
SeCtion title
Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

68 Computing in Science & Engineering 1521-9615/17/$33.00 © 2017 IEEE Copublished by the IEEE CS and the AIP May/June 2017

CoMputer SiMulationS
Editors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.ca

Using the Parallel DEVS Protocol
for General Robust Simulation
with Near Optimal Performance

Bernard P. Zeigler | University of Arizona and RTSync

T
he Discrete Event Systems Specification (DEVS)
formalism has been widely disseminated in this
magazine and elsewhere for its applicability to
computational science and engineering. Bonaven-

tura, Foguelman, and Castro1 presented an iterative and
incremental development methodology for simulation mod-
els in network engineering projects based on DEVS to assist
network design, test, analysis, and optimization processes.
Virtual Lab Environment (VLE) is a DEVS-based soft-
ware environment to perform virtual experiments intended
to increase the ability to cope with the complexity of living
systems, enabling the choice of level of detail in models with-
out being limited by the expressiveness of a single formalism.2

Rhys Goldstein and Gabriel Wainer3 showed how (particu-
larly in the biological systems domain) DEVS provides a
means of addressing complexity through hierarchical model
design by illustrating the advantages of combining spatial de-
composition in cellular automata with higher-level functional
decomposition in Cell-DEVS.4

Nevertheless, the desire for fi ne-grained modeling and
simulation (M&S) of biological and other systems continues
to grow, demanding an ever-increasing ability to simulate
complex models in reasonable time. DEVS-C++, a high-
performance environment for modeling large-scale systems
at high resolution, was shown to represent both continu-
ous and discrete processes running in parallel with genetic

Editors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.caEditors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.ca

www.computer.org/cise			 	� 69

algorithms.5,6 While research in parallel and dis-
tributed simulation (PADS) has been active in the
past several decades, the utility of many PADS tech-
niques for high-performance simulation has been
limited (see the “Additional Reading on Parallel
and Distributed Simulation” sidebar). Such research
typically starts from an event-oriented perspective of
computation7,8 from which it’s often difficult, and
in some cases impossible, to identify a priori the se-
quential and parallel parts of a model to which con-
ventional parallelization techniques apply.

Recent research has shown that that a recon-
struction of Amdahl’s and Gustafson’s laws for
parallelizing sequential code can afford a better un-
derstanding of the underlying principles and their
application to simulation of discrete event models,
and DEVS models, in particular.9,10 Gene Am-
dahl11 asserted that a program can run no faster
than the time it takes on a single processor divided
by the number of processors (see the “Additional
Reading on Amdahl’s Law” sidebar). However, this

speedup relation was stated without a proof based
on first principles. John Gustafson12 restated the
law in terms more germane to distributed simula-
tion such that the number of replications of the
program that can be executed in the original time
is limited by the number of processors. The recent
formulation of the Amdahl/Gustafson speedup
concepts for DEVS simulation affords new insights
and an interpretation of the theory to parallel
DEVS simulation.

In this article, I review some of the concepts
relevant to the performance analysis of DEVS
models and derive further implications for paral-
lel DEVS simulations by summarizing the deriva-
tion of the Amdahl/Gustafson speedup concepts
for DEVS simulations and discussing their appli-
cation to the Parallel DEVS (PDEVS) simulation
protocol. Noting that DEVS models represent the
full class of discrete event dynamic systems, we can
infer that the more incisive implications also apply
more generally.

Additional Reading on Parallel and Distributed Simulation
1.	C.D. Christopher and K.S. Perumalla, “On Deciding between

Conservative and Optimistic Approaches on Massively Parallel

Platforms,” Proc. Winter Simulation Conf., 2010, pp. 678–687.

2.	P.M. Dickens et al., “Analysis of Bounded Time Warp and

Comparison with YAW NS,” ACM Trans. Modeling and
Computational Simulation, vol. 6, no. 4, 1996, pp. 297–320.

3.	A. Gupta, I.F. Akyildiz, and R. Fujimoto, “Performance Analysis

of Time Warp with Multiple Homogeneous Processors,” IEEE
Trans. Software Eng., vol. 17, no. 10, 1991, pp. 1013–1027.

4.	B.D. Lubachevsky, A. Weiss, and A. Shwartz, “An Analysis of

Rollback-Based Simulation” ACM Trans. Modeling and Computational
Simulation, vol. 1, no. 2, 1991, pp. 154–193.

5.	D.M. Nicol, “Scalability, Locality, Partitioning and Synchronization,”

Proc. Workshop Parallel and DistSimulation, 1998, pp. 5–11.

6.	D.M. Nicol, “Performance Bounds on Parallel Self-Initiating

Discrete-Event Simulations,” ACM Trans. Modeling and
Computational Simulation, vol. 1, no. 1, 1991, pp. 24–50.

7.	D.M. Nicol, “The Cost of Conservative Synchronization in

Parallel Discrete Event Simulations,” J. ACM, vol. 40, no. 2,

1993, pp. 304–333.

8.	F. Quaglia, F. Cortellessa, and B. Ciciani, “Trade-Off between

Sequential and Time Warp-Based Parallel Simulation,” IEEE
Trans. Parallel and Distributed Systems, vol. 10, no. 8, 1999,

pp. 781–794.

9.	J. Zoltan et al., “A Performance Analyzer and Prediction

Tool for Parallel Discrete Event Simulation,” Int’l J.
Simulation Systems, Science & Technology, vol. 4, no. 1,

2003, pp. 7–22.

Additional Reading on Amdahl’s Law
1.	K.W. Cameron and G. Rong, “Generalizing Amdahl’s Law

for Power and Energy,” Computer, vol. 74, no. 3, 2012,

pp. 75–77.

2.	H. Che and M. Nguyen, “Amdahl’s Law for Multithreaded Multicore

Processors,” J. Parallel and Distributed Computing, vol. 74, 2014,

pp. 3056–3069.

3.	M.D. Hill and M.R. Marty, “Amdahl’s Law in the Multicore Era,”

Computer, vol. 41, no. 7, 2008, pp. 33–38.

4.	L. Kleinrock and J. Huang, “On Parallel Processing Systems:

Amdahl’s Law Generalized and Some Results on Optimal

Design,” IEEE Trans. Software Eng., vol. 18, no. 5, 1992,

pp. 434–447.

5.	I. Onyuksel and S.H. Hosseini, “Amdahl’s Law: A Generalization

under Processor Failures,” IEEE Trans. Reliability, vol. 44, no.

3, 1997, pp. 455–462.

6.	A. Shah, “Scientist out to Break Amdahl’s Law,” 17 June 2013; www.

pcworld.com/article/2042256/scientist-out-to-break-amdahls-law.html.

7.	X.-H. Sun and Y. Chen, “Reevaluating Amdahl’s Law in the

Multicore Era,” J. Parallel and Distributed Computing, vol. 70,

no. 2, 2010, pp. 183–188.

70	 � May/June 2017

Computer Simulations

Reconstructing Gustafson’s Law
for Distributed Simulation
We can conceive of a logical (virtual) simulation ex-
ecution as constituted by its events, whether internal
(caused by itself) or external (caused by receipt of in-
put). Executed on a single processor, the wall-clock
time taken for this execution is defined as the sum
of the individual event computation times over all
the events. Now consider executing this simulation
in a parallel and distributed manner, which amounts
to partitioning the events among a number N of
processors (nodes), as illustrated in Figure 1. We as-
sume that the individual events take the same time
to compute whether they’re all on a single processor
or within a smaller subset on a node processor. This
is in keeping with the assumption that the original
sequential simulation and the processors in the dis-
tributed simulation are all of the same platform type,
having the same computation time for individual
events. The fastest that any processor can execute all
its events is the sum of their execution times.

In fact, the time it actually takes to execute
this set could be larger than this minimum because
it might have to wait for external events to arrive
before it can proceed at various times. Different
methods can have different characteristics in the
additional wait and overheads incurred. However,
since we’re interested in the best that can be done,
we can take the processor’s time to complete its job
(the assigned set of events) as the sum of its event
computation times. Now, the time to complete the
whole simulation is the maximum of these comple-
tion times since we must wait for all the processors
to finish; the one, or ones, that takes the longest
will determine the overall time. This leads to a defi-
nition of speedup for a distributed simulation on a
network of processors as

=Speedup
Sum
Max

. � (1)

Here we first let CTi be the sum of the event com-
putation times assigned to the ith processor, Sum is
the sum of the CTi over all processors, and Max is
the maximum of the CTi over all processors.

From the above discussion, Sum represents the
time taken by the sequential simulation, while Max
represents the time taken to execute the events
in the largest partition block. Thus, the potential
speedup of a partitioning of events is the sum of
the processor times divided by the maximum of
these times; see Figure 2 for an example.

Now we can state the equivalent of Gustafson’s
law for distributed simulation: the speedup of a
simulation distributed on N processors can be no
greater than N.

To see how this is true, notice that a sum of
N non-negative numbers is less than or equal to N
times the largest of these numbers. Using the above
definitions, consider that

Sum = CT1 + CT2 + … + CTN.

Dividing and multiplying by Max, we have

= + + +






Sum Max

CT
Max

CT
Max

CTN
Max

1 2

And since each of the CTi terms is now less than or
equal to 1, we have

Sum ≤ Max × N.� (2)

If we put Sum from Equation 2 in Equation 1 and
simplify, we get

Figure 1. Partitioning of events among processors: the basic
sum over max relation for computing speedup.

Partition of all event
computations into
subsets assigned
to processors

A simulation run consists of M
global transitions—which can
be decomposed into event
computations

Processor
1

Processor
2

Processor
N

Time to complete =
sum of event
computation times
for these times
for this processor

Time to complete M global transitions
= sum of processor computation times
if done sequentially
= max of processor times if done concurrently
without counting overhead
Speedup = Sum/Max

Figure 2. An example of an assignment of event computations to
processors representing a distributed simulation. Note that the
speedup (4.77) is less than the number of processors (10).

0 50 100 150 200

0
1
2
3
4
5
6
7
8
9

N = no.
processors = 10
Max = maximum of
this sample = 163
Sum = 778
Speedup =
Sum/Max = 778/163
 = 4.77
Relative speedup =
Speedup/N= 0.477

www.computer.org/cise			 	� 71

=

≤
×

=

Speedup
Sum
Max
Max N

Max
N ,

that is,

Speedup ≤ N.� (3)

We see immediately that the best possible
speedup is equal to the number of processors. This
occurs when all processors have the same computa-
tion time. The sum in Equation 2 takes on its larg-
est value when all of the terms take on the same
value, the maximum. At that point, the speedup,
namely, the Sum/Max, becomes equal to N.

Let the relative speedup be the actual speedup di-
vided by the number of processors. Using the defini-
tion of speedup from Equation 1, and setting the av-
erage computation time Avg to Sum/N, we note that

=

= ≤

Speedup
N

Avg
Max

1

Relative speedup
.� (4)

Indeed, since the average of a set of numbers is
no greater than their maximum, relative speedup is
a measure of how efficient an assignment of events
to processors is. The distributed simulation law in
this form effectively states that relative efficiency is
at most one. My colleagues and I9,10 have provided
evidence for these observations:

■■ The relative speedup of a typical distributed
simulation decreases with the number of proces-
sors; however, the absolute speedup could still in-
crease—there’s always likely to be an improvement
in performance with an increasing number of
processors (albeit with diminishing returns). This
doesn’t take communication delays into account.

■■ The greater the variation in processor computa-
tion times, the smaller the expected relative speed-
up and the faster the fall-off of relative speedup
with increasing numbers of processors.

■■ When communication delays are accounted
for, speedup could reach a peak and fall off
from there with increasing processors.

Review of Modeling and Simulation
Framework and DEVS
The modeling and simulation framework (MSF)13
presents entities and relationships of a model and

its simulation as background for the upcoming dis-
cussion (see Figure 3). The MSF separates models
from simulators as entities that can be conceptually
manipulated independently and then combined in
a relation that defines correct simulation. The Ex-
perimental Frame defines a particular experimen-
tation process, such as Latin hypercube sampling
for yielding model outcome measurements in ac-
cordance with specific analysis objectives.

The DEVS formalism provides a sound and
practical foundation for working with models and
simulators. Briefly stated, a DEVS model is a system-
theoretic concept specifying inputs, states, and out-
puts, similar to a state machine. Critically different,
however, is that it includes a time-advance function
that enables it to represent discrete event systems,
as well as hybrids with continuous components in a
straightforward platform-neutral manner.

A DEVS model is described by choices of sets
of inputs, states, and outputs as well as functions
that play crucial roles in defining its behavior: how
it responds to inputs, changes states, and generates
outputs over a continuous time base. At any time,
such a model has a state s in set S. After an event, the
simulator evaluates the time-advance function ta to
schedule the internal event. Should this time elapse,
the output function λ is invoked to obtain an output
value y in Y, and the internal transition function δint
yields a new state to replace the current state. If an
input x in X is received before ta elapses, the simu-
lator applies the external transition function δext in-
stead to obtain the new state. Briefly stated:

■■ DEVS formalizes what a model is, what it
must contain, and what it doesn’t contain (ex-
perimentation and simulation control param-
eters aren’t contained in the model).

■■ DEVS is universal and unique for discrete event
system models; any system that accepts events as

Figure 3. Modeling and simulation framework (MSF).

Experimental frame

Source
system Behavior

database

Modeling
relation

Simulation
relation

Simulator

Model

Computer Simulations

72	 � May/June 2017

inputs over time and generates events as outputs
over time is equivalent to a DEVS (its behavior
and structure can be described by such a DEVS).

■■ DEVS-compliant simulators execute DEVS
models correctly, repeatably, and efficiently.
Closure under coupling guarantees correctness
in hierarchical composition of components.

■■ DEVS models can be simulated on multiple
different execution platforms, including those
on desktops (for development) and those on
high-performance platforms, such as multicore
processors.

The MSF helps clarify many of the issues involved
in M&S tasks. Mismatch between the simulation’s
time management policy and the model’s time-
advance approach creates significant errors in even the
simplest M&S. Simulation with relatively coarse dis-
crete time advance for a discrete event model exem-
plifies these kinds of errors. Distributed federations of
discrete event and discrete time simulations with the
high-level architecture (HLA),14,15 are especially prone
to conflicts between the intended, as-modeled event or-
der and the implemented, as-simulated state-transition
event order. Such conflict-based event causality errors
in a tightly coupled simulation can introduce signifi-
cant behavior deviations from the correct result. The
MSF underlies the Parallel DEVS (PDEVS) simulation
protocol, which provides provably correct simula-
tion execution of DEVS models, thereby obviating the
above-mentioned conflicts as well as throwing light on
the source of such conflicts often found in simulations.

DEVS simulation is also distinguished by its
support for both discrete event and continuous dy-
namic systems, both of which are simulated within
the DEVS framework.13 This capability to simu-
late the interaction of subsystems characterized by
discrete event dynamics (such as communication
networks and command-and-control systems) and
continuous, physical dynamics (such as the trajec-
tories of ballistic missiles and their interceptors)
within the MSF makes DEVS particularly attrac-
tive to support distributed M&S.

Parallel DEVS Simulation Protocol
The PDEVS simulation protocol is a general dis-
tributed simulation protocol that prescribes specific
mechanisms for

■■ declaring which component models take part
in the simulation (component models);

■■ declaring how component models exchange
data; and

■■ executing an iterative cycle that controls how
time advances (time management), determines
when component models exchange messages
(data exchange management), and determines
when component models do internal state up-
dating (state update management).

The protocol guarantees correct simulation in
the sense that if the component models are DEVS
models, then the simulation result is also a well-
defined DEVS coupled model. There are numer-
ous implementations of DEVS simulators. Multi-
ple conservative parallel discrete event simulation
algorithms enable the parallel execution of DEVS
models on these types of high-performance com-
puting systems.16,17 These algorithms are unique
in the sense that they exactly reproduce the behav-
ior of the DEVS reference simulator; this feature
distinguishes DEVS from the numerous other
conservative simulation engines that are derived
from the logical process approach to PADS, which
cannot reproduce the behavior of the DEVS refer-
ence simulator in all circumstances.

To see this, consider the PDEVS simulation
protocol as outlined in Figure 4a’s pseudo code.
Each component DEVS model has a time of next
event, tN, that it sends to the coordinator, which
calculates the minimum of these values, called the
global tN. Imminent components, whose tN equals
the minimum, compute their outputs and send
them to receivers determined by the coupling spec-
ification. The active components, imminents and
their receivers, then compute their state transition
functions (internal, external, or confluent, depend-
ing on whether they’re imminent or have inputs).
Figure 4b illustrates the course of imminents over
time as a simulation proceeds; four components’
time advances are shown by successive arrows along
the time line. A global transition occurs whenever
at least one arrow tip is at the point representing a
tN. The plot at the bottom of Figure 4b shows the
successive numbers of imminents with changes oc-
curring at the global transitions.

In Figure 4a, lines 3 and 4 can each be ex-
ecuted in series or in parallel. For simplicity, for
each component i, we’ll lump the two into one
event with a computation time, CTi, which is
the sum of the times of the transition and output
parts. Now for a sequential implementation, the
time for a single global transition is the sum of the
computation times. For a parallel implementa-
tion, the corresponding time is the maximum
of component times: in the basic PDEVS protocol,

www.computer.org/cise			 	� 73

we must wait for each component to complete its
transition before going to the next global transition.

Applying Speedup Concepts to DEVS
Distributed Simulation
The concepts developed here enjoy more concrete
instantiation when applied to distributed simulation
of DEVS coupled models. The event sets in a par-
tition described in Figure 1 can be identified with
the internal and external events of DEVS compo-
nent models in a coupled model. A simulation run
is identified with a specified number, M, of global
(coupled model) state transitions. In contrast to ex-
isting approaches,18 our theory allows us to develop
a first approximation or “back of the envelope” ap-
proach to predicting the best speedup that can be
expected in the implementation process. The first
approximation helps us understand the effects of
the number of components and the distribution of
simulation times of the components. We recap, and
expand up, related work9,10 for this approximation.

Equation 3 states that assigning each of the
N component models to its own processor results
in a speedup bounded by N. The Sum and Max of

Equation 1 can be identified with the sum and max-
imum of the component runtimes, so that Sum/Max
upper bounds the actual speedup. However, we can
go deeper and characterize the parallelism exploited
by the PDEVS simulation protocol by applying the
approach iteratively to the M global transitions (Fig-
ure 4) and comparing this speedup with that derived
for the M transitions taken as a whole. This lets us
compare the potential speedup of the PDEVS proto-
col with the best possible speedup.

Equation 1 applies to each global transition, GT:

SumOfGt ≤ MaxOfGT × N,� (5)

where CTiOfGT is the sum of the transition and
output computation times of the ith component,
SumOfGT is the sum of the CTiOfGT over all
components, and MaxOfGT is the max of the
CTiOfGT over all components.

Summing the left and right sides of Equation
5 over all M global transitions, GT, and pulling N
out, we have,

SumSumOfGT ≤ SumMaxOfGT × N,� (6)

Figure 4. The PDEVS simulation protocol illustrating (a) the concept of imminent components and (b) the course of
imminents over the time base as a simulation proceeds.

Parallel DEVS Simulation Protocol

Time

2
1

4
3

C
om

po
ne

nt

Wait for all
actives to
complete transition

Takes maximum of
computation
times (CT)

DEVS speedup = sum
of CT/max of CT

(a) (b)

Can be done
sequentially
or in parallel

NO.
imminents

Imminents have minimum tN
and initiate outputs
and transitions

Global tN
= minimum tN

1. Until specified number of global transitions done,
2. Do global transition {
3. For each imminent (own tN = global tN),
 compute output and send it to receivers
4. For each active (imminent and input receiver},
 compute state transition (internal, external, confi.)
5. Send own tN
}
6. Advance global clock, global tN = min active tNs
}

Computer Simulations

74	 � May/June 2017

where SumSumOfGT is the sum of all computation
times for all M global transitions, and SumMaxOfGT
is the sum of the maxima of each such transition with
the time taken by the parallel version. Hence,

= ≤SpeedupOfPDEVS
SumSumOfGT
SumMaxOfGT

N . � (7)

This is Gustafson’s law reconstructed for the
PDEVS protocol. We can compare it to a best
speedup estimate for any method by assuming pro-
cessing independence in the processors—that is,
each processor is free to proceed at its own pace,
and we wait for the slowest to finish. A direct ap-
plication of Equation 3 yields

= ≤SpeedupOfInd
SumSumOfGT
MaxSumOfGT

N , � (8)

where MaxSumOfGT is the maximum of the sum
of each processor’s computation times over the
M transitions. Clearly the PDEVS protocol is no
faster than the independent case. This verifies that
our formulation reflects the fact that the PDEVS

protocol assumes coupling exists among the com-
ponents in contrast to the independence assump-
tion where coupling is absent or ignored. Accord-
ingly, we define the speed up of PDEVS relative to
independence as

= ≤RelPDEVSSpeedup
MaxSumOfGT
SumMaxOfGT

1, � (9)

with inequality as shown.
To develop a simple stochastic model, we

can reduce the situation to its essentials. Let all
imminent computation times be ones and other
times be zeros. Then, as in Figure 5 (bottom),
M global transitions (columns) of N components
(rows) can be visualized as a black and white im-
age (assignment of zeros and ones to pixels.) Cell
i,j represents the state of component i at global
transition, j. Non-blank columns represent glob-
al transitions (where at least one component is
imminent and shown as black), and each row
represents the sequence of transition events ex-
perienced by a component.

Figure 5. The checkerboard model on the bottom is a simple representation of a PDEVS simulation run involving N
components (rows) through M global transitions (columns). Imminent components at global transitions are shown in black
and passive in white. The parameter p, the probability of a component being imminent at a given transition, is derived
from a trace of a run in which the numbers of imminents are recorded at each global transition. A repetitive pattern is
shown in which all N components become imminent in the space of m transitions leading to a probability, p = 1/m.

www. senseglobal.com

m global transitions

N components arrayed over m global
transitions implies an avg of N/m
imminent components per GT,
so probability of a component being
imminent p = N/m/N = 1/m

Global transitions

Components
Three imminents in

this global
transition

Component
with largest

no.
imminents

C1

C2

C3

C4

GT1 GT2 GT3

2
3

1
7

0

3
7

7

3
2

3

9
8 9

2
1

1
4

1

3
4

2

3
4

9

1
2

9

1
8

1
0

9
2

2
7

7

3
8

9

1
8

5

4
5 2

www.computer.org/cise			 	� 75

Here,

= = =
number of imminents

number of GTs with imminents

SpeedupOfPDEVS
6
3

2,

and

= = =
number of imminents

Max number of imminents for components

SpeedupOfInd
6
2

3.

Such activity patterns can be analyzed for speed-
ups.19 For example, an all-black image represents a
fully parallel coupled model where both speedups
attain the maximum possible value, N.

To generate such patterns, we define a one-
parameter stochastic model for which each cell is
independently sampled with a probability p of be-
ing imminent. The probability can be estimated
from traces of actual simulations or from a more
refined model based on Monte Carlo executions
of the PDEVS protocol in Figure 6. The version in
the pseudo code there employs a granule of time
to decide on component models whose tNs are
within the global tN as imminents. The larger the
size of this granule, the greater the number of im-
minents is likely to be. Such a granule could ex-
ploit intrinsic temporal uncertainty in the model.
Of course, this could also cause components that
aren’t truly simultaneous to be treated as such,
requiring a tradeoff between performance and
accuracy.20

The estimated probability of being imminent,
Pest, is obtained by dividing the number of imminents
counted in a run by the number of global transitions
(to get the average number of imminents per transition)
and then by the number of components N (to get the
per component probability p) using the simple model.
Empirical tests show that the estimated probability
increases with granule size—specifically, Figure 5
shows that the time course of #imminents can become
periodic as illustrated. Here, all N components become
imminent within m global transitions in a repetitive
manner. In this case, Pest = 1/m, as illustrated in the
figure. Thus, the narrower the repetition period, m,
the greater the estimated probability.

Figure 7 shows the results of computing relative
speedups of PDEVS and independence protocols
for probability values incremented in steps of .01. As
expected, the independence curve always dominates
the PDEVS curve except at p = 1. Accordingly, the
speedup of PDEVS relative to independence rises

from 0 to 1 with an average over all p values of 0.6.
If we assume that actual simulations are distributed
uniformly in p, then the expected speedup of
the PDEVS protocol is 60 percent that of a fully
independent protocol representing the best that any
distributed simulation method can do.

We also added a second parameter, q, to model
the effect of coupling on speedup. Here, q is the
probability that an imminent component causes
any given component to become immediately
imminent (by sending it an input). Such new
imminents have two effects: they increase the
total number of imminents, and they increase the
number of imminents any given component is likely
to have, thus representing additional work due to
interactions. Because they appear at the same time
as existing imminents, these new ones don’t affect
the number of transitions with imminents. From
Equations 8 and 9, the PDEVS speedup increases
while that of the independent protocol decreases.
Indeed, as displayed in Figure 8, we find that for
the same conditions as before, the average speedup

Figure 6. Monte Carlo simulation model of the PDEVS protocol.

Set granule size, G, #components, N, and probability distribution,
pdf

1. Until specified number of global transitions is reached,

2. Do global transition {

 Set #imminents = 0;

1. For each imminent (own tN within G of global tN) {

 #imminents = #imminents +1;

 sample tN from pdf

 notify own tN
 }

6. Advance global clock, global tN = minimum of imminent tNs

Figure 7. Relative speedups of PDEVS and independence
protocols and their ratio (vertical axis) versus parameter p
(horizontal axis).

Avg. ratio of PDEVS
to optimal = 0.6

Relative speedups and ratio of PDEVS
protocol to independence

0
.0

1
0

.0
7

0
.1

3
0

.1
9

0
.2

5
0

.3
1

0
.3

7
0

.4
3

0
.4

9
0

.5
5

0
.6

1
0

.6
7

0
.7

3
0

.7
9

0
.8

5
0

.9
1

0
.9

7

0

1

RatioIndepend.PDEVS protocol

Computer Simulations

76	 � May/June 2017

of PDEVS relative to independence now rapidly
reaches 0.9 with q ≥ 0.06. Therefore, a model with
moderate coupling is likely to be just as well sped
up by the PDEVS protocol as any other that might
be used.

T he PDEVS simulation protocol provides
close to the best possible performance, except

possibly where activity is very low or coupling
among components is very small. Indeed, on

average, the standard PDEVS protocol could re-
quire at most 60 percent more runtime than the
best possible conservative or optimistic method.
Moreover, the PDEVS protocol converges to the
best possible speedup for models with moderate
to high coupling. This is summarized in Figure 9,
which illustrates that we can expect increasing
speedup with increasing activity even without
any coupling. On the other hand, coupling alone
can’t provide speedup without some activity to
work on.

The effect of even very small amounts of cou-
pling strongly amplifies activity and hence increases
speedup. Activity is at its maximum when all
components are synchronized to transition or out-
put at the same time instance and continue to obey
such synchronization, for example, in time-stepped
cellular automata. Another way to increase activity
is to use time granularization to increase the num-
ber of imminents at the next event.

Comparison with the best speedup that can
be achieved indicates that the PDEVS protocol is
a good, generally applicable approach to achieving
speedup in parallel and distributed simulations.
There might be particular circumstances in which
more special conservative or optimistic methods
might be warranted despite the extra work in-
volved. However, typically, the extra performance
gain is questionable given the additional cost, as
well as the difficult-to-achieve conditions such as
non-zero-lookahead that could be required. These
findings suggest that simulator implementations fo-
cusing on repeatability and ease of use can replace
relatively complicated and difficult-to-use paral-
lel and distributed event simulation algorithms

Figure 8. Ratio of PDEVS to optimal speedup averaged over p plotted against coupling probability, q.

Ratio of PDEVS protocol to independence

1.2

1

0.8

0.6

0.4

0.2

0

0
0

.0
4

0
.0

8
0

.1
2

0
.1

6
0

.2
0

.2
4

0
.2

8
0

.3
2

0
.3

6
0

.4
0

.4
4

0
.4

8
0

.5
2

0
.5

6
0

.6
0

.6
4

0
.6

8
0

.7
2

0
.7

6
0

.8
0

.8
4

0
.8

8
0

.9
2

0
.9

6
0

.1

Probability of external event
to a component causing a
non-zero computation

Ratio of PDEVS to
optimal averaged over
all values of imminent

probabilities

Region in which
PDEVS protocol

provides less
speedup than special

methods

Avg. ratio of
PDEVS to
optimal =

0.6
at q = 0

Figure 9. Summarizing the effects of activity and coupling on
PDEVS speedup.

In
cr

ea
si

ng
 a

ct
iv

it
y

(p
)

In
cr

ea
si

ng
 a

ct
iv

it
y

(p
)

Increasing
speedup

Increasing
granule

In
cr

ea
si

ng
 a

ct
iv

it
y

(p
)

Increasing
synchronization

Increasing coupling (q)

www.computer.org/cise			 	� 77

that form the backbone of the HLA and other
standards for constructive, distributed simulation.
Research that tests the theory is required to verify
the predications and validate the utility of the pro-
posed model.

References
1.	 M. Bonaventura, D. Foguelman, and R. Castro,

“Discrete Event Modeling and Simulation-Driven
Engineering for the ATLAS Data Acquisition Net-
work,” Computing in Science & Eng., vol. 18, no. 3,
2016, pp. 70–83.

2.	 G. Quesnel, R. Duboz, and E. Ramat, “The
Virtual Laboratory Environment: An Operational
Framework for Multi-modelling, Simulation and
Analysis of Complex Dynamical Systems,” Simula-
tion Modelling Practice and Theory, vol. 17, 2009,
pp. 641–653.

3.	 R. Goldstein and G. Wainer, “Designing Biological
Simulation Models Using Formalism-Based Func-
tional and Spatial Decompositions,” Computing in
Science & Eng., vol. 17, no. 6, 2015, pp. 72–82.

4.	 R. Goldstein et al., “Vesicle-Synapsin Interactions
Modeled with Cell-DEVS,” Proc. Winter Simula-
tion Conf., 2008, pp. 813–821.

5.	 B.P. Zeigler et al., “DEVS Environment for High-
Performance Modeling and Simulation,” IEEE
Computational Science and Eng., vol. 4, no. 3, 1997,
pp. 61–71.

6.	 D. Kim and B.P. Zeigler, “Orders of Magnitude
Speedup with DEVS Representation and High
Performance Simulation,” Proc. Enabling Technol-
ogy for Simulation Science, 1997;
doi:10.1117/12.276715.

7.	 R.M. Fujimoto, “Parallel Discrete Event Simula-
tion: Will the Field Survive?,” ORSA J. Computing,
vol. 5, no. 3, 1993, pp. 213–230.

8.	 E.H. Page, “Beyond Speedup: PADS, the HLA
and Web-Based Simulation,” Proc. 13th
Workshop Parallel and Distributed Simulation,
1999, pp. 2–9.

9.	 B.P. Zeigler, J.J. Nutaro, and C. Seo, “What’s the
Best Possible Speedup Achievable in Distributed
Simulation: Amdahl’s Law Reconstructed,” Proc.
DEVS TMS, 2015; http://dl.acm.org/citation.
cfm?id=2872991.

10.	 B.P. Zeigler and J.J. Nutaro, “Speedup Achievable
in Distributed Simulation: Amdahl/Gufstafson’s
Law Reconstructed,” submitted to IEEE Trans.
Parallel and Distributed Computing, 2017.

11.	 G.M. Amdahl, “Validity of the Single Processor
Approach to Achieving Large Scale Computing
Capabilities,” Proc. AFIPS Spring Joint Computer

Conf., 1967; http://www-inst.eecs.berkeley.
edu/~n252/paper/Amdahl.pdf.

12.	 J.L. Gustafson, “ Reevaluating Amdahl’s Law,”
Comm. ACM, vol. 31, no. 5, 1988, pp. 532–533.

13.	 B.P. Zeigler, H. Praehofer, and T.G. Kim, Theory of
Modeling and Simulation, 2nd ed., Academic Press,
2000.

14.	 J. Nutaro, Building Software for Simulation: Theory
and Algorithms with Applications in C++, Wiley,
2011.

15.	 J. Nutaro and H. Sarjoughian, “Speedup of a Sparse
System Simulation,” Proc. 15th Workshop Parallel
and Distributed Simulation, 2001, pp. 193–199.

16.	 B. Cardoen et al., “A PDEVS Simulator Supporting
Multiple Synchronization Protocols: Implemen-
tation and Performance Analysis,” to appear in
Simulation, 2017.

17.	 A. Adegoke, H. Togo, and M.K. Traoré, “A Unify-
ing Framework for Specifying DEVS Parallel and
Distributed Simulation Architectures,” Simulation,
vol. 89, no. 11, 2013, pp. 1293–1309.

18.	 S. Park, C.A. Hunt, and B.P. Zeigler, “Cost-Based
Partitioning for Distributed and Parallel Simula-
tion of Decomposable Multiscale Constructive
Models,” Simulation, vol. 82, no. 12, 2006; http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
302.6923&rep=rep1&type=pdf.

19.	 J.F. Santucci and L. Capocchi, “Implementation
and Analysis of DEVS Activity-Tracking with
DEVSimPy,” Proc. ACTIMS ITM Web Conf., 2013;
doi:10.1051/itmconf/20130101001.

20.	R.M. Fujimoto, “Exploiting Temporal Uncertainty
in Parallel and Distributed Simulations,” Proc.
Workshop Parallel and Distributed Simulations,
1999, doi:10.1109/PADS.1999.766160.

Bernard P. Zeigler is an emeritus professor at the
University of Arizona. His research interests include
theory of modeling and simulation, parallel and distrib-
uted simulation, and model construction methodology.
Zeigler has a PhD in computer and communication
sciences from the University of Michigan. Contact him
at zeigler@ece.arizona.edu.

Read your subscriptions through the
myCS publications portal at http://
mycs.computer.org.

