
978-1-4799-8200-4/14/$31.00 ©2014 IEEE

Formal Verification of AUTOSAR FlexRay State

Manager

Ghada Bahig
Mentor Graphics

Cairo, Egypt

Amr El-Kadi
American University in Cairo

Cairo, Egypt

Ashraf Salem
Mentor Graphics

Cairo, Egypt

Abstract— Automotive software systems have continuously

faced challenges in managing complexity associated with
functional growth, flexibility of systems so that they can be easily
modified, scalability of solutions across several product lines,
quality and reliability of systems, and finally the ability to detect
errors early in design phases. AUTOSAR was established to
develop open standards to address these challenges. Formal
method is one way to address the ability to detect errors and
ensure compliance to requirements in early design stages. In this
paper, AUTOSAR’s FlexRay State Manager basic software
module is formally represented in finite state machine augmented
with complex data types. Specification requirements are mapped
into formal model theorems and assertions. SMT solvers are
utilized to validate design compliance to specification to show the
possibility of detecting errors early in the design phase via
mapping AUTOSAR’s specification into formal design notation.

I. INTRODUCTION

Failure of safety critical software could cause hazardous
consequences on human life. One major factor that contributes
to unsafe systems is incompliance to specification. It is crucial
in automotive systems to ensure design correctness from
compliance to specification perspective as early as possible.
Safety standards put strict processes that involve manual
reviews and requirements traceability in all software life cycle
to ensure specification compliance. Industry still heavily relies
on manual reviews and processes which is impractical since
specification is still captured in informal and semi-formal
notations which opens the door for requirement specification
ambiguity. Attention to safety software engineering started
when failures in embedded critical systems resulted in
hazardous consequences. A good number of such failures are
attributed to incompliance to specification,

Existing approaches that target Automotive
software/system safety via ensuring specification compliance
include manual dependency on standards and processes, such
as, ISO-26262 in automotive domain, enforced by regulatory
committees to ensure software safety, extensive testing at
different levels including white box testing, black box testing,
system and integration testing based on a variety of

algorithms, such as, random test generation, path oriented,
goal oriented, expert based adhoc test designs, model driven
approaches which depend on modeling an abstraction of the
system and simulating these abstractions manually based on
designed test cases and finally formal methods but on a very
small scale [1] [2].

In this paper, we described AUTOSAR’s automotive basic
software module, FlexRay State Manager, in SAL [3] formal
notations. AUTOSAR’s specification requirements are
directly mapped to theorems to assert counterexamples that
exist that could violate these theorems. We verified the
formally represented system by SMT solver to ensure the
system upholds specification requirements mapped to
theorems. Any violation is asserted by SMT solver as a
counterexample allowing the system designer to address such
compliance violations. This case study allows detection of
early design errors, including ambiguous requirements in the
specification since generated counterexamples from theorem
requirements identified by SMT solver are analyzed to
identify if they are actual violations against the specification
or incorrect mapping in the design.

The paper is organized as follows: section two gives brief
overviews on SAL formal transition language [3] and checkers,
on road vehicles – Functional Safety ISO 26262 standard and
its safety mandates in relation to our proposed implementation
and finally on AUTOSAR (AUTomotive Open System
ARchitecture) and FlexRay State Manager software module in
the AUTOSAR modules stack. Section 3 shows a case study of
the framework on AUTOSAR’s FlexRay State Manager.

II. BACKGROUND

A. AUTOSAR

AUTOSAR is a worldwide development cooperation of car
manufacturers, suppliers and other companies from the
electronics, semiconductor and software industry. Since 2003
they have been working on the development and introduction

2014 9th International Design and Test Symposium

193

of open, standardized software architecture for the automotive
industry [7] [8] [9].

AUTOSAR specification relies on informal and semi-formal
representation, namely UML, of systems which opens the door
for design errors due to ambiguity and clarity challenges of
semi-formal notations. Indeed, several iterations and releases
of the specification were required to address a good number of
such ambiguities. In the AUTOSAR Layered Software
Architecture, the FlexRay State Manager belongs to the
Services Layer, or more precisely, to the Communication
Services as shown in Figure 1 FlexRay Communication Stack
Architecture [10].

Figure 1 FlexRay Communication Stack Architecture

Testing AUTOSAR software modules as well as automotive
software functions is quite a challenge. Systems are still being
tested using adhoc based test designs. Industry tends to focus
on HiL (Hardware in the loop) testing after all software and
hardware components are integrated [11] [12]. There is also
dependency on modeling the system and depending on
manually designed simulations use-cases to verify a system
functionality and specification compliance [13] [14]. Existing
approaches are not enough and industry is at a loss between
the reluctance to adopt new verification measures and change
their legacy flow and coping with new requirements from
regulatory bodies to ensure that safety is adhered to in all
possible measures. Automotive industry, for one, is faced with
a new safety standard, ISO 26262, that aims to ensure system
safety through several guidelines and mandates in every stage
of system development. In general, there are a lot of
challenges facing embedded safety critical system
development and it is crucial to identify solutions that
integrate ISO 26262 guidelines in a non-disruptive approach
to the industry [15] and fulfill the driving forces to establish
AUTOSAR standardization.

B. Functional Safety – ISO 26262

ISO 26262 is a functional safety standard that publishes its
objectives as: providing an automotive safety lifecycle
(management, development, production, operation, service,
decommissioning) and supports tailoring the necessary
activities during these lifecycle phases, providing an
automotive specific risk-based approach for determining risk
classes (Automotive Safety Integrity Levels, ASILs). It is
divided into 10 parts namely, vocabulary, management of
functional safety, concept phase, product development at the
system level, product development at the hardware level,
product development at the software level, production and
operation, supporting processes, ASIL oriented and safety
oriented analysis and finally guidelines on ISO 26262 [16].
ISO 26262 architecture design guidelines aim to ensure that
the software architectural design captures the information
necessary to allow the subsequent development activities to be
performed correctly and effectively and that it shall be
described with appropriate levels of abstraction by using
formal/semi-formal or informal notations for software
architectural design. Table 1 Software Architectural Design
Methods enumerates the methods that ISO 26262 recommends
an architectural designer uses to capture system design. (‘++’
indicates that the method is highly recommended for the
identified ASIL, ‘+’ indicates that the method is recommended
for identified ASIL, ‘o’ means no recommendation) [16].

Table 1 Software Architectural Design Methods

Methods ASIL
A B C D

1a Informal notations ++ ++ + +
1b Semi-formal notations + ++ ++ ++
1c Formal notations + + + +

ISO 26262 highly recommends the usage of semi-formal
notations to capture design elements with a primary aim of
being as unambiguous as possible.

C. Symbolic Analysis Laboratory: SAL

SAL is a framework for combining different tools for
abstraction, program analysis, theorem proving, and model
checking toward the calculation of properties (symbolic
analysis) of transition systems [3]. A key part of the SAL
framework is an intermediate language for describing
transition systems. This language is intended to serve as
the target for translators that extract the transition system
description for other modeling and programming languages,
and as a common source for driving different analysis
tools [3]. SAL intermediate language is a basic transition
system language. SAL describes transition systems in terms of
initialization and transition commands [3]. The current
generation of SAL tools contains a group of state of the art
LTL based model checkers and auxiliary tools based on them.
In the future, it is expected that the tools will be expanded to

2014 9th International Design and Test Symposium

194

include static analysis, invariant generation, abstraction, and a
tool bus to connect these tools together . SAL framework
comes with a variety of existing tools that verifies transition
based systems. The checkers include sal-smc which is a BDD-
based model checker for finite state systems. The checker
confirms whether a specific theorem holds or not and asserts
counterexamples showing how a theorem can be invalidated
on a specific state machine . The model checker can do
forward and backward search and prioritized traversal as well.
The checker is for finite systems. Sal-deadlock-checker is a
SAL auxiliary tool based on the SAL symbolic model checker
to detect deadlock states. Sal-bmc is a bounded model checker
based on SAT solver for finite state systems. It generates
counterexamples/assertions and detects bugs via refutation. It
also can perform verification by k-induction. SAL can use
several SAT solvers but defaults to Yices. Sal-inf-bmc is an
infinite bounded model checker for infinite state systems
based on SMT solvers

III. FLEXRAY STATE MANAGER

We will use FlexRay State Manager module to demonstrate
our proposed implementation and specification compliance
flow [10]. Figure 2 FlexRay State Manager State Machine
illustrates FlexRay State manager UML state diagram as
presented in AUTOSAR’s specification. The State machine
model combined with state machine to SAL transformation
rules shown below shall be applied in order to generate the
SAL based system model.

Figure 2 FlexRay State Manager State Machine

Rule 1 – Create a SAL context for FlexRay UML Class
element

FlexRay_SM : CONTEXT =

BEGIN

Rule 2 – Create a SAL state type for FlexRay states

state : TYPE = {FRSM_INIT, FRSM_READY, FRSM_HALT_REQ,
FRSM_STARTUP, FRSM_WAKEUP, FRSM_ONLINE_PASSIVE,
FRSM_ONLINE};

Rule 3 – Create a SAL state machine module and a current
state variable of type state – created in previous step

main : MODULE =
 BEGIN
 OUTPUT current_state : state

Rule 4 – Create input SAL variables for each transition
precondition.

 INPUT isWakeupECU : BOOLEAN

 INPUT isColdStartECU: BOOLEAN

 INPUT StartupRepetitionsWithWakeup: [0..255]

 INPUT startupRepetitions : [0..255]

 INPUT pocFreeze : BOOLEAN

Rule 5 – Create output SAL variables for each transition
postcondition/action.

 OUTPUT fe_config : BOOLEAN

 OUTPUT t3_IsActive : BOOLEAN

 OUTPUT t3_fired : BOOLEAN

 OUTPUT t2_fired : BOOLEAN

 OUTPUT t1_fired : BOOLEAN

Rule 6 – Create SAL initialization clause that maps initial
state machine into SAL notation.

INITIALIZATION

 current_state = FRSM_INIT;

Rule 7 – Create SAL transition table based on UML
transitions, preconditions and post conditions.

TRANSITION

[

% Transition 0

current_state = FRSM_INIT AND fe_config = TRUE

--> current_state' = FRSM_READY

% Transition 1

[]

current_state = FRSM_READY AND reqComMode =
COMM_FULL_COM AND isWakeupECU = TRUE

--> current_state' = FRSM_WAKEUP;

 fe_trcv' = normal;

 startupCounter' = 1;

 fe_wakeup' = TRUE;

]

2014 9th International Design and Test Symposium

195

UML to SAL transformation is now complete and a
FlexRay state manager in SAL transition based languages
augmented with complex data types is constructed from a
UML finite state machine input. Next stage involves
constructing the theorems.

A. Requirement Specification to SAL Theorems

Compliance requirements are drawn from specifications.
In this section we show several examples where we map
specification requirements to SAL theorems.

FlexRay State Manager specification details the expected
state transitions pre and post conditions. Figure 3 Transition
01 Preconditions and Post Actions shows one state transition
pre and post conditions as documented in the
specification [10].

FrSm072 T01 [reqComMode =
FullCom AND
IsWakeupECU]

FE_TRCV_NORMAL

StartupCounter := 1

FE_WAKEUP

Figure 3 Transition 01 Preconditions and Post Actions

Our first theorem was constructed via mapping the
specification transition table entry to a theorem. Transition 01
switches the state machine from FRSM_READY to
FRSM_WAKEUP when reqComMode = FullCom and
IsWakeupECU is true. The actions that will take place after
transition happens are as shown in Figure 3. A transition
validation via the model checker could be done based on
generating a theorem from the transition pre-post conditions as
follows:

Rule 1: Map transition precondition to theorem pre-requisite

Th<id>: THEOREM main |- G(reqComMode =
COMM_FULL_COM AND isWakeupECU = TRUE => F());

Rule 2: Map current state into machine pre-requisite

Th<id>: THEOREM main |- G(reqComMode =
COMM_FULL_COM AND isWakeupECU = TRUE => F());

Rule 3: Map transition actions into theorem outcome

Th<id>: THEOREM main |- G(reqComMode =
COMM_FULL_COM AND isWakeupECU = TRUE AND
current_state = FRSM_READY => F(fe_trcv = normal AND
startupCounter = 1 AND fe_wakeup = TRUE));

Rule 4: Map resulting new state into theorem outcome

Th<id>: THEOREM main |- G(reqComMode =
COMM_FULL_COM AND isWakeupECU = TRUE AND

current_state = FRSM_READY => F(fe_trcv = normal AND
startupCounter = 1 AND fe_wakeup = TRUE AND current_state =
FRSM_WAKEUP));

Our second theorem was constructed based on constraints in
the specification. The specification defines the following
requirement:

FrSm034: StartupRepetitions determines how often the ECU
can repeat the startup procedure by reinitializing the FlexRay
CC. This value must not be smaller than
StartupRepetitionsWithWakeup.

Th<id>: THEOREM main |- G(NOT(startupRepetitions <
StartupRepetitionsWithWakeup));

Our third theorem was constructed based on boundary value
constraints in the specification. The specification defines the
following requirement:

FrSm033: startupCounter is the number of startup attempts
that have been performed. Valid values are in the range of 0-
255

Th<id>: THEOREM main |- G(NOT(startupCounter < 0 AND
startupCounter > 255));

Constructed theorems one, two, and three are examples for
ways to construct theorems from specification. The theorems
have been constructed to ensure compliance to state machine
requirements, constraints satisfaction and boundary value
constraints. ISO-26262 recommends using several techniques
to ensure design correctness as shown in ements are mapped
to theorems.

Table 2 Error Detection at Software Architectural Level [16].
It is possible to easily construct theorems to ensure design
correctness as proposed in the safety standard as we have
shown above. Assertions will be reported by the solvers if the
SAL design of FlexRay State manager module contains any
in-compliances to the requirements in the specification since
requirements are mapped to theorems.

Table 2 Error Detection at Software Architectural Level

Methods
ASIL

A B C D

1a Plausibility check-a ++ ++ ++ ++

1b Detection of data errors-b + + + +

1c External monitoring facility O + + ++

1d Control Flow monitoring O O + ++

a- Plausibility checks include assertion checks. Complex

plausibility checks can be realized by using a reference
model of the desired behavior.

b- Types of methods that may be used to detect data errors
include error detecting codes and multiple data storage.

2014 9th International Design and Test Symposium

196

B. Results

SAL SMT solver was run against the mapped SAL model and
the constructed theorems. First theorem run showed that the
theorem holds and that there are no violations against the
specification. We started introducing errors or incompliances
against the transition table specification in the UML model.
The checker was successfully able to assert counterexamples
showing how the theorem got violated. The requirement
inFigure 4 theorem was reported as ‘proved’ by the SMT
Solver.

FrSm124 T33 [NOT

t3_IsActive]
FE_STARTUP_

ERROR_IND

Figure 4 Transition 33 Preconditions and Post Actions

The requirement inFigure 4 dictates that transition 33 should
only take place when t3_IsActive is false. If so, the state
machine should make an internal transition from
FRSM_ONLINE_PASSIVE to itself. The constructed theorem
for the above specification based on our mapping algorithm is:

th1: THEOREM main |- G((current_state =
FRSM_ONLINE_PASSIVE AND t3_IsActive = FALSE) =>
F(current_state = FRSM_ONLINE_PASSIVE));

When the checker is first run against the SAL model
constructed from the UML Model. It reports that the theorem
was proved. We then changed the theorem such that an error
in the SAL model would be detected where we indicate that if
T3_IsActive is true, the state machine should stay in
FRSM_ONLINE_PASSIVE state which is now a specification
violation and is expected to be detected by the checker. We
run the checker which asserts a 5 step counterexample that
demonstrates the theorem violation in the model.
Counterexample steps asserted by the model checker were:

Step1:

reqComMode = COMM_NO_COM , isWakeupECU = false,
isColdStartECU = true, StartupRepetitionsWithWakeup = 101,
pocState = wakeup, startupRepetitions = 233, pocFreeze = true

Current State: INIT

New State: READY

Step2:

reqComMode = COMM_NO_COM, isWakeupECU = false,
isColdStartECU = true, StartupRepetitionsWithWakeup = 57,
pocState = normalActive, startupRepetitions = 85, pocFreeze = false

Current State: READY

New State:STARTUP

Step3:

reqComMode = COMM_SILENT_COM, isWakeupECU = false,
isColdStartECU = true, StartupRepetitionsWithWakeup = 71,
 pocState = normalActive, startupRepetitions = 58, pocFreeze = false

Current State: STARTUP

New State: ONLINE

Step4:

reqComMode = COMM_SILENT_COM, isWakeupECU = false,
isColdStartECU = false, StartupRepetitionsWithWakeup = 33,

pocState = normalPassive, startupRepetitions = 112, pocFreeze =
false

Current State: ONLINE

New State: ONLINE_PASSIVE

Step5:

reqComMode = COMM_SILENT_COM, isWakeupECU = false

isColdStartECU = false, StartupRepetitionsWithWakeup, = 5,
pocState = wakeup, startupRepetitions = 7, pocFreeze = false

Current State: ONLINE PASSIVE

New State: ONLINE Passive

Similarly, for theorems 2 and three, SAL SMT checker was
run and reported that there was no violation in SAL model for
theorem 3 but yet reported a violation for theorem 2 and listed
counterexample to showcase the violation as shown below

$ sal-inf-bmc FlexRay_SM th7

Counterexample:

========================

Path

========================

Step 0:

--- Input Variables (assignments) ---

reqComMode = COMM_NO_COM

isWakeupECU = false

StartupRepetitionsWithWakeup = 255

pocState = halt

startupRepetitions = 0

pocFreeze = false

--- System Variables (assignments) ---

fe_config = false

t3_IsActive = false

t3_fired = false, t2_fired = false, t1_fired = true

current_state = FRSM_INIT

fe_trcv = standby

2014 9th International Design and Test Symposium

197

startupCounter = 255

fe_wakeup = false, fe_start = false, fe_allow_coldstart = false

fe_start_com_rx = false, fe_start_frif = false, fe_start_com_tx = false,
fe_dem_status = failed, fe_full_com_ind = false

fe_stop_com_tx = false, fe_stop_frif = false

fe_stop_com_rx = false, fe_halt = false

fe_no_com_ind = false, fe_startup_error_ind = false

s0 = false, s1 = false, s2 = false, s3 = false, t0 = false

Several other theorems following the proposed algorithm
have been proven by the checker. The proposed method proves
to be able to utilize mathematical proofs based on constructing
formal model based on semi-formal /informal AUTOSAR
specification of FlexRay State Manager module.

IV. CONCLUSION

We showed how a UML finite state machine model can be
transformed to a formal transition model augmented with
complex data types in SAL notation. We have constructed
theorems that represent specification requirements. SAL SMT
solver was utilized so that a formal verification can be
accomplished on the software model. It has been shown that
specification incompliances could be detected by the SMT
solver through the asserted counterexamples. The application
model engineer could fix the model violations at a very early
stage based on the formal verification of the model using the
proposed approach. The proposed approach makes emerging
ISO 26262 standard advisory guidelines possible in an
automated fashion and addresses one of the major drives
behind AUTOSAR standardization which is early design
errors detection. We have showed that SAL is a simple
transition based notation with extreme resemblance to UML
state machine diagram. Problems such as the complexity of
the Formal notations, theorem construction and checkers
execution and analysis have been masked away via the use-
case yet the benefits of using formal validation are retained.

REFERENCES
[1] Gwangmin Park ; Daehyun Ku ; Seonghun Lee ; Woong-

Jae Won, Test methods of the AUTOSAR application
software components, ICCAS-SICE, 2009.

[2] Mews, M. ; Svacina, J. ; Weissleder, S. ,From AUTOSAR
Models to Co-simulation for MiL-Testing in the
Automotive Domain, Software Testing, Verification and
Validation (ICST), 2012 IEEE.

[3] http://sal.csl.sri.com/introduction.shtml.
[4] Taguchi, K. ; Nishihara, H. ; Aoki, T. ; Kumeno, F. ,

Building a Body of Knowledge on Model Checking for
Software Development, Computer Software and
Applications Conference (COMPSAC), 2013 IEEE.

[5] Whittle, J. , Hutchinson, J. , Rouncefield, M., “The State
of Practice in Model-Driven Engineering”, Software,
IEEE (Volume:PP , Issue: 99), 23 April 2013.

[6] Galvao, I. , Enschede ; Goknil, A., “Survey of
Traceability Approaches in Model-Driven
Engineering“,Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. 11th IEEE International,
Oct. 2007.

[7] http://www.autosar.org/
[8] http://www.autosar.org/download/R4.0/AUTOSAR_EXP

_LayeredSoftwareArchitecture.pdf.
[9] http://www.autosar.org/download/AUTOSAR_Technical

Overview.pdf
[10] http://www.autosar.org/download/R3.1/AUTOSAR_SWS

_FlexRay_StateManager.pdf.
[11] Hermans, T. ; Ramaekers, P. ; Denil, J. ; Meulenaere,

P.D. ,Incorporation of AUTOSAR in an Embedded
Systems Development Process: A Case Study, Software
Engineering and Advanced Applications (SEAA), 2011.

[12] Huang Bo ; Dong Hui ; Wang Dafang ; Zhao
Guifan,Basic Concepts on AUTOSAR Development,
Intelligent Computation Technology and Automation
(ICICTA), 2010.

[13] Huichoun Moon ; Gwanghun Kim ; Yeongyun Kim
;Seokkyoo Shin Automation Test Method for
Automotive Embedded Software Based on AUTOSAR,
Software Engineering Advances, 2009. ICSEA '09.

[14] Wainer, G , Applying modelling and simulation for
development embedded systems, Embedded Computing
(MECO), 2013.

[15] Knight, J.C. , “Safety critical systems: challenges and
directions”, Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International Conference on
Software Engineering, May 2002.

[16] http://www.iso.org/iso/catalogue_detail?csnumber=43464
.

2014 9th International Design and Test Symposium

198

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

