectiveness of this criterion depends on the definition of
output difference and differs from one context to another.
While Alshahwan and Harman [2], [3] describe output dif-
ferences in terms of the textual, visual or structural aspects
of HTML code, in our work, output differences are charac-
terized by signal shape features.

In the remainder of this section, we compare our work
with testing approaches that rely on or relate to software
models. In particular, we consider model-based testing, and
model checking and testing techniques.

11.1.1 Model-Based Testing

Model-based testing relies on software models to generate
both test scenarios and test oracles for testing implementa-
tion-level artifacts. A number of model-based testing techni-
ques have been applied to Simulink models with the aim of

achieving high structural coverage or detecting a large num-
ber of mutants. Below,we discuss these approaches in detail.

Coverage-based techniques. Various model-based testing
tools have been developed to generate coverage-adequate test
suites for Simulink/Stateflow models [15], [31], [70]. Search-
based techniques have been applied to minimize a fitness
function that approximates how far a given test input is from
covering a specific Simulink block or Stateflow state [109],
[110], [119]. Such fitness functions are typically defined in
terms ofmetrics measuring the distance between input values
and conditions characterizing the targeted blocks/states.

Reachability analysis is used to generate coverage-
adequate test inputs or to provide proofs of correctness by
showing unreachability of the faulty model parts [35], [64],
[87]. For each coverage goal, a boolean assertion is instru-
mented into the model in such a way that violation of the
assertion ensures coverage of the desired coverage goal
and vice versa. The reachability analysis (e.g., using model
checkers) either yields a counterexample (test scenario)
demonstrating that the assertion under analysis is violated
or it proves that the assertion is never violated, hence the
underlying model is correct.

Reactis tester [24], [83], a well-known commercial tool for
model-based testing of Simulinkmodels, adapts a guided ran-
dom test generation strategy consisting of two steps [88], [90].
First, test inputs are generated randomly. Second, the coverage
goals that are not covered by the randomly generated inputs
are attempted to be covered either using constraint solvers and
static analysis or heuristic-based strategies.

Mutant-killing techniques. Another group of model-based
testing techniques focus on generating mutant-killing test
suites from Simulink models. These techniques assess the
adequacy of test inputs by measuring the number of
mutants that are detected by a given test suite. A mutant is
detected by a test input if the test input yields different val-
ues for some output when applied to both the mutant model
and the original model. Mutant-based test generation is
done either using search techniques or behavioral analysis
techniques (e.g., bounded reachability). Search techniques
can be used to produce different outputs between the
mutant model and the original model by generating differ-
ent values at the fault seeded points and propagating those
values to outputs [120], [121]. Alternatively, bounded reach-
ability analysis techniques [17], [36] can be used to detect
mutants by checking k-step (bi)similarity [45] between the
original and the mutant models. The k-step (bi)similarity
either asserts that the original and the mutant models are
equivalent for the first k simulation steps or provides a test
input showing that the models differ in some outputs.

Almost all existingmodel-based test generation approaches
applied to Simulink/Stateflow consider only models with dis-
crete behaviors. The work of Philipps et al. [71] is one of the
few exceptions and proposes a model-based testing approach
for mixed discrete-continuous Simulink models. That work,
however, focuses on generating test inputs from the discrete
fragments of Simulink models. These test inputs are then
applied to the original model to obtain test oracles in terms of
continuous signals.

All the model-based testing techniques described above
assume models are correct and aim to generate test suites
and oracles from models. In reality, however, Simulink

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 939

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

models might contain faults. Hence, in our work, we pro-
pose techniques to help testing complex Simulink models
for which automated and precise test oracles are not avail-
able. Further, even though in Simulink, every variable is
described using signals, unlike our work, none of the above
techniques generate test inputs in terms of signals.

11.1.2 Model Testing or Verification

In contrast to model-based testing that focuses on deriving
test cases frommodels to test implementation-level artifacts,
model testing and model checking techniques aim to evalu-
ate the correctness of models. We consider three categories
of such techniques: (1) Model checking techniques that
exhaustively verify correctness of models against some
given formal properties, (2) Statistical model checking tech-
niques that aim to provide probabilistic guarantees indicat-
ing that a model satisfies some given formal properties, and
(3) Model testing techniques that attempt to identify faults
in models by simulating models.

Model Checking.Model checking is an exhaustive verifica-
tion technique that explores the reachable states of a model
in order to determine whether some given formal properties
are satisfied or not [23]. It has a long history of application in
software and hardware verification. It has been previously
used to detect faults in Simulink models [10], [35] by show-
ing that a path leading to an error (e.g., an assertion or a
runtime error) is reachable. To solve the reachability prob-
lem, these techniques often need to translate Simulink mod-
els as well as the given properties into the input languages
of some existing model checkers [6], [61], [62], [89]. For
example, Barnat et al. [10] transform Simulink models into
the DiVinE model checker’s input language [11] to verify
Simulink models against some linear temporal logic proper-
ties. Whalen et al. [62], [106] first translate Simulink models
into the LUSTRE formal specification language [34] and then
transform the LUSTRE specifications into the input languages
of several well-known model checkers such as NuSMV [21]
and the SAL tool suite [13]. Finally, Simulink Design Veri-
fier [35] translates and feeds Simulink models into a commer-
cial SMT-based model checker, called Prover [77]. Some
alternative techniques [8], [40], [103] translate Simulink mod-
els into code and use existing code analysis tools to detect
faults in the models. 8Cage [40]marks the Simulink models in
places where specific fault models [74] are detected. It then
converts themodels into c-code and directs KLEE [18] toward
those markers to generate test inputs that raise failures corre-
sponding to the fault models. Polyglot [8] transforms State-
flow models into java code and uses JavaPathFinder [42] to
analyze and check properties on the generated java code.

Statistical Model Checking. Model checking approaches,
being exhaustive, suffer form the state explosion problem [23].
To alleviate the scalability problems of exhaustive model
checking, statistical model checking approaches have been
proposed. These approaches try to achieve scalability by
checking some randomly sampled simulations from the
space of all possible model simulations [48], [116]. They use
statistical inference methods to answer whether the sam-
pled simulations provide a statistical evidence for the satis-
faction or violation of the properties of interest [116], [123].
Statistical model checking has been previously applied to
Simulink models to estimate the probability that properties

specified in temporal logic hold over models [22], [123].
Note that in contrast to model checking, statistical model
checking does not guarantee to produce exact results (i.e.,
true/false results) and only estimates the probability of
property satisfaction/violation.

Simulation-Based Testing. Simulation-based testing techni-
ques run a set of test cases attempting to falsify assertions
and properties instrumented into Simulink models [84],
[86]. Reactis validator [24], [84] adapts such an approach by
running the coverage-adequate test suites generated by
Reactis tester [83] and tracking whether any assertions are
violated by the test cases. S-Taliro toolbox [5], [86], [124] has
usage modes that rely on Monte-Carlo to falsify Metric
Temporal Logic properties [43] instrumented into Simulink
models. Note that though these techniques look for possibil-
ity of assertion violations, they provide no guarantee to
uncover all assertion violations.

The main limitation of model checking techniques when
applied to Simulink models is the incompatibility challenge
discussed in Section 1. Specifically, model checking is not
applicable to dynamical systems, i.e., systems described
solely in terms of time-continuous differential or difference
equations [4]. Examples of dynamical systems include PID
controllers [68] or mathematical models of physical plants.
Model checking has been applied to linear hybrid systems
i.e., linear systems whose dynamics consists of both continu-
ous evolution of time and discrete instantaneous updates to
states [4], [30]. Further, there has been techniques to extend
model checking to fragments of non-linear hybrid automata
by approximating nonlinear systems using piecewise-affine
models or using abstraction techniques [30]. More recently,
translation techniques are proposed to convert Simulink
models into hybrid automata models that can be verified
using model checking [63]. However, industrial Simulink
models are likely to include look-up tables, S-Functions con-
taining legacy C code or executables, and switching condi-
tions that depend on inputs. Presence of these features is
likely to prohibit the translation into hybrid automata [1],
[92], and hence, prevents analysis using the state of the art
model checking tools, e.g., SpaceEx [30].

Statistical model checking [116] and simulation-based
testing techniques such as S-Taliro [1] attempt to address
the limitations of applying model checking to complex sys-
tems. Like our work, these approaches are black-box and
analyze systems by sampling and simulating scenarios
selected from their test input spaces. However, statistical
model checking uses a randomized sampling to develop
statistical guarantees that a given temporal property holds
on a model. In contrast, our work uses a guided, random-
ized sampling to generate test suites that maximize the like-
lihood of triggering failures within a limited test budget.

The closest work to ours is the S-Taliro tool [1], [86] that
uses random search techniques such as Monte Carlo simula-
tion to test Simulink models by identifying scenarios violat-
ing a given formal temporal property. Our approach,
however, does not rely on the presence of formal properties
or any form of automatable test oracles. We focus on
generating small test suites with high fault-revealing ability
to effectively reduce the manual oracle cost. Further, in con-
trast to the S-Taliro tool, our approach is based on a dedi-
cated search algorithm, tailored to the problem at hand.

940 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

11.2 Test Case Prioritization

Test case prioritization algorithms have been mostly studied
in the context of regression testing where the goal is to iden-
tify an optimal ranking of test cases to help detect faults that
might be introduced after a change as quickly as possible [78],
[85], [115]. These techniques are broadly categorized into
dynamic techniques that use test execution information, and
static techniques that rely on static analysis of source code or
other artifacts such as test code [78]. As discussed in
Section 5, in this article, we take a greedy dynamic test priori-
tization algorithm to rank the generated test cases. We made
this choice based on the following two contextual factors:
First the number of test cases is relatively small in our work.
Hence, a greedy algorithmwill not be too expensive. Second,
we have access to test execution information.

Existing dynamic test prioritization techniques typically
rank test cases by relying on total or additional structural
coverages achieved by individual test cases [78], [115]. To
unify the total and additional coverage-based strategies,
Zhang et al. [122] propose an algorithm that provides a
knob to control the amount of feedback from previously pri-
oritized test cases incorporated in prioritization of the
remaining tests. No feedback from the previous iteration is
equivalent to prioritization based on total coverage, and
maximum feedback yields an additional coverage algo-
rithm. Our test prioritization algorithm generalizes and
extends this algorithm by explicitly considering the fault-
revealing probability of individual test cases in test prioriti-
zation (i.e., FRP function in Fig. 9). We consider the notion
of output diversity as a proxy for FRP . This is because out-
put diversity has shown to correlate to fault finding [3],
[54], [58]. As a result, individual test cases with slightly
lower coverage but coming from test suites with higher out-
put diversity are likely to be ranked higher. As shown in
Section 9, our prioritization algorithm significantly outper-
forms total and additional coverage-based prioritization
and reduces the inspection time by almost half compared to
existing coverage-based test prioritization.

11.3 Controller Testing and Signal Generation

Continuous controllers have been widely studied in the
control theory domain [7], [68], [105] where the focus has
been to optimize controllers’ behaviors for a specific appli-
cation by design optimization [68] or for a specific hard-
ware setup by configuration optimization [7]. In general,
existing work in control theory mainly deals with optimiz-
ing the controller design or configuration rather than test-
ing. They normally check and optimize the controller
behavior over one, or a few number of test cases. These
techniques, however, cannot substitute systematic testing
as addressed by our approach.

In our earlier work, we proposed an approach to testing a
class of continuous controllers known as closed-loop control-
lers based on automated test oracles derived from three
types of continuous controller requirements: stability,
smoothness and responsiveness [53], [55], [56]. We used meta-
heuristic search to generate test cases maximizing the likeli-
hood of presence of failures in controller outputs (i.e., test
cases that produce outputs that break or are close to break-
ing stability, smoothness and responsiveness requirements).

Our earlier work [53], [55], [56], however, cannot be used to
test Simulink models in general because for closed-loop
controllers, the environment (plant) feedback and the
desired controller output (setpoint) [37] are both available.
Hence, test oracles could be formalized and automated in
terms of feedback and setpoints. In Simulink models that do
not include plant models or contain open loop controllers,
the plant feedback is not generally available.

Recent work in the intersection of Simulink testing and
signal processing has focused on test input signal genera-
tion using evolutionary search methods [9], [50], [108],
[111], [112]. Complex continuous input signals are gener-
ated either by sequencing parameterized signals [9], [111],
or by modifying parameters of Fourier series characterizing
signals [112]. These techniques, however, either apply the
input signals to Simulink models to obtain test oracles, as in
model-based testing, or assume automated oracles, e.g.,
assertions, are provided. Since they assume test oracles are
not manual, they do not pose any restriction on the shape of
test inputs. In our work, however, we restrict the number of
steps in input signals as more complex inputs increase the
oracle cost. Finally, similar to our work, the work of [118]
proposes a set of signal features. These features are viewed
as basic constructs which can be composed to specify test
specifications as well as test oracles. In our work, since ora-
cle descriptions do not exist, we use features to improve test
suite effectiveness by diversifying feature occurrences in
test outputs.

12 CONCLUSIONS

Simulink is a prevalent modeling language for Cyber Physi-
cal Systems (CPSs). In this article, we identified three main
challenges in testing Simulink models, namely the incom-
patibility, oracle and scalability challenges. To address these
challenges, we proposed a Simulink testing approach
consisting of a test generation algorithm and a test prioriti-
zation algorithm. Our test generation algorithm is imple-
mented using meta-heuristic search and is guided to
produce test suites with output signals exhibiting a diverse
set of signal features. Our test prioritization algorithm com-
bines test coverage and test suite output diversity to auto-
matically rank test cases according to their likelihood of
revealing a fault. Our evaluation is performed using two
industrial Simulink models and shows that (1) Our test gen-
eration approach significantly outperforms random and
coverage-based test generation. (2) Our test prioritization
algorithm significantly outperforms random and coverage-
based test prioritization.

In future, we plan to combine output diversity and
structural coverage objectives to achieve high structural
coverage while maximizing output diversity. We note
that generating coverage-adequate test suites for Simulink
models containing continuous operations is still an open
problem. We further plan to devise testing techniques
that, instead of generating one test suite for each model
output, generate one test suite for several model outputs
together by relying on test objectives defined over a set of
outputs. Such objectives, in addition to diversity, may
rely on known relationships between model outputs or
between outputs and inputs.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 941

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 694277) and from Delphi Automotive Sys-
tems, Luxembourg.

REFERENCES

[1] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivancic, and
A. Gupta, “Probabilistic temporal logic falsification of cyber-
physical systems,” ACM Trans. Embedded Comput. Syst., vol. 12,
no. 2s, pp. 95:1–95:30, 2013.

[2] N. Alshahwan and M. Harman, “Augmenting test suites effec-
tiveness by increasing output diversity,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 1345–1348.

[3] N. Alshahwan and M. Harman, “Coverage and fault detection of
the output-uniqueness test selection criteria,” in Proc. Int. Symp.
Softw. Testing Anal., 2014, pp. 181–192.

[4] R. Alur, Principles of Cyber-Physical Systems, Cambridge, MA,
USA: MIT Press, 2015.

[5] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan,
“S-taliro: A tool for temporal logic falsification for hybrid systems,”
in Proc. 17th Int. Conf. Tools Algorithms Construction Anal. Syst., Held
as Part Joint Eur. Conf. Theory Practice Softw., pp. 254–257, 2011.

[6] D. Araiza-Illan, K. Eder, and A. Richards, “Verification of control
systems implemented in simulink with assertion checks and the-
orem proving: A case study,” in Proc. Eur. Control Conf., 2015, pp.
2670–2675.

[7] M. Araki, “PID control,” Control Syst. Robotics Autom., vol. 2,
pp. 1–23, 2002.

[8] D. Balasubramanian, C. S. Pasareanu, M. W. Whalen, G. Karsai,
and M. Lowry, “Polyglot: Modeling and analysis for multiple
statechart formalisms,” in Proc. Int. Symp. Softw. Testing Anal.,
2011, pp. 45–55.

[9] A. Baresel, H. Pohlheim, and S. Sadeghipour, “Structural and
functional sequence test of dynamic and state-based software
with evolutionary algorithms,” in Proc. Genetic Evol. Comput.
Conf., 2003, pp. 2428–2441.

[10] J. Barnat, L. Brim, J. Beran, T. Kratochvila, and I. R. Oliveira,
“Executingmodel checking counterexamples in Simulink,” in Proc.
6th Int. Symp. Theoretical Aspects Softw. Eng., 2012, pp. 245–248.

[11] J. Barnat, L. Brim, I. Cerna, P. Moravec, P. Rockai, and P. Simecek,
“Divine – a tool for distributed verification,” in Proc. Int. Conf.
Comput. Aided Verification, 2006, pp. 278–281.

[12] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Trans. Softw.
Eng., vol. 41, no. 5, pp. 507–525, May 2015.

[13] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H.
Rueß, J. Rushby, V. Rusu, H. Sa{di, N. Shankar, et al., “An over-
view of sal,” in Proc. 5th NASA Langley Formal Methods Workshop,
2000, pp. 187–196.

[14] N. T. Binh, et al., “Mutation operators for Simulink models,” in
Proc. 4rth Int. Conf. Knowl. Syst. Eng., 2012, pp. 54–59.

[15] F. Bohr and R. Eschbach, “SIMOTEST: A tool for automated test-
ing of hybrid real-time Simulink models,” in Proc. ETFA, 2011,
pp. 1–4.

[16] L. Briand, S. Nejati, M. Sabetzadeh, and D. Bianculli, “Testing the
untestable: Model testing of complex software-intensive systems,”
inProc. 38th Int. Conf. Softw. Eng. Companion, 2016, pp. 789–792.

[17] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare,
P. R€ummer, and G. Weissenbacher, “Mutation-based test case
generation for Simulink models,” in Proc. 8th Int. Conf. Formal
Methods Compon. Objects, 2009, pp. 208–227.

[18] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. 8th USENIX Conf. Operating Syst. Des. Imple-
mentation, vol. 8, pp. 209–224, 2008.

[19] J. A. Capon, Elementary Statistics for the Social Sciences: Study Guide,
Belmont, CA, USA:Wadsworth Publishing Company, 1991.

[20] D. K. Chaturvedi, Modeling and Simulation of Systems Using MAT-
LAB and Simulink, Boca Raton, FL, USA: CRC Press, 2009.

[21] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A
new symbolic model checker,” Int. J. Softw. Tools Technol. Trans-
fer, vol. 2, no. 4, pp. 410–425, 2000.

[22] E. M. Clarke and P. Zuliani, “Statistical model checking for
cyber-physical systems,” in Proc. Int. Symp. Automated Technol.
Verification Anal., 2011, pp. 1–12.

[23] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking,
Cambridge, MA, USA: MIT Press, 1999.

[24] R. Cleaveland, S. A. Smolka, and S. T. Sims, “An instrumenta-
tion-based approach to controller model validation,” in Proc.
MDRAS, 2008, pp. 84–97.

[25] J. Cohen, Statistical Power Analysis for the Behavioral Sciences (rev),
Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc, 1977.

[26] K. Czarnecki and U. W. Eisenecker, “Generative programming -
methods, tools and applications,” G. Goos, J. Hartmanis, and
J. van Leeuwen, Eds., New York, NY, USA: Addison-Wesley
Publishing Co., 2000, Art. no. 15.

[27] R. France and B. Rumpe, “Model-driven development of com-
plex software: A research roadmap,” in Proc. Future Softw. Eng.,
2007, pp. 37–54.

[28] G. Fraser and A. Arcuri, “Evolutionary generation of whole test
suites,” in Proc. 11th Int. Conf. Quality Softw., 2011, pp. 31–40.

[29] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Trans. Softw. Eng., vol. 39, no. 2, pp. 276–291, Feb. 2013.

[30] G. Frehse, C. L. Guernic, A. Donz�e, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in Proc. 23rd Int. Conf. Comput.
Aided Verification, 2011, pp. 379–395.

[31] A. A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh, S. Mohalik, and
K. Shashidhar, “AutoMOTGen: Automatic model oriented test
generator for embedded control systems,” in Proc. Int. Conf. Com-
put. Aided Verification, 2008, pp. 204–208.

[32] G. Gay, A. Rajan,M. Staats,M.W.Whalen, andM. P. E. Heimdahl,
“The effect of program andmodel structure on the effectiveness of
MC/DC test adequacy coverage,”ACM Trans. Softw. Eng. Method-
ology, vol. 25, no. 3, pp. 25:1–25:34, 2016.

[33] B. Gold, T. G. Stockham, A. V. Oppenheim, and C.M. Rader,Digi-
tal Processing of Signals, NewYork, NY, USA:McGraw-Hill, 1969.

[34] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language LUSTRE,” Proc.
IEEE, vol. 79, no. 9, pp. 1305–1320, Sep. 1991.

[35] G. Hamon, “Simulink design verifier - applying automated
formal methods to Simulink and Stateflow,” in AFM’08: Third
Workshop Automated Formal Methods, 2008, pp. 1–2.

[36] N. He, P. R€ummer, and D. Kroening, “Test-case generation for
embedded simulink via formal concept analysis,” in Proc. 48th
Des. Autom. Conf., 2011, pp. 224–229.

[37] M. P. Heimdahl, L. Duan, A. Murugesan, and S. Rayadurgam,
“Modeling and requirements on the physical side of cyber-physical
systems,” in Proc. IEEE 2nd Int. Workshop Twin Peaks Requirements
Archit., May 2013, pp. 1–7.

[38] H. Hemmati, A. Arcuri, and L. C. Briand, “Achieving scalable
model-based testing through test case diversity,” ACM Trans.
Softw. Eng. Methodology, vol. 22, no. 1, pp. 6:1–6:42, 2013.

[39] T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” in Proc. Int. Symp. Formal Methods, 2006,
pp. 1–15.

[40] D. Holling, A. Pretschner, and M. Gemmar, “8Cage: Lightweight
fault-based test generation for Simulink,” in Proc. 29th ACM/
IEEE Int. Conf. Autom. Softw. Eng., Sep. 2014, pp. 859–862.

[41] L. Inozemtseva and R. Holmes, “Coverage is not strongly corre-
lated with test suite effectiveness,” in Proc. 36th Int. Conf. Softw.
Eng., Jun. 2014, pp. 435–445.

[42] JPF, Java pathfinder tool-set, http://babelfish.arc.nasa.gov/trac/
jpf, Accessed On: Aug. 17, 2015.

[43] R. Koymans, “Specifying real-time properties with metric tempo-
ral logic,” Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[44] J. Krizan, L. Ertl, M. Bradac, M. Jasansky, and A. Andreev,
“Automatic code generation from MATLAB/Simulink for criti-
cal applications,” in Proc. IEEE 27th Canadian Conf. Elect. Comput.
Eng., May 2014, pp. 1–6.

[45] A. Kuehlmann and C. A. van Eijk, “Combinational and sequen-
tial equivalence checking,” in Logic Synthesis and Verification,
Berlin, Germany: Springer, 2002, pp. 343–372.

[46] K. Lakhotia, N. Tillmann, M. Harman, and J. De Halleux,
“Flopsy-search-based floating point constraint solving for sym-
bolic execution,” in Testing Software and Systems, pp. 142–157,
Berlin, Germany: Springer, 2010.

[47] E. A. Lee and S. A. Seshia, “Introduction to embedded systems:
A cyber-physical systems approach,” Lee & Seshia, vol. 1, 2010.

942 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf

[48] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model check-
ing: An overview,” in Proc. Int. Conf. Runtime Verification, 2010,
pp. 122–135.

[49] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Trans. Softw. Eng.,
vol. 33, no. 4, pp. 225–237, Apr. 2007.

[50] F. Lindlar, A. Windisch, and J. Wegener, “Integrating model-
based testing with evolutionary functional testing,” in Proc. 3rd
Int. Conf. Softw. Testing Verification Validation Workshops, 2010,
pp. 163–172.

[51] B. Liu, S. Nejati, L. C. Briand, and T. Bruckmann, “Simulink fault
localization: An iterative statistical debugging approach,” Softw.
Testing, Verification Rel., vol. 26, no. 6, 2016.

[52] S. Luke, Essentials ofMetaheuristics, Lulu, 2nd edition, 2013. [Online].
Available: http://cs.gmu.edu/sean/book/metaheuristics/

[53] R. Matinnejad, S. Nejati, L. Briand, and T. Brcukmann, “Mil test-
ing of highly configurable continuous controllers: scalable search
using surrogate models,” in Proc. 29th ACM/IEEE Int. Conf.
Autom. Softw. Eng., Sep. 2014, pp. 163–174.

[54] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann, “Effective
test suites for mixed discrete-continuous stateflow controllers,”
in Proc. 10th Joint Meet. Foundations Softw. Eng., 2015, pp. 84–95.

[55] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull,
“Automated model-in-the-loop testing of continuous controllers
using search,” in Search Based Software Engineering, Berlin,
Germany: Springer, 2013, pp. 141–157.

[56] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull,
“Search-based automated testing of continuous controllers:
Framework, tool support, and case studies,” Inf. Softw. Technol.,
vol. 57, pp. 705–722, 2015.

[57] R. Matinnejad, S. Nejati, and L. C. Briand, “Automated testing of
hybrid simulink/stateflow controllers: Industrial case studies,”
in Proc. 11th Joint Meet. Foundations Softw. Eng., 2017, pp. 938–943.

[58] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann,
“Automated test suite generation for time-continuous simulink
models,” in Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 595–606.

[59] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann,
“SimCoTest: A test suite generation tool for simulink/stateflow
controllers,” in Proc. 38th Int. Conf. Softw. Eng. , 2016, pp. 585–588.

[60] P. McMinn, M. Stevenson, and M. Harman, “Reducing qualita-
tive human oracle costs associated with automatically generated
test data,” in Proc. 1st Int. Workshop Softw. Test Output Validation ,
2010, pp. 1–4.

[61] B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for translating
simulink models into input language of a model checker,” in
Proc. Int. Conf. Formal Eng. Methods, , 2006, pp. 606–620.

[62] S. P. Miller, “Bridging the gap between model-based develop-
ment and model checking,” in Proc. Int. Conf. Tools Algorithms
Construction Anal. Syst., 2009, pp. 443–453.

[63] S. Minopoli and G. Frehse, “SL2SX translator: From simulink to
spaceex models,” in Proc. 19th Int. Conf. Hybrid Syst.: Comput.
Control, 2016, pp. 93–98.

[64] S. Mohalik, A. A. Gadkari, A. Yeolekar, K. Shashidhar, and
S. Ramesh, “Automatic test case generation from Simulink/
Stateflow models using model checking,” Softw. Testing Verifica-
tion Rel., vol. 24, no. 2, pp. 155–180, 2014.

[65] A. S. Namin and J. H. Andrews, “The influence of size and cover-
age on test suite effectiveness,” in Proc. 18th Int. Symp. Softw.
Testing Anal., 2009, pp. 57–68.

[66] P. Nardi, M. E. Delamaro, L. Baresi, et al., “Specifying automated
oracles for Simulink models,” in Proc. IEEE 19th Int. Conf. Embed-
ded Real-Time Comput. Syst. Appl., Aug. 2013, pp. 330–333.

[67] P. A. Nardi, On Test Oracles for Simulink-Like Models, PhD thesis,
Universidade de Sao Paulo, Department of Computer Science
and Computational Mathematics, S~ao Paulo, Brazil, 2014.

[68] N. S. Nise, Control Systems Engineering, Hoboken, NJ, USA:
Wiely, 4th edn., 2004.

[69] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas, “PVS:
Combining specification, proof checking, and model checking,”
in Proc. Int. Conf. Comput. Aided Verification, 1996, pp. 411–414.

[70] P. Peranandam, S. Raviram,M. Satpathy, A. Yeolekar, A. Gadkari,
and S. Ramesh, “An integrated test generation tool for enhanced
coverage of Simulink/Stateflow models,” in Proc. IEEE Conf.
Design Autom. Test Eur., 2012, pp. 308–311.

[71] J. Philipps, G. Hahn, A. Pretschner, and T. Stauner, “Tests for
mixed discrete-continuous reactive systems,” in Proc. 14th IEEE
Int. Workshop Rapid Syst. Prototyping, 2003, pp. 78–84.

[72] B. Porat, A Course in Digital Signal Processing, vol. 1, New York,
NY, Wiley, 1997.

[73] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software
engineering for automotive systems: A roadmap,” in Proc. Future
Softw. Eng., 2007, pp. 55–71.

[74] A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar, “A
generic fault model for quality assurance,” in Proc. Int. Conf.
Model Driven Eng. Languages Syst. , 2013, pp. 87–103.

[75] A. Pretschner,W. Prenninger, S. Wagner, C. K€uhnel, M. Baumgart-
ner, B. Sostawa, R. Z€olch, and T. Stauner, “One evaluation of
model-based testing and its automation,” in Proc. 27th Int. Conf.
Softw. Eng., 2005, pp. 392–401.

[76] A. Pretschner, C. Salzmann, B. Sch€atz, and T. Stauner, “4th intl.
ICSE workshop on software engineering for automotive sys-
tems,” ACM SIGSOFT Softw. Eng. Notes, vol. 32, no. 4, 2007,
Art. no. 40.

[77] Prover Technology, Prover Plug-In Software, [Online]. Available:
http://www.prover.com, Accessed on: Aug. 17, 2015.

[78] K. M. Qi Luo and D. Poshyvanyk, “A large-scale empirical
comparison of static and dynamic test case prioritization
techniques,” in Proc. 11th Joint Meet. Foundations Softw. Eng., 2016,
pp. 559–570 .

[79] R. Matinnejad, Reactis test generation report, [Online]. Available:
https://github.com/shnejati/TSE-Master/blob/master/SLDV-
Reactis-TestGenerationReport/SLDV-Reactis-TestGeneration
Report.pdf

[80] R. Matinnejad, SimCoTest. [Online]. Available: https://sites.
google.com/site/simcotesttool/

[81] R.Matinnejad, The paper extra resources (technical reports, experi-
ment results, and test plan and source code of SimCoTest tool).
[Online]. Available: https://github.com/shnejati/TSE-Master

[82] A. C. Rao, A. Rajeev, and A. Yeolekar, Applying design verifica-
tion tools in automotive software v&v, Technical report, SAE
Technical Paper, 2011.

[83] Reactive Systems Inc., Reactis Tester, 2010. [Online]. Available:
http://www.reactive-systems.com/simulink-testing-validation.
html. Accessed On: Aug. 17, 2015.

[84] Reactive Systems Inc., Reactis Validator, 2010. [Online]. Available:
http://www.reactive-systems.com/simulink-testing-validation.
html, AccessedOn: Aug. 17, 2015.

[85] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prior-
itizing test cases for regression testing,” IEEE Trans. Softw. Eng.,
vol. 27, no. 10, pp. 929–948, Oct. 2001.

[86] S-Taliro, S-Taliro Toolbox. [Online]. Available: https://sites.google.
com/a/asu.edu/s-taliro/s-taliro, AccessedOn: Aug. 17, 2015.

[87] M. Satpathy, A. Yeolekar, P. Peranandam, and S. Ramesh,
“Efficient coverage of parallel and hierarchical stateflow models
for test case generation,” Softw. Testing Verification Rel., vol. 22,
no. 7, pp. 457–479, 2012.

[88] M. Satpathy, A. Yeolekar, and S. Ramesh, “Randomized directed
testing (REDIRECT) for Simulink/Stateflow models,” in Proc. 8th
ACM Int. Conf. Embedded Softw., 2008, pp. 217–226.

[89] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi,
“Defining and translating a safe subset of simulink/stateflow
into lustre,” in Proc. 4th ACM Int. Conf. Embedded Softw., 2004,
pp. 259–268.

[90] S. Sims and D. C. DuVarney, “Experience report: The eactis vali-
dation tool,” ACM SIGPLAN Notices, vol. 42, no. 9, pp. 137–140,
2007.

[91] M. Staats, G. Gay, M. Whalen, and M. Heimdahl, “On the danger
of coverage directed test case generation,” in Proc. Fundam.
Approaches Softw. Eng. , 2012, pp. 409–424.

[92] T. Strathmann and J. Oehlerking, “Verifying properties of an
electro-mechanical braking system,” in Proc. 2nd Workshop Appl.
Verification Continuous Hybrid Syst., 2015, pp. 49–56.

[93] The MathWorks Inc., C Code Generation from Simulink.
[Online]. Available: http://nl.mathworks.com/help/dsp/ug/
generate-code-from-simulink.html, Accessed On: Aug. 17, 2015.

[94] The MathWorks Inc., Call MATLAB Function from C# Client.
[Online]. Available: http://mathworks.com/help/matlab/
matlab_external/call-matlab-function-from-c-client.html

[95] The MathWorks Inc. Modeling a Fault-Tolerant Fuel Control Sys-
tem. [Online]. Available: http://nl.mathworks.com/help/
simulink/examples/modeling-a-fault-tolerant-fuel-control-
system.html, Accessed On: Aug. 17, 2015.

[96] The MathWorks Inc. Simulink. [Online]. Available: http://www.
mathworks.nl/products/simulink, Accessed on: Aug. 17, 2015.

MATINNEJAD ETAL.: TESTGENERATION AND TEST PRIORITIZATION FOR SIMULINK MODELS WITH DYNAMIC BEHAVIOR 943

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

http://cs.gmu.edu/sean/book/metaheuristics/
http://www.prover.com
https://github.com/shnejati/TSE-Master/blob/master/SLDV-Reactis-TestGenerationReport/SLDV-Reactis-TestGenerationReport.pdf
https://github.com/shnejati/TSE-Master/blob/master/SLDV-Reactis-TestGenerationReport/SLDV-Reactis-TestGenerationReport.pdf
https://github.com/shnejati/TSE-Master/blob/master/SLDV-Reactis-TestGenerationReport/SLDV-Reactis-TestGenerationReport.pdf
https://sites.google.com/site/simcotesttool/
https://sites.google.com/site/simcotesttool/
https://github.com/shnejati/TSE-Master
http://www.reactive-systems.com/simulink-testing-validation.html
http://www.reactive-systems.com/simulink-testing-validation.html
http://www.reactive-systems.com/simulink-testing-validation.html
http://www.reactive-systems.com/simulink-testing-validation.html
https://sites.google.com/a/asu.edu/s-taliro/s-taliro
https://sites.google.com/a/asu.edu/s-taliro/s-taliro
http://nl.mathworks.com/help/dsp/ug/generate-code-from-simulink.html
http://nl.mathworks.com/help/dsp/ug/generate-code-from-simulink.html
http://mathworks.com/help/matlab/matlab_external/call-matlab-function-from-c-client.html
http://mathworks.com/help/matlab/matlab_external/call-matlab-function-from-c-client.html
http://nl.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://nl.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://nl.mathworks.com/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.nl/products/simulink
http://www.mathworks.nl/products/simulink

[97] The MathWorks Inc. Simulink Design Verifier. [Online]. Avail-
able: http://nl.mathworks.com/products/sldesignverifier/?
refresh=true, Accessed On: Aug. 17, 2015.

[98] The MathWorks Inc. Types of Model Coverage. [Online].
Available: http://nl.mathworks.com/help/slvnv/ug/types-of-
model-coverage.html, Accessed On: Aug. 17, 2015.

[99] The Reactive Systems Inc. Reactis Coverage Metrics. [Online].
Available: http://www.reactive-systems.com/reactis/doc/user/
user006.html, AccessedOn: Jun. 26, 2015

[100] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static
test case prioritization using topic models,” Empirical Softw. Eng.,
vol. 19, no. 1, pp. 182–212, 2014.

[101] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Softw. Testing Verification Rel.,
vol. 22, no. 5, pp. 297–312, 2012.

[102] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos,
“Management of an academic HPC cluster: The UL experience,” in
Proc. Int. Conf. High Perform. Comput. Simul. , 2014, pp. 959–967.

[103] R. Venkatesh, U. Shrotri, P. Darke, and P. Bokil, “Test generation
for large automotive models,” in Proc. IEEE Int. Conf. Ind. Tech-
nol., Mar. 2012, pp. 662–667.

[104] G. A. Wainer, Discrete-Event Modeling and Simulation: A
Practitioner’s Approach, Boca Raton, FL, USA: CRC Press, 2009.

[105] T. Wescott, “PID without a PhD,” Embedded Syst. Program.,
vol. 13, no. 11, pp. 1–7, 2000.

[106] M. Whalen, D. Cofer, S. Miller, B. H. Krogh, and W. Storm,
“Integration of formal analysis into a model-based software
development process,” in Proc. Int. Workshop Formal Methods Ind.
Critical Syst., 2007, pp. 68–84.

[107] M. W. Whalen, G. Gay, D. You, M. P. E. Heimdahl, and M. Staats,
“Observable modified condition/decision coverage,” in Proc.
35th Int. Conf. Softw. Eng., 2013, pp. 102–111.

[108] B. Wilmes and A. Windisch, “Considering signal constraints in
search-based testing of continuous systems,” in Proc. 3rd Int. Conf.
Softw. TestingVerificationValidationWorkshops, Apr. 2010, pp. 202–211.

[109] A. Windisch, “Search-based testing of complex simulink models
containing stateflow diagrams,” in Proc. 31st Int. Conf. Softw.
Eng.-Companion, 2009, pp. 395–398.

[110] A. Windisch, “Search-based test data generation from stateflow
statecharts,” in Proc. 12th Annu. Conf. Genetic Evol. Comput., 2010,
pp. 1349–1356.

[111] A. Windisch and N. Al Moubayed, “Signal generation for search-
based testing of continuous systems,” in Proc. Int. IEEE Conf.
Softw. Testing Verification Validation Workshops , Apr. 2009, pp.
121–130.

[112] A. Windisch, F. Lindlar, S. Topuz, and S. Wappler, “Evolutionary
functional testing of continuous control systems,” in Proc. 11th
Annu. Conf. Genetic Evol. Comput., 2009, pp. 1943–1944..

[113] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, Amsterdam, The Nether-
lands: Elsevier, 2011.

[114] Y. F. Yin, Y. B. Zhou, and Y. R. Wang, “Research and improve-
ments on mutation operators for Simulink models,” Applied
Mech. Materials, vol. 687, pp. 1389–1393, 2014.

[115] S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: A survey,” Softw. Testing Verification Rel.,
vol. 22, no. 2, pp. 67–120, 2012.

[116] H. L. Younes and R. G. Simmons, “Statistical probabilistic model
checking with a focus on time-bounded properties,” Inf. Comput.,
vol. 204, no. 9, pp. 1368–1409, 2006.

[117] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-Based
Testing for Embedded Systems, Boca Raton, FL: CRC Press, 2012.

[118] J. Zander-Nowicka, Model-Based Testing of Real-Time Embedded
Systems in the Automotive Domain, Stuttgart, Germany: Fraunhofer-
IRB-Verlag, 2008.

[119] Y. Zhan and J. Clark, “Search based automatic test-data genera-
tion at an architectural level,” in Proc. Genetic Evol. Comput. Conf.,
2004, pp. 1413–1424.

[120] Y. Zhan and J. A. Clark, “Search-based mutation testing for
Simulink models,” in Proc. 7th Annu. Conf. Genetic Evol. Comput.,
2005, pp. 1061–1068.

[121] Y. Zhan and J. A. Clark, “A search-based framework for auto-
matic testing of MATLAB/Simulink models,” J. Syst. Softw.,
vol. 81, pp. 262–285, 2008.

[122] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging
the gap between the total and additional test-case prioritization
strategies,” in Proc. 35th Int. Conf. Softw. Eng. , 2013, pp. 192–201.

[123] P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian statistical model
checking with application to stateflow/simulink verification,” For-
malMethods Syst. Des., vol. 43, no. 2, pp. 338–367, 2013.

[124] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, J. Kapinski, and
X. Jin, “Falsification of safety properties for closed loop control
systems,” in Proc. 18th Int. Conf. Hybrid Syst.: Comput. Control,
2015, pp. 299–300.

Reza Matinnejad received the BSc degree in
software engineering from the Isfahan University
of Technology in Irana, and the MSc degree in
software engineering from the Sharif University of
Technology, and the PhD degree from the
University of Luxembourg, in September 2016.
He is an embedded software engineer with IEE
company in Luxembourg. During his PhD, he
received two ACM/SIGSOFT distinguished paper
awards. His research interests include testing
cyber-physical systems (CPSs), search-based

and model-based software testing, and empirical software engineering.
Prior to his PhD, he worked for five years as a software engineer in
developing software-intensive systems. More details can be found at:
http://people.svv.lu/matinnejad/

Shiva Nejati received the PhD degree from the
University of Toronto, Canada, in 2008. She is
currently a research scientist in the SnT Centre
for Security, Reliability, and Trust, University of
Luxembourg. From 2009 to 2012, she was a
researcher in Simula Research Laboratory in
Norway. Her research interests include software
engineering, focusing on model-based develop-
ment, software testing, analysis of cyber physical
systems, search-based software engineering and
formal and empirical software engineering meth-

ods. She has coauthored more than 50 journal and conference papers,
and regularly serves on the program committees of international confer-
ences in the area of software engineering. She has for the past ten years
been conducting her research in close collaboration with industry part-
ners in telecommunication, maritime, energy, automotive and aerospace
sectors. More details can be found at: http://people.svv.lu/nejati/

Lionel C. Briand is a professor in software verifica-
tion and validation at the SnT centre for Security,
Reliability, and Trust, University of Luxembourg,
where he is also the vice-director of the centre. He
is currently running multiple collaborative research
projectswith companies in the automotive, satellite,
financial, and legal domains. He has held various
engineering, academic, and leading positions in
five other countries before that. He was elevated to
the grade of IEEE fellow in 2010 for his work on the
testing of object-oriented systems. He was granted

the IEEE Computer Society Harlan Mills award and the IEEE Reliability
Society engineer-of-the-year award for his work on model-based verifica-
tion and testing, respectively in 2012 and 2013. He received an ERC
Advanced grant in 2016–on the topic of modelling and testing cyber-physi-
cal systems–which is the most prestigious individual research grant in the
European Union. His research interests include software testing and verifi-
cation, model-driven software development, search-based software engi-
neering, and empirical software engineering. More details can be found at:
http://people.svv.lu/briand/

Thomas Bruckmann received the Diploma Ing.
(FH) degree in electrical engineering from the
Institute of Technology in Trier (Germany). He is
a team leader with Delphi Technologies where he
heads the software test and validation group.
He has been working as a senior engineer for
nine years in software validation and hardware-
in-the loop model development.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

944 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 2019

Authorized licensed use limited to: Carleton University. Downloaded on March 03,2020 at 16:05:30 UTC from IEEE Xplore. Restrictions apply.

http://nl.mathworks.com/products/sldesignverifier/?refresh=true
http://nl.mathworks.com/products/sldesignverifier/?refresh=true
http://nl.mathworks.com/help/slvnv/ug/types-of-model-coverage.html
http://nl.mathworks.com/help/slvnv/ug/types-of-model-coverage.html
http://www.reactive-systems.com/reactis/doc/user/user006.html
http://www.reactive-systems.com/reactis/doc/user/user006.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

