
Load Balance Strategies for DEVS Approximated Parallel and Distributed

Discrete-Event Simulations

Alonso Inostrosa-Psijas∗, Veronica Gil-Costa‡, Roberto Solar† and Mauricio Marı́n∗†

∗Universidad de Santiago, Chile
†Yahoo! Research Latin America, Chile

‡Universidad Nacional de San Luis, Argentina, Email: gvcosta@unsl.edu.ar

Abstract—DEVS is a formalism for modeling and analysis
of discrete event systems. PDEVS is an extension of DEVS
for supporting Parallel and Discrete Event Simulation (PDES).
PCD++ is a simulation platform that supports parallel simula-
tions of DEVS models, where the model component allocation
in processors is not an automatic process. This can be a time
consuming task requiring knowledge of communication pat-
terns among model components. In this paper, we propose and
evaluate different allocation strategies devised to improve load
balance of parallel DEVS simulations. The experimentation is
made on a Web search engine application whose workload is
featured by dynamic and unpredictable user query bursts, and
high message traffic among processors.

Keywords-Parallel Discrete Event Simulation; PDES; DEVS;

I. INTRODUCTION

Parallel discrete event simulation (PDES) has been widely

used in different application areas as an efficient tool to

study performance of large scale systems. A PDES program

consists of a collection of logical processes (LPs), each sim-

ulating a different portion of the model. LPs communicate

to each other by exchanging timestamped event messages.

A major difficulty of PDES is to efficiently process

all events in parallel in global time-stamp order. In the

literature, dealing with causality related events issues are

two major strategies: conservative and optimistic [1]. In

conservative algorithms, the process is blocked until all

execution conditions are satisfied. In optimistic algorithms,

the process will continue even if some execution condition

is not fulfilled, but including mechanisms to recover from

causality issues. The optimistic protocol is relaxed in [2] by

removing the mechanisms to recover from causality errors

leading to approximate simulations.

DEVS is a simulation formalism for modeling and simu-

lating discrete event systems [3], [4]. We work with a PDES

platform called Parallel CD++ (PCD++) [5] that supports

parallel simulation of DEVS models.

In this paper we propose and evaluate different load

balancing strategies devised to automatically allocate the el-

ements of a DEVS model to the distributed set of processors.

The remaining of this paper is organized as follows.

Section II presents the background. In section III we present

the WSE application modeled with PCD++. In Section

IV we describe the allocation strategies evaluated in this

work. In section V we present our experimental results and

conclusions are discussed in Section VI.

II. BACKGROUND

A. Parallel discrete event simulation

Parallel discrete event simulation (PDES) consists of

executing a single simulation program on a parallel com-

puter. The simulation program is decomposed into a set of

concurrent processes called logical process (LP) that may

be independently executed on different processors. Each LP

is composed by a separate set of state variables of the

simulation program. The communication between LPs is

performed by exchanging timestamped messages or events.

In PDES, synchronization protocols are used to avoid that

the parallel simulation violates the local causality constraint

(events must be executed in timestamp order). Synchroniza-

tion protocols can be classified as conservative or optimistic

[1]. A new approach for approximate parallel simulations is

presented in [2]. It relaxes causality constraints of conserva-

tive protocols permitting out of time execution of straggler

events, leading to faster execution of simulations.

B. Service Based Web Search Engines

Modern WSE are composed of services deployed in

computer clusters. Typical services are: Front Service (FS)

that handles submitted user queries by routing them to the

appropriate service, it also manages the delivery of final

results to the user. The Cache Service (CS) implements a

partitioned distributed cache storing previously computed

results for the most popular queries. And the Index Service

(IS), holds an index of the document collection and is

responsible of delivering partial results to the Front Service.

These services are deployed on clusters of computers and

its processing nodes are allocated in racks connected via

network switches. To reduce query response times and in-

crease throughput of queries, most services are implemented

as arrays of P×R processing nodes, where P is the level of

partitioning and R is the level of replication of each service

partition, as seen in Figure 1.

2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/15 $31.00 © 2015 IEEE

DOI 10.1109/PDP.2015.13

337

Figure 1. Query processing

Processing nodes from FS can communicate with every

processing node of the other services. Thus, the communica-

tion pattern tends to be uniform which makes this a difficult

application to be partitioned.

C. DEVS

The Discrete-Event System Specification (DEVS) [3]

formalism provides the means for describing discrete-event

systems. DEVS provides two different types of elements to

model a real system: Atomic and Coupled. Atomic models

allow to represent the behavior of a system whereas coupled

models permit to represent its structure. Coupled models are

composed of two or more atomic or coupled models [3].

DEVS allows model reuse of existing models.

There are several implementations of DEVS, one of

them is Parallel CD++ (PCD++), with versions that use

conservative and optimistic protocols [5], [7], [8].

III. MODELING WSE WITH PCD++

Coupled models were not considered in the design of

our simulation model since its atomic elements are highly

interconnected and its use would lead to an increase in

communication levels (specially if atomic models belonging

to composed models are assigned to different LPs)

Our DEVS model of the WSE is shown in Figure 2.

Shaded areas are only intended to help the reader to identify

the different services of the model. The Query Generator

generates and delivers user queries through its output ports

(out 1,...,out n) to the FS replicas selecting them in a round-

robin fashion. Query inter-arrival time is simulated using an

exponential distribution. Once a FS replica receives a new

query (on its “In” input port), it immediately sends it to

a single replica of the CS through one of its “outCS i j”

output ports. The FS replica chooses the i − th partition

by computing a hash function on the query terms, and the

j− th replica in the selected partition is chosen in a round-

robin form. Then, the CS replica responds the query to the

FS replica that sent it in the first place with a “hit/miss”. In

case there was a “hit” the query now contains the results for

that search, the FS responds with the query results to the

user and the processing for that query is finished. However,

if the answer was a “miss”, the FS replica needs to get

the results from the IS. The query is sent to the P IS

partitions (the replicas among the partitions are also selected

in a round-robin mode) through its “outIS i j” output ports.

Once the FS replica has received the partial results from

all the selected IS replicas it performs a merge operation

producing the the top−k final document results.

IV. PARTITIONING STRATEGIES

The main objective behind the partitioning strategies is

to achieve good workload balance, since its consequences

are a reduction in execution time, an increase in speedup

and a reduction in network communication (which translates

as lower probabilities of straggler events). These goals are

achieved by properly allocating at the same LP the simulated

entities that communicate the most to each other and by

having similar amounts of simulated entities at each LP.

Each LP is exclusively hosted into a physical processor. We

use the following allocation strategies of entities to LPs:

• User Defined: This strategy requires knowledge about

the application and the communication patterns to prop-

erly allocate entities evenly at the different LPs.

• RB: A communication graph is built based on the

amount of queries sent by each pair of simulated enti-

ties. This graph is partitioned with the METIS software1

by means of a multilevel recursive biscetion approach.

As a result, each partition groups the simulated entities

that communicate the most.

• Hash-Based: The Fowler-Noll-Vo non-cryptographic

hash function was used. FNV hashes are designed to

be fast while maintaining a low collision rate.

• RR: Entities are assigned in a round-robin fashion.

• RND: Entities are assigned in a random fashion.

• SP: We apply a spectral clustering algorithm [9] in

order to obtain k partition groups.

In PCD++ the allocation of atomic models to the different

LPs is defined by the user in an offline fashion by explicitly

specifying the processor location for each model component.

Entity migration among LPs is not allowed. Also, PCD++

lacks of dynamic load balance capabilities. Under these con-

straints is that the study of different strategies for partitioning

the simulation model becomes relevant.

V. EVALUATION

A. Experimental Setting

Partitioning strategies were evaluated by simulating a

WSE DEVS model (as in Figure 2) to obtain metrics

related to model simulation accuracy and performance of

the parallel simulator itself.

1http://glaros.dtc.umn.edu/gkhome/views/metis

338

Figure 2. DEVS model of a WSE

A services configuration is a user defined simulation

parameter indicating the levels of partitioning and replica-

tion of each service of the WSE model (i.e., <3,4,5,6,7>

specifies a WSE with 3 FS, 4 CS partitions and 5 replicas

per partition, and 6 IS partitions with 7 replicas each).

The model used in our experiments was specified with

a <32,32,8,16,15> configuration simulating 528 physical

processors. Our simulator model supports different query

arrival rates because in practice user queries do not arrive

at evenly-spaced time intervals. Different query arrival rates

were used in order to avoid the saturation of the simulated

services, that is, with workload over 80%. It is important to

simulate unsaturated services, because the metrics studied in

this work cannot be well estimated when services run under

overloaded conditions because results are unpredictable and

do not follow a stable behavior.

To correctly simulate the behavior of a WSE and its

relevant costs, the simulator uses actual query logs, doc-

ument posting lists and ranking times. In particular, we use

a log of 36, 389, 567 queries submitted to the AOL Search

service. It was pre-processed according to the rules described

in [10].The costs of the most significant operations of a

WSE were measured on production hardware [11] and then

used by the DEVS model to properly simulate the query

processing process.

Experiments were executed on the Deepthought cluster

at the ARS Laboratory at Carleton University using up to

sixteen HP PROLIANT DL Servers with Dual 3.2Ghz Intel

Xeon processors and 2GB of RAM memory. In the following

experiments we use the PCD++ parallel DEVS simulator

implementing an approximated optimistic protocol [2] using

the MPI message passing library.

B. Simulation Accuracy Evaluation

Throughput (processed queries per second) results show

that the strategies behave well with models of different sizes.

According to results in table I strategy RB provides the

lowest error levels as the amount of processors involved in

Table I
THROUGHPUT PERCENTAGE ERROR

Strategy 2 Nodes 4 Nodes 8 Nodes 16 Nodes

User Defined 0.102% 0.170% 0.186% 0.186%

RB 0.105% 0.134% 0.193% 0.182%

FNV1A32 0.107% 0.175% 0.193% 0.195%

RR 0.118% 0.166% 0.177% 0.211%

RND 0.106% 0.163% 0.208% 0.189%

SP 0.107% 0.172% 0.192% 0.212%

the parallel simulation increases. However, the percentage

of throughput error of the rest of the strategies only raises

to a maximum of almost 0.21%.

As more processors are involved in the parallel simulation

there should be more probabilities of straggler events. Nev-

ertheless, this is not always the case with strategies RB and

RND (as shown in Table I) as they tend to group simulated

services with higher communication interaction to the same

partition, reducing overall network communication.

C. Simulator Performance Evaluation

Figure 3 shows speedup and workload efficiency of our

simulating model. Strategies show similar results but RB,

mainly because it has partitions of different sizes.

As expected, it can be observed in figure 3(a) that

User Defined and RR strategies obtain the highest speedup

levels since these strategies uniformly distribute entities

to LPs. Hash-based and SP strategies also present good

performance results. Workload efficiency is calculated as

W Efficiency = 1
P

∑
P

i=1
wi

max(wi)
. wi is the amount of

events processed by the LP running on processor i, and

P is the number of processors involved in the parallel

simulation. A workload efficiency close to 1, means that all

LPs tends to do the same amount of work. It can be observed

in figure 3(b) that the workload efficiency decreases as

more processors are involved in the parallel simulation.

RB presents the lowest levels of workload efficiency since

339

 1

 2

 3

 4

 5

 6

1 2 4 8 16

S
pe

ed
up

Number of Processors

user defined
recursive bisection

hash-based
round robin

random
spectral clustering

(a) Speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16

W
or

kl
oa

d
E

ffi
ci

en
cy

Number of Processors

user defined
recursive bisection

hash-based
round robin

random
spectral clustering

(b) Workload

Figure 3. Speedup vs Workload balance.

this strategy does not guarantee a uniform assignment of

entities to LP. Therefore, some LPs process more events

than others, producing a high variance among the workload

of the physical processor. User defined and RR practically

overlap each other, showing to be strategies with the best

workload efficiency, since they distribute the entities among

the parallel processors more uniformly than the rest.

As more processors are involved in the simulation, it

can be observed in figure 3 that even when RB has the

poorest load balance and speedup levels, it presents the

lowest straggler events ratio among the studied strategies (as

shown in figure 4) since it effectively allocate (no matter

how unbalanced) the simulated processing services that

communicate the most at the same LP, effectively reducing

overall communication costs.

VI. CONCLUSIONS

In this work we proposed and evaluated different static

partitioning strategies devised to automatically allocate

DEVS model components to different processors for the

PCD++ parallel simulation framework. In particular, the RR

and User Defined strategies present the best choices for

implementing an automatic allocation strategy in PCD++

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1 2 4 8 16

S
tra

gg
le

r E
ve

nt
s

(R
at

io
)

Number of Processors

user defined
recursive bisection

hash-based
round robin

random
spectral clustering

Figure 4. Straggler Events

for DEVS. We performed our experimentation using the

approximate optimistic protocol, nevertheless, the allocation

strategies are also directly applicable to the other conserva-

tive and optimistic protocols in PCD++.

REFERENCES

[1] R. M. Fujimoto, Parallel and Distribution Simulation Sys-
tems, 1st ed. NY, USA: J. Wiley & Sons, Inc., 1999.

[2] M. Marin, V. Gil-Costa, C. Bonacic, and R. Solar, “Approxi-
mate parallel simulation of web search engines,” in SIGSIM-
PADS, 2013, pp. 189–200.

[3] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of
Modeling and Simulation, 2nd ed. Orlando, USA: Academic
Press, Inc., 2000.

[4] G. Wainer, Discrete-Event Modeling and Simulation: a prac-
titioner approach. CRC Press. Taylor and Francis, 2009.

[5] Q. Liu and G. Wainer, “Parallel environment for devs and
cell-devs models,” SIMULATION, vol. 6, no. 83, pp. 449–
471, 2007.

[6] K. Schloegel, G. Karypis, and V. Kumar, “Graph partitioning
for high-performance scientific simulations,” in Sourcebook
of Parallel Computing, 2003, pp. 491–541.

[7] Q. Liu, “Distributed optimistic simulation of devs and cell-
devs models with pcd++,” Master’s thesis, Carleton Univer-
sity, 2006.

[8] S. J., “New algorithms for the parallel cd++ simulation
environment,” Master’s thesis, Carleton University, 2007.

[9] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Advances In Neural Informa-
tion Processing Systems. MIT Press, 2001, pp. 849–856.

[10] Q. Gan and T. Suel, “Improved techniques for result caching
in web search engines,” in WWW, 2009, pp. 431–440.

[11] V. G. Costa, M. Marı́n, A. Inostrosa-Psijas, J. Lobos, and
C. Bonacic, “Modelling search engines performance using
coloured petri nets,” Fundam. Inform., vol. 131, no. 1, pp.
139–166, 2014.

340

