
Parallel native-simulation for multi-processing 
embedded systems 

Alejandro Nicolas  
Microelectronics Engineering Group 

University of Cantabria 
Santander, Spain 

nicolasa@teisa.unican.es 

Pablo Sanchez 
Microelectronics Engineering Group 

University of Cantabria 
Santander, Spain 

sanchez@teisa.unican.es

Abstract—The number of cores in embedded systems is 
continuously growing, supporting increasingly complex 
concurrent applications. In order to verify that the systems 
comply specification requirements during the design process, fast 
simulations and performance analysis tools are required. These 
simulation frameworks typically use virtualization or host-
compiled simulation techniques. On one hand, current host 
compiler simulators normally offer fast simulations, but they do 
not exploit host parallelism capacity. On the other hand, some 
virtual emulation frameworks take advantage of host 
parallelization, but they do not achieve simulations as fast as 
native (host-compiled) simulators because of the dynamic binary 
translation. This paper proposes a parallel host-compiled 
simulation methodology that aims to make an efficient use of 
multi-core host platforms. The performance of the proposed 
technique has been evaluated with the PARSEC benchmark suite 
[10]. The evaluation also includes comparisons with native 
execution and other parallel simulation tools. Results 
demonstrate that the proposed technique reduces simulation time 
and provide fast estimations of embedded SW code. 

Keywords—virtual platform; parallel host-compiled simulation;
performance analysis; many-core embedded system 

I. INTRODUCTION

Current embedded systems are designed using HW 
platforms with Multi-Processor Systems-on-Chip (MPSoC). 
Additionally, the technology evolution enables increasing the 
number of cores in these embedded platforms. Designing 
embedded applications for MPSoC is a very complex and 
costly task, and verifying the correctness of the complete 
system adds additional difficulties to the process. The 
embedded system designers normally have to address two 
challenges: selecting the target platform and obtaining 
maximum performance of embedded software applications. 
Moreover, these two tasks are interconnected which adds extra 
difficulty.  

In order to provide estimations and metrics that guide 
design decisions, several performance analysis and simulation 
frameworks have been proposed. The estimation tools have to 
be fast and flexible, especially when wide design space 
explorations are required. They should also take into account 

the target embedded platform architecture, being able to offer 
execution time and power consumption estimations. 

The target (simulated) platform could have a multi-core or 
many-core architecture. Target-platform aspects, among others, 
have to be taken into account during simulation. 

The simulated target RTOS (tRTOS) schedules the 
execution of the target threads and processes in the target 
cores. These target threads/processes parallelize the embedded 
application. The main objective of this paper is to develop a 
performance analysis framework that can simulate very fast 
and efficiently this type of target system in a general-purpose 
computer (host platform). Host platforms normally integrate 
several multi-core processors with SMP (Symmetric Multi-
Processing) capability and they will soon contain several tens 
of cores [12]. Thus, this paper proposes a performance analysis 
methodology and a virtual platform (Virtual Parallel platform 
for Performance Estimation, VIPPE) for simulating embedded 
parallel applications in target many-core platforms using a 
SMP multi-core host computer.

 In native (host-compiled) simulation, the execution time of 
the embedded software in the target platform is estimated 
during host-code execution. The estimation functions take into 
account target core instructions, caches, buses and memory 
access times. 

II. STATE OF THE ART

With the purpose of validating constraints and exploring 
different implementations in multi-/many-core platforms, 
designers require performance analysis frameworks capable of 
carrying out fast system simulations. For embedded system 
evaluation, several static performance analysis techniques have 
been proposed [1], although they have limited applicability. 
Alternatively, most performance analysis frameworks are 
based on simulation, which provides faster and more accurate 
results. During the last years, two types of simulation 
techniques have been proposed. 

The first type executes target-compiled applications on host 
models of the target platforms. For example, they could use an 
Instruction Set Simulator (ISS) to model the target cores [2]. 
These tools provide very accurate results but poor simulation 

2015 Euromicro Conference on Digital System Design

978-1-4673-8035-5/15 $31.00 © 2015 IEEE

DOI 10.1109/DSD.2015.75

543



performances. Other approaches use binary-translation 
techniques to improve simulation performances [3]. However, 
these solutions are limited to sequential simulation and they are 
not able to take advantage of parallelism. Currently, this is a 
great limitation since the applications tend to be concurrent in 
order to exploit parallelism on target platforms. To face this 
issue, parallel simulation solutions based on QEMU have been 
proposed, such as COREMU [11]. These solutions offer good 
performances regarding parallel speed-up but have limitations 
in simulation time due to binary translation. In addition, the 
parallelism and speed-up is limited to the number of cores of 
the target (simulated) platform. 

The second type of performance analysis framework is 
based on host-compiled (native) simulation. This solution offer 
faster simulations than previous techniques since it avoids 
binary translation. However these solutions typically provide 
less accurate results than binary translation based techniques.
In host-compiled simulation, the embedded software is 
compiled in the host computer with some additional 
instrumentation code and/or support libraries (e.g. the 
Transaction-Level Modeling kernel of SystemC [4]). It could 
also include models of the target RTOS [5]. Nevertheless, there 
is a growing interest on parallel implementations of host-
compiled simulators during the last years. The synchronization 
strategy of these simulators could be synchronous [6] (if there 
are global synchronization points or clocks) or asynchronous 
[7]. The last strategy improves simulation performance 
although the implementation is more complex. A conservative 
simulator guarantees that there are not causality errors while 
the optimistic approach in [8] could have some errors that force 
the simulator to recover a previous state.  

To reduce simulation time, this paper presents a 
conservative parallel host-compiled simulation technique with 
asynchronous synchronization strategy. The goal is to face 
poor simulations performance of DBT simulators and the 
parallel evolutions appeared such us [11]. For such purpose, 
this works relies on host-compiled technique. In addition, the 
simulator solves the problem of not parallelization supported in
host-compiled simulator such us [8]. Moreover, the 
parallelization performance of this technique of simulation is 
not limited by the number of virtual platform cores but the host 
platform cores. 

III. HOST SIMULATION TECHNOLOGY

The host simulation technology consists of four stages.  

A. API provided by the simulator 
The simulator provides an optimal reduced set of primitives 

which make use of the services offered by the kernel. 

B. Instrumentation 
The instrumentation is automatically performed by using 

the LLVM framework [9]. This instrumentation brings the 
information necessary to provide several estimations (e.g. 
simulated execution time and number of memory accesses).  

Once binaries from functional code are generated, they are 
linked together with the simulator libraries in order to obtain a 
final binary executable. This executable will run in the host 
platform to provide the estimation metrics. 

C. Target Platform Description 
The target platform description is taken as input for the 

binary executable obtained from compiling the user code 
sources and linking with the simulator libraries. This input 
description is read from XML files.

D. Simulation Technique 
The main goal of the simulation technique is to exploit the 

concurrency of the application and to take advantage of the 
parallel capacity in the host environment. There are some terms 
that need to be introduced before the explanation of simulation 
technique: kernel thread is the thread master of the simulator; 
target threads are the required threads to be created explicitly 
by the user application code. Host threads are all the threads 
created by the simulator.  

The simulation starts by the simulator environment 
initializations such as, for example, the target platform reading 
and its virtual initialization. Kernel thread performs these 
initializations. Then, kernel thread will launch the simulation 
mapping the application in a new host thread. The simulation is 
performed by mapping each target threads (t-threads on Fig. 1)
to a host simulation thread (h-threads on Fig. 1).  

Target threads shares their information related to code 
annotation with simulator kernel thread and this one is in 
charge of simulating the system through this information. The 
communication between target threads and kernel thread is 
implemented by shared variables. Kernel thread writes and 
reads atomically on shared variables and it does not lock target 
threads. Thus, target threads only need to be locked when they 
access to synchronization elements for reading, because 
accesses for writing are stored in a queue of events. The events 
of the queue are resolved by kernel thread when updates 
threads timings and unlock target threads. This fact minimizes 
locking and improves parallel execution. 

So the proposed simulation technique intends to exploit 
host parallel capacity, simulating several application threads in 
parallel. 

Fig. 1. Simulation of virtual platform 

544



TABLE I. KERNEL ALGORITHM

1. - Begin simulation cycle. AddTime=0;
2. - While AddTime is less than a time slice:

2.1. - Atomic read of thread local values
2.2. - Select the threads with SimStatus="active" that will be 

scheduled to target cores
2.3. - Check if all selected threads can be allocated. If not.

2.3.1. - Return to the host control
2.3.2. - Update thread local values and go to 2.3.

2.4. - New_AddTime=minimum of the times to allocate of 
the selected threads. Estimate bus bandwidth.

2.5. - Schedule threads until New_AddTime. Update shared 
variables and synchronization elements.

2.6. - Check selected threads with status="locked".
2.6.1- If they change their status to "active", go to 2.3.1.
2.6.2- If they still locked, select a new thread to be 

schedule in the target core.
2.7. - AddTime=AddTime+New_AddTime. Go to 2.3.

3. - Check all threads that do not have SimStatus=active. The 
new current values of shared variables and synchronization 
elements could modify their status.
4. - It simulation has not finished go to 1.

1) Simulation kernel algorithm 
The simulation kernel thread handles the physical 

simulation time or global time (globalSimTime). Additionally, 
it maintains a list with the current values of all shared variables 
and synchronization elements (currentValueList). The list also 
includes information about the last global time in which every 
shared variable and synchronization element was updated. 

 TABLE I describes the kernel simulator algorithm. Kernel 
thread computes in parallel with the user code mapped on host 
threads. Kernel thread is in charge of scheduling the simulation 
on the virtual target platform. The simulation kernel reads 
atomically the target threads local time values and updates the 
kernel times values (atomic read operation) for each target 
thread in the simulation. 

IV. EXPERIMENTS AND RESULTS

This section has two goals: evaluating the simulator 
performance comparing it with available tools in the state of 
the art such as COREMU and analyzing maximum possible 
speed up. For such purpose, applications from a parallel 
application benchmark, the PARSEC benchmark, were 
simulated in order to obtain simulation performance and study 
the limitations of the proposed approach.  

All evaluation results were performed on a host with 8 Intel 
Xeon E5-2687W at 3.10 GHz. Every processor has 8 cores, 
thus the host platform integrates 64 cores with SMP capability 
running Fedora-Linux with kernel 3.16.2-201. Also the 
computer has 64 GB of RAM and 20 MB of cache. 

A. Comparison with other approaches 
This section is focused on comparing our simulator with 

other available virtualization platform: COREMU, a parallel 
extension of QEMU. 

For comparing that, some examples have been simulated in 
both simulators, considering a dual core as target platform. 
These comparatives were done in the same conditions (TABLE 
II and TABLE III).   

On one hand, regarding execution times, VIPPE simulation 
obtains better performance due to the native execution in 
comparison with binary translation of COREMU. On the other 
hand, the obtained results show how the COREMU speed up 
converges when the number of threads is the same or greater 
than the number of target cores. By contrast, the speed up from 
VIPPE simulations is limited by the number of threads or the 
application characteristics (x264 and Blackscholes, this will be 
discussed in the following section). Although the speed up 
does not offer as much gain as COREMU (due to the 
normalization to sequential case), the execution time continues 
being smaller. 

B. Comparison with ideal speed up  
This section tries to analyze VIPPE performance depending 

on the characteristics of the application to simulate. 

In order to clarify the level of parallelization, the following 
graphic (see Fig. 2) show the achieved speed up. Besides, this 
speed up is compared to the ideal maximum speed up. This 
maximum speed up is calculated by executing the applications 
directly on the host (without the simulator), therefore, avoiding 
the overhead added by simulator when annotating the code and 
modeling the system.  

The kernel simulation thread is in charge of unlocking the 
simulation target threads. Thus, when the target threads 
execution time between locks is small compared to the time the 
kernel thread takes to free these threads, the simulation 
execution time is penalized. This penalty will depend on the 
number of target threads and the number of synchronizations. 
Then, the penalty of locking affects the simulation time. 
Hence, the bottleneck of the simulator is in the kernel speed for 
freeing the locked threads. Applications with low ratios 
(total_synchronizations/total_instructions) achieve 
parallelization improvement, whereas, applications with higher 
ratios are penalized as the number of application threads 
increases. The maximum scalability is explained by the 
Universal Law of Computational Scalability [13].

TABLE II. COREMU EXECUTION TIMES (SECONDS) 

              Threads
Example 1 2 4 8

Swaptions 110.81 58.91 59.12 62.54

Blackscholes 130.83 65.68 66.52 67.01

X264 268.12 148.33 149.48 151.23

TABLE III. VIPPE EXECUTION TIMES (SECONDS) 

              Threads
Example 1 2 4 8

Swaptions 5.57 2.99 2.10 1.76

Blackscholes 3.30 2.05 1.81 1.73

X264 5.99 6.99 8.10 8.43

545



Fig. 2. Application simulation vs. native

Fig. 3. Swaptions simulation time scalability when simulating different 
target platforms 

VIPPE approach is independent from simulated platform 
and the scalability depends on the number of host cores. So it is 
possible to take full advantage of parallelization in host-cores 
almost independently of the target platform number of cores as 
can be seen in Fig. 3. This demonstrates that the target platform 
has not an important impact in the scalability of the simulation. 

Finally, the accuracy of the tool has been measured in 
different physical target platforms and the results show this 
accuracy is near to 60%, and much of the error rate is due to 
the annotation process. The intermediate representation of 
LLVM is similar to assembler code but depending on the target 
architecture the difference can be significant due to this is a 
coarse-grain estimation.  

V. CONCLUSIONS AND FUTURE WORK

Current embedded applications require fast and flexible 
performance analysis frameworks. These frameworks should 
be capable of supporting parallel applications and taking 
advantage of full computational capacity of the host. 

The approach proposed in this paper enables host-compiled 
performance analysis for embedded parallel applications in 

current many-cores platforms. The gain obtained from 
scalability is slightly affected by the simulated platform. 
However, for this kind of simulation techniques the 
performance is limited by the number of synchronization and 
the threads execution time between synchronizations. 

The experiments were performed on a multi-core 
workstation and the results obtained show the impact of 
simulation performance on parallel applications. The speed up
of parallel simulations is similar to original code with the 
exception of particular cases. 

 In future works, an alternative in the kernel will be studied 
in order to reduce the penalty produced by the kernel when the 
code to execute by each thread is smaller than kernel 
computing. In addition, the code instrumentation process will 
be refined to achieve more accurate results. For such purpose, 
the estimation will be done using LLVM backend instead of 
the IR. This estimation will provide fine-grained annotation on 
the target architecture. 

ACKNOWLEDGMENT 

This work has been financed by the Mineco through the TEC2014-
58036-C4-3-R project and CA112 HARP project; the Spanish 
MITyC and the EU through the Artemis 295371 CRAFTERS project.  

REFERENCES

[1] E. Wandeler et all, "System architecture evaluation using modular 
performance analysis: a case study", Journal of Software Tools for 
Technology Transfer (STTT). Oct 2006. 

[2] D. Yun, S. Kim, "A parallel simulation technique for multicore 
embedded systems and its performance analysis", IEEE Trans. on 
Computer-Aided Design of Integrated Circuit and Systems. Vol 31, No 
1, Jan 2012. 

[3] Y. Jung, J. Park, M. Petracca, L. Carloni, "NetShip: a networked virtual 
platform for large-scale heterogeneous distributed embedded systems". 
Proc. of Design Automation Conference, 2013. 

[4] A. Gerslauer, "Host-compiled simulation of multi-core platforms", IEEE 
Int. Symp. on Rapid System Prototyping (RSP). June. 2011.. 

[5] P. Razaghi, A. Gerstlauer, "Predictive OS modeling for host-compiled 
simulation of periodic real-time task sets". IEEE Embedded Systems 
Letters. Vol 4, No 1. March 2012. 

[6] S. Roloff, F. HAnnig, J. Teich, "Approximate time functional simulation 
of resource-aware programming concepts for heterogeneous MPSoCs". 
Proc. of Asian and South Pacific Design Automation Conference. ASP-
DAC'12. 2012. 

[7] C. Roth et all, "Asynchronous parallel MPSoC simulation on the single-
chip cloud computer". IEEE Int. Symp. on System on Chip (SoC). 2012. 

[8] S. Jafer, Q. Liu, G. Wainer, "Synchronization methods in parallel and 
distributed discrete-event simulation", Simulation Modeling Practice and 
Theory, 30 (2013). 

[9] The LLVM Compiler  Infrastructure: www.llvm.org
[10] Princeton Application Repository for Shared-Memory Computers 

(PARSEC) website: http://parsec.cs.princeton.edu
[11] Z. Wang, R. Liu, Y. Chen, X. Wu, H. Chen Weihua Zhang and B. Zang, 

“COREMU: a scalable and portable parallel full-system emulator”. 
ACM SIGPLAN Symposium on Principles and Practice of Parallel 
Programming (PPoPP 2011). February, 2011. 

[12] D.Strom and W. Gruener. “Pat gelsinger: A shot at running intel”.
Tom’s Hardware Geuide, May, 2005. 

[13] N. J. Gunther, “A Simple Capacity Model of Massively Parallel 
Transaction Systems”, CMG National Conference, 1993. 

0
1
2
3
4
5
6
7
8
9

10

1 2 4 8 16

Sp
ee

d-
up

 

Threads 
x264 Native x264 Simulation
Swaptions Native Swaptions Simulation
Blackscholes Native Blackscholes Simulation

546


