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T
he Discrete Event Systems Specification (DEVS) 
formalism has been widely disseminated in this 
magazine and elsewhere for its applicability to 
computational science and engineering. Bonaven-

tura, Foguelman, and Castro1 presented an iterative and 
incremental development methodology for simulation mod-
els in network engineering projects based on DEVS to assist 
network design, test, analysis, and optimization processes. 
Virtual Lab Environment (VLE) is a DEVS-based soft-
ware environment to perform virtual experiments intended 
to increase the ability to cope with the complexity of living 
systems, enabling the choice of level of detail in models with-
out being limited by the expressiveness of a single formalism.2

Rhys Goldstein and Gabriel Wainer3 showed how (particu-
larly in the biological systems domain) DEVS provides a 
means of addressing complexity through hierarchical model 
design by illustrating the advantages of combining spatial de-
composition in cellular automata with higher-level functional 
decomposition in Cell-DEVS.4

Nevertheless, the desire for fi ne-grained modeling and 
simulation (M&S) of biological and other systems continues 
to grow, demanding an ever-increasing ability to simulate 
complex models in reasonable time. DEVS-C++, a high-
performance environment for modeling large-scale systems 
at high resolution, was shown to represent both continu-
ous and discrete processes running in parallel with genetic 
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algorithms.5,6 While research in parallel and dis-
tributed simulation (PADS) has been active in the 
past several decades, the utility of many PADS tech-
niques for high-performance simulation has been 
limited (see the “Additional Reading on Parallel 
and Distributed Simulation” sidebar). Such research 
typically starts from an event-oriented perspective of 
computation7,8 from which it’s often difficult, and 
in some cases impossible, to identify a priori the se-
quential and parallel parts of a model to which con-
ventional parallelization techniques apply.

Recent research has shown that that a recon-
struction of Amdahl’s and Gustafson’s laws for 
parallelizing sequential code can afford a better un-
derstanding of the underlying principles and their 
application to simulation of discrete event models, 
and DEVS models, in particular.9,10 Gene Am-
dahl11 asserted that a program can run no faster 
than the time it takes on a single processor divided 
by the number of processors (see the “Additional 
Reading on Amdahl’s Law” sidebar). However, this 

speedup relation was stated without a proof based 
on first principles. John Gustafson12 restated the 
law in terms more germane to distributed simula-
tion such that the number of replications of the 
program that can be executed in the original time 
is limited by the number of processors. The recent 
formulation of the Amdahl/Gustafson speedup 
concepts for DEVS simulation affords new insights 
and an interpretation of the theory to parallel 
DEVS simulation.

In this article, I review some of the concepts 
relevant to the performance analysis of DEVS 
models and derive further implications for paral-
lel DEVS simulations by summarizing the deriva-
tion of the Amdahl/Gustafson speedup concepts 
for DEVS simulations and discussing their appli-
cation to the Parallel DEVS (PDEVS) simulation 
protocol. Noting that DEVS models represent the 
full class of discrete event dynamic systems, we can 
infer that the more incisive implications also apply 
more generally.
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Reconstructing Gustafson’s Law  
for Distributed Simulation 
We can conceive of a logical (virtual) simulation ex-
ecution as constituted by its events, whether internal 
(caused by itself) or external (caused by receipt of in-
put). Executed on a single processor, the wall-clock 
time taken for this execution is defined as the sum 
of the individual event computation times over all 
the events. Now consider executing this simulation 
in a parallel and distributed manner, which amounts 
to partitioning the events among a number N of 
processors (nodes), as illustrated in Figure 1. We as-
sume that the individual events take the same time 
to compute whether they’re all on a single processor 
or within a smaller subset on a node processor. This 
is in keeping with the assumption that the original 
sequential simulation and the processors in the dis-
tributed simulation are all of the same platform type, 
having the same computation time for individual  
events. The fastest that any processor can execute all 
its events is the sum of their execution times.

In fact, the time it actually takes to execute 
this set could be larger than this minimum because 
it might have to wait for external events to arrive 
before it can proceed at various times. Different 
methods can have different characteristics in the 
additional wait and overheads incurred. However, 
since we’re interested in the best that can be done, 
we can take the processor’s time to complete its job 
(the assigned set of events) as the sum of its event 
computation times. Now, the time to complete the 
whole simulation is the maximum of these comple-
tion times since we must wait for all the processors 
to finish; the one, or ones, that takes the longest 
will determine the overall time. This leads to a defi-
nition of speedup for a distributed simulation on a 
network of processors as

=Speedup
Sum
Max

. � (1)

Here we first let CTi be the sum of the event com-
putation times assigned to the ith processor, Sum is 
the sum of the CTi over all processors, and Max is 
the maximum of the CTi over all processors.

From the above discussion, Sum represents the 
time taken by the sequential simulation, while Max 
represents the time taken to execute the events 
in the largest partition block. Thus, the potential 
speedup of a partitioning of events is the sum of 
the processor times divided by the maximum of 
these times; see Figure 2 for an example.

Now we can state the equivalent of Gustafson’s 
law for distributed simulation: the speedup of a 
simulation distributed on N processors can be no 
greater than N. 

To see how this is true, notice that a sum of 
N non-negative numbers is less than or equal to N 
times the largest of these numbers. Using the above 
definitions, consider that

Sum = CT1 + CT2 + … + CTN.

Dividing and multiplying by Max, we have

= + + +






Sum Max

CT
Max

CT
Max

CTN
Max

1 2 ... .

And since each of the CTi terms is now less than or 
equal to 1, we have

Sum ≤ Max × N.� (2)

If we put Sum from Equation 2 in Equation 1 and 
simplify, we get

Figure 1. Partitioning of events among processors: the basic 
sum over max relation for computing speedup.
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A simulation run consists of M
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computations
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= sum of processor computation times
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= max of processor times if done concurrently
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Speedup = Sum/Max

Figure 2. An example of an assignment of event computations to 
processors representing a distributed simulation. Note that the 
speedup (4.77) is less than the number of processors (10).
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=

≤
×

=

Speedup
Sum
Max
Max N

Max
N ,

that is,

Speedup ≤ N.� (3)

We see immediately that the best possible 
speedup is equal to the number of processors. This 
occurs when all processors have the same computa-
tion time. The sum in Equation 2 takes on its larg-
est value when all of the terms take on the same 
value, the maximum. At that point, the speedup, 
namely, the Sum/Max, becomes equal to N.

Let the relative speedup be the actual speedup di-
vided by the number of processors. Using the defini-
tion of speedup from Equation 1, and setting the av-
erage computation time Avg to Sum/N, we note that

=

= ≤

Speedup
N

Avg
Max

1

Relative speedup
.� (4)

Indeed, since the average of a set of numbers is 
no greater than their maximum, relative speedup is 
a measure of how efficient an assignment of events 
to processors is. The distributed simulation law in 
this form effectively states that relative efficiency is 
at most one. My colleagues and I9,10 have provided 
evidence for these observations: 

■■ The relative speedup of a typical distributed 
simulation decreases with the number of proces-
sors; however, the absolute speedup could still in-
crease—there’s always likely to be an improvement 
in performance with an increasing number of 
processors (albeit with diminishing returns). This 
doesn’t take communication delays into account.

■■ The greater the variation in processor computa-
tion times, the smaller the expected relative speed-
up and the faster the fall-off of relative speedup 
with increasing numbers of processors. 

■■ When communication delays are accounted 
for, speedup could reach a peak and fall off 
from there with increasing processors.

Review of Modeling and Simulation 
Framework and DEVS 
The modeling and simulation framework (MSF)13 
presents entities and relationships of a model and 

its simulation as background for the upcoming dis-
cussion (see Figure 3). The MSF separates models 
from simulators as entities that can be conceptually 
manipulated independently and then combined in 
a relation that defines correct simulation. The Ex-
perimental Frame defines a particular experimen-
tation process, such as Latin hypercube sampling 
for yielding model outcome measurements in ac-
cordance with specific analysis objectives.

The DEVS formalism provides a sound and 
practical foundation for working with models and 
simulators. Briefly stated, a DEVS model is a system- 
theoretic concept specifying inputs, states, and out-
puts, similar to a state machine. Critically different, 
however, is that it includes a time-advance function 
that enables it to represent discrete event systems, 
as well as hybrids with continuous components in a 
straightforward platform-neutral manner. 

A DEVS model is described by choices of sets 
of inputs, states, and outputs as well as functions 
that play crucial roles in defining its behavior: how 
it responds to inputs, changes states, and generates 
outputs over a continuous time base. At any time, 
such a model has a state s in set S. After an event, the 
simulator evaluates the time-advance function ta to 
schedule the internal event. Should this time elapse, 
the output function λ is invoked to obtain an output 
value y in Y, and the internal transition function δint 
yields a new state to replace the current state. If an 
input x in X is received before ta elapses, the simu-
lator applies the external transition function δext in-
stead to obtain the new state. Briefly stated:

■■ DEVS formalizes what a model is, what it 
must contain, and what it doesn’t contain (ex-
perimentation and simulation control param-
eters aren’t contained in the model).

■■ DEVS is universal and unique for discrete event 
system models; any system that accepts events as 

Figure 3. Modeling and simulation framework (MSF).
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inputs over time and generates events as outputs 
over time is equivalent to a DEVS (its behavior 
and structure can be described by such a DEVS). 

■■ DEVS-compliant simulators execute DEVS 
models correctly, repeatably, and efficiently. 
Closure under coupling guarantees correctness 
in hierarchical composition of components.

■■ DEVS models can be simulated on multiple 
different execution platforms, including those 
on desktops (for development) and those on 
high-performance platforms, such as multicore 
processors.

The MSF helps clarify many of the issues involved 
in M&S tasks. Mismatch between the simulation’s  
time management policy and the model’s time- 
advance approach creates significant errors in even the  
simplest M&S. Simulation with relatively coarse dis-
crete time advance for a discrete event model exem-
plifies these kinds of errors. Distributed federations of 
discrete event and discrete time simulations with the 
high-level architecture (HLA),14,15 are especially prone 
to conflicts between the intended, as-modeled event or-
der and the implemented, as-simulated state-transition 
event order. Such conflict-based event causality errors  
in a tightly coupled simulation can introduce signifi-
cant behavior deviations from the correct result. The 
MSF underlies the Parallel DEVS (PDEVS) simulation  
protocol, which provides provably correct simula- 
tion execution of DEVS models, thereby obviating the 
above-mentioned conflicts as well as throwing light on 
the source of such conflicts often found in simulations. 

DEVS simulation is also distinguished by its 
support for both discrete event and continuous dy-
namic systems, both of which are simulated within 
the DEVS framework.13 This capability to simu-
late the interaction of subsystems characterized by 
discrete event dynamics (such as communication 
networks and command-and-control systems) and 
continuous, physical dynamics (such as the trajec-
tories of ballistic missiles and their interceptors) 
within the MSF makes DEVS particularly attrac-
tive to support distributed M&S. 

Parallel DEVS Simulation Protocol 
The PDEVS simulation protocol is a general dis-
tributed simulation protocol that prescribes specific 
mechanisms for

■■ declaring which component models take part 
in the simulation (component models);

■■ declaring how component models exchange 
data; and

■■ executing an iterative cycle that controls how 
time advances (time management), determines 
when component models exchange messages 
(data exchange management), and determines 
when component models do internal state up-
dating (state update management).

The protocol guarantees correct simulation in 
the sense that if the component models are DEVS 
models, then the simulation result is also a well-
defined DEVS coupled model. There are numer-
ous implementations of DEVS simulators. Multi-
ple conservative parallel discrete event simulation 
algorithms enable the parallel execution of DEVS 
models on these types of high-performance com-
puting systems.16,17 These algorithms are unique 
in the sense that they exactly reproduce the behav-
ior of the DEVS reference simulator; this feature 
distinguishes DEVS from the numerous other 
conservative simulation engines that are derived 
from the logical process approach to PADS, which 
cannot reproduce the behavior of the DEVS refer-
ence simulator in all circumstances. 

To see this, consider the PDEVS simulation 
protocol as outlined in Figure 4a’s pseudo code. 
Each component DEVS model has a time of next 
event, tN, that it sends to the coordinator, which 
calculates the minimum of these values, called the 
global tN. Imminent components, whose tN equals 
the minimum, compute their outputs and send 
them to receivers determined by the coupling spec-
ification. The active components, imminents and 
their receivers, then compute their state transition 
functions (internal, external, or confluent, depend-
ing on whether they’re imminent or have inputs). 
Figure 4b illustrates the course of imminents over 
time as a simulation proceeds; four components’ 
time advances are shown by successive arrows along 
the time line. A global transition occurs whenever 
at least one arrow tip is at the point representing a 
tN. The plot at the bottom of Figure 4b shows the 
successive numbers of imminents with changes oc-
curring at the global transitions.

In Figure 4a, lines 3 and 4 can each be ex-
ecuted in series or in parallel. For simplicity, for 
each component i, we’ll lump the two into one 
event with a computation time, CTi, which is 
the sum of the times of the transition and output 
parts. Now for a sequential implementation, the 
time for a single global transition is the sum of the 
computation times. For a parallel implementa-
tion, the corresponding time is the maximum  
of component times: in the basic PDEVS protocol, 
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we must wait for each component to complete its 
transition before going to the next global transition. 

Applying Speedup Concepts to DEVS 
Distributed Simulation
The concepts developed here enjoy more concrete 
instantiation when applied to distributed simulation 
of DEVS coupled models. The event sets in a par-
tition described in Figure 1 can be identified with 
the internal and external events of DEVS compo-
nent models in a coupled model. A simulation run 
is identified with a specified number, M, of global 
(coupled model) state transitions. In contrast to ex-
isting approaches,18 our theory allows us to develop 
a first approximation or “back of the envelope” ap-
proach to predicting the best speedup that can be 
expected in the implementation process. The first 
approximation helps us understand the effects of 
the number of components and the distribution of 
simulation times of the components. We recap, and 
expand up, related work9,10 for this approximation.

Equation 3 states that assigning each of the 
N component models to its own processor results 
in a speedup bounded by N. The Sum and Max of 

Equation 1 can be identified with the sum and max-
imum of the component runtimes, so that Sum/Max 
upper bounds the actual speedup. However, we can 
go deeper and characterize the parallelism exploited 
by the PDEVS simulation protocol by applying the 
approach iteratively to the M global transitions (Fig-
ure 4) and comparing this speedup with that derived 
for the M transitions taken as a whole. This lets us 
compare the potential speedup of the PDEVS proto-
col with the best possible speedup.

Equation 1 applies to each global transition, GT:

SumOfGt ≤ MaxOfGT × N,� (5)

where CTiOfGT is the sum of the transition and 
output computation times of the ith component, 
SumOfGT is the sum of the CTiOfGT over all 
components, and MaxOfGT is the max of the 
CTiOfGT over all components.

Summing the left and right sides of Equation 
5 over all M global transitions, GT, and pulling N 
out, we have,

SumSumOfGT ≤ SumMaxOfGT × N,� (6)

Figure 4. The PDEVS simulation protocol illustrating (a) the concept of imminent components and (b) the course of 
imminents over the time base as a simulation proceeds.
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where SumSumOfGT is the sum of all computation 
times for all M global transitions, and SumMaxOfGT 
is the sum of the maxima of each such transition with 
the time taken by the parallel version. Hence,

= ≤SpeedupOfPDEVS
SumSumOfGT
SumMaxOfGT

N . � (7)

This is Gustafson’s law reconstructed for the 
PDEVS protocol. We can compare it to a best 
speedup estimate for any method by assuming pro-
cessing independence in the processors—that is, 
each processor is free to proceed at its own pace, 
and we wait for the slowest to finish. A direct ap-
plication of Equation 3 yields

= ≤SpeedupOfInd
SumSumOfGT
MaxSumOfGT

N , � (8)

where MaxSumOfGT is the maximum of the sum 
of each processor’s computation times over the 
M transitions. Clearly the PDEVS protocol is no 
faster than the independent case. This verifies that  
our formulation reflects the fact that the PDEVS 

protocol assumes coupling exists among the com-
ponents in contrast to the independence assump-
tion where coupling is absent or ignored. Accord-
ingly, we define the speed up of PDEVS relative to 
independence as

= ≤RelPDEVSSpeedup
MaxSumOfGT
SumMaxOfGT

1, � (9)

with inequality as shown.
To develop a simple stochastic model, we 

can reduce the situation to its essentials. Let all 
imminent computation times be ones and other 
times be zeros. Then, as in Figure 5 (bottom), 
M global transitions (columns) of N components 
(rows) can be visualized as a black and white im-
age (assignment of zeros and ones to pixels.) Cell 
i,j represents the state of component i at global 
transition, j. Non-blank columns represent glob-
al transitions (where at least one component is 
imminent and shown as black), and each row 
represents the sequence of transition events ex-
perienced by a component.

Figure 5. The checkerboard model on the bottom is a simple representation of a PDEVS simulation run involving N 
components (rows) through M global transitions (columns). Imminent components at global transitions are shown in black 
and passive in white. The parameter p, the probability of a component being imminent at a given transition, is derived 
from a trace of a run in which the numbers of imminents are recorded at each global transition. A repetitive pattern is 
shown in which all N components become imminent in the space of m transitions leading to a probability, p = 1/m.
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Here,

= = =
number of  imminents

number of  GTs with imminents

SpeedupOfPDEVS
6
3

2,

and

= = =
number of  imminents

Max number of  imminents for components

SpeedupOfInd
6
2

3.

Such activity patterns can be analyzed for speed-
ups.19 For example, an all-black image represents a 
fully parallel coupled model where both speedups 
attain the maximum possible value, N. 

To generate such patterns, we define a one-
parameter stochastic model for which each cell is 
independently sampled with a probability p of be-
ing imminent. The probability can be estimated 
from traces of actual simulations or from a more 
refined model based on Monte Carlo executions 
of the PDEVS protocol in Figure 6. The version in 
the pseudo code there employs a granule of time 
to decide on component models whose tNs are 
within the global tN as imminents. The larger the 
size of this granule, the greater the number of im-
minents is likely to be. Such a granule could ex-
ploit intrinsic temporal uncertainty in the model. 
Of course, this could also cause components that 
aren’t truly simultaneous to be treated as such, 
requiring a tradeoff between performance and 
accuracy.20

The estimated probability of being imminent, 
Pest, is obtained by dividing the number of imminents 
counted in a run by the number of global transitions 
(to get the average number of imminents per transition) 
and then by the number of components N (to get the 
per component probability p) using the simple model. 
Empirical tests show that the estimated probability 
increases with granule size—specifically, Figure 5 
shows that the time course of #imminents can become 
periodic as illustrated. Here, all N components become 
imminent within m global transitions in a repetitive 
manner. In this case, Pest = 1/m, as illustrated in the 
figure. Thus, the narrower the repetition period, m, 
the greater the estimated probability.

Figure 7 shows the results of computing relative 
speedups of PDEVS and independence protocols 
for probability values incremented in steps of .01. As 
expected, the independence curve always dominates 
the PDEVS curve except at p = 1. Accordingly, the 
speedup of PDEVS relative to independence rises 

from 0 to 1 with an average over all p values of 0.6. 
If we assume that actual simulations are distributed 
uniformly in p, then the expected speedup of 
the PDEVS protocol is 60 percent that of a fully 
independent protocol representing the best that any 
distributed simulation method can do.

We also added a second parameter, q, to model 
the effect of coupling on speedup. Here, q is the 
probability that an imminent component causes 
any given component to become immediately 
imminent (by sending it an input). Such new 
imminents have two effects: they increase the 
total number of imminents, and they increase the 
number of imminents any given component is likely 
to have, thus representing additional work due to 
interactions. Because they appear at the same time 
as existing imminents, these new ones don’t affect 
the number of transitions with imminents. From 
Equations 8 and 9, the PDEVS speedup increases 
while that of the independent protocol decreases. 
Indeed, as displayed in Figure 8, we find that for 
the same conditions as before, the average speedup 

Figure 6. Monte Carlo simulation model of the PDEVS protocol.

Set granule size, G, #components, N, and probability distribution,
pdf

1. Until specified number of global transitions is reached,

2. Do global transition {

    Set #imminents = 0;

1. For each imminent (own tN within G of global tN) {

    #imminents = #imminents +1;

    sample tN from pdf

    notify own tN
          }

6. Advance global clock, global tN = minimum of imminent tNs

Figure 7. Relative speedups of PDEVS and independence 
protocols and their ratio (vertical axis) versus parameter p 
(horizontal axis).
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of PDEVS relative to independence now rapidly 
reaches 0.9 with q ≥ 0.06. Therefore, a model with 
moderate coupling is likely to be just as well sped 
up by the PDEVS protocol as any other that might 
be used.

T he PDEVS simulation protocol provides 
close to the best possible performance, except 

possibly where activity is very low or coupling 
among components is very small. Indeed, on 

average, the standard PDEVS protocol could re-
quire at most 60 percent more runtime than the 
best possible conservative or optimistic method. 
Moreover, the PDEVS protocol converges to the 
best possible speedup for models with moderate 
to high coupling. This is summarized in Figure 9,  
which illustrates that we can expect increasing 
speedup with increasing activity even without 
any coupling. On the other hand, coupling alone 
can’t provide speedup without some activity to 
work on.

The effect of even very small amounts of cou-
pling strongly amplifies activity and hence increases  
speedup. Activity is at its maximum when all  
components are synchronized to transition or out-
put at the same time instance and continue to obey 
such synchronization, for example, in time-stepped 
cellular automata. Another way to increase activity 
is to use time granularization to increase the num-
ber of imminents at the next event. 

Comparison with the best speedup that can 
be achieved indicates that the PDEVS protocol is 
a good, generally applicable approach to achieving 
speedup in parallel and distributed simulations. 
There might be particular circumstances in which 
more special conservative or optimistic methods 
might be warranted despite the extra work in-
volved. However, typically, the extra performance 
gain is questionable given the additional cost, as 
well as the difficult-to-achieve conditions such as 
non-zero-lookahead that could be required. These 
findings suggest that simulator implementations fo-
cusing on repeatability and ease of use can replace 
relatively complicated and difficult-to-use paral-
lel and distributed event simulation algorithms  

Figure 8. Ratio of PDEVS to optimal speedup averaged over p plotted against coupling probability, q.
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that form the backbone of the HLA and other 
standards for constructive, distributed simulation. 
Research that tests the theory is required to verify 
the predications and validate the utility of the pro-
posed model. 
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