

Antonio Giardina
Swinburne University of
Technology, Australia
agiardina@swin.edu.au

Yun Yang
Swinburne University of
Technology, Australia
yyang@swin.edu.au

Hai Vu
Swinburne University of
Technology, Australia

hvu@swin.edu.au

Rajesh Vasa
Swinburne University of
Technology, Australia

rvasa@swin.edu.au

Abstract—Traffic engineering is a key in effective utilisation
of the road network infrastructure. Simulation assists traffic
engineers making informed decisions on how to operate and
direct traffic within the road networks. These simulations are
complex, generate big data and require high-powered
computers, which can process information faster than real
time, to ensure the results can be used to affect traffic. Cloud
computing, a relatively new technology paradigm, can meet the
essential requirements, such as scalability, interoperability,
availability and high-end performance. In this paper, a novel
approach to a synchronisation strategy of large-scale complex
simulations is proposed. This approach builds upon
advancements achieved in distributed computing. The new
synchronisation strategy is designed to allow different
granularities of synchronisation accuracy. Through this
strategy, synchronisation overhead is reduced, thus allowing
the computing bandwidth to be applied to simulation
performance increases as a result of the trade off between
synchronisation accuracy and performance.

Index Terms—Synchronisation, Cloud, Computing, Traffic,

Simulation, Agent Based.

I. INTRODUCTION
Traffic engineering and smart road management is a

critical component of any modern city. As population grows
and cities become larger, there is an increasing requirement
to better manage traffic and the load it creates across
motorways [1]. A key tool that assists traffic engineers to
study and manage the phenomenon of traffic is agent-based
simulation [2]. These simulations are complex, generate big
data and require high computing power. As the size of the
road network increases so does the computational
complexity, computer systems are being designed to
actively respond to traffic and adjust signalling to better
split the load across various pathways in the network [3].
These systems use simulations to predict potential traffic
hotspots and then apply traffic models to react to them.
Simulations, in these cases, must run faster than real time in
order for the changes to have a positive impact. As such, a
concrete problem arises for the need of a computing
architecture that can process large-scale simulation (LSS)
faster than real time [4].

Cloud computing, a concept first introduced in the 1960’s
by Professor John McCarthy [5] but only recently taken
place in the Information Technology world, meets the
essential requirements that a simulation system for traffic
engineering has. The cloud, which uses a pay-as-you-go
model, is a highly scalable and highly available technology.
Service providers, such as Amazon, have vast amounts of
computing power that can be easily acquired to run virtual

machines for virtually any computing need [6]. It is because
of these benefits offered that cloud is a perfect match for
running LSS. There are many tiers of cloud, IaaS
(Infrastructure as a Service), PaaS (Platform as a Service)
and SaaS (Software as a Service) [7]. In this paper, IaaS
cloud is investigated. IaaS offers a blank virtual machine
where any operating system can be installed depending on
the user requirements. IaaS allows for the solution to be
interoperable across many cloud providers, as it does not
force the use of a specific technology interface, but rather
provides the hardware required to run any type of solution.
To effectively run an LSS over IaaS, an overlaying
architecture must be designed to fully benefit the power of
the cloud.

Various components of this type of architecture warrant
further studies, such as how to handle synchronisation, how
to load balance each node in the distributed system, how to
divide the domain so that it can be simulated in a distributed
manner [8-10]. In this paper, synchronisation of multi-node
multi-agent simulation is the focus. Current approaches of
synchronisation in distributed systems belong to three broad
categories: centralised, conservative and optimistic [8].
These have been further discussed in Section III.
Commercial cloud providers normally do not allow users to
have full control over the underlying physical hardware. In
most cases, the internal structure of the cloud is unknown to
the user [6]. As a result cloud solutions are centred on
software optimisation techniques. In an effort to deal with
the black box nature of the cloud and achieve maximum
performance, a novel view of synchronisation needs to be
proposed. In synchronisation strategies one rule pertains to
all, i.e. events in the runtime must be executed in a
synchronised manner. By taking the domain into
consideration, this rule can sometimes be traded off for
higher performance (i.e. partial synchronisation is allowed).
This is only possible in certain domains, traffic being one of
them. A vital aspect of such strategy is the ability to scale up
or down the granularity of the synchronisation enforcement,
thus giving the ability to the user to sacrifice the level of
accuracy for increased performance for each simulation run.

In summary the research proposed in this article has three
distinct contributions that it intends to deliver:
� An architecture to run cloud-based simulations
� A novel method of synchronisation that enables the

trade-off of simulation accuracy for performance
gains in a controlled and repeatable manner

� Experiment results using existing cloud services to
evaluate the architecture’s performance

Multi-Node Multi-Agent Cloud Simulation: Approximating Synchronisation

2015 IEEE 11th International Conference on eScience

978-1-4673-9325-6/15 $31.00 © 2015 IEEE

DOI 10.1109/eScience.2015.32

517

2015 IEEE 11th International Conference on eScience

978-1-4673-9325-6/15 $31.00 © 2015 IEEE

DOI 10.1109/eScience.2015.32

542

In the following sections, Section II will introduce the
motivating scenario and discuss the problem analysis,
Section III will discuss the related work, Sections IV and V
will propose and discuss the cloud architecture and
synchronisation strategy, Section VI will present the
evaluation and finally Section VII will look at the
conclusion and point out future work.

II. MOTIVATING SCENARIO & PROBLEM ANALYSIS

A. Motivating Scenario
Road traffic is a complex and event driven phenomenon.

There are many variables that contribute to the final state of
traffic in urban street infrastructure. Searching for optimised
methodologies to manage traffic is an important endeavour
traffic engineers undertake every day. Some of the benefits
of road traffic optimisation are reduced travel times for
motorists, better utilisation of road networks, reduced risk of
motor vehicle accidents and vehicle emission reductions.
Over the last decade many instruments have become
available to the consumer that assist a driver in making the
most optimal decisions while on the road. Some examples
of these instruments are navigation controls with GPS, real
time traffic analysis delivered through smart phones,
collision alert systems, blind spot detection mirrors and
speed limit indicators.

At the current rate at which science and technology are
advancing, it is clear that given enough time, vehicles will
become more autonomous and ultimately unmanned, e.g.
Google has already developed an unmanned vehicle and is
testing it live on American roads. Once unmanned vehicles
become available to the consumers, it will be much easier to
directly control the vehicles and safely let them reach their
destinations. To effectively control each and every vehicle,
a centralised system will need to exist which can identify,
simulate and react to the traffic phenomena. To operate such
a large-scale system, a powerful architecture will be
required that can process real time data, simulate the best
possible outcome and instruct vehicles to choose the correct
paths to reach their destinations. This presents us with the
perfect test-bed for running a simulation in the cloud. The
simulation will be complex, require scalability and need to
process information and return results efficiently and in a
timely manner.

B. Problem Analysis
As introduced in Section I, the principal outcome for the

research carried out in this paper is to develop a software
architecture that is able to run LSS at the highest
performance level possible. As discussed in Section II.A, a
possible use of such architecture is the operations of a road
network completely used by unmanned vehicles. The cloud-
computing paradigm will be adopted for the underlying
hardware technology. Architecturally, the cloud behaves
much in the same way as distributed architectures such as
grid or cluster computing. As such, many principles that
apply in distributed computing can also be applied to the

cloud. Two major distinguishing differences of cloud
computing are that hardware is shared amongst many users
and it functions like a black box as users do not have full
control of the underlying setup. Due to this shared black box
nature, a distinct problem arises when constructing cloud
software architecture, i.e. the software must be able to detect
initial signs of the underlying hardware, such as increase in
the overall resource usage, and react accordingly to adjust
the operations of the application.

There are various software components that require
analysis when constructing architecture to run LSS in the
cloud, as discussed in Section I. In this paper, the
synchronization strategy is the primary problem of focus. To
operate this distributed system, synchronisation of various
nodes present within the system is a primary objective.
Without synchronisation, complex software applications
such as a simulation, cannot function. For example, in a
road traffic simulation, the geographical area where vehicles
can move freely is split into different parts and each part is
placed in a node. Without any synchronisation mechanism,
vehicles moving from one node to another would be able to
move forward or backward through time uncontrolled, i.e. if
one node is ahead in the simulation compared to other
nodes, it is also essentially ahead through time compared to
these same nodes. This uncontrolled synchronisation would
also not be detectable and would invalidate the simulation.
The synchronisation process can be regarded as an overhead
to the primary goal of the simulation, which is to simulate a
road traffic network. If synchronisation is viewed as an
overhead, it becomes evident that by reducing the amount of
computing resources the synchronisation method requires
more resources will be available to improve the simulation
performance. As such in this paper there will be a strong
focus on reducing this synchronisation overhead that will be
achieved by trading accuracy for performance.

III. RELATED WORK
Over the last few decades simulation and computers have

shared a close bond [11]. As simulations have become
larger and more complex, the need to use high-powered
computing (HPC) has increased dramatically [12]. Currently
the principle HPC hardware that is used to run large-scale
simulation (LSS) is super computers [13]. These custom
built machines are both expensive and limited in availability
[14]. Due to these limitations there has been an effort to find
other computer hardware solutions to run LSS [15].
Distributed system is one of these venues. Agent based
simulations (ABS) is one type of LSS that may require
HPC, and the one that will be explored in this paper.
Important to this research are the common issues faced
when trying to run ABS in a distributed environment. Some
of these issues are: how synchronisation is achieved, how
the model is load balanced over the distributed architecture
and how the model is subdivided and split across the
distributed system.

518543

With the advent of cloud computing, a new distributed
system paradigm, research has been done to exploit the
advantages cloud brings such as scalability, interoperability,
availability, performance and low cost to run simulations. In
[16], the authors attempt to combine an evolutionary agent
model with the cloud infrastructure. Using the MapReduce
programming model, iterations of the evolution model are
divided across different nodes. This approach becomes less
effective when the simulation grows in size. As each node
cannot run the entire iteration of the simulation in a time
effective manner, the iteration itself must be distributed into
multiple nodes and as such a new approach must be found.

Authors in [17] introduce an adaptation of High Level
Architecture (HLA) to run LSS in the cloud. HLA is a
standard for running simulations on distributed systems. As
HLA is not directly suited for the cloud, the authors
investigate new means to deal with load balancing and
effective use of cloud resources. The research carried out by
the authors of [18] presents us with the closest set of goals
related to this research. In this article the authors investigate
how a social agent model can be distributed over the cloud.
They look at the division of the model environment over
multiple nodes, how to synchronise the model and process
data on adjacent nodes. They only present a feasibility study
of the cloud with some preliminary results.

Throughout the papers thus far discussed three major
areas of research arise that are independent of the approach
but are caused by the distributed nature of cloud:
synchronisation [8], load balancing [10] and domain model
division [9]. In this paper the main area of study is
synchronisation. The intent of the research is to offer an
optimised strategy to handle synchronisation and reduce
overhead brought in by applying strategies to the
architecture. Synchronisation of distributed systems has
been a well-studied area [8]. By viewing discrete event
based simulations [19] at a higher abstraction level,
advances achieved in this field can be directly applied to
agent-based simulations. Each computer node in the
distributed architecture can be seen as a logical process (LP)
with the agents that move from one node to another as the
events. This view of the system allows us to abstract away
the internal workings of a node and look at the system as a
whole.

In discrete event based synchronisation [8] there are three
main families of synchronisation: centralised, conservative
and optimistic. In centralised synchronisation approaches
[20], a central control mechanism exists which serves as the
master clock for maintaining all LP synchronised. In
conservative synchronisation approaches [21], all LP
synchronise with one another, no LP can fall out of
synchronisation with others and the process of
synchronisation cannot create any deadlocks. Within
conservative synchronisation approaches there a many
variations of the strategy that are optimised for either the
domain or architecture. In optimistic synchronisation [22],
LPs are allowed to progress with the execution of events.

The overall system must still remain synchronised, but
contrary to conservative methods, the system is
synchronised in a reactive manner. If one or more LPs are
found to be out of synchronisation, all events that occurred
are rolled back to the latest most synchronised state.

 In section VI.B.2) and VI.B.3), the centralised and
conservative methods of synchronisation have been further
explained. These strategies have been applied to the cloud
architecture created to evaluate the findings of this paper
and will serve as the benchmark measurements of
performance for comparison. Optimistic synchronisation
methodologies have not been selected as viable
synchronisation strategies due to the nature of the
underlying simulation. As optimistic strategies rely on
rollbacks to resynchronise all LPs and in the case of this
research one LP is an agent-based simulation, the number of
rollbacks required for resynchronisation would result in a
net performance loss.

A concept that has proven to be vital in the development
of the strategy proposed in this research is the concept of
time windows [23]. In time window synchronisation of two
LPs can become unsynchronised by a maximum predefined
amount. Events can occur while the two LPs are
unsynchronised and will not be rolled back if they do occur.
It is though important to understand how this affects the
simulation macro results and have the ability to track the
amount each LP has been influenced by unsynchronised
events. Built upon the concept of time windows and
discussed in detail in Section V is the new concept of
simulation lag. This becomes the basis of this paper on how
accuracy can be traded off for performance increases of the
simulation.

IV. ARCHITECTURE FOR SIMULATION AS A SERVICE
Simulation as a Service (SIMaaS) is the idea of providing

simulation as a new provisioning of the cloud, turning
simulation as a pay-as-you-go on-demand service available
to all. In order to provide SIMaaS, a supporting architecture
must be developed that is implemented on the cloud. As
such, Sim Net Kay (SNK) has been constructed. The
software architecture of SNK is both modular and
distributed. It is modular because components within the
architecture automatically activate when required. It is
distributed as it can be deployed across multiple computer
nodes, i.e. each virtual machine acquired from an IaaS
cloud.

Figure 1 The overall distributed architecture of SIMaaS

519544

Figure 1 describes the high level view of the SNK
architecture. It demonstrates how the domain layer is
subdivided and processed by individual nodes within the
underlying architecture, i.e. how the geographical area of a
traffic simulation is split and mapped to each individual
node in the underlying infrastructure.

SNK requires a mapping between the simulation domain
(the area of road network to be simulated) and the
underlying infrastructure (each individual simulation node).
To effectively run a distributed simulation the first step is to
select a method for splitting the domain into smaller
distributed chunks. In the case of road traffic simulations,
the geography can be used to segment the simulation.

Area 1 will envelop all roads, intersections and vehicles
present within it and be responsible for simulating any
actions that occur within the boundaries. An important
property about vehicles, compared to roads, intersections
and motorways, is the fact that they do not belong to one
area for the entire simulation. Vehicles might remain within
the area but can also move freely from one area to another
as they progress towards their desired destinations. The
domain is split before the simulation begins and each node
will load the specific area when the simulation is initialised.

Each processing node in SNK has a baseline structure.
This structure remains the same across all nodes within the
cloud system. As shown in Figure 1 a node has four main
components: control, simulation, logger and data store.
Connecting the node to external components of the overall
system are unidirectional sockets. The control component is
charged with enabling the node functionality. It controls
functions such as initialising the node, creating the socket
connections to other nodes, initialising and starting the
simulation. As the name describes it controls the
infrastructure surrounding the simulation. The simulation
component allows the simulation to be run over the cloud.
This component has been created with the purpose of being
a plug and play bucket. Any traffic simulation tool that can
be distributed across multiple nodes could be integrated into
SNK via this component. It allows the architecture to be
abstracted away from one single simulation type. The logger
is charged with logging events and handling all I/O
operations. The logger can lag behind the simulation as I/O
events can slow down processing times. The unidirectional
sockets use a TCP protocol for the method of
communication to ensure no packets between nodes are lost.
The synchronisation controller is a component of the
synchronisation strategy and will be further discussed in
Section V. All components have been created separately
from one another, as they have been designed to run on their
own CPU thread. This has been done to minimize the
impact they might have on each other.

V. STRATEGY FOR SYNCHRONISATION BY APPROXIMATION
There are various methods to achieve synchronisation of

a system. As discussed in Section III, these methods can
belong to centralised, conservative or optimistic

methodologies. This section introduces a hybrid strategy
that employs ideas from both centralised and conservative
methodologies. The primary goal of this strategy is to
reduce the overhead that is caused by enforcing
synchronisation in a system. This reduction will result in a
net performance increase of the overall software.
Centralised and distributed strategies will serve as
comparison benchmarks and are discussed in Section VI.B.

The synchronisation strategy proposed in this paper
trades off synchronisation accuracy for performance
increase. The trade off varies and is controlled by the user
running the simulation. This trade off is possible because of
a key principle in the domain of traffic simulation. In road
traffic simulations the phenomenon of traffic or traffic jams
is a result that occurs at the macro level. As such it is the net
sum of many vehicles contributing to the escalating traffic, a
single vehicle has a minimal effect on the overall result. The
primary outcome for synchronising two adjacent simulation
nodes is to ensure that vehicles, moving from one node to
the other, do so without travelling through time (i.e. node 1
is at time interval 10 and node 2 is at time interval 12. If a
vehicle moves from n1 to n2 it would effectively travel into
the future). If we relax the constraint that vehicles cannot
travel through time, this allows the system to reduce the
overhead caused by maintaining the simulation
synchronised every tick of the runtime.

From a simulation perspective if a vehicle travels through
time by a small factor compared to the overall duration of
the simulation (i.e. thirty seconds compared to one hour) the
impact to the macro phenomena will be negligible. With the
reduction of the synchronisation overhead more resource
can be assigned to increasing simulation performance and
thus this will allow for faster real-time simulations. As
discussed in Section II if the intention of the simulation is to
affect traffic in an attempt to reduce it, having quicker but
less accurate results, will facilitate the initial identification
of traffic hotspots. This will allow for a quicker response to
the phenomena, which then can be further controlled with
more accurate longer running simulations that would have a
higher or complete degree of accuracy.

Figure 2 Approximation synchronisation strategy node topology

There are two main components that drive the
synchronisation strategy: proactive and reactive controls.
These two control mechanisms combined together give
users control over the desired accuracy of the simulation.
Figure 2 outlines the topology of nodes within the cloud
architecture. Each node is assigned a geographical area and
vehicles (V) can move freely from node to node. Once all
nodes are initialised, the simulation begins on each node and

520545

runs freely until either proactive or reactive controls
activate.

The first control component is a proactive control. This is
because it controls the synchronisation process actively as
the simulation is run. It is based on the principle of time
window where two different processes are allowed to fall
out of synchronisation up to a certain maximum window.

�� = |�� − ��|
The equation above describes the time window (��) as

the absolute difference between the departure (��) and
arrival (��) times of an agent (vehicle) moving from one
node to another (i.e. at what simulation time tick did the
agent leave the first node, and at what simulation time tick
did the agent arrive at the second node).

�� ≤ ���	
There exists a maximum time window allowed (���).

If agent movement occurs with a time window greater than
the maximum, the agent and the arrival node are halted, till
the time window falls back into a range of less than the
maximum. An important architectural feature is that no
additional layer of communication is added for
synchronisation. All synchronisation events are piggy
backed on the agent moving from one node to the other (i.e.
vehicle objects carry synchronisation data within them). As
the simulation is allowed to fall out of sync, agent
movement offers enough reoccurrence to enforce the
synchronisation strategy.

The second control component is reactive. This is
because it is based on the result of an algorithm calculated
after each tick of the simulation. The algorithm returns the
synchronization lag coefficient (SL). SL is a value between
0 and 1, where 0 indicates a fully synchronised simulation.
In the following paragraphs the calculation method for SL
will be explained. All equations are calculated and updated
each tick of the simulation. One tick symbolises one unit of
simulation progress calculation. All equation results are
node specific and are calculated locally in each node.

 =
����� + � − �
� =
����� + �
AInitial denotes the initial number of agents (vehicles) in a

node before the simulation begins. A denotes the number of
agents currently in a node. Y is the number of agents that
have entered the node and Z is the number of agents that
have exited the node. AC is the cumulative amount of agents
that have existed within the node for the entirety of the
simulation.

��� = ��
���	

The degree of time travel (���) is calculated by dividing
the time window of the agent, which has travelled through
time, by the maximum time window allowed. This value
provides the first set of information in identifying how
unsynchronised the simulation is.

��� = �(1) �ℎ��� �� ≠ �� ��� ! �� = � ���
OsT denotes the count of agents (a) that travelled where

the departure time (��) did not equal the arrival time (��)

(out of sync). Os is the overall count for the entire
simulation.

"��� = �(���) �ℎ��� �� ≠ �� ��� ! "�� = � "���
DTTT denotes the overall degree of time travel for all

agents (a) in the node that travelled through time (out of
sync). DTT is the overall degree of time travel for the entire
simulation for the node.

A - Simulation Node Initialisation
1 Load configuration settings
2 Establish connection with synchronisation controller
3 If local TCP server has been started
4 Send ready alert to synchronisation controller
5 If go command is received from synchronisation controller
6 Create and connect TCP clients to each adjacent node
7 Begin Simulation
B – Synchronisation Controller Initialisation
1 Load configuration settings
2 Initialise local TCP server
3 If ready alert has been received from all Simulation Nodes
4 Send go command to all Simulation Nodes
C - Simulation Node Run Operation (First Tick)
1 Load assigned traffic map into simulation
2 Load agents into simulation
3 Carry out simulation calculations for the current tick
4 Send all agents that are moving from local to adjacent maps to

the correct node
D1 - Simulation Node Run Operation (Subsequent Ticks) –
Concurrent Process 1 (CP1)
1 Insert agents received (CP2) into local map
2 Calculate current tick of the simulation
3 Send all agents that are moving from local to adjacent maps to

the correct node
D2 - Simulation Node Run Operation (Subsequent Ticks) –
Concurrent Process 2 (CP2)
1 Receive agents as they are sent from adjacent nodes
2 If the TIME WINDOW is bigger than allowed
3 Halt simulation (CP1)
4 Else if the SIMULATION LAG is bigger than allowed
5 Perform re-synchronisation step
6 Else
7 If simulation is halted
8 Begin simulation (CP1)
E - Simulation Node Total Re-Synchronisation
1 If re-synchronisation command is activated locally
2 Halt simulation (CP1)
3 Send alert to synch controller with current tick count of sim
4 Send alert to all adjacent nodes
5 If re-synchronisation command is received from synch

controller
6 Halt simulation (CP1)
7 Send current tick count of simulation to synch controller
8 If re-synchronisation max tick received from synch controller
9 Begin simulation (CP1)
10 Simulate till max tick and then halt simulation (CP1)
11 Send alert to synchronisation controller
12 If re-synchronisation complete received from synch controller
13 Clear all SL calculation values and begin simulation (CP1)
F – Synchronisation Controller Total Re-Synchronisation
1 If re-synchronisation command received
2 Calculate max tick from all nodes and send to all nodes
3 If max tick reached from all nodes
4 Send re-synchronisation command to all nodes

Figure 3 Pseudo code of synchronisation strategy

521546

�� = ��

�

�� = "��
��

ATT denotes the overall percentage of agents for the node
that have travelled through time. ATW denotes the degree of
time travel these nodes have done based on a percentage of
the maximum time window, i.e. how much they have been
allowed to travel out of sync compared to the maximum out
of sync allowed.

Given the above equations it is possible to calculate the
synchronisation lag coefficient SL.

#$ =
�� ×
��
Figure 3 illustrates the pseudo code of the strategy

described and how it is applied to the cloud architecture.
Figure 3 Parts A and B illustrate the steps required to

initialise the overall architecture on the cloud. As each node
must connect to all other adjacent nodes and the
synchronisation controller, it is vital that all sockets are
initialised properly, i.e. server component of the socket
started before the client.

Figure 3 Part C illustrates the first step required in
starting the simulation. This step will load all data and
perform the first tick of the simulation. Processes outlined in
Parts D1 and D2 happen concurrently. D1 illustrates the
execution of the simulation tool as it processes the
simulation. D2 controls the synchronisation process, this is
done by receiving the agent, verifying based on the strategy
algorithm the current synchronisation state and delivering
the agent to be processed in the simulation.

Figure 3 Parts E and F illustrate the reactive mechanism
of the synchronisation strategy. If the simulation reaches an
SL that is greater than the desired one, the simulation is
resynchronised.

In Figure 3 the hybrid structure of the strategy can be
identified. It is conservative as nodes synchronise with each
other via the agents (vehicles) moving through them. It is
also centralised, as the central synchronisation controller
handles initialisation and re-synchronisation.

At the completion of the strategy described in Figure 3,
all simulation results are logged, and the simulation is
allowed to complete closing down the entire process on the
cloud. Simulation results can be either stored locally or on
cloud storage infrastructure. They can also feed into a traffic
management computer system, to influence the current state
of traffic in an attempt to alter the formation of any traffic
hotspots.

VI. EVALUATION
In order to measure the performance gains achieved by

the strategy proposed in this paper, two vital sets of
experiments were conducted. The first experiment was to
choose an appropriate cloud node hardware setup that would
not affect the outcome of the experiment due to any
instability caused by factors other than our synchronisation
strategy. The second experiment was to measure the
performance gains by benchmarking the strategy against

centralised and conservative methods. In this section these
experiments will be discussed in detail.

A. Measures and Attributes
In other to evaluate performance gains of the

synchronisation strategy the unit of time taken has been
selected. Time taken (i.e. the end clock time minus the start)
will be recorded and compared throughout each experiment.
The decision to use time taken as the unit of measure is
based on the following factors:

- The traffic simulation is constant: Each agent in the
simulation has been programmed to take the same path for
each run of the simulation; each road and traffic light have
the same attributes governing its behaviour (i.e. road speed
limit, traffic light cycle time).

- The simulation attributes are constant: The time to be
simulated is the same for each simulation run (i.e. the
number of simulation ticks to perform); the number of
agents present in each node at the start of the simulation is
the same.

Given these repeatable behaviours and attributes, each
simulation run, should equate to the same net result and will
only be affected by architecture, strategy or hardware
factors. Furthermore, to ensure accuracy, each experiment is
run multiple times and the resulting distribution is analysed.

B. Benchmark
In order to measure the overhead reduction and

performance increase of the strategy proposed in this paper,
a benchmark must be established. There are two important
parts of the architecture that require benchmarking. The first
is the cloud infrastructure itself. As there are many types of
hardware setup for cloud nodes available selecting the
appropriate one is a priority. The second is to benchmark
well-known representative synchronisation strategies. These
strategies will follow closely centralised and conservative
approaches and will serve as a measure to compare results.
1) Cloud Infrastructure

Amazon AWS has various types of cloud infrastructure
that can be chosen and used, which belong to different
families: micro instances, general purpose, compute
optimised, memory optimized, GPU and storage optimized.
For the purpose of this paper, Amazon AWS micro, general
purpose and compute optimised were selected and tested.
The primary goal of the benchmarking was to select an
instance which was least affected by variations in its
performance. A single desktop computer was also tested to
benchmark the appropriate variance on a single machine.

TABLE 1 PERFORMANCE IN SEC. OF VARIOUS CLOUD INSTANCE TYPES
Type Low Q1 Median Q3 High

Desktop 2121 2171 2220 2272 2337
Micro 986 2594 7205 11481.5 14440

General
Purpose 2550 3274.5 4000 4478 5695

Comp
Optimized 384 396 409.5 421.5 458

522547

As depicted in Table 1, a single machine entirely
dedicated to running the simulation has a performance
variation of 9.2% of the total time taken to run the
simulation. Micro and general-purpose instance types have a
variation of 93.1% and 55% respectively. These variations
are too high and would leave any experimentation with
uncertainty on the results. The compute optimised has a
variation of only 16.1%. It is the lowest variation and the
closest to running a single machine. This type of CPU
intensive instance has been selected for experiments.

Figure 4 Centralised and Distributed synch strategy node topology

2) Centralised Synchronisation Strategy
In a centralised approach to synchronisation, all parts of

the system are kept in sync by a centralised control
structure. At any point of time, the system is fully
synchronised and no events can occur out of sync.

In Figure 4 (left), the node control (NC) is the central
node that controls the overall synchronisation of the system.
For each tick of the simulation a message is sent from NC to
each node, i.e. Node 1 (N1), to begin the processing of the
simulation tick. Once N1 has finished processing the tick a
message is sent back to NC. Once all nodes in the system
have replied to NC, NC will issue the command to begin the
next tick in the simulation. Each node in the system is
connected to both NC and other adjacent nodes. The
connection amongst nodes is only used for the
communication of movement of a vehicle from one
geographical area to the next.

#%� = 2&
The above equation describes the overhead present at NC.

The number of synchronization computations per tick (#%�)
of the simulation is twice the number of nodes (N) present in
the system. This is due to a node, Nj, requiring a
computation to begin the simulation tick and another
computation when that simulation tick is completed. When
the simulation is small enough, this is not a major issue, but
as the simulation becomes larger and the number of nodes
required to process the simulation increase so does this
overhead. This overhead is a problem because it is localised
at one single point, NC, and as such will impact the overall
simulation performance.
3) Distributed Synchronisation Strategy

The distributed synchronisation strategy discussed in this
section has been adopted from the conservative method of
synchronisation. In this type of methodology the system
being synchronised must follow two important rules, no
event can occur out of sync of one another and any dead
lock that may occur must be prevented.

Figure 4 (right) outlines how the distributed
synchronisation is achieved. All nodes synchronise with

their adjacent nodes. A node cannot progress to the next tick
of the simulation till all nodes adjacent to it have completed
the current tick (i.e. N1 must wait for confirmation from N2,
N3, Nj and Ni before it can proceed to the next tick). The
system of nodes can be as large as required, and this type of
strategy will continue functioning. The synchronisation will
spread throughout the network of nodes and the simulation
will progress.

#%� = 2% �ℎ��� 1 ≤ % ≤ 4
The above equation describes the overhead present at

each node in the simulation system. The number of
synchronisation computations per tick (#%�) of the
simulation is two times the number of adjacent nodes (C)
that a node has. As discussed in Section IV, the domain has
been split by geographical boundaries, the maximum
number of adjacent nodes a node can have is four as the
system is a two dimensional grid. The number of
computations required is based on the principle that each
node must both inform and be informed when the current
tick of the simulation has been completed. The distributed
synchronisation method greatly improves the
synchronisation overhead required as it distributes this
computational load across the network of nodes and
decentralises it. This though is more evident when the
number of nodes used is very larger and the difference in
synchronisation computation time is noticeable.

C. Simulation Results
To evaluate the performance improvements achieved by

the synchronisation strategy proposed in this paper, three
types of experiments were run. The first experiment
analysed the effects of increasing the number of distributed
nodes within the system (Section VI.C.1)). The second
experiment investigated the effect of the number of agents
present in each node at initialisation (Section VI.C.2)). The
third and final experiment was run to analyse the efficiency
of synchronisation by approximation at various time
windows and simulation lags (Section VI.C.3)). Throughout
the experiments the principal theme was to trade accuracy
for performance. This was achieved by allowing
neighbouring nodes to fall out of synchronisation and still
allow vehicles to move between them. As explained in
Section V, the granularity of accuracy was controlled by the
value of time window and simulation lag coefficient. For the
first two experiments (Sections VI.C.1) and VI.C.2)), the
time window was set to 60 seconds and the simulation lag
coefficient to 1 (further explanation on the effects of these
two values can be found in Section VI.C.3)).

Figure 5 Graph plotting the average performance for each

synchronisation strategy at: (A) each grid size and (B) each agent number

523548

1) Simulation of Grid Size’s Effect on Performance
The simulation grid size is the number of nodes used to

achieve the simulation. As discussed in Section IV the
overall traffic network map is split into geographical chunks
and assigned to each node for simulation. Depending on the
size of the simulation more and more nodes might be
required to achieve the simulation within acceptable real-
time limits. For the purpose of this experiment five grid size
types were selected: 3x3, 4x4, 5x5, 6x6 and 8x8. These grid
sizes were selected as they offered both diversity and a
realistic size variance, from 9 to 64 nodes, the latter being
able to simulate vast traffic network regions.

A key point to remember is that even though the grid size
is increasing the load on each individual node, brought in by
the simulation itself, is close to constant as the nodes are
initialised with the same size geographic map and same
amount of agents. Therefor the difference in performance is
caused by the synchronisation strategy overhead.

As discussed in Sections VI.B.2) and VI.B.3) and
demonstrated in Figure 5A both the centralised and
distributed synchronisation strategies are behaving as
predicted. In the centralised approach the performance
overhead grows in correlation with the increase in number
or nodes. In the distributed approach the synchronisation
overhead will only grow if the number of connections to
other nodes grows. As such from 3x3 to 8x8 the number of
connections from one node to its adjacent is constant and
therefore the resulting overhead is constant too.

Furthermore, as shown in Figure 5A, synchronisation by
approximation out performs centralised and distributed
strategies at every grid size. By relaxing the synchronisation
requirements (i.e. accuracy vs. performance) the overhead
can be vastly improved and as the grid becomes bigger this
improvement also increases when compared to the
centralised approach. The resulting simulation, albeit less
accurate as vehicles were allowed to travel in time, still
demonstrated the traffic phenomena required to make
informed decisions on the state of the traffic network.
2) Agent Size’s Effect on Performance

The simulation agent size, in the context of this
experiment, is the number of agents representing vehicles in
each node at initialisation of the simulation. A 5x5 grid
structure has been selected to analyse the effects of agent
size. In Figure 5B it is clearly visible that agent size has
little impact on the various strategies themselves. Even
though there is a performance reduction, i.e. the simulation
is taking longer to complete, the increased number of
computations required to simulate all extra agents causes it.
Therefore it can be stated that the increasing number of
vehicles in a node has no impact on the synchronisation
strategy overhead but rather just an impact on the simulation
performance itself, i.e. time taken for a sim to compute.
3) Synchronisation Accuracy’s Effect on Performance

There are two main values that can be set to control the
synchronization by approximation strategy. As discussed in
Section V, these are the maximum allowable time window

and the simulation lag coefficient. Depending on the level of
accuracy required these can be adjusted to increase or
decrease the granularity of the resulting simulation
accuracy. The maximum allowable time window controls
the amount of non-synchronisation that can exist between
two nodes, i.e. how far ahead in the simulation can one node
be compared to the other? The simulation lag coefficient
takes a wider look at what has already occurred throughout
the simulation and then controls when the simulation must
re-synchronise due to it exceeding its allowable maximum.
A value of 1 in SL indicates that all agents that have existed
in a node have firstly travelled through time and secondly
have travelled with a time jump equal to the maximum
allowable time window. For SL to equal a value of 1, the
node would need to start with no agents and all agents
entering the node would need to be traveling at the
maximum allowable time window. Based on this, if an
empty node is present in the simulation, agents would be
more likely to travel at the maximum time window as the
value of the time window was made smaller.

For the purpose of this experiment, grid and agent sizes
respectively were set to 5x5 and 200. For the time window -
simulation lag values, the following were tested: 60 - 1, 30 -
0.5 and 15 - 0.25. As the values become smaller, the level of
accuracy in synchronization increases, i.e. vehicles can
move less through time and less overall vehicles are allowed
to move through time.

Figure 6 Performance results for various control values applied to

synchronisation by approximation
Figure 6 demonstrates that, as the level of accuracy of the

synchronisation increases, the overall performance of the
simulation decreases. This is an expected result as our
performance improvements derive from the trade off with
the level of accuracy of the synchronisation strategy.
Recalling the results in Figure 5A, the median results for the
duration of the simulation (with the same grid and agent
size) for centralised and distributed strategies respectively
are 121 and 191 seconds. Even at higher levels of accuracy,
synchronisation by approximation outperforms centralised
and distributed strategies.

D. Discussion
Demonstrated by the simulation results discussed in

Section VI.C, synchronisation by approximation
outperforms both centralised and distributed strategies in
terms of performance. By allowing for different levels of
synchronisation accuracy, simulations can run faster by
trading off accuracy for performance. In the modern day
scenario this can strongly help achieve requirements, which
otherwise, would be very hard and costly to overcome, e.g.
affect traffic in real time.

524549

Even though the immediate results of the simulation may
not be always 100% accurate, they can provide enough
information to identify early symptoms of traffic congestion
formation. Changes can then be applied immediately to
hotspot areas, while a longer-running more-accurate
simulation confirms both the prediction and outcome of
these changes. The variable accuracy level is also highly
important as many simulations can be started concurrently
but will finish at different time intervals, all providing a
more accurate result of the previous simulation.

VII. CONCLUSION AND FUTURE WORK
The area of traffic management is vital to the running of

all major cities. Computer assisted simulations enable traffic
engineers to identify the creation of traffic hotspots. These
simulations must run faster than real time if the results are to
be used to affect the state of traffic. Cloud computing is a
technology paradigm that can be adopted to run such
simulations. It has been demonstrated in this paper that by
applying a new method for controlling synchronisation of a
simulation running in the cloud, performance can be
improved by reducing the synchronisation overhead and
diverting this overhead to performance gains, a vital step in
assuring faster than real time capabilities. This is achieved
by the novel architecture proposed by this research, which
enables the trade off of simulation accuracy for performance
gains (feasible due to the domain of traffic) in a controlled
and repeatable manner.

The synchronisation strategy proposed in this paper can
be further improved by looking at factors such as load
balancing and domain model division. If the simulation load
distribution can be further optimised both proactively
(domain model division) and reactively (load balancing)
further performance gains can be achieved. Furthermore,
constructing a multi-layered architecture for varying
accuracy can assist the simulation framework proposed in
returning increasingly accurate results over time, thus
allowing better control of the traffic phenomenon.

ACKNOWLEDGMENT
The research team thanks Amazon (AWS) for the support
provided with the Education Grant Award.

REFERENCE
[1] P. Croft, Guide to Traffic Management, Austroads, 2009.
[2] T. Cheng & H. Shengguo, 'An Extensible Multi-agent Based

Traffic Simulation System', Int. Conf. on Measuring
Technology and Mechatronics Automation, pp. 713-716,
2009.

[3] H. Kirschfink, J. Hernández & M. Boero, 'Intelligent Traffic
Management Models', ESIT, pp. 14-15, 2000.

[4] Y. Nakai, D. Perrin, H. Ohsaki & R. Walshe, 'Performance
Evaluation of Cloud-Based Parallel Computing', IEEE
Annual Computer Software and Applications Conf.
(COMPSACW), pp. 351-355, 2013.

[5] J.F. Ransome & J.W. Rittinghouse, 'Front Matter', in Cloud
Computing, CRC Press, 2009.

[6] M.A. Vouk, 'Cloud computing - Issues, research and
implementations', Int. Conf. on Information Technology
Interfaces, pp. 31-40, 2008.

[7] J.F. Ransome & J.W. Rittinghouse, 'Web Services Delivered
from the Cloud', in Cloud Computing, CRC Press, 2009.

[8] S. Jafer, Q. Liu & G. Wainer, 'Synchronization methods in
parallel and distributed discrete-event simulation', Simulation
Modelling Practice and Theory, vol. 30, pp. 54-73, 2013.

[9] M. Scheutz & P. Schermerhorn, 'Adaptive Algorithms for the
Dynamic Distribution and Parallel Execution of Agent-Based
Models', Journal of Parallel and Distributed Computing, vol.
66, pp. 1037-1051, 2006.

[10] M. Randles, D. Lamb & A. Taleb-Bendiab, 'A Comparative
Study into Distributed Load Balancing Algorithms for Cloud
Computing', IEEE Int. Conf. on Advanced Information
Networking and Applications, pp. 551-556, 2010.

[11] R.P. Wolfson & J.H. Gower, 'The Role of Computer
Modeling and Simulation in Electric and Hybrid Vehicle
Research and Development', IEEE Trans. on Vehicular
Technology, vol. 32, pp. 62-73, 1983.

[12] J.A. Doornik, D.F. Hendry & N. Shephard, 'Computationally
Intensive Econometrics Using a Distributed Matrix-
Programming Language', Philosophical Trans. of the Royal
Society A, vol. 360, pp. 1245-1266, 2002.

[13] J.L. Tripp, M.B. Gokhale & A. Hansson, 'A Case Study of
Hardware/Software Partitioning of Traffic Simulation on the
Cray XD1', IEEE Trans. on VLSI Systems, vol. 16, pp. 66-
74, 2008.

[14] W.-c. Feng, 'Making a Case for Efficient Supercomputing',
Queue, vol. 1, pp. 54-64, 2003.

[15] D. Chen, L. Wang, X. Wu, J. Chen, S.U. Khan, J.
KoÇodziej, M. Tian, F. Huang & W. Liu, 'Hybrid Modelling
and Simulation of Huge Crowd Over a Hierarchical Grid
Architecture', Future Generation Computer Systems, 2012.

[16] J. Decraene, Y.Y. Cheng, M.Y. Hean Low, S. Zhou, W. Cai
& C.S. Choo, 'Evolving Agent-Based Simulations in the
Clouds', Int. Workshop on Advanced Computational
Intelligence, pp. 244-249, 2010.

[17] H. Heng, L. Ruixuan, D. Xinhua, Z. Zhi & H. Hongmu, 'An
Efficient and Secure Cloud-Based Distributed Simulation
System', Applied Mathematics & Information Sciences, vol.
6, pp. 729-736, 2012.

[18] P. Wittek & X. Rubio-Campillo, 'Scalable Agent-Based
Modelling with Cloud HPC Resources for Social
Simulations', IEEE Int. Conf. on Cloud Computing
Technology and Science (CloudCom), pp. 355-362, 2012.

[19] R.M. Fujimoto, 'Parallel Discrete Event Simulation', CACM,
vol. 33, pp. 30-53, 1990.

[20] K. Venkatesh, T. Radhakrishnan & H.F. Li, 'Discrete Event
Simulation in a Distributed System', IEEE COMPSAC,
1986.

[21] K.M.C.a.J. Misra, 'Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs', IEEE
Trans. on Software Engineering, vol. SE-5, pp. 440-452,
1979.

[22] D.R. Jefferson, 'Virtual time', ACM Trans. on Program.
Lang. Syst., vol. 7, pp. 404-425, 1985.

[23] O. Rihawi, Y. Secq & P. Mathieu, 'Synchronization Policies
Impact in Distributed Agent-Based Simulation', AISC
Distrib. Computing & Artificial Intelligence, vol. 217, pp.
19-26, 2013.

525550

