
Parallel and Pseudorandom Discrete Event System
Specification Vs. Networks of Spiking Neurons:
Formalization and Preliminary Implementation

Results

Alexandre Muzy
CNRS I3S UMR 7271

06903 Sophia-Antipolis Cedex, France.

Email: alexandre.muzy@cnrs.fr

Matthieu Lerasle, Franck Grammont
Univ. Nice Sophia Antipolis

CNRS LJAD UMR 7351

06100 Nice, France.

Van Toan Dao, David RC Hill
ISIMA/LIMOS UMR CNRS 6158

Blaise Pascal University

BP. 10125, 63173 AUBIERE Cedex, France.

Abstract—Usual Parallel Discrete Event System Specification
(P-DEVS) allows specifying systems from modeling to simulation.
However, the framework does not incorporate parallel and
stochastic simulations. This work intends to extend P-DEVS
to parallel simulations and pseudorandom number generators
in the context of a spiking neural network. The discrete event
specification presented here makes explicit and centralized the
parallel computation of events as well as their routing, making
further implementations easier. It is then expected to dispose of a
well defined mathematical and computational framework to deal
with networks of spiking neurons.

Keywords—Spiking neuron networks, discrete event system
specification, pseudorandomness, parallel simulation, multi-
threading.

I. INTRODUCTION

Discrete events allow faithfully implementing spike ex-

changes between biological neurons. Discrete event spiking

neurons have been widely implemented in several software

environments [5]. However, as far as we know, there is no

attempt to embed these works into a common mathematical

framework that would allow further theoretical and practical

developments between biology and computer science. To

achieve this goal the Parallel Discrete Event System Specifica-

tion (P-DEVS) [3], [23] is used here. This framework provides

well defined structures for the formal and computational

specifications of a general dynamic system structure.

From the neuronal nets perspective, DEVS has been used

mainly for: the proposition of original neuron models [21], the

specification of dynamic structure neurons [19], the abstraction

of neural nets [22] and for the specification of continuous

spike models [13]. Previous works do not consider explicitly

spiking neurons in the context of DEVS parallel and stochastic

modeling and simulation. From a parallel and distributed sim-

ulation perspective, the completeness of DEVS (germinating

from mathematical proofs until simulator architectures) seems

to bias researches either to formal aspects [7] or to simulator

structures integrating both parallel and distributed aspects

[1]. Furthermore, although the parallel occurrence of discrete

events has been formally tackled [7], there are few solutions

dealing exclusively with parallelism at abstract simulator level

(as in [20]) and no work at network level. Modeling spiking

neurons often requires stochasticity. The use of stochasticity

at simulation level implies using good practices dealing with

the parallelization and distribution of random streams [9].

While pseudorandom generators have been formalized in [23],

the definition is generalized here and extended to parallel

random streams and random graphs. Except in DEVS, discrete

events have been used successfully at each level of modeling

and simulation of neuronal nets: at modeling level [18],

[5], simulation level [10], [17], [5], [15], and at hardware

level with, e.g., the new IBM neurosynaptic chips improving

both energy consumption [14] and computation times [4].

The latter hardware developments raise the question of the

usage pertinence of general-purpose computers (based on Von

Neumann architecture) for the parallel simulation of neural

nets.

The inherent nature of a neuronal spiking models leads to a

parallel implementation of the simulation. Parallel distributed

simulation (PADS) has been extensively studied for various

applications domains [16]. In this active research field, op-

timistic time management was introduced a long time ago

by Jefferson’s team [11] with some modern implementations

at Georgia Tech (Georgia Tech Time Warp). The approach

proposed here retains a conservative approach with a thread

programming model.

However, P-DEVS cannot be used as it is. In the context of

networks of spiking neurons, using P-DEVS requires first of

all the development of:

◦ New (general) formal structures to capture explicitly

and unambiguously the parallel and stochastic aspects of

spiking neural networks.

◦ New simple and abstract algorithms for the parallelization

of discrete event computations and exchanges.

Although this work is just a first step, our goal is to provide a

full (hierarchical) formalization from models to implementa-

tions. With such a framework, it will be for example possible

978-1-5090-2088-1/16/$31.00 ©2016 IEEE 925

to compare mathematically different hardware solutions (see

e.g. [24] for such modeling analysis). Also, from an appli-

cation perspective, any dynamic system based on (random)

graphs (agents, computer networks, gene networks, etc.) is a

further potential application of this work.

This study aims at answering the following questions: What

are the main computational loops to be parallelized in a DEVS

simulator? How to manage rigorously the stochastic aspects

of these parallel simulations? What are the corresponding

mathematical structures? How can these elements be used to

simulate networks of spiking neurons?

More precisely, we propose here:

◦ A formalization of networks as parallel discrete event

system specifications using pseudorandom generators for

the generation of stochastic trajectories and network

structures,

◦ A simple parallelization technique of events in P-DEVS

simulators,

◦ An application of all these concepts to random networks

of spiking neurons.

The manuscript is organized as follows. In section 2, the for-

mal model, simulator and executor algorithms are presented.

In section 3, stochastic, parallel and pseudorandom generator

structures are defined. In section 4, a spiking neuronal network

model and its discrete event system specification are presented.

In section 5, simulation process and results are presented and

discussed. Finally, conclusion and perspectives are provided.

II. MODELING AND SIMULATION FRAMEWORK

The architecture for modeling, simulation and execution is

an extension of the usual model/simulator separation [3] to

hardware interfacing through an executor entity. The architec-

ture consists of: (i) the model, which specifies the elements of

the dynamic system for digital computers, (ii) the simulator,

which generates the behavior of the model, and (iii) the

executor, which runs the simulation computations on each

available processor (or core). In the next subsections each

element of the architecture is detailed.

A. Model

A discrete event network model is composed of basic

(atomic) models. Each model interacts through external in-

put/output discrete events changing the states of basic mod-

els. Internal discrete events can be scheduled autonomously

by basic models to change internal state. Time advance is

achieved by each basic component. Hereafter are provided the

definitions of both basic and network models.

Definition 1. A basic Parallel Discrete Event System Specifi-

cation (P-DEVS) is a mathematical structure

P-DEVS = (X,Y, S, δext, δint, δcon, λ, ta)

Where, X is the set of input events, Y is the set of output

events, S is the set of partial states, δext : Q×Xb → S is the

external transition function with Q = {(s, e) | s ∈ S, 0 ≤ e ≤
ta(s)} the set of total states with e the elapsed time since the

last transition, δint : S → S is the internal transition function,

δcon : S×Xb → S is the confluent transition function, where

Xb is a bag of input events, λ : S → Y b is the output function,

where Y b is a bag of output events, and ta : S → R
0,+
∞ is the

time advance function.

The modeler controls/decides the behavior in case of event

collisions, when the basic system, at the same simulation time,

is concerned by both internal and external events. To do so,

the modeler defines the confluent transition function δcon.

Example 2. Simple P-DEVS dynamics

In Figure 1, it is considered that at time t2, there is no

collision between external event x0 and the internal event

scheduled at time ta(s1) = t′2, with t′2 > t2, thus leading to

an external transition function δext(s1, e1, x0) = s2. At time

ta(s3) = t4 where there is a collision between external event

x1, occurring at time t4, and the internal event scheduled at

the same time thus leading to a confluent transition function:

δcon(s3, x1) = s4.

X

t

S

t

Y

t
ta(s0)

s0

s1

s2

s3

s4

s5

y0

y1

y2
y3

y4

y5

t0 t2 t4

e1 ta(s2) ta(s3) ta(s4) ta(s5)

x1x0

Figure 1. Simple P-DEVS trajectories.

Definition 3. A P-DEVS network is a mathematical structure

N = (X,Y,D, {Md}, {Id}, {Zi,d})

Where, X is the set of input events, Y is the set of output

events, D is the set of component names, for each d ∈ D,

Md is a basic or network model, Id is the set of influencers

of d such that Id ⊆ D, d /∈ Id and, for each i ∈ Id, Zi,d

is the i−to−d output translation, defined for: (i) external

input couplings: Zself,d : Xself → Xd, with self the self

network name, (ii) internal couplings: Zi,j : Yi → Xj , and

(iii) external output couplings: Zd,self : Yd → Yself .

B. Simulator

Based on P-DEVS structures, different specifications can

be achieved. Then, it should be possible to simulate each of

these models re-using the same algorithm. This is the purpose

of abstract simulators [3]. We generalize these algorithms

here to parallel and/or sequential transitions under processor

926

supervision1.

Algorithm 1 describes the main simulation loop of a P-

DEVS model. The hierarchical structure (i.e., the compo-

sition of nested network models finally composed of basic

models) is made implicit here by manipulating the set of

component names (referring to all the components present

in the hierarchy). This is made possible because a P-DEVS

network is closed under coupling, i.e., the behavior of a P-

DEVS network is equivalent to the behavior of a P-DEVS

basic model resultant. In the main-loop algorithm, as in a

usual discrete event simulation, simulation time advance is

driven by the (last and next) times of occurrence of events.

Three component sets allow focusing concisely and efficiently

on active components at each time step of the simulation:

(i) the imminent set IMM(s) (the set of components that

achieve both an output computation and an internal function

transition), (ii) the sender set SEN(s) (the set of components

that actually send output events to the components they are

connected with), and (iii) the receiver set REC(s) (the set

of components that receive output events). The Executor is

in charge of the execution of: initialization, outputs, routing,

and confluent, external and internal transitions; as well as the

determination of the set of the next times of event occurrences

and the imminent set.

The algorithm sequence consists of: (i) initializations of:

the global time of last event tl to 0, executor’s variables (cf.

Algorithm 2 for Executor procedures), components’ states, the

set of times of next events TNEXT (s), the global time of

next event tn to the minimum time in TNEXT (s); (ii) main

simulation loop: imminent components (about to achieve a

transition) are collected, their output is executed, outputs are

routed to final basic receivers, the set of active components

is computed as the union of receivers and imminents, their

transition function is executed, finally global times are updated

and times of next event of components are collected. The main

simulation loop is executed until global time of simulation

time tend is reached. Notice that tend can be equal to infinity

meaning that all times of next event of components are infinite.

C. Executor

The executor acts as an interface between the simulation

and the hardware execution. As described in Algorithm 2,

the executor is called within the simulator and implements

the execution of TASKS (i.e., functions over components)

attributing each of them to an available lightweight process

lwp ∈ LWP (here a thread). If the simulator deals with

simulation time t, models and simulator nodes, the executor

deals with execution time texec, lightweight processes and log-

ical cores (or processors). The set TASKS implements func-

tions init, get-TN, compute-outputs, route and compute-
transitions (implemented as procedures) for each component

d ∈ D. Except the set of initialization functions (tasks) that

depends statically on every component d ∈ D, the set of other

1Corresponding source code has been implemented in GRADES (Graph-
based and RAndom DiscrEte-event Simulator), which is accessible at
https://redmine.i3s.unice.fr/projects/compsys.

functions evolves dynamically - from the simulation point of

view. On the other hand, from the parallelization point of

view, the number of number of lightweight processes nLWP

is static. The execution can be sequential (nLWP = 1) or

parallel (nLC ≥ nLWP > 1). The algorithm described here

remains deliberately abstract. Many implementation choices

can be made. An implementation choice is detailed in section

V.

In self-init procedure, if the number of lightweight processes

nLWP is greater than the number of logical cores, nLC , of the

machine, then nLWP = nLC
2. In init-components procedure,

the init procedure of every component is called. This procedure

initializes the state and time of next event of the component.

The run procedure of the executor is generic. The procedure

takes a set of specified tasks as argument and returns a result-

Set whose content depends on the procedure that is calling (a

set of times for get-TN, of imminents for get-imminents, of

senders for compute-outputs, etc.) This procedure attributes

each task to available lightweight process lwp ∈ LWP ,

locks TASKS set, waits a maximum time tmax
exec for each

process to terminate and returns the result set. The get-TN
procedure calls in parallel each component procedure getTn

and returns TNEXT (s) set. The get-imminents procedure

calls in parallel each component procedure testTn, adds the

component to the imminent set IMM(s) if its time of next

event tn,d is equal to the global time of next event tn, and fi-

nally returns IMM(s). The compute-outputs procedure calls

in parallel each computeOutput procedure (λimminent) of

each component imminent ∈ IMM(s), adds the component

to the sender set SEN(s), and finally returns SEN(s). The

route procedure routes in parallel each output event (ysender ∈
Ysender) of each component sender ∈ SEN(s) to the final

receiver, and returns the receiver set REC(s). Finally, the

compute-transitions procedure calls in parallel each comput-

eDelta procedure (δint,active, δext,active, δcon,active) of each

component active ∈ ACTIV E(s).

III. STOCHASTIC DISCRETE EVENT SYSTEM

SPECIFICATION

The formal structures reflecting the discreteness of the

computations achieved by digital computers are presented

here. First, a general generator definition based on sequential

machines is presented. Based on this definition, a structure

for pseudorandom number generators is proposed and linked

to the definition of pseudorandom variables. Using a pseu-

dorandom number generator, a pseudorandom variate genera-

tor is used for computing the realizations of pseudorandom

variables. A pseudorandom and parallel event execution is

specified in P-DEVS. At structural level, large numbers of

connections and components in a network are captured using a

pseudorandom graph definition. The latter is finally compared

to the P-DEVS network structure definition.

2Otherwise the parallelization will be inefficient. Also it is expected then
that the operating system assigns available cores to available lightweight
processes.

927

A. Pseudorandom variables and number generators

Definition 4. A generator is an autonomous sequential ma-

chine G = (S, s0, γ), where S is the set of states, s0 is the

initial state and γ : S → S is the state generation function.

Algorithm 1 Main simulation loop of Root Coordinator.

Variables:

tl: Global time of last event

tn: Global time of next event

tend: Global time of simulation end

s = (. . . , (sd, ed), . . .): Global state

TNEXT (s) = {tn,d | d ∈ D}: set of times of next events

IMM(s) = {d ∈ D | tn,d = tn}: set of imminents

for next output/internal transition

SEN(s) = {d ∈ D |λd(sd) �= ∅}: set of senders

REC(s) = {d ∈ D | i ∈ Id ∧ i ∈ IMM(s) ∧ xb
d �= ∅

∧Zi,d(x
b
d) �= ∅}: set of receivers

nLWP : number of lightweight processes

Begin

tl ← 0
Executor.self-init(nLWP)

Executor.init-components(D)
TNEXT (s)← Executor.get-TN(D)
tn ← min(TNEXT (s))
while tn < tend do

IMM(s) ← Executor.get-imminents(D, tn)
SEN(s) ← Executor.compute-outputs(IMM(s), tn)
REC(s) ← Executor.route(SEN(s))
ACTIV E(s) ← IMM(s) ∪REC(s)
Executor.compute-transitions(ACTIV E(s), tn)
tl ← tn
TNEXT (s)← Executor.get-TN(D)
tn ← min(TNEXT (s))

end while

End

Definition 5. A pseudorandom number generator (RNG)

(cf. [23], p.132, whose definition is extended here) is defined

as RNG = (SP , sP0
, γP), with SP = R the generator state

set with R ⊂ R[0,1] the finite set of pseudorandom numbers

(with each pseudorandom number a realization of a uniformly

distributed random variable, i.e., r ∼ U(0, 1)), γP : R →
R the pseudorandom number generation map, and sP0

= r0
the initial status (or seed for old generators). A stream (i.e.,

a sequence) of independent and identically distributed (i.i.d.)

pseudorandom numbers of length period l, noted (ri)
l−1
i=0 =

r0, r1, . . . , rl−1, for i = 0, 1, . . . , l−1, is defined by γP (ri) =
ri+1 and with γP (rl+i) = ri .

Definition 6. A pseudorandom variate generator (RVG) is

defined as RV G = (RNG,SV , sV0
, γV), with SV = V the

generator variate set, V ⊂ R the finite set of pseudorandom

variates (with each random variate v ∈ V being a realization

of a random variable with inverse non-uniform cumulative

function distribution γV), γV : R → V the pseudorandom

variate generation map, and sV0
the initial pseudorandom

variate. A stream of pseudorandom variates follows exactly the

sequence of the pseudorandom numbers generated by RNG
and is of equal length l, i.e., for (ri)

l−1
i=0 = r0, r1, . . . , rl−1,

there exists (vi)
l−1
i=0 = v0, v1, . . . , vl−1.

Definition 7. A pseudorandom variable consists of the map

γV : R → V of a pseudorandom variate generator RVG =
(RNG,SV , sV0

, γV), where R ⊂ R[0,1] is a finite set of

uniformly distributed pseudorandom numbers. Every time a

random variate vi ∈ V of the pseudorandom variable γV (ri)
is obtained, the next pseudorandom number is generated

through ri+1 = γP (ri).

Example 8. For a pseudorandom variable following an expo-

nential law γexp ∼ Exp(λ), each realization (pseudorandom

variate) is obtained by γexp(r) =
−ln(1−r)

λ
= v (i.e., inverting

the cumulative distribution function of the exponential law).

Example 9. For a pseudorandom variable following a

Bernouilli distribution γB ∼ B(p) of probability p, each

realization (pseudorandom variate) is obtained by γB(r) =

v =

{
1 if r ≤ p

0 otherwise
.

B. Pseudorandom Parallel Discrete Event System Specifica-

tion

As previously defined, randomness is simulated at the

computer level using a pseudorandom number generator mod-

eled as a deterministic sequential machine. Corresponding

pseudorandom variables are maps taking the generated pseu-

dorandom numbers in argument and generating corresponding

pseudorandom variates. At formal P-DEVS level, the set of

pseudorandom variates V can be embedded as part of the

partial state.

Definition 10. A basic Pseudorandom Parallel Discrete Event

System Specification (PP-DEVS) is a structure

PP-DEVS = (X,Y, S, δext, δint, δcon, λ, ta)

Where, X and Y defined previously, S ⊇ V is the set of

sets of global pseudorandom variates V = Πn
i=1Vi with n the

number of pseudorandom variables. Each set Vi contains the

pseudorandom variates of a stream (vi)
l−1
i=0 = v0, v1, . . . , vl−1

generated by a corresponding pseudorandom variate generator

RVGi = (RNGi, SVi
, sVi,0

, γVi
) (cf. Definition 6), thus

defining a pseudorandom variable γV i
: Ri → Vi. At

each transition function execution the next state is computed

deterministically based on a global pseudorandom variate

v ∈ V and a partial state s ∈ S, i.e., δint(s, v) = s′,
δext(q, x, v) = s′, and δcon(s, x, v) = s′3.

3The same reasoning can be used based on each pseudorandom number
ri ∈ Ri, such that the set of sets of (global) pseudorandom numbers is
R = Πn

i=1
Ri, with n the number of pseudorandom numbers. Then, at

each transition function execution the next state of P-DEVSR is computed
based on each global pseudorandom number r ∈ R, i.e., δint,R(s, r) = s′,
δext(q, x, r) = s′, and δcon(s, x, r) = s′.

928

Algorithm 2 Variables, procedures and functions of Executor.

Variables:

LWP = {lwp |nLWP ≤ nLC}: set of lightweight pro-

cesses

nLWP : number of lightweight processes

nLC : number of logical cores

TASKS = {fd | d ∈ D}: set of tasks

with fd a function to execute over d ∈ D
tmax
exec: maximum execution time of a process

Begin

procedure SELF-INIT(nLWP)

nLC ← getNbOfLogicalCores()
if nLWP > nLC then

nLWP ← nLC

end if

end procedure

procedure INIT-COMPONENTS(D)

set TASKS = {(d, init(0)) | d ∈ D}
run(TASKS)

end procedure

function RUN(TASKS)

In parallel ∀task ∈ TASKS do

run task on available lwp ∈ LWP
add possibly result to ResSet

end In parallel

lock TASKS
wait tmax

exec for each lwp ∈ LWP to terminate

return ResSet

end function

function GET-TN(D)

TASKS = {(d, getTn()) | d ∈ D}
TNEXT (s)← run(TASKS)
return TNEXT (s)

end function

function GET-IMMINENTS(D, tn)

set TASKS = {(d, testTn()) | d ∈ D}
IMM(s) ← run(TASKS)
return IMM(s)

end function

function COMPUTE-OUTPUTS(IMM(s), tn)

set TASKS = {(imminent, computeOutput(tn))
| imminent ∈ IMM(s)}

SEN(s) ← run(TASKS)
return SEN(s)

end function

function ROUTE(SEN(s))
TASKS = {(sender, route()) | sender ∈ SEN(s)}
REC(s) ← run(TASKS)
return REC(s)

end function

procedure COMPUTE-TRANSITIONS(ACTIV E(s), tn)

TASKS = {(active, computeDelta(tn))
| active ∈ ACTIV E(s)}

run(TASKS)
end procedure

End

The use of pseudorandom numbers in deterministic se-

quential DEVS models has been discussed in the context

of probability spaces [6]. This work pinpointed cases where

the previous definition may show inconsistencies as well as

convergence issues (when elements are not measurable or

corresponding sets infinite). However, our goal here is not to

redefine a new formalism at continuous system specification

level but rather to specify the deterministic foundations of

the stochastic simulations achieved at computer level and how

this can be modeled in P-DEVS as a first step. This does not

prevent achieving further mathematical extensions, as done in

[6].

C. Pseudorandom graph-based network

A pseudorandom directed graph generator generates a set

of simple directed graphs with the same coupling probability

and the same number of vertices.

Definition 11. A Pseudorandom Generator of Directed

Graphs (RGG) is a structure RGG = (Gn,p, SG, sG0
, γG),

where Gn,p is the set of all pseudorandomly generated directed

graphs such that Gn,p = G{n, P (arrow) = p}, with n

the number of vertices and p ∈ R[0,1] the probability of

choosing an arrow. Each graph G(U,A) ∈ Gn,p is described

by U = {1, 2, . . . , n} the set of vertices and A a set of

(ordered pairs) arrows; SG = A × Vcoupling = U2 × B

with Vcoupling the set of coupling pseudorandom variates

obtained by sampling corresponding (Bernouilli) coupling

pseudorandom variable γcoupling ∼ B(p)4; sG0
= vcoupling,0

is the initial coupling pseudorandom variate; Last map γG :
Gn,p×SG → Gn,p is the directed graph generation map using

the coupling pseudorandom variates Vcoupling to construct a

graph G(U,A) ∈ Gn,p.

Example 12. Simple graph generation

A graph G ∈ Gn,p can be iteratively constructed by

a pseudorandom generator of directed graphs RGG =
(Gn,p, SG, sG0

, γG), with SG, sG0
, Gn,p as defined previously

and γG(Gi, vi) = Gi+1, with G = ∪iGi, G0(U,A = ∅)
(here the initial graph has all vertices but no edges), for

i = 0, 1, . . . , n2 − 1. The length period n2 is due to the

algorithmic testing of edges, i.e., for each vertex, each arrow

to each other vertex is tested.

Example 13. A directed graph G1(U1, A1) ∈ Gn1,p1 can be

connected to another directed graph G2(U2, A2) ∈ Gn2,p2

with probability p, leading to a pseudorandom directed graph

G(U,A) ∈ Gn,p with U = {U1, U2}, A = {A1, A2, A3} and

p the probability of choosing an arrow in A3 from vertices in

U1 to vertices in U2. Algorithmically, graphs G1 and G2 are

generated and finally G is generated coupling G1 and G2 with

probability p.

Once the graph structure has been generated, the graph can

be transformed into a network where to each node corresponds

4Pseudorandom variates in SG are generated by
a pseudorandom variate generator RV Gcoupling =
(RNGcoupling , Vcoupling, vcoupling,0, γcoupling).

929

a P-DEVS component and to each arrow a coupling.

Definition 14. A Graph-to-P-DEVS Network Transformer

(GNT) is a structure GNT = (G,N, {mi,j}), where G is

a directed graph, N is a P-DEVS network, mi,j is a one-

to-one map (from the elements of G to the elements of

N) defined for: (i) vertices-to-components mu,c : U → D,

(ii) arrows-to-couplings ma,c : U × U → D × D with

D × D = {(a, Za,b(a)) | a ∈ Ib} the influencer-to-influencee

pairs, and (iii) arrows-to-influencers ma,i : U × U → {Ii}
with ma,i(u, u

′) ∈ Iu′ the selection of the influencer of u′.

IV. SPIKING NEURAL NETWORK MODEL

Mathematical modeling of a random spiking neural network

is presented here. The model is specified after using the main

mathematical structures presented in previous sections.

A. Biological neuron

Figure 2 depicts a single biological neuron. Most commonly,

inputs from other neurons are received on dendrites, at the

level of synapses. The circulation of neuronal activity (electric

potentials) is due to the exchange through the neuron mem-

brane of different kinds of ions. Dendrites integrate locally the

variations of electric potentials, either excitatory or inhibitory,

and transmit them to the cell body. There, the genetic material

is located into the nucleus. A new pulse of activity (an action

potential) is generated if the local electric potential reaches

a certain threshold at the level of the axon hillock, the small

zone between the cell body and the very beginning of the

axon. If emitted, action potentials continue their way through

the axon in order to be transmitted to other neurons. Action

potentials, once emitted, are "all or nothing" phenomena: 0, 1.

The propagation speed of action potentials can be increased by

the presence of a myelin sheath, produced by Schwann cells.

This insulating sheath is not continuous along the axon. There

is no myelin at the level of the nodes of Ranvier, where ionic

exchanges can still occur. When action potentials reach the

tip of the axon, they spread over all terminals with the same

amplitude, up to synapses. The neuron can then communicate

with other following neurons. Notice that a focus on electrical

signals (without dealing with chemical signals) is achieved

here.

B. Model

At the model level, the network structure and the behavior

of the neurons are described here. While definitions provided

here are general, they are mapped in next subsection to the

mathematical structures provided in subsections III-B and

III-C.

The structure presented here consists of: an input layer of

independent firing neurons, an intermediate layer embedding

a pseudorandomly generated directed graph of neurons, an

output layer of independent receiving neurons.

Definition 15. The structure (cf. Figure 3)

Let I , B, O be 3 finite sets with respective cardinality n,

M and N . It is always assumed that M ≥ N . Let (pi)i≥0

denote real numbers in [0, 1]. For any (i, j) ∈ B2, assume

that there exists an arrow i → j with probability p0, for any

i ∈ I and j ∈ B, assume that there exists an arrow i → j
with probability p1 and for any i ∈ B and j ∈ O, assume that

there exists an arrow i → j with probability p2.

Figure 2. Sketch of a neuron (adapted from
http://fr.wikipedia.org/wiki/Neurone).

The dynamics in each layer is provided in next definition.

In input layer, neurons fire randomly while neurons in both

intermediate and output layers follow a deterministic behavior.

Definition 16. The dynamics

Assume that the activities (Xt(i))i∈I,t∈N of the sites in I
and time t are i.i.d. B(p3). Let a be a positive real number.

For all (i, j, t) ∈ (B ∪ O)2 × N, we choose i.i.d. thresholds

τi ∼ N (m,S2), i.i.d. wi,j = 1 with probability 1 − p4 and

−a with probability p4. Then, the membrane potential Pi(t)
of a neuron i, initially null is updated thanks to the following

rule

Pi(t) = (rAi(t− 1) +
∑
i∼j

wi,jAj(t− 1))(1−Ai(t− 1))

Where, r ∈ (0, 1) is the activity remaining from time t − 1,∑
i∼j wi,jAj(t−1) is the activity received from other neurons

at time t− 1, (1−Ai(t− 1)) reflects a refractory period of 1
(if the neuron fired at time t− 1 it cannot fire at time t), and

the activity of a neuron i is provided by

Ai(t) =

{
1 if Pi(t− 1) ≥ τi
0 otherwise

930

p1

p2

p0

Figure 3. Structure of the neuron model.

C. Specification in PP-DEVS

The structure of Definition 15 can be set by a pseudorandom

generator of directed graphs (RGG) (cf. Definition 11). The

coupling of the different layers is based on Example 13 with

each layer being a directed graph (with both input and output

layers having no internal connections). The resulting coupled

graph is finally mapped to a P-DEVS network through a

Graph-to-P-DEVS Network Transformer (GNT) (cf. Definition

14).

From a dynamical point of view, each neuron i ∈ I of

Definition 16 is specified as a PP-DEVS reduced to internal

transitions as

Mi = (Yi, Si, δint,i, λi, tai)

Where, Yi = {∅, 1}, with null event ∅ (resp. 1) if the neuron

is non-firing (resp. firing), Si = Vfiring = B with Vfiring

the set of firing pseudorandom variates, internal transition

function δint,i(s, vfiring) samples the pseudorandom variable

γfiring ∼ B(p3) indicating the activity of the neuron depend-

ing on probability p3, output function λi(vfiring) sends an

unitary event if the neuron is active and time advance function

tai(s) = 1 ensures the discrete time sampling of γfiring .

Neurons in B and O of Definition 16 are P-DEVS models

specified as

Mj = (Xj , Yj , Sj , δext,j , δint,j , δcon,j, λj , taj)

Where, Xj = {∅, 1}n = {∅, 1} × . . . × {∅, 1} (with n the

number of inputs), Yj = {∅, 1}, Sj = {{wk}, c, a, p, phase =
{firing, active, inactive}} with wj the weight of corresponding

input k, c (resp. c′) the sum of received inputs at a time step

t (resp. at a time step t + 1), a (resp. a′) the activity of the

neuron at a time step t (resp. at time step t+ 1), p (resp. p′)
the membrane potential of the neuron at a time step t (resp. at

time step t+1), external transition function δext(q, x) collects

the inputs received at time t, computes the next phase and the

next membrane potential p′ and activity a′, and after call for a

next internal transition at time t+1, internal transition function

δint(s) updates p ← p′ and a ← a′ and reset inputs (c ←
0), if the neuron is in phase active or firing and receives an

input the confluent transition function is called as δcon(s, x) =
δext(δint(s), 0, x), i.e., first update variables and after collect

inputs, and finally time advance function taj(s) = 1 if the

neuron is in phase active or firing and taj(s) = ∞ if the

neuron is in phase inactive.

V. SIMULATION PROCESS AND RESULTS

Model generation and simulation process are introduced first

here. After, the speedup results are presented and discussed.

The goal of this speedup analysis is only an application proof

of the whole hierarchy developed here. Gaining genericity

has usually a cost. It is not our purpose here to prove the

supremacy of this approach at the parallel implementation

level but rather to prove completeness and applicability.

A. Environment infrastructure and graphical outputs

The steps and the elements of the process of generation and

simulation of the model consist of the following sequence:

(i) Initialization of all models, (ii) Graph generation us-

ing a model RGG, (iii) Graph-to-network transformation

(GNT), which generates a PP-DEVS network from the graph,

and (iv) Simulation.

Notice that as defined previously, each object uses one

RNG for each pseudorandom variable. This ensures: (i) the

statistical independence between pseudorandom variables, and

(ii) the reproducibility of pseudorandom simulations [8].

Figure 4 depicts a snapshot of the graph corresponding to

neurons of set B. Notice how dense is the graph connection

making it difficult to differentiate edges.

Figure 4. Graph snapshot of B set.

Simulations have been performed on a Symmetric Mul-

tiprocessing (SMP) machine with 80 physical cores and

160 logical cores, 8 processors Intel(R) Xeon(R) CPU E7-

8870@2.40GHz5, and 1Tb RAM. Figure 5 presents the firing

of neurons for neurons of each set I, O, and B.

5stepping: 2, cpu: 1064 MHz, cache size: 30720 KB.

931

Figure 5. Firing outputs in sets I, O, and B.

B. Speed-up results

In [25], an interesting perspective is drawn concerning the

usage of clusters with low latency communication capabili-

ties. Our idea here is to assume (even at abstract simulator

level) that all the computations are centralized on a single

computer, a Symmetric Multiprocessing (SMP) machine6. The

latter allows sharing memory and minimizing the latency of

communications. Besides, centralizing all the computations

facilitates the control of their executions and their synchro-

nization at each time step. Different sizes of neural networks

are simulated here for different numbers of threads.

Input parameters are set to values: p0 = p1 = p2 = 0.9,

p3 = 0.5, p4 = 0.2, a = r = 1, each threshold τi ∼
N (m,S2), with m = 250 and S = 1. The whole simulation

has been implemented in Java programming language.

The sequential execution time of methods tmethods has been

considered as the sum of the execution times for methods:

initialization (tinit), output (tout), routing (trout), and transi-

6Simulations have been performed on a Symmetric Multiprocessing (SMP)
machine with 80 physical cores and 160 logical cores, 8 processors Intel(R)
Xeon(R) CPU E7-8870@2.40GHz (stepping: 2, cpu: 1064MHz, cache size:
30720KB.), and 1Tb RAM. Each Java class main has been executed in com-
mand line using the exec-maven-plugin-1.2.1. Execution times correspond
to the total (processor) time information provided by Maven. Finally, although
when running the simulations the machine was possibly executing other
simulations (launched by other users), the number of available threads has
been verified at each simulation time and 30 replications of each simulation
have been achieved showing a good confidence interval of the results obtained.

tions (ttrans) (cf. Algorithm 1), for different sizes of networks.

Considering ttotal as the total parallelizable execution time,

and tseq as the sequential execution time that cannot be

parallelized, it has been noticed that most of the execution

times of a simulation is due to the execution of these methods,

i.e., ttotal

tmethods
= 93.2% for 140 neurons, increasing quickly to

99.3% for 240 neurons. This shows the high parallelizability

of P-DEVS simulations. Besides, it has also been noticed that

most of the execution time is due to the execution of atomic

output and transition functions, i.e., ttotal

ttrans+tout
= 91.51% for

140 neurons increasing quickly to 99.08% for 240 neurons.

Figure 6 presents the speedup obtained for different sizes

of networks according to different numbers of threads (im-

plemented in a pool7). Each replication has been replicated

30 times leading to a total number of 19 × 30 × 4 = 2280
simulations. It can be seen that in each simulation, the speedup

reaches a maximum which remains constant (cf. Figure 6.c and

Figure 6 .d) or decreases (cf. Figure 6.a and Figure 6.b).

Each best average speedup obtained in Figure 6 is presented

in Figure 7. The optimal number of pool threads is: 20 for 140
neurons, 60 for 240 neurons, 100 for 340 neurons and 50 for

440 neurons. Increasing the number of neurons the average

best speedup decreases and a practical maximum speedup of

23.5 is achieved.

Finally, to investigate the parallelizability of our simula-

tion model, let’s consider Amdahl’s law [2] as S(n) =
1

τseq+
1

n
(1−τseq)

with the maximum theoretical speed up S(n)

(considering no parallelization overhead) for a number of

threads n, and the fraction of total execution time as strictly

sequential as τseq =
tseq
ttotal

. Having n = 80 physical cores on

the SMP machine used, for 140 neurons, the theoretical maxi-

mum speedup is S(80) = 14.3 (while the practical speedup is

5.14) and for 240 neurons, the theoretical maximum speedup is

S(80) = 53 (while the practical maximum speedup is 22.2).

Practical maximum speedup is less than half of theoretical

maximum speedup, suggesting great further potential speedup.

7Notice that for each simulation the Java Virtual Machine added also 16
threads for garbage collection and specific to the libraries used in the simulator.

932

(a)

(b)

(c)

(d)

Figure 6. Comparison of execution time results for an increasing number of
pool threads and: (a) 140 neurons, (b) 240 neurons, (c) 340 neurons, and (d)
440 neurons.

The cap speedup obtained (while increasing the number

of threads) can be explained by JVM intrinsic limitations.

In [12], different very basic experiments have been imple-

mented in parallel for different numbers of threads (quicksort,

calculation of π value by Monte Carlo method, Fast Fourier

transform, discrete cosine transform, etc.). The platform con-

sisted in an Intel Xeon Phi Coprocessor 5100 accelerator

with a memory size of 8GB DDR5, an L2 cache size of

30MB, 60 physical cores and 240 hardware threads, and a

base processor frequency of 1.1GHz. For quicksort and Monte

Carlo experiments, the speedup obtained shows the same cap

with no improvement respectively above 30 and 60 threads.

For other experiments, the results are even worse showing

a decrease of the speedup above 60 threads even though

the codes were compute intensive. Furthermore, JVM opacity

makes difficult further investigations of both load balancing

and memory access (to test a possible memory bandwidth

issue). For example, when writing these lines we were not able

to find any good quality profiling software for analyzing Java

parallel simulation results. This is why, although we believe

that better speedup results can be obtained, we recommend

further investigations to use another programming language

(e.g., C++).

Figure 7. Best average execution-time speedup for each total number of
neurons.

VI. CONCLUSION AND PERSPECTIVES

This article presented a first formal bridge between com-

putational discrete event systems and networks of spiking

neurons. Parallel and stochastic aspects (and their relationship)

have been defined explicitly. In P-DEVS a simple way of

parallelizing simulations and a link between P-DEVS and

(pseudo)random graphs/generators/variables have been pro-

posed. Finally all these structures have been applied to a

network of spiking neurons. From a simulation point of view,

it can be seen that most of the sequential execution times

(more than 90%) can be reduced theoretically. In practice, the

simplicity obtained by centralizing most of the computations

at the same place requires a strong optimization at software

level and a suitable solution at hardware level.

In conclusion, although further technical investigations need

to be achieved, it is believed that: the formal structures

provided here allow mathematical reasoning at (computa-

tional) system level and that the simplicity of the parallel

(reproducible8) implementation technique should allow further

8Parallelizing the discrete event execution of a scheduler, at each time
step, and encapsulating each stream of random numbers in corresponding
pseudorandom variable (in their turn encapsulated in atomic models) simply
preserves simulation reproducibility [8]. Furthermore, the technique has also
the advantage to do not require any control over the order of execution of
threads (that is not guaranteed by some programming languages, e.g. Java) to
preserve simulation reproducibility.

933

(more efficient) parallelization developments, based on our

theoretical maximum speedup results.

ACKNOWLEDGEMENTS

Many thanks to Gaëtan Eyheramono and especially to An-

toine Dufaure who achieved a first version of the multithreaded

implementation. This work has been partially funded by a

contract Projets Exploratoires Pluridisciplinaires Bio-Maths-

Info (PEPS-BMI 2012), entitled Neuroconf, and funded by

Centre National de la Recherche Scientifique (CNRS), Institut

national de recherche en informatique et en automatique

(INRIA) and Institut National de la Santé et de la Recherche

Médicale (INSERM).

REFERENCES

[1] ADEGOKE, A., TOGO, H., AND TRAORÉ, M. K. A unifying framework
for specifying DEVS parallel and distributed simulation architectures.
Simulation 89, 11 (2013), 1293–1309.

[2] AMDAHL, G. M. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference (New York, NY, USA, 1967),
AFIPS ’67 (Spring), ACM, pp. 483–485.

[3] B. P. ZEIGLER, T. G. KIM, H. P. Theory of Modeling and Simulation.
Academic Press, 2000.

[4] BEHRENDS, R., DILLON, L. K., FLEMING, S. D., AND STIREWALT,
R. E. K. 1014 . Tech. Rep. RJ10502 (ALM1211-004), IBM Research
Division, Almaden Research Center, 650 Harry Road, San Jose, CA
95120-6099, USA, November 13 2012.

[5] BRETTE, R. Simulation of networks of spiking neurons: A review
of tools and strategies. Journal of Computational Neuroscience 23, 3
(2007), 349–398.

[6] CASTRO, R., KOFMAN, E., AND WAINER, G. A formal framework for
stochastic discrete event system specification modeling and simulation.
Simulation 86, 10 (2010), 587–611.

[7] CHOW, A. C. H., AND ZEIGLER, B. P. Parallel devs: A parallel,
hierarchical, modular, modeling formalism. In Proceedings of the 26th
Conference on Winter Simulation (San Diego, CA, USA, 1994), WSC
’94, Society for Computer Simulation International, pp. 716–722.

[8] HILL, D. Parallel random numbers, simulation, and reproducible
research. Computing in Science Engineering 17, 4 (July 2015), 66–71.

[9] HILL, D. R. C., MAZEL, C., PASSERAT-PALMBACH, J., AND TRAORE,
M. K. Distribution of random streams for simulation practitioners.
Concurrency and Computation: Practice and Experience 25, 10 (2013),
1427–1442.

[10] HINES, M., AND CARNEVALE, N. Discrete event simulation in the
NEURON environment. Neurocomputing 58-60, 0 (2004), 1117–1122.

[11] JEFFERSON, D., BECKMAN, B., WIELAND, F., BLUME, L., AND

DILORETO, M. Time warp operating system. In Proceedings of the

Eleventh ACM Symposium on Operating Systems Principles (New York,
NY, USA, 1987), SOSP ’87, ACM, pp. 77–93.

[12] MALINOWSKI, A. Modern platform for parallel algorithms testing: Java
on intel xeon phi. International Journal of Information Technology and
Computer Science(IJITCS) (2015), 8–14.

[13] MAYRHOFER, R., AFFENZELLER, M., PRÄHOFER, H., HÖFER, G.,
FRIED, A., AND FRIED, E. Devs simulation of spiking neural networks.
In Cybernetics and Systems: Proceedings EMCSR 2002 (2002), vol. 2,
pp. 573–578.

[14] MEROLLA, P., ARTHUR, J., AKOPYAN, F., IMAM, N., MANOHAR, R.,
AND MODHA, D. A digital neurosynaptic core using embedded crossbar
memory with 45pj per spike in 45nm. In Custom Integrated Circuits

Conference (CICC), 2011 IEEE (Sept 2011), pp. 1–4.
[15] MOURAUD, A., PUZENAT, D., AND PAUGAM-MOISY, H. DAMNED:

A Distributed and Multithreaded Neural Event-Driven simulation frame-
work. Computing Research Repository abs/cs/051 (2005).

[16] RM., F. Parallel and distributed simulation systems. Wiley, New York,
2000.

[17] TANG, Y., ZHANG, B., WU, J., HU, T., ZHOU, J., AND LIU, F. Parallel
architecture and optimization for discrete-event simulation of spike
neural networks. Science China Technological Sciences 56, 2 (2013),
509–517.

[18] TONNELIER, A., BELMABROUK, H., AND MARTINEZ, D. Event-driven
simulations of nonlinear integrate-and-fire neurons. Neural Computation
19, 12 (2007), 3226–3238.

[19] VAHIE, S. Discrete Event Modeling and Simulation Technologies:

A Tapestry of Systems and AI-Based Theories and Methodologies.
Springer-Verlag, 2001, ch. Dynamic Neuronal Ensembles: Neurobiolog-
ically Inspired Discrete Event Neural Networks.

[20] WANG, Y.-H., AND ZEIGLER, B. Extending the devs formalism for
massively parallel simulation. Discrete Event Dynamic Systems 3, 2-3
(1993), 193–218.

[21] ZEIGLER, B. Discrete event abstraction: an emerging paradigm for
modeling complex adaptative system.

[22] ZEIGLER, B. P. Statistical simplification of neural nets. International
Journal of Man-Machine Studies 7, 3 (1975), 371–393.

[23] ZEIGLER, B. P. Theory of Modeling and Simulation. Wiley, 1976.
[24] ZEIGLER, B. P., NUTARO, J. J., AND SEO, C. What’s the best

possible speedup achievable in distributed simulation: Amdahl’s law
reconstructed. In Proceedings of the Symposium on Theory of Modeling

& Simulation: DEVS Integrative M&S Symposium, part of the 2015

Spring Simulation Multiconference, SpringSim ’15, Alexandria, VA,
USA, April 12-15, 2015 (2015), pp. 189–196.

[25] ZENKE, F., AND GERSTNER, W. Limits to high-speed simulations of
spiking neural networks using general-purpose computers. Frontiers in
Neuroinformatics 8, 76 (2014).

934

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

