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Abstract—During the development or deployment of discrete
event simulation systems, many sudden changes in requirements
emerge. To embrace the changes rapidly and reduce development
costs, attaching reusable, and black-boxed components to existing
systems has been regarded as one of the most effective approaches
because modifications at the code level are generally costly and
risky. However, since this approach requires components that are
an exact fit, it may not be easy to avoid the modifications at the
source code level actually. Moreover, the required components
may not exist. Hence, this paper applies black-box extensibil-
ity to simulation systems in order to avoid the modifications.
This paper proposes adaptive discrete event simulation systems
using event control models for extending and modifying seman-
tics through event-based simulation interface. With the proposed
work, the simulation events are modulated, deleted, and gener-
ated by the event-oriented control functions in the event control
model to embrace the changes of requirements. It can substitute
for the modifications at the code level and extend the existing
behavioral semantics. As a result, the proposed work provides
a new alternative step in the development process with reusable
components to avoid modifications at the source code level. The
new step will lead to rapid adaptations of existing simulation sys-
tems. To support the effectiveness of this approach, this paper
will describe applicable examples based on our empirical studies.

Index Terms—Black-box extensibility, discrete event simula-
tion systems (DESSs), discrete event systems specification (DEVS)
formalism, event control model, event-based simulation control,
modeling, simulation.

I. INTRODUCTION

ADISCRETE event simulation system (DESS) is a widely
used abstraction view to analyze the behaviors and

performance of real systems in various domains, such as mil-
itary war games, industrial applications, social decisions, and
more [1]–[5]. For the efficient design and maintenance of sim-
ulation systems, reusable components or systems have been
emphasized. Reusable components or systems at diverse levels

Manuscript received February 27, 2017; revised May 16, 2017; accepted
August 18, 2017. This work was supported by the Defense Acquisition
Program Administration and Agency for Defense Development, South Korea
under Contract UD160075BD. This paper was recommended by Associate
Editor W.-K. V. Chan. (Corresponding author: Se Jung Kwon.)

S. J. Kwon, B. Kang, and T. G. Kim are with the School of
Electrical Engineering, Korea Advanced Institute of Science and Technology,
Daejeon 34141, South Korea (e-mail: sejungkwon@kaist.ac.kr).

C. Choi is with the Global Entrepreneurship and ICT Convergence,
Handong Global University, Pohang 37554, South Korea.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2747604

have helped a lot to extend or construct the semantics of
simulation systems because reuse leads to a reduction in devel-
opment costs, time, and efforts and also improves other factors.
With an emphasis on reusability, the target systems are reused
without modifications in internal specifications or codes, or the
required semantics can be substituted by reusable components
from outside.

To embrace the changes of requirements, developers have
tried to choose proper extension approaches based on the reuse
of target systems or reusable components. If a certain approach
is completely applicable, developers will be able to satisfy the
changes. Otherwise, they should approach the code level and
regard the existing systems as a white-box. This may cause
many shortcomings, i.e., increasing development cost, being
confused by fragmented source codes, or increasing possibil-
ities that side effects will occur [6]. Hence, researchers have
tried to regard divided and modular components as black-box
components when possible.

However, it is often difficult to reuse black-box compo-
nents or to regard the existing system as a black-box since
the available components may be a little different than the
required components. This means that developers often have
to choose between reusing a component that is an exact fit
and rewriting (redoing) the codes. The reuse-redo dilemma [7]
is a crucial problem in the development process because the
reusable components or target systems should be modified at
the code level. Therefore, it requires that the target systems or
reusable components be made adaptive.

To avoid the modification of original codes and make
DESSs adaptive, this paper adopts black-box extensibility at
the antipode of white-box modification. Since the black-boxed
component is unchangeable and invisible, it is easier to use
and requires less knowledge about internal details [6]. The
changeable software with black-box extensibility has exten-
sions and interfaces inside the black-box. Similarly, this paper
regards the existing components of the target systems as black-
box components, focuses the interactions, i.e., the simulation
messages, among the models and the simulation engine as the
interfaces, and tries to inject extension semantics, event control
models (ECMs), into the target systems. In Fig. 1, the exten-
sion corresponds to the control of events by the external ECM,
and the interface corresponds to the application programming
interface (APIs) of event-based simulation, which are able to
access/modify the events. When the components of simula-
tion systems should be extended or modified, developers can
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Fig. 1. Adaptive DESS with black-box extensibility.

design ECMs for the target events to access and modify the
behaviors of models.

ECMs can be used as a new alternative to support the
existing approaches. If one of the extension approaches
becomes usable and we can satisfy the requirements by
applying our proposed approach, the modification approach
will become avoidable and the development costs will be
reduced. Consequently, the existing DESSs will become adap-
tive because the existing systems and components can embrace
the change of requirements rapidly with less effort.

This paper focuses on structural and formal DESSs, which
consist of structural models for describing the structure of sys-
tems and behavioral models for describing the basic behaviors
of the systems. We mainly concentrated on discrete event sys-
tems specification (DEVS) formalism [8] and its variations,
such as in [9]–[13], because it is one of the most frequently
used system specifications to model discrete event systems.
Moreover, from our perspective, the DEVS formalism is an
advanced group of discrete event simulations for reusability
and extensibility.

The remainder of this paper is structured as follows.
Section II reviews the background and some related works.
Section III explains the proposed work, an ECM, and Section IV
describes the advantages and constraints in detail. Section V
presents the applications according to the various levels of
reusability. Section VI illustrates case studies to show the
efficiency of this paper, and Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK

In the past, DESSs were designed as programs with
procedure-oriented concepts. As many studies have been
developed to achieve reusability and various derived concepts,
such as the separation of concerns (SoCs) [14], object-oriented
(OO) designs, and formalism-based approaches, simulation
systems have been divided into modular components at various
level as shown in Fig. 2. Fig. 2 indicates each related ability
as a subcategory of reusability and which parts are targeted as
reusable components.

The simulation systems, which are implemented as simula-
tion software, i.e., simulators, consist of a simulation engine
with execution algorithms and simulation models that contain
the semantics of system behaviors. The models are divided
into structural models and behavioral models. The behavioral
models describe the basic behaviors of systems, and the struc-
tural models are structured by behavioral models or smaller

structural models for easier maintenance and reuses. The mod-
els have been mostly implemented as OO models because OO
concepts increase the reusability.

This paper based on these modeling concepts focusing on
the formal and structural systems. The rest of this section will
describe each level with various related works.

1) Level 5 (Interoperability): Regarding the aspect of inter-
operability, which aims to reuse existing simulators, distributed
environments have been created using high level architec-
ture (HLA) standard protocol [15], [16], distributed interactive
simulation [17], or common object request broker architec-
ture [18], [19]. By applying the interoperable standard proto-
col, heterogeneous systems can be interoperated for advanced
simulation objectives such as precise simulation [20], phys-
ically distributed simulation, hybrid simulation [11], and the
integration of existing systems.

According to the purpose of the standard middlewares, mod-
ification of an existing simulator will rarely occur. However,
the simulator should be modified according to each protocol
to make the simulation systems middleware-compliant.

2) Level 4 (Reconfigurability): Developers can enable sim-
ulation systems to embed reconfigurable semantics. The basic
approach involves instrumenting an experimental frame (EF)
into the simulation models [8]. This can adjust the fixed param-
eters of a target model or control the simulation APIs out of the
target model. Regarding the extensions of the EF, there have
been many advanced studies. Mittal and Zeigler [21] applied
the EF to real-time simulation. Model/simulator/view/control
patterns [22] provided the theoretical basis of the simu-
lation control, especially for the dynamic variable struc-
ture [10], [23], [24]. Using these concepts, output messages
can be dynamically routed to various passes according to the
states or variables. Adding the extended aspect of automated
simulation, Mittal [25] extended the EF and MVSC patterns
for the process of architecture frameworks.

The limitation of level 4 is that the reconfigurable seman-
tics should be designed in the development process. The
simulation engine should be able to accommodate certain
reconfigurable semantics, and the reconfigurable semantics
should be embedded in the simulation model. When the
changes of requirement occur, the uncovered requirements will
surely lead to a modification process.

3) Level 3 (Black-Box Reusability): There have been many
approaches that use repositories of existing submodels and
structural semantics to construct the target systems. The mod-
eling and simulation (M&S) methodology for the reuse of the
existing models was formalized as model base (MB) man-
agement such as system entity structure (SES)/MB [26]–[28],
which consists of the SES as an architecture description and
the MB as the repository of partial models.

Some studies have adopted service-oriented architec-
ture [29] or restful Web service [30]. The simulation
resources are distributed on the Web, and users configure the
required simulation from existing models that are distributed.
Additionally, some studies have tried to provide an efficient
management approach by executing an architecture frame-
work [25], [31]. These studies can also be approximated to
MB management in view of the inherent M&S methodology.
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Fig. 2. Level of reusability according to the composition hierarchy.

These studies definitely reduce development costs by
reusing existing resources. Nonetheless, the problem posed in
this paper still exists because these studies have not been able
to guarantee the existence of proper M&S resources that are
satisfying the target objectives. Besides, even if there exists a
proper resource, it may occasionally have a slightly different
interface, resolution, or abstract levels.

4) Level 2 (Gray-Box Extensibility): OO concepts for dis-
crete event models [32], [33] have been proposed for the
reuse of behavioral models. There has been a study showing
that the simulation engine enables users to exchange behav-
ior functions as dynamic library types at run time [34]. They
correspond to gray-box extensions, which means that the tar-
get source codes are visible but not directly extensible [6]. In
other words, a portion of the codes are protected; nevertheless,
the rest of the codes should be modified.

In this paper, the smallest unit of the “box” is a behavioral
model because this paper was written in the context of M&S
engineering. As this level needs to modify the source codes
under the behavioral models, it corresponds to our attempt
to avoid target levels. Under this level, there exist various
techniques for reuse at the source code level. This, however,
does not relate to our concerns, and we try to avoid all the
approaches that involve breaking black-boxes.

III. EVENT CONTROL MODEL

In order to make the black-box DESSs more adaptive, this
paper propose the ECM as the extensible semantics that covers
the changes of requirements. First, this section classifies the
simulation events of DEVS formalism into two types of events.
Based on the classified events, this section mainly provides
the specification of the ECM, simple algorithms, and various
extensible semantics.

A. Events and DEVS Systems [8], [35]

DEVS formalism consists of coupled models (CMs) as
structural models and atomic models (AMs) as behavioral
models [8]. CMs consist of submodels and coupling rela-
tions, and AMs consist of three sets (X, Y , and S) and four
functions: 1) external transition function (δext); 2) internal

transition function (δint); 3) output function (λ); and 4) time
advance function (ta).

The original execution algorithm of DEVS models [8] pro-
gresses hierarchically through four simulation messages, (x, t),
(y, t), (∗, t), and (done, tN). There are two simulation processes
according to the state transition: 1) the external transition,
by the input from the other components and 2) the internal
transition, when the system changes the state by itself at
the scheduled time. When the internal state transition occurs,
λ, δint, and ta functions should be called. Then, the output of
λ functions is translated to output message (y, t), and the mes-
sage will be transmitted to the destination model as the input
message (x, t). From the output of ta function, the model gen-
erates a (done, tN) message and notices the next scheduled
time for the simulation engine. When the δext and ta functions
should be called according to the (x, t) message, the (done, tN)
is also generated.

Although the abstracted algorithm of DEVS formalism has
been implemented in various simulation engines [36]–[39], the
kernels of the simulation processes are summarized as two
parts: 1) deciding on a minimum time by the (done, tN) and
2) transmitting messages among the AMs from (y, t) to (x, t).
Hence, the simulation algorithm can be abstracted to manage-
ment of the abstraction unit in DESSs, i.e., the event, which
is mapped to the transitions of discretized states. The events
imply the information that is transmitted out of each behavioral
model, i.e., variables related to output messages or scheduled
times. The events are managed in a chronologically sorted
event list, and the top event on the list is executed by a simple
simulation engine with an event-based simulation algorithm.

Definition 1: In a set of events, E, an event is defined as
Ek = <tg, src, tN, v>, where

tg target of the event;
src source of the event;
tN execution time of the event;
v set of variables.
There are two types of events in DEVS formalism: 1) data

events (Ed) and 2) time events (Et). The data events are
mapped on each type of output message (Y) generated from the
λ function. In other words, the data events are mapped to (x, t)
and (y, t) messages. When the messages are transmitted from
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Fig. 3. DEVS simulation messages and events.

Fig. 4. Discrete event simulation and proposed ECM.

source models to target models through a simulation engine
with variables, the tg is mapped on a input port (X in AMs)
in its target model, the src is mapped on a output port (Y in
AMs) in its source model, and the variables are stored in the
set, v. The tN value of the data events is same as the cur-
rent simulation time because the messages are passed to the
destination model immediately in the DEVS simulation.

The time event is generated by ta functions in each AM and
transmitted to the simulation engine in order to execute itself
after an advanced time. In other words, the time events are
mapped to (∗, t) and (done, tN) messages from the ta function.
Hence, both the tg and src must point themselves out, and
the set v must be empty. Indeed, the time tN indicates the
next scheduled time of the model. Fig. 3 describes the relation
between DEVS simulation and the events.

B. Event Control Model for Extending Semantics

Since the DEVS simulation can be regarded as the
sequences of events in the event-based simulation, the pro-
posed work tries to access the event list in order to modify
the information extracted from the AMs. As a result, the sim-
ulation behaviors and results can be changed by the ECM:
changing time values in events can reorder the event sequence,
and changing internal data in the events can modify the influ-
ence of the events on other models. As depicted in Fig. 4,
the ECM interferes with the variables of the events, which are
generated from the models and passed into the engine.

The ECM was published in [40] to enhance the fast pro-
totyping methods in the development process. For this paper,
we polished the definition and theory and extended the usages
and application scopes.

Definition 2: The ECM is defined as ECM =
<{Ek}, Secm, { fi}, CR, SELECT>, where
{Ek} set of target events in a simulation system;
Secm set of states for the ECM;
{ fi} set of event-oriented control functions. : (Ek ∪

∅)×Secm× t→ ({Ek}∪∅)×Secm− t : A current
time when the fi is executed;

CR set of relations between {Ek} and { fi}. : CR ⊂
{Ek} × { fi};

SELECT tie-breaking selection function. : 2{ fi} −∅→ fi.
From the target events in the DESS, developers can describe

an ECM for the extra semantics due to changes of require-
ments. The key point of the ECM is the event-oriented control
function, fi, which generates a modified event or other related
events from the generated event of a model, occasionally elim-
inates the event when a certain condition is met, or generates
source-irrelevant events at a certain time with no input event.
The input parameter t corresponds to the current time when
the fi is executed. Specially, the t will be a more mean-
ingful parameter for the fi, which generates source-irrelevant
events.

In cases when the control functions need to store infor-
mation, the state set Secm is included in the specifications.
The SELECT function exists to resolve the priority problem
because two or more functions, mapped on the same event,
are rarely in conflict. The relation CR exists for mapping
between the control functions and the events, i.e., mapped
output messages or mapped models.

C. Event-Based Simulation Algorithm for ECM

The event-based simulation algorithm is composed of two
parts: 1) a scheduling function for inserting the events and
2) a main routine for executing the events in the event
list in order [26], [41]. The original event-oriented models
directly call the scheduling function to insert an event to the
event list, which contains the events in chronological order.
The events are executed by the main simulation routine one
by one.

In order to execute the DEVS models by this algorithm,
the flattening process should be performed before executing
the models. Since the event-based algorithm has no con-
cern about the hierarchical structure, the structural models
should be disintegrated, and divided into the AMs and mapped
events. The data events are generated by analyzing the cou-
pling relations and message ports. Each pair from a source
port to a destination port is transformed to a data event. The
time events are mapped to each AM. In the simulation time,
an additional mediation algorithm resolves the differences in
interfaces between the event-based simulation and DEVS sim-
ulation. The simulation messages of DEVS simulation are
transformed to corresponded events. The (done, tN) messages
are mapped to time events and the (y, x) messages are mapped
to data events. When the events are executed, the λ, δint and ta
functions are executed in order according to the time events
and the δext and ta functions are executed according to the
data events. By inserting the events, which are transformed
from results of the functions, to the event list, the simulation
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Algorithm 1 Event-Based Simulation With ECM
1: ECM : Event Control Model
2: Tglobal : Current simulation time
3: EventList : List of sorted event (time, mapped_func)
4: newEv : Set of new events generated by generation type functions
5: procedure SIMULATION_RUN � Simulation Main Routine
6: sort the ECM.CR according to the ECM.SELECT
7: while EventList is not empty do
8: first← the top of EventList
9: if ECM.nextTN < first.time then � nextTN is a variable

in Secm
10: (newEv, ECM.Secm) ←

ECM.fk(null, ECM.Secm, ECM.nextTN) � fk is the
corresponding generation function

11: Recalculate the nextTN
12: if newEv and is not null then
13: insert the events in newEv to EventList
14: continue
15: end if
16: end if
17: delete the top of EventList
18: Tglobal ← first.time
19: execute first.mapped_func
20: end while
21: end procedure
22: AEv : Set of Additional Events generated by fk
23: procedure SCHEDULE_EVENT((time, mapped_func)) � API

for event scheduling
24: create an event Ev with the pair(time, mapped_func)
25: if there are mapped control functions in ECM then
26: for each mapped control function fk in ECM.CR do
27: (Ev, AEv, ECM.Secm) ←

ECM.fk(Ev, ECM.Secm, current time)
28: insert the events in AEv to EventList
29: end for
30: end if
31: if Ev is not null then
32: insert Ev to EventList
33: end if
34: end procedure

goes on. We omitted the detailed algorithm, but you can refer
to our previous paper [35].

Based on this event-based algorithm, we added two parts
of codes, lines 9–17 in the main simulation routine and
lines 26–32 in the scheduling function, for the executing the
ECMs.

The algorithm added to Schedule_Event is quite simple.
Before the generated events are inserted into the event list,
the simulation engine calls the proper functions of the ECM.
In the case that multiple control functions are mapped to one
event, the ECM functions should be basically sorted according
to the SELECT function. As the control functions may gen-
erate more events except for the input events, the algorithm
should also insert the additional events, AEv, to the event list.

The Simulation_Run function is extended for the genera-
tion of new source-irrelevant events. The nextTN state in Secm
indicates the next execution time of the generation functions
in ECM and the corresponding control function. Each gener-
ation function has an execution interval to be executed by the
simulation engine without source events. The next execution
time is decided among each generation function. If some gen-
eration function has same execution time, the priority will be

decided by the SELECT function in ECM. If the nextTN is
faster than the execution time of the first event when com-
paring the two values on line 9, the simulation engine should
execute the control function of generation type. When it gen-
erates new events, the events are inserted into the event list,
the rest steps of the while loop are skipped due to the continue
statement on line 14. As a result, the original top event, first,
is pushed back and it will be changed to one of these inserted
events.

Even if a simulation engine does not use the event-based
simulation explicitly, the simulation engines surely embed
functionalities that correspond to an event list for schedul-
ing information and messages. If any other simulation engine
provides the APIs for accessing the information or the event
sequences, the basic assumption for our proposed work can
be satisfied. On the other hand, this paper also suggests the
instrumentation of APIs into the simulation engine to access
information at the I/O levels.

D. Extensible Semantics Through ECM

This section provides the detailed explanations about how
the ECM can be used. Fig. 5 lists the five cases of extensible
semantics through ECM. For better understanding, the figure
provides the functionalities and the structural view of each
case. We do not address this section in the view of state transi-
tions. It is true that the ECM can alter the results of simulation
models as if the state spaces or state transition functions were
modified. However, because the state transition view is hiding
under the assumptions of this paper, black-boxed behavioral
models, describing the behavior of ECM in the state transition
view is not our concern. We just concentrate on the opened
information out of the behavioral models.

To apply the ECM to message flows of formal structural
models, users have to consider I/O specifications and design
the control function for the messages. In brief, the messages
can be regarded as the events. If the messages should be mod-
ified, then the modulation function will be suitable. If the
messages should be delayed or vanished, then users can design
the function, which alters the time value of the data events.

The function fi in case (a) changes the variables v in data
event with or without the Secm before the event is passed
through the simulation engine. In the DEVS simulation, the
output messages y from the λ function are translated to the
data events. When the requirement that an output y of an AM
should be changed to y′ occurs, the function in case (a) can
substitute with the modifications of the λ function. This case
can be used as the extension of the generator in EF. For exam-
ple, this modulation is used for the parameter tuning as the
most basic application. By extending the generator in EF, the
variables between models can be parameterized through these
event-oriented control functions.

The control target of this case (b) is the time value, tN ,
generated from the scheduling functions, i.e., ta functions in
DEVS formalism. Though the produced tN is same as the cur-
rent simulation time, the ECM can handle the value to create
a time delay in the execution of events for advanced control.
Adding the delayed time to tN , users can cause the output
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Fig. 5. Extensible semantics through ECM.

to arrive in the destination model late. If the tN value of an
event becomes infinity, it eliminates an event and prohibits the
event from arriving at its destination model. By the control
function of this case, a data message can vanish according to
a certain probability function, and the destination model will
never know. The control functions of this case abstract the
delay effects of messages from the models, e.g., the commu-
nicational delay. Since the messages in the DEVS simulation
are delivered immediately, developers should have designed
additional models for message delay. With the ECMs, they
can substitute the new development of the models using the
ECMs as depicted in the structural view of Fig. 5.

Case (c) modulates the tg of the date event. Since the tg
is generated by analyzing the coupling relations in structural
models (the CMs in DEVS), it corresponds to changing the
destination of the target message in the same way to the
dynamic variable structures. It can substitute the changes of
the structural models or the extensions of the simulation engine
for reconfigurable semantics.

Case (d) produces an effect that creates the additional out-
puts triggered by the y. The extra events registered in the event
list can be other messages or the same output to other des-
tination models. It can substitute with the modifications of λ

functions in DEVS formalism. This case is also related to the
data events toward the simulation engine for calling applica-
tion programming interface (API), telling the simulation to
terminate/stop/resume, logging, making assertions, and so on.
The event-oriented control functions can monitor the variables
generated from models for various purposes and can generate

messages to the simulation engine. In this case, the tg of the
Ed is the simulation engine and the v stores the arguments
about the APIs.

Case (e) is the generation type of the control functions. The
control functions of this case generate the external events or
source-irrelevant events with a distinct scheduling algorithm or
an external input. It seems that there is an additional model,
M1a, which has a certain state generating the output y.

In the case of time events, the control function in the case (b)
changes the value of tN to other values. It means the modifica-
tions of ta functions in the DEVS formalism. Before a mapped
time event from time advance function in DEVS formalism
is scheduled into the simulation engine, the control function
changes the time value in the time events. As the modulated
execution time is scheduled into the simulation engine, result-
ingly, the time advance values of each behavioral model can
be modified. Furthermore, the control function can shut down
or execute a certain model from the deletion or generation of
the time events without modifying the submodel inside. The
cases will be utilized to extend the time management policy
in simulation engines.

However, applying the ECM to each time event is very lim-
ited. The value of the scheduled time must be related to each
internal status of the models that is contrary to the messages.
To control the time values, the event-oriented functions should
know in which state the time scheduling occurs. Hence, the
ECM cannot know the meaning of the time advance values
without the internal status, and this leads to the limitation of
the time event controls.
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These cases can be combined for more complex behaviors
with the interference of only an ECM. For example, fi can
correspond to both cases of (a) and (b) by changing the tN and
v simultaneously, or fi of (b) and (d) can generate additional
events to other destinations and send the event to the original
destination with a time delay.

IV. ADVANTAGES AND CONSTRAINTS

This section describes the advantages and constraints of the
ECM. The ECM is not always applicable to the development
process or analysis process of DESSs. We expect this section
to help users make decisions.

A. Advantages

The ECM enhances reusability and extensibility. The ECM
makes effect to modify the existing models without modify-
ing the models actually. It also performs the role of a glue
among models or simulators without changing their exist-
ing components, as Section V will demonstrate. It prevents
increasing development costs due to the possibilities of side
effects, fragmented codes, modification of white-box models,
or development of new models.

This advantage is due to the transformation of concerns
from formal and structural systems to event-based systems.
The proposed work abandons the inner parts of AMs from the
perspective of the SoCs. The proposed approach breaks the
formal structures, moves the concern from the model view to
the event view, and describes the only necessary semantics.

With the ECM, users can skip describing the schedul-
ing functionality in DEVS formalism because the role of ta
functions and scheduling algorithm in DEVS formalism can
be embedded in the event scheduling. The event is inserted
directly into the event list, and the execution order will be
determined by sorting the event list according to the execution
time. When the functions schedule the next events, the time
advance values are described in the scheduling API directly
instead of the extra descriptions. Even if a DEVS model per-
forms a simple role, e.g., a transmitter, we used to describe
all the four functions in DEVS formalism. On the contrary, an
event-oriented function in ECM can cover the behaviors of a
DEVS AM. As the substituting ECM is not scheduled on the
event list and is called less than the DEVS functions, the exe-
cution time with ECM is also faster than that of a simulator
with only DEVS models.

Moreover, the number of actual lines of source code could
also be reduced quantitatively. When users modify or add a
new submodel to a deployed simulation software, there are
increased costs for not only developing the submodel but also
modifying other related parts of the simulation systems, i.e., a
model manager, coupling information in the structural models,
a scenario generator in EF or message formats, and so on. With
the additional semantics about the events, the related parts will
be not modified, and the modification costs can be reduced.
Instead, just a few lines about the CR are added.

In some cases, only a small difference may exist because
the absolute quantity of needed semantics must be unchanged.

Nonetheless, as the target events are related to more compo-
nents in the simulation systems, the number of reduced lines
must increase. Since the concern view is changed from cou-
plings among models to events, multiple similar events can
be targeted by a few event-oriented control functions. Even
if the source and destination models/ports are different, sev-
eral events are composed of the same or similar variables.
Considering the existing systems, there can be many same
classes or relationships of inheritance. As the structure of tar-
get systems becomes more complex, the benefits can be more
effective. We will show how the ECM reduces the source codes
of simulation systems effectively in the case study.

B. Constraints

This paper is based on the assumption that the extension tar-
get system is composed of agglomerated black-boxes and that
the details under the box are not our concern. In the structure
composed of the simulation engine and models, the control-
lable information is restricted to the opened variables from the
models to the simulation engine. The states and operations are
hidden from the view of the simulation engine. For this rea-
son, the extensible semantics of the ECMs must not be equal
to the ordinary discrete event semantics. The ECM has distinct
constraints to extend the semantics of the behavioral models.
In the view of the event-based simulation, there are three main
constraints.

First, substituting for the modifications of the event gener-
ators, e.g., the λ function in DEVS, is restrictively permitted.
The ECM can change from y to y′ with or without additional
states, Secm. If the y′ need to be calculated with other states or
variables in the black-box, the ECM cannot be applied due to
violating the assumptions. And the modulated output y′ should
be interpretable to the destination model because we cannot
modify the event interpreter, the δext in DEVS formalism. In
other words, it is impossible for them to add new events, i.e.,
X or Y in DEVS, which are not interpretable.

Second, the state space of behavioral models should not be
actually expanded from a similar perspective. The ECM only
makes effects to expand the state space out the behavioral
models, but it does not modify the model inside actually. Since
the states of the existing models are hidden to ECMs, the
modified semantics cannot be related to the internal states.
Instead, there are additional states for ECM, Secm.

Third, the behavioral models should have no relation with
the exported events after the events are generated. In other
words, the models should not memorize the exported output.
The ECM modifies and deletes the events without considering
their source. The concerns of the ECM are generated events,
not the generating events in the source models. The relation
between the states in the source model and the generated
events may cause unexpected results. For example, assume
that a certain model stores the exported output and gathers
the feedback of the output to compare the feedbacks and the
exported output. Since an ECM modulates the exported output,
they cannot guarantee the correctness of the models. Likewise,
they should also be careful of the modulation of time events
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Fig. 6. Design process of ECMs before modifications of the source codes.

because delayed or deleted time events may bring about a
deadlock of the destination model.

Conversely, the key to avoiding this third constraint is
enhancing the modularity. The DESSs on which this paper
focused have been developed in that direction. Since high
modularity means less relations among subcomponents and
variables, developers do not need to be concerned with this
constraint. It is easier for developers to estimate the resulting
behaviors of the models by only using the I/O interface.

V. APPLYING ECM TO THE VARIOUS

LEVELS OF REUSABILITY

The ECM can be applied to the existing process to embrace
changes of the requirements. As argued in Section II, when
developers apply the approaches at each level to their target
systems, they often need modifications at the code level, such
as making the systems middleware-compliant, making the sys-
tems capable of accommodating the reconfigurable semantics,
providing the interfaces in such a way that resolves the differ-
ences, and the so on. If there is no reusable component, they
finally may be compelled to break the black-boxes.

Before modifying the systems or components at the code
level, the proposed work provides alternative steps using the
ECM, as depicted in Fig. 6. If users confirm that the ECM
is effective, they will design the ECM in accordance with the
attempted approaches.

To design the ECMs to structural models, user should
extract the events. Extracting can be performed automati-
cally or manually according to the type of simulation engines.
Analyzing the coupling relations and message ports, the data
events are identified. And each behavioral models are mapped
to the time events.

The utilizations of ECM at each level are different and can
be classified into two types: 1) the simulation engine and 2) the
simulation model since the simulation events are simulation
units and are also mapped on the model functions. On the
side of the engine, they need to design the extension modules

Fig. 7. Roles of ECM for each level.

to satisfy the extension approaches. The extension process may
still remain after the reuse of the simulation engine. On the
contrary, the ECM on the side of the simulation models will
itself be sufficient to satisfy the requirements.

The probing functions are also needed supplementally.
Malfunctions may occur whenever developers use the control
functions. When the users design the ECM and execute the
existing systems, they must know whether the systems oper-
ate normally. Hence, users should set the assertion functions
and should probe the variables for the normal behavior of the
simulation model.

The rest of this section will describe how the ECM is
applied to each level in the context of Fig. 2. Additionally,
Fig. 7 is provided as a supplement for understanding.

1) Protocol Convertors for Level 5: To be reused at the
level of simulation systems, the existing simulator must be
interoperable. This means that it should have interface mod-
ules for the middleware. If the modifications were not planned
at the development of the simulation systems, the reusable
components should be modified.

For the interoperable simulation engine, the ECM conducts
the protocol converters to make the systems middleware-
compliant. The middleware-compliant simulator should be
able to accommodate the protocols of the middleware.
Although there should be many functionalities to make the
systems compliant, the required modifications can be sum-
marized as data transmitting and time management. Other
functionalities are implemented using an external module such
as KHLAAdaptor [42], which is connected to the ECM. Since
the protocols can be regarded as the subset of discrete event
simulation [16], the instrumented ECM can conduct the role
of the protocol convertors.

a) Time management: The discrete event simulations are
conducted in this order: 1) each model of a simulation sys-
tem notifies the next execution times; 2) the simulation engine
executes the top model, which has the minimum time; 3) to
interoperate with other simulators, the middleware functions as
the time manager of all the simulators; and 4) each simulator
requests the next execution time (time advance request) and
awaits the grant (time advance grant) from the middleware.

The ECM for the interoperation should assist the protocols.
Even if only a few models are related to the interoperation,
the control function for the time events must be attached to all
the models in order to control the execution of all the models.
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The control function gathers all the time events and generates
only the granted events. Other ungranted events, whose tN
is over the granted time, are inserted with the infinity time
stamp. When the time of an ungranted event is granted, the
control function, as the generation function, inserts the time
event again into the original tN .

b) Data management: When messages or variables need
to be transmitted to other simulators, a control function cap-
tures the outputs of the models and calls the proper APIs for
the middleware. Conversely, when the transmitted input occurs
from the other simulators, a control function for the input gen-
erates the data event at the time it occurs. The control functions
for data transmission do not need to involve the time policy
because the data transmission will occur in the granted time.

2) Reconfigurable Semantics for Level 4: To reconfigure
the simulation model, there should also exist modifications
for accommodating the reconfigurable semantics. The ECM
can also conduct this role as the extension of the simulation
engines. The ECMs for this case are concentrated in the data
events because most of the reconfigurable semantics are about
messages or routes of messages.

On the other side, the control functions of the ECM can
be regarded as the extension of the reconfigurable semantics
at level 4, such as the controller in EF or the dynamic struc-
tures. The related works about reconfigurability, as mentioned
above, have assumed that the target of simulation control is
the operation of the simulation systems, the input parameters,
or the model structure. Though some studies have set up the
variables at the level of model I/O, they did not consider mod-
ifying the dynamic behaviors of the simulation model over the
dynamic structures. In addition, the reconfigurable behaviors
of the listed studies should be considered and settled in the
design and implementation of models. By contrast, the pro-
posed work handles the behaviors of simulation models by
dynamically interfering with the simulation events. The scopes
of our control target are dramatically extended compared to
those studies. In this case, the ECM alone conducts the recon-
figurations of the model semantics, whereas the extension
modules of the simulation engine need more descriptions for
the extended semantics.

3) Interfaces Between Components for Level 3: As with
the general software, the reusable components in the simu-
lation models could not be instrumented completely because
there may be differences in resolution, data types, and so on.
Most of the differences are related to the data at the interface
level. In addition, there may be errors in source codes typed
by humans despite the design of the origin model not being
wrong. When developers attach the existing components to
extend the semantics, they may find errors. In this case, the
models should be modified to achieve the requirements.

When developers face differences in the interfaces between
the behavioral models at levels 3 and 5, the ECM can
resolve the problems. Differences may exist in terms of mea-
sures, resolution, or fidelity between the data of each model.
Furthermore, the reusable model has a few incorrect seman-
tics, which can be resolved at the I/O level. Using the ECMs,
developers can resolve the differences or inaccuracies easily
while also avoiding modifications of the code level. Since the

ECM focuses only on the target events, it will be more effi-
cient than designing a new model or modifying the model
inside to resolve the differences. In addition, there may be
simulation environments with inaccessible behavioral models
in the model repository, which is based on the MB manage-
ment. In these cases, since the reusable components must be
unmodifiable, the ECM will be more valuable.

4) Avoiding Modifications for Levels 2 and 1: If there is
no reusable component to satisfy the requirements, developers
should modify the model inside or develop new models, even
if the degree of the changed behavior is small. Even if there are
reusable codes at lower levels of reusability, i.e., OO inheri-
tance, the fact remains that the rest of them should be modified.
The ECM, even if it is limited, can be used in order to pro-
vide the extension/correction method of the model semantics.
The ECMs make the target systems reusable without modi-
fications by extending the controllable semantics, modulating
the existing semantics, or substituting the development of the
models.

VI. CASE STUDY

This section presents actual examples in which the pro-
posed ECM is applied. We assume the development process
and changes of requirements using existing military simulation
models, developed for the Korean Army in the past. The sim-
ulation models were developed for the DEVSim++ [42] and
have been utilized for evaluating measures of performance.

This case study uses the E-DEVSim++ [35], which exe-
cutes the DEVSim++ models in the C++ language with an
event-based simulation algorithm. The E-DEVSim++ trans-
lates the formal DEVS models to the events and simulates
them with an event list, and it provides external APIs to
describe the relation, CR, as

void AddRelation(Message *m,void (*f)(Event *e)
void AddRelation(Model *m,String *p,void (*f)(Event *e))
void AddRelation(Model *m,void (*f)(Event *e)).
There are generally three methods. Users can describe the

control functions (void *f ) for each message class (subclasses
of the message class), models (subclasses of the model class),
or the port name (p) of models. By using the first type of
AddRelation function, the control function will be operated on
all the same output messages. The second type is the general
and basic form, and the third type is suggested for the control
function of the time events (or scheduling).

The control function f is described by users. The simulation
engine calls this function with the pointer parameter, event,
which is the class for event management of E-DEVSim++.
When the return value of ta function or λ function occurs,
it will be translated to the event class and simulated. For
example, assume that a message of the Msg class from “out”
port in a source model to “in” port in a destination model
exists and it should become transmitted after a delay time
according to an embedded variable, “flag.” The control func-
tion for this message in C++ is described in Fig. 8. The
message, Msg, is simulated in the simulation engine as an
event, Ed

Msg with the variable flag. The event-oriented func-
tion MsgDelay in ECM_example delays the event according
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TABLE I
COMPARISONS BETWEEN PAST APPROACH AND THE PROPOSED ECM

Fig. 8. Example of the event-oriented control functions.

Fig. 9. Scenarios of the wargame model.

to the variable flag. In this example, there are two descrip-
tions of CR. First, the control function can be connected to
the output ports of DEVS models, the ‘out’ port in mSource.
Second, it can be connected to all the same message from the
Msg class.

A. Corps-Scaled Defense Operations Model

The target model in this case study is the corps-scaled
defense operations simulation model [43]. In the scenario in
Fig. 9, the blue forces construct a defensive position and
defend against the red forces’ attack. The concerned output
of the simulation was the survivability of the red forces.

The model was designed as a hierarchical structure, as
in Fig. 10. Each CM is mapped on the military units
and has the CMs of the subunits, their weapons models,
and a command and control (C2) model. There are two

Fig. 10. Structure of the initially developed model.

Fig. 11. Structure of battalion CM as an example.

messages about the C2 hierarchy, as depicted in the exam-
ple of Fig. 11: order messages for the C2 of the higher
units to the C2 of the lower units and report messages for
vice versa.

When the simulation model was developed and deployed
for the Korean military, the requirements were changed due to
stakeholders’ responses by observing the results of the sim-
ulation models. We assumed that the actual responses and
redevelopment could mainly be divided into two changes,
and Table I explains the changes of requirements and com-
pares the past approach and the proposed approach with the
ECM, which was newly developed for this case study. The
actual C++ codes of this case studies are omitted. Instead,
the changed model structure and specifications of the ECM
are described.
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Fig. 12. Brief comparisons in the perspective of C2 models.

B. First Change

The initial simulation system did not consider the commu-
nication effects through the signal equipments and emphasized
the validation of the C2 structure and the evaluations of
the defense operations. However, stakeholders required an
extended simulator with a communication simulator for more
precise simulation. Considering the hierarchical C2s, the com-
munication traffic or the performance of the equipment causes
delivery delays in the transmission of messages. This leads to
an increase in the survivability of enemies. In addition, stake-
holders wanted to change the fixed decision times to stochastic
times, while also including probability functions.

Under these assumptions, the simulation systems should be
extended to be able to interoperate with a specialized com-
munication simulator, and the C2 models should be modified.
The engine should be extended to be suitable for the stan-
dard protocols of HLA/RTI because the E-DEVSim++ is not
HLA-complaint. On the model side, the messages of C2 mod-
els should be passed through the HLA/RTI according to the
data management protocols. The time advance values of the
C2 models should be changed to stochastic values.

For reusing the external simulator, the engine and model
should be extended by the modifications at the code level.
Fig. 12 compares the partial structures, which include only two
C2 models and their interactions, between the past approach
and the proposed approach. In the first revised structure, a
new transmitter model for each CM is added with modified
coupling schemes in order to intercept the messages and send
them to the external simulator, and each C2 model is modi-
fied for the stochastic decision times. The simulation engine
is also modified for interoperation with the external simula-
tor. On the contrary, the existing model and simulation engine
are not modified with the proposed ECM. The control func-
tions for each event are attached to the initial systems and
modulate the outputs of the AMs according to the changed
requirements.

Fig. 13. First changed structure with the ECM1.

Fig. 13 shows the instrumented ECM1 for the first change
in detail. The figure draws the simulation events, which are
generated by the models and delivered to the simulation
engine, and the control functions to the events. The fse and
fre are connected to the external adaptor and substitute for the
transmitter model. The fse deletes the data events Ed

msg, and
the fre generates the data events Ed

msg, which have the delayed
times that have been changed from the current time (tc), fol-
lowing certain times produced by the external adaptor. The ftm
is attached to all the models to conduct the time management
policy, as mentioned in the previous section. Each event set is
the subset of whole events in Ed or Et. The sets are identified
from the existing simulation models.

The fprob modulates the time advance values of each C2
model. Attaching the fprob to the C2 models, we can modify
the time scheduling. Since the target events of ftm and fprob are
overlapped, the SELECT function makes the fprob be executed
by priority.

ECM1 = {{Ek}, Secm, { fse, fre, ftm, fprob}, CR, SELECT}.
1) {Ek} = Ed

msg ∪ Et
c2 ∪ Et

model.
- Ed

msg is a union set of data events mapped to the Order
and Report messages.
: Ed

msg,i = <Dest C2, Src C2, tc, msg>.
- Et

model is a union set of all the time events.
: Emodel,j = <Model, Model, tN, ∅>.
- Et

c2 is a union set of all the time events of C2 models.
: Et

c2,k = <C2 Model, C2 Model, tN, ∅>.
2) Secm = {List of sent message, List of ungranted models,

Granted time, Prob. parameters}.
3) fse: Sends the data in events to the comm. simulator and

deletes the events.
4) fre: Receives the data in events from the comm. simulator

and generates the events.
5) ftm: Manages the times of all the models and generates

the time events that RTI permits.
6) fprob: Changes the tN to randomized values according to

a probability function.
7) CR = {(Ed

msg,1, fse), . . . , (Ed
msg,l, fse), (Ed

msg,1, fre),

. . . , (Ed
msg,l, fre), (Et

model,1, ftm), . . . , (Et
model,m, ftm),
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Fig. 14. Second changed structure with the ECM2.

(Et
C2,1, fprob), . . . , (Et

C2,n, fprob)}
− n(Ed

msg) = l, n(Et
model) = m, n(Et

C2) = n.
8) SELECT : (ftm, fprob)→ fprob.

C. Second Change

The second change was caused by performance degradations
because interoperation overheads caused inefficiency despite
the results’ accuracy. Therefore, a new meta model as a com-
promise approach between accuracy and performance was
developed and added to satisfy the requirement [43]. The
meta model has a substituting function, which is generated
by a second-order response surface method applied to the
actual results of the communication simulator. The meta model
with a message queue stores the C2 messages and transmits
each message after some time according to the approximated
function. In addition, the engine was also modified for recon-
figurable semantics between the interoperation and the meta
model, as depicted in Fig. 12.

On the contrary, applying the ECM to the first revised sys-
tems, fcomm is added as the role of the meta model, and
switching codes are added out of the simulation model, as
shown in Fig. 14. The initial codes are still not modified dur-
ing two of the changes. When the Order and Report messages
occur, the fcomm calculates the communication effects from the
approximated function and communication parameters, and it
makes the data events be executed after the calculated time.

ECM2 = {{Ek}, Secm, { fcomm, fprob}, CR, SELECT}
1) {Ek} = Ed

msg ∪ Et
C2

- Ed
msg is a union set of data events mapped to the Order

and Report messages.
: Ed

msg,i = <DestC2, SrcC2, tc, Msg>

- Et
c2 is a union set of all the time events of C2 models.

: Et
c2,j = <C2 Model, C2 Model, tN, ∅>.

2) Secm = {Comm. Parameters}.
3) fcomm changes the tN of each event from zero to delay

values according to the approximated function.
4) CR = {(Ed

msg,1, fcomm), . . . , (Ed
msg,l, fcomm),

(Et
C2,1, fprob), . . . , (Et

C2,n, fprob)}.

D. Experimental Results

The original model with the communication effects was
executed with several parameters. This paper only illustrates
an experimental graph with two parameters: 1) the data-
forwarding rate and 2) the processing delay time. These results
were generated on the first revised simulator.

Fig. 15. Survivability of the enemy according to the four cases.

TABLE II
COMMUNICATION PARAMETERS FOR EXPERIMENTS

TABLE III
ACTUAL # OF ADDED/MODIFIED/DELETED LINES DURING REVISIONS

Fig. 15 shows the results of the experiments in four cases.
The graph of case 0 was produced by the original simulation
model without the communication simulator, and the rest of
the results were from experiments using the ECM1 according
to the parameters in Table II.

These results show that the communication effects are
important factors of war-game simulation. As the communica-
tion effects increase, the delay times of C2 messages increase,
and more enemies can survive. Specially, the new insights,
e.g., that the processing delay time is a more relevant factor
than the data-forwarding rate, could be provided to the domain
experts.

To verify that the ECMs operated correctly, we gener-
ated the simulation and interoperation logs from the past
DEVSim++ and the E-DEVSim++ with the ECMs. By com-
paring time stamps and messages, we confirmed that the ECMs
exhibited proper behaviors.

We can show that the substituting ECMs reduced the actual
efforts during the processes. Table III compares the number of
code lines in C++ language between the past and the proposed
approach. The left side is the results applying modifications of
white-box models to the two revision processes. On contrary,
the right side is the results of the developed ECM. We counted
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the actual lines of C++ codes including header files except for
blank lines and lines with just only braces. Using the ECMs,
the effort of the development process was reduced by about
88% in total, and we dealt with only two classes per change, a
main class and each ECM class. The target system becomes a
better application due to the hierarchical structures and various
models that have similar events.

Moreover, there is also no uncountable effort due to modi-
fying the existing source codes, such as increased side effects
or fragments of the source codes. The proposed ECMs are
related to only two classes, whereas 34 classes were modified
or added in the past. This will definitely prevent unexpected
increases in development costs.

VII. CONCLUSION

This paper proposes the ECM for the adaptive DESSs to
embrace the changed requirements. The control functions in
the ECM interfere with the events in the simulation systems.
By succeeding the advantages of the black-box extensibil-
ity, the proposed work resolves the redo-reuse dilemma of
reusability, provides disjointed semantics, reduces the frag-
ments of the source codes, and decreases the probabilities of
side effects. This paper also suggests the alternative step to
avoid the modification of source codes. As a result, the ECM
makes the existing DESSs more adaptive.

There may be troubled communications because it may
be difficult for simulation system engineers to understand
the domain-specific knowledge [44]. The misunderstanding
of both the stakeholders and the developers may emerge late
because they cannot forecast the validity of the requirements
and designs before observing the executed results. For this rea-
son, the adaptive system in the proposed work is even more
valuable to the M&S engineering. It would be efficient to use
the DEVS formalism or formal DES methodology in mak-
ing the overall structure and then attach the event-based parts,
i.e., ECM, to each black-box component of the initial structure
when it is necessary to modify something already made.

It must not be an almighty approach for covering all the pos-
sible semantics of DESSs. Nonetheless, there are many cases
in which the ECM can be utilized to resolve the problems
during the development process, especially the revision pro-
cess between the developers and the stakeholders. The case
study, which was based on past developments for the Korean
military, showed the improvement according to the proposed
work in DEVS formalism. This paper obviously enhanced the
reusability because the ECM prohibited users from modify-
ing the initial simulation system or external components at the
source code level during the two changing processes. However,
the effectiveness of ECM may be lower when the developed
simulation systems are expanded with many ECMs because a
lot of partial behaviors to existing models definitely confuse
developers. Hence, we recommend to avoid applying ECMs
to incremental development processes.

The ECM can be applied to other simulators that provide
the APIs to access simulation events or mapped information.
According to the respective implementations, some types of
ECMs, such as time modulation of the data events, may be

impossible. If the ECM cannot be applied to a certain sim-
ulation engine, partially or totally, we would like to suggest
adding the event-based APIs for the instrumentation of the
ECMs. Although the ECM makes the effects on the behaviors
of simulation models, the internal specifications of simulation
models are not the concerns of the ECM. The ECM can only
control the extracted events between simulation models and the
engine. Hence, other DESSs can easily embrace the concepts
of the proposed ECM.

In future work, the ECM will be applied to various steps
in the life cycles of DESSs in detail. For examples, we are
planning detailed applications, such as fault injections analy-
sis in the experiment process, an enhanced rapid prototyping
methodology by using ECMs, or advanced experiment designs
using the extended EF. This paper does not intentionally
describe the methodological contents, e.g., which development
process, short-term and long-term, is more suitable to apply
the ECM, because this paper focuses on the introduction of the
ECM and it is hard to determine the methodological criteria
in general. Instead, the future papers will focus the method-
ological life cycles of the ECM limited to a specified case
studies.
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