
Accelerating Distributed Discrete Event
Simulation through Exchange of Conditional

Look-Ahead

Desheng Fu, Matthias Becker, Helena Szczerbicka
University Hannover

FG Simulation
Welfengarten 1

30167 Hannover, Germany
{fu, xmb, hsz}@sim.uni-hannover.de

Abstract—Distributed discrete event simulation is a very
important method today to analyze the behavior of large
models. We investigate the practical implementation of
distributed discrete event simulation with conservative
synchronization and its acceleration through dynamic
estimation of process-to-process look-ahead. Since the
dynamic look-ahead changes with time, we have to face
the situation, that the look-ahead between some logical
processes is decreased temporarily. The shortened look-
ahead has a very negative influence to the performance of
the simulation and it is hard to avoid. However, this effect
can be reduced by introducing some extra mechanisms in
the simulation.

In this paper, we present a mechanism to optimize the
simulation for the situation that the look-ahead between
some processes is very short. This mechanism is based on
exchange of conditional look-ahead and broadcast of inval-
idation announcement. Our evaluation shows reduction of
the execution time of a majority of distributed simulations,
especially when the estimated look-ahead is stochastically
too conservative.

I. INTRODUCTION

Discrete Event Simulation (DES) is a very important
method today to analyze the behavior of large mod-
els. The distributed execution of DES, known as Dis-
tributed Discrete Event Simulation (DDES), has many
advantages compared with the sequential simulation [1].
Especially, it is expected that the distributed execution
of a DES system can reduce the execution time as many
other distributed algorithms do. However, depending on
the models to simulate, this cannot be achieved if the
Logical Processes (LPs) are tightly coupled and the
Look-Ahead (LA) between these LPs is very short [1].

We investigate the practical implementation of DDES
with conservative synchronization and its acceleration
by dynamic estimation of process-to-process LA [2].
Since the process-to-process LAs of many models
change rapidly with time, we have to face the situa-
tion, that some of the LAs are shortened temporarily.
The temporarily shortened LAs significantly reduce the
performance of DDES. In general, we cannot avoid such
situations, but the simulator can be optimized to reduce
that damage.

In this paper, we present an approach to extend the
LAs by exchange of Conditional Look-Ahead (CLA) and
broadcast of Invalidation Announcement (IA). In addi-
tion, we discuss some typical cases where the approach
can be applied. As our evaluation shows, our approach
can increase the LA between some certain LPs in many
cases. It is optimized to the situation that the LA is short,
but the possibility, that some external events should
be exchanged right after the time interval defined by
the LA, is very small. In other words, the mechanism
is optimized to the situation that the estimated look-
ahead could be stochastically too conservative (multi-
agent system, stochastic Petri-net, cell biology [3] etc.).

The remainder of this paper is organized as follows:
the related work on the estimation of LA is introduced
in section II. In section III our approach is presented.
Section IV is an evaluation of our approach based on
a case study followed by a conclusion of this paper in
Section V.

II. RELATED WORK

Investigations about LA estimation can be divided
into two groups. The LA estimation for conservative
synchronization algorithms (e.g. [4] [5]) must be also
conservative in general to prevent causality errors. Such
investigations are often called look-ahead exploitation.
The main purpose of conservative LA estimation is
to provide a longer LA for the conservative synchro-
nization algorithms by estimating the local state. For
example, Nicol [6] introduced the implicit look-ahead
in FCFS (First Come First Served) stochastic queuing
network, which was extended by Lazowska [7] to RR
(Round Robin) as well as some other queuing networks.
The basic idea of Nicol and Lazowska is to pre-
simulate the predictable random behaviors in the future.
In stochastic queuing networks, they pre-sample the
service times of processes into a “future list”, the LA is
then the time length to the end of next service defined by
the future list. Another notable work was done by Meyer
el. al. [8]. They investigated conservative algorithms for
wireless network simulation and reported the positive

2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications

1550-6525/14 $31.00 © 2014 IEEE

DOI 10.1109/DS-RT.2014.30

181

2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications

1550-6525/14 $31.00 © 2014 IEEE

DOI 10.1109/DS-RT.2014.30

183

(a) Time-Creep with Long Transmission Delay (b) Time-Creep with Short Transmission Delay

Fig. 1: Time-Creep with Different Transmission Delays of LA

effect of the LA estimation in wireless networks. Liu and
Nicol [9] also investigated the LA estimation in wireless
network with simulator SWAN. They considered the
IEEE 802.11 CSMA/CA DCF protocol on MAC layer
and estimated the LA from the CSMA/CA behavior of
a station. Through estimation of next time to transmit
and the next potential push time on the MAC layer, the
LA is increased and the execution time is significantly
decreased, especially in the network with a low traffic
load.

The other group of investigations estimated the LA for
optimistic time-warp algorithms (e.g. [10]). Compared
to the estimation for conservative algorithms, over-
estimation is allowed. Such estimation failures will be
repaired later with the optimistic time-warp algorithm
as described earlier. The main purpose of these LA
estimation is to provide a longer LA to reduce the
overhead of the algorithm. For example, Maritini et al.
[11] introduced the tolerant synchronization by accept-
ing event errors during the synchronization. The interval
where the event errors might occur is predicted and time-
warp algorithm is applied to the time interval to resolve
the occurred errors. Ferscha et al. [12] [13] estimated
the LA in Petri nets aggressively to reduce the cost
of the applied optimistic algorithm, this can also be
considered as a conservative solution to the causality
error without hard synchronization and an optimistic
algorithm is applied to resolve the occurred causality
errors. This idea is extended by Kunz et al. [14]. They
announced their investigation as an improvement of the
optimistic algorithm. Park et al. [15] introduced the
relaxed synchronization to queuing networks. In his
investigation, the LA will also be estimated aggressively
to reduce the execution time.

In our approach, we also allow over-estimation. How-
ever, we do not apply any time-warp algorithm. The
over-estimation in our approach must be detected before
any causality error occurs. In other words, the estimated
conditional LA in our approach is a way to exchange
information between LPs. The truly applied LA will be
estimated later conservatively with help of the received
information.

III. OUR APPROACH

In this section, we present our approach to synchro-
nize LPs with CLA and IA.

A. Time-Creep Problem & Look-Ahead
One of the most important challenges in DDES with

conservative synchronization is the well-known time-
creep problem. It happens when some of the LPs are
tightly coupled and the LA between these LPs is very
short (or is hard to estimate). To reduce the execution
time of the simulation, we should apply a more precise
estimation of the LA. If the estimated LA is still too
short, sequential simulation should be considered instead
of distributed simulation. When we estimate the process-
to-process LAs dynamically, the distributed simulation
should be preferred when each process-to-process LA
is large enough most of the time. However, we have to
face the situation, that some of these LAs are shortened
temporarily or a small amount LAs between certain LPs
are very short.

When the LA is very short, the time advance of the
system is very slow due to the extra cost. First of all,
the LPs have to exchange many messages (e.g. null-
message) which are costly. In addition, the LPs have
to synchronize with each other at a high frequency.
Most notably, the frequency of the synchronization often
depends on the shortest LA in the whole model. The
synchronization, especially the global synchronization,
reduces the parallelism, since the fast LPs must be
blocked to wait for synchronization of the slow LPs.
Please note that in practice, the LPs are blocked not
only for synchronization. Depending on the applied
synchronization algorithm, the LPs might need to be
blocked for the LA estimation, which will be discussed
later. Furthermore, the cost of execution of synchro-
nization after the LPs are blocked depends strongly on
the transmission delay between the LPs including the
time to process received messages. In the idealistic sit-
uation without any transmission delay, the performance
is almost the same as with sequential simulation. The
more time the transmission takes, the slower the time
advances. An example is shown in Figure 1, where
the synchronization always takes place when an LP is
blocked (such as the null-message algorithm [4] [5]).
In practice, the transmission delay between the LPs

182184

(a) Multi-Agent System with Two
LPs

(b) Multi-Agent System with Four LPs

Fig. 2: Multi-Agent Systems

is quite different. If two LPs are located at the same
computer with shared memory, the transmission delay
is very short compared with two LPs located at two
different computers connected with LAN. Obviously,
the transmission delay could further increase if the two
computers are connected by the Internet.

In this paper we present a new synchronization mech-
anism with several advantages. First of all, there is
no global synchronization in general. The mechanism
only blocks LPs when it is really necessary. Secondly,
it is able to increase the LA, especially the shortest
LAs in the model and the LAs between LPs with long
transmission delay. Thus the frequency of the costly
synchronization is reduced. However, the mechanism
has its own cost. Thus it may not work well for some
models, which will be discussed later.

B. Solution with Conditional Look-Ahead
Our approach to increase the LA is achieved by

exchange of the Conditional Look-Ahead (CLA). CLA
is an extension to the original LA, which is only valid
when some certain conditions are fulfilled [9]. During
the advance of the time, the conditions and CLA can be
invalidated any time after the original LA expires. To
keep the CLA conservative and to avoid causality error,
a mechanism must be applied, so that the related LP
receives an Invalidation Announcement (IA) before the
CLA is invalidated. In addition, it should be guaranteed
that the new LA after applying the IA is non-negative,
so that no causality error occurs. The new LA can be
sent with IA. Alternatively, an IA may contain a time
stamp. The IA will be “processed” at this time to inform
that the CLA is no more valid, and the new LA after
the invalidation is zero.

The reason, why the mechanism could be helpful
to increase the LAs, is quite simple. The dynamic
LA estimation during the simulation benefits from the

knowledge of the current state of the model and thus
could provide a longer LA than the static estimation in
most cases. However, we should limit the cost of the
dynamic estimation so that the total execution time is
reduced. In the practical implementation, one of the two
basic ideas is considered in general. First of all, each LP
could estimate the LA only based on its local state (e.
g. [4] [5]). With this idea, the cost of the estimation
is minimized and there is no unnecessary blocking,
but the estimated LA could be too conservative. In
addition, each LP or a central controller could block
all LPs to take a static global observation for the LA
estimation (e. g. [1] [16]). With this idea, the best
LA is provided but it enforces to block all LPs as
a global synchronization each time the estimation is
done. As mentioned earlier, it reduces the parallelism
of the simulation and thus is costly. Our mechanism
combining the basic ideas of the two solutions could
provide a better performance. On one side, each LP
exchanges information (e.g. CLA, IA) with neighboring
LPs to provide a long LA. On the other side, no global
synchronization is necessary. Obviously, this mechanism
has its own cost, but it is still considerable when the
possibility that the CLA is invalidated before it expires
is very small.

A scenario is shown in Figure 2a as example, where
a multi-agent system is simulated distributedly. In this
example, the whole area is divided by a borderline, and
each part is simulated with one LP (LP1 and LP2).
There are several agents. They can move in the area to
solve some certain problems with built-in intelligence,
which is hard to be considered for the estimation of LA
in most cases. In general, such a DDES system is simu-
lated with time-warp. Without any information about the
agents in the other part of the area, no positive LA can
be considered for the possibility, that one agent crosses
over the borderline (hand-in) at the next time point

183185

and leaves back (hand-out) immediately. Therefore,
distributed conservative synchronization without central
intelligence cannot be applied. However, since the cost
of time-warp depends on the cost to duplicate the agents
including the state of its intelligence, which can be very
costly, we may still want to simulate the model with
conservative synchronization. In these situations, the
conservative synchronization with central intelligence
could be considered, for example synchronized execution
algorithms [1] [16] with a specified synchronization
algorithm (e.g. [17]). With this algorithm, we take a
static observation to the whole area. Since there is
currently no agent which is right on the borderline,
the LPs have to exchange no information in the short
future, and the bi-directional LA could be calculated as
the minimal time needed for an agent to move to the
borderline regarding the position as well as the maximal
speed of each agent (T2−1 in the example). There are
many different algorithms to synchronize the LPs with
the estimated LA, the discussion of these algorithms is
out of scope of this paper.

Without global observation, this idea could still be
achieved through exchange of extra information between
LPs. This could be formally described with CLA and IA
as shown in Figure 3a. The condition of the CLA sent
from LP1 to LP2 (CLA1−2) is that LP2 will make no
change to the local state of LP1 (no external event or
IA from LP2 will be processed by LP1). The length of
CLA1−2 depends on the model. It is at least same as
LA and it is larger than LA in many cases (T1−2 vs. 0 in
the example). Similarly, the CLA sent from LP2 to LP1

(CLA2−1) is determined. Furthermore, the condition of
the CLA sent from LP1 to LP2 breaks if LP2 does send
an external event to LP1 with time stamp T . In that case
an IA is sent by LP2 to itself to inform the invalidation
of CLA1−2 at T . Since T is anyway after the current
time of LP2, no causality error occurs.

C. Fully-Connected Topology and Line Topology
The approach discussed in the previous subsection

could also be applied to the model with more LPs,
where all LPs are directly connected (fully-connected
topology). A scenario of multi-agent system with four
LPs is shown in Figure 2b and the general model is
shown in Figure 3b. When all LPs could communicate
with each other directly and there is LA between each
pair of LP, each LP could send an identical CLA to all
other LPs with the condition that its state will not be
modified by any other LP. When the first external event
is sent from one LP to another, an IA with the same
time stamp will be broadcasted so that all CLAs from
the LP, where the external event should be processed, are
invalidated. Obviously, the global CLA sent from this LP
is shorter than any process-to-process CLA from this LP.
Thus no matter to which LP the external event is sent,
the time stamp of the external event is larger than the
global CLA. The IA is thus in the future of any other
LPs and there is no causality error caused by the external

1. Initialize
for each neighbor LPr do

Let localIDr = 0.
Let remoteIDr = 0.

end for

2. Estimate & Send CLA
Let CLAmin be the minimal time of state change
propagation from one interface to another.
for each neighbor LPr do

Estimate the CLAr to LPr with the condition that
the local state will not be changed by any other LP.
if CLAr < CLAmin then

Let CLAmin = CLAr.
end if

end for
for each neighbor LPr do

Send CLAmin to LPr with ID localIDr.
end for

3. Apply Received CLA
Input: the received CLA CLAr from LPr with ID
id.
if id ≥ remoteIDr then

Apply CLAr as the current LA from LPr.
end if

4. Schedule External Event & Broadcast IA
Input: the event E to LPr with time stamp T .
Send E to LPr.
for each LPt in any fully-connected topology with
the local LP and LPr do

Send IA to LPt with time stamp T and parameter
LPr.

end for
Do 2. to estimate and send the new CLA.

5. Process Received External Event
Input: the event E from LPr.
Process E.
for each LPt in any fully-connected topology with
the local LP and LPr do

localIDt++.
end for
Do 2. to estimate and send the new CLA.

6. Process Received IA
Input: the IA from LPr with parameter LPt.
Set the current LA from LPr to 0.
remoteIDr++.

Fig. 4: Pseudocode of the algorithm

event and the IA. There is a large cost to reconstruct the
CLAs after the IA is broadcasted. Thus the solution with
CLA should only be applied when the probability that

184186

(a) Model with Two LPs (b) Model with More LPs (Fully Connected) (c) Model with More LPs (Two Groups)

Fig. 3: Different Models to Apply CLA

CLA is invalidated before its regular expiration is very
small. The mechanism increases the short LAs, but it
might reduce the long LAs in the system. In this aspect,
it balances the LAs in the system.

Similarly, this approach could be applied to the
models where all LPs are connected as a chain (line
topology) as long as the state change of one LP will
not cause the immediate state change of a neighboring
LP. The approach discussed in the previous section can
be applied to each interface between a pair of LPs.
During the calculation of CLA for one interface, it is
assumed that the state of the LP could be changed any
time by a neighboring LP from another interface. Thus
the CLA is limited by the minimal time needed that state
change “propagated” from one interface to another. In
the example of multi-agent simulation, it is the minimal
time needed for an agent to cross the area simulated by
this LP.

Furthermore, the approach of CLA works well with
a combination of fully-connected topology and chain
topology. In that case, an interface is between a LP
and a group of LPs organized as a fully-connected
topology. An example will be discussed later as case
study. Compared with the synchronized execution based
on conservative LA, more messages will be exchanged
between these LPs to exchange CLAs and IAs. But we
do not need any static observation to the whole system
and the LPs will not be blocked due to the observation
in general. Our approach is thus considerable, especially
when the estimated LA is stochastically too conserva-
tive. A practical implementation of the mechanism with
slight simplification is shown in Figure 4, where each LP
estimate a global CLA for all neighboring LPs instead
of a CLA per interface. Since it is unknown whether
the external event will be processed at the specified LP
before sent IAs are processed at some other LPs, serial
IDs are managed to compare the number of processed
external events and IAs between each pair of LPs.

D. Grouping the Logical Processes
In the simulation of large models, there are often

many LPs. To apply the mechanism to these simulations,

the LPs could be divided into groups according to
the transmission delay, so that the transmission delay
between LPs in the same group is short and the trans-
mission delay between LPs in different groups is long.
Within each group, the local synchronized execution is
applied and the group acts like a single LP. The solution
with CLA is applied as discussed in the previous subsec-
tions for the synchronization between groups. Since the
transmission delay within the groups is short, the cost
of such local synchronized execution is much less than
the global synchronized execution. However, the local
synchronization must be done more often to calculate
CLAs needed for the synchronization between groups.
Thus the combination with synchronized execution and
CLA is only considerable when the LA is stochastically
too conservative as mentioned earlier.

Alternatively, we could consider the synchronization
based on conservative LA within each group and syn-
chronization based on CLA between groups. A scenario
with three LPs is shown in Figure 3c. As illustrated
there, the three LPs are divided into two groups. LP1

belongs to the first group, LP2 and LP3 belong to
the second. We consider that each group is simulated
with an individual computer with sufficient number of
processors. Since the transmission delay between LP1

and LP2 as well as between LP1 and LP3 are very
long, we will extend them with CLA. First of all,
LP1 sends CLA to LP2 and LP3 (CLA1) with the
condition, that its own state will be modified neither
by LP2 nor by LP3. If LP2 sends an external event
to LP1 with time stamp T for example, it will send
an IA to itself to inform that the CLA1 is no more
valid after T . As discussed earlier, there is no causality
error. In addition, it will send the same IA to LP3.
This IA will be arrived in time without causality error
if the LA from LP2 to LP3 (LA2−3) is shorter than the
sum of LA from LP2 to LP1 (LA2−1) and LA from
LP1 to LP3 (LA1−3). Similarly, it must be guaranteed
that the LA from LP3 to LP2 (LA3−2) is shorter than
the sum of LA from LP3 to LP1 (LA3−1) and LA
from LP1 to LP2 (LA1−2). Otherwise, the mechanism

185187

might cause causality errors and it cannot be applied.
In practice, we only consider LA2−1 and LA3−1 and
ignore the LA1−3 and LA1−2 due to the extra cost of
communication. Most important, we will limit LA2−3

and LA3−2 so that it is always shorter than LA2−1 and
LA3−1. Furthermore, LP2 sends CLA to LP1 with the
condition, that LP1 will not modify the state of LP2

and LP3 with external events. If LP1 sends an external
event to LP2, an IA will be sent to itself as discussed
above.

This alternative solution can be seen as a trade-off
between the external LAs and internal LAs. On one side,
any LA sent from LPi to any LP in the same group is
limited by

min{LAi−k|LPk belongs to the other group}.

CLA could be applied to extend these LAs anyway, but
the limit must be kept. On the other side, the LA / CLA
sent from LPi to any LP in the other group could be
extended with condition. If the condition really helps to
extend the LA depends strongly on the model and the
partitioning. Generally it is hard to determine due to the
unknown state of LPs in the same group. But in some
special situations it could help to break some immediate
communication loops.

IV. EVALUATION

As case study, we consider the simulation of a multi-
agent system. The whole area is divided as 9 sub-areas
(3 × 3) as shown in Figure 5a and each sub-area will
be simulated with one LP. There are n agents in the
whole area, which are placed randomly at the start with
a random direction. They move straight forward with a
constant speed. When an agent reaches one border of
the whole area, it will be rebounded. However, we only
consider the distance between the agent and borderlines
when calculating LA, since the simulator itself holds no
extra knowledge about the intelligence in the agent. In
addition, the simulator could anyway ascertain that the
direction and speed will not be changed in a very short
future. Furthermore, each agent saves information about
the agent’s “meetings” (distance is short enough) as well
the time of last meetings for each of them.

The model is implemented with our simulator named
Universal Simulation Engine (USE) 1. The program runs
on a single computer equipped with an Intel i7 CPU.
We consider the “simulation of simulation” to study the
case. In other words, we simulate a distributed simulator
of the given model. Besides the model itself, we also
simulate core behaviors of the distributed simulator,
including the transmission delay, cost to lock and unlock
a LP, the execution power of each LP, wall-clock time
of the virtual simulator, etc. The result represents the
simulation result with 9 individual computers each with
a Intel i7 CPU.

1The simulator is available at http://www.useproject.com/.

The model to simulate is considered as a combina-
tion of four fully-connected topologies and several line
topologies between the stars. For example the fully-
connected topology FC1 contains LP1, LP2, LP4, and
LP5. If LP1 sends an external event to LP4, it will
broadcast an IA to LP2, LP4 (“included” in the external
event), and LP5. Furthermore, LP4 belongs to two
different fully-connected topologies (FC1 and FC3). In
other words, it has two interfaces. The state changes
of LP4 due to the LP1 will not cause immediate state
change of LP7 for example due to the minimal time
needed for an agent to cross the sub-area simulated by
LP4. In many models of multi-agent system including
this one, the minimal time needed that the state change
propagated from one interface to another interface of a
LP is longer than any CLA provided by the LP and it
will be thus ignored.

The CLA is utilized by the Process-To-Process Bar-
rier (P2P Barrier) synchronization of USE. A barrier
represents a specified bounded time that the process
should never reach. During the simulation, each process
sets a barrier to every process including itself based
on the CLA. These barriers will be altered (moved
back) before the CLA expires. If there is no event
exchange between two processes at all or the causality
is maintained by extra logical constraints, a barrier
pointing to infinity should be considered.

As comparison, we consider the standard time-warp
algorithm as well the global synchronized execution
based on butterfly-barrier synchronization [17]. The re-
sult of the simulation is shown in Figure 5b. It is obvious
that the simulation takes more time if there are more
agents to simulate. The execution time for time-warp
is very long due to the extra cost to save the state of
each agent including the state of its AI. This algorithm
could be further optimized but it is out of scope of
our discussion. The result with global synchronized
simulation and the result based on CLA are comparable.
Our approach takes about 10% - 24% shorter time
compared with global synchronized execution depends
on the number of agents in the system.

V. CONCLUSION

We presented a new approach to accelerate Dis-
tributed Discrete Event Simulation (DDES) by exchange
of Conditional Look-Ahead (CLA) and broadcast of
Invalidation Announcement (IA). Our approach could
increase the LA between some certain LPs in many
cases. It is optimized to the situation, that the estimated
Look-Ahead (LA) is stochastically to conservative, and
the probability that an external event really occurred
right after the expiration of the LA is very small.

We presented two typical topologies where CLA
could be applied to accelerate the simulation. First
of all, if all LPs could communicate with each other
directly (fully-connected topology), each LP could send
an identical CLA to all other LPs with the condition,
that its local state will not be modified by any other LP.

186188

(a) Model (b) Result

Fig. 5: Case Study

The IA should be broadcasted after any external event is
sent within the whole system. In addition, the approach
can be applied to a chain of LPs (line topology) as
long as the state change of one LP will not cause
the immediate state change of a neighboring LP. Most
important, the approach also works for a combination of
the both topologies. We also discussed the possibility to
apply the solution with CLA to more complex models
through grouping of LPs. By the case study of multi-
agent simulation, the execution time of the simulation
is reduced by up to 24% compared with a globally
synchronized execution.

REFERENCES

[1] R. M. Fujimoto, Parallel and Distribution Simulation Systems,
1st ed. New York, NY, USA: John Wiley & Sons, Inc., 1999.

[2] D. Fu, M. Becker, and H. Szczerbicka, “On the potential of semi-
conservative look-ahead estimation in approximative distributed
discrete event simulation,” in Proceedings of the 2013 Summer
Computer Simulation Conference, ser. SCSC ’13. Vista, CA:
Society for Modeling & Simulation International, 2013, pp.
28:1–28:8.

[3] S. Leye, A. Uhrmacher, and C. Priami, “A bounded-optimistic,
parallel beta-binders simulator,” in Distributed Simulation and
Real-Time Applications, 2008. DS-RT 2008. 12th IEEE/ACM
International Symposium on, Oct 2008, pp. 139–148.

[4] R. E. Bryant, “Simulation of packet communication architecture
computer systems,” Cambridge, MA, USA, Tech. Rep., 1977.

[5] K. Chandy and J. Misra, “Distributed simulation: A case study
in design and verification of distributed programs,” Software
Engineering, IEEE Transactions on, vol. SE-5, no. 5, pp. 440
– 452, sept. 1979.

[6] D. M. Nicol, “Parallel discrete-event simulation of fcfs stochastic
queueing networks,” SIGPLAN Not., vol. 23, no. 9, pp. 124–137,
Jan. 1988.

[7] Y. Lin and E. Lazowska, “Exploiting lookahead in parallel simu-
lation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 1, no. 4, pp. 457–469, 1990.

[8] R. A. Meyer and R. L. Bagrodia, “Improving lookahead in
parallel wireless network simulation,” in Proceedings of the 6th
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, ser. MASCOTS
’98. Washington, DC, USA: IEEE Computer Society, 1998,
pp. 262–.

[9] J. Liu and D. M. Nicol, “Lookahead revisited in wireless net-
work simulations,” in Proceedings of the sixteenth workshop on
Parallel and distributed simulation, ser. PADS ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 79–88.

[10] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang.
Syst., vol. 7, no. 3, pp. 404–425, Jul. 1985.

[11] P. Martini, M. Rümekasten, and J. Tölle, “Tolerant synchro-
nization for distributed simulations of interconnected computer
networks,” SIGSIM Simul. Dig., vol. 27, no. 1, pp. 138–141, Jun.
1997.

[12] A. Ferscha and G. Chiola, “Self-adaptive logical processes:
the probabilistic distributed simulation protocol,” in Simulation
Symposium, 1994., 27th Annual, apr 1994, pp. 78 –88.

[13] A. Ferscha, “Probabilistic adaptive direct optimism con-
trol in time warp,” in Parallel and Distributed Simulation,
1995. (PADS’95), Proceedings., Ninth Workshop on (Cat.
No.95TB8096), jun 1995, pp. 120 –129.

[14] G. Kunz, M. Stoffers, J. Gross, and K. Wehrle, “Know thy
simulation model: analyzing event interactions for probabilistic
synchronization in parallel simulations,” in Proceedings of the
5th International ICST Conference on Simulation Tools and
Techniques, ser. SIMUTOOLS ’12. ICST, Brussels, Bel-
gium, Belgium: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2012, pp.
119–128.

[15] H. Park and P. Fishwick, “A fast hybrid time-synchronous/event
approach to parallel discrete event simulation of queuing net-
works,” in Simulation Conference, 2008. WSC 2008. Winter, dec.
2008, pp. 795 –803.

[16] S. Jafer and G. Wainer, “Global lookahead management (glm)
protocol for conservative devs simulation,” in Distributed Sim-
ulation and Real Time Applications (DS-RT), 2010 IEEE/ACM
14th International Symposium on, Oct 2010, pp. 141–148.

[17] D. M. Nicol, “Noncommittal barrier synchronization,” Parallel
Comput., vol. 21, no. 4, pp. 529–549, Apr. 1995.

187189

