
Hybrid Vehicle Simulation System with Discrete

Event Modeling and Simulation
Shafagh Jafer, Jeanette Benjamin

Department of Electrical Computer Systems and Software Engineering
Embry-Riddle Aeronautical University

Daytona Beach, FL
jafers@erau.edu, benjamj2@my.erau.edu

Abstract- Embry-Riddle Aeronautical University (ERAU) is

one of fifteen schools across the United States and Canada that

qualify to compete in the EcoCAR competitions. One of the major

tasks of the ERAU EcoCAR team, besides to produce a working

vehicle that fits the required hybrid vehicles, is to ensure

predictions of the car's performance. In this paper we present the

use of the Discrete-Event System Specification (DEVS) formalism

to simulate the physical hybrid car in its current state. We have

modeled the car and manipulated various inputs and conducted

simulation results that in theory match with those of the physical

car. The proposed Hybrid Vehicle Simulation System produces

scientifically sound results in theory that can be verified and

validated. Development is performed at a system level, identifying

the major contributing components, connecting those components

as it is in the physical car, and simulating the various inputs and

outputs of each component. The behavior of each component is

analyzed as data is injected into it and the results are documented.

Test plans are formulated to test each component (unit) under

different conditions. The produced simulation will be

incrementally replaced with actual hardware components of the

car. This work benefits from a number of modeling and simulation

concepts such as: component-oriented model-based development,

model-continuity, and incremental replacement.

Keywords- Model-based design; hybrid electric vehicle
simulation; discrete-event modeling and simulation; EcoCAR;
automobile modeling

I. INTRODUCTION

The increasing fuel costs and related economical, political,
and environmental concerns have raised the demands for auto
manufacturers to produce more efficient vehicles. Among the
different technologies which attempt to improve vehicle's fuel
efficiency and reducing emission of greenhouse gasses, the
hybrid electric vehicles have been recognized as the technology
of choice. A hybrid vehicle is one that stores energy on board
in two or more forms. The two sources of energy for a typical
hybrid electric vehicle are battery and gasoline. Hybrid electric
vehicles reduce fuel consumption in several was. One method
is eliminating idle fuel use. In conventional vehicles, fuel keeps
burning when the car is in idle mode and not moving. Hybrid
electric vehicles eliminate fuel consumption at this stage by
immediately shutting the engine off, and re starting it quickly
as needed once again. The other method of fuel consumption
reduction is recapturing brake energy that otherwise is wasted.

This is done by using a bidirectional energy storage device on
the vehicle. Another method which is used in plug-in vehicles
is to offset fuel with stored grid electricity to allow recharging
and some level of electric-only driving capability.

Embry-Riddle Aeronautical University (ERAU) is
participating in EcoCAR 2: Plugging in to the Future [2], an
advanced vehicle competition run by Argonne National Labs
sponsored by General Motors and the United States Department
of Energy. ECOCAR2 is a three-year collegiate engineering
competition. The goal of this competition is to reduce fuel
consumption, reduce well-to-wheel greenhouse gas emissions,
and maintain consumer acceptability in the areas of
performance, utility, and safety. This competition challenges 15
schools from USA and Canada. EcoCAR vehicle is a 2013
Chevrolet Malibu with hybrid-vehicle technologies
capabilities. The competition, running from 2011 to 2014,
requires the competing schools to drastically alter the
architecture of their vehicle, including removing and replacing
the drivetrain components and completely rewriting the vehicle
control systems.

With the rise of complex hybrid powertrains and their
corresponding complex control systems, model-based design
has become the excellent technology in the design and
validation of hybrid systems [1]. To fulfill the EcoCAR
competition rules and specifications, here we attempt to use
model-based design to construct our EcoCAR hybrid-electric
vehicle. We demonstrate how discrete-event modeling and
simulation techniques can be used as the model-based design
approach to effectively design a hybrid electric vehicle
powertrain and the corresponding control system. Our
modeling and simulation methodology is the Discrete-Event
System Specification (DEVS) formalism [7] for dynamic
systems. DEVS allows defming an entire system through
collaborative and interacting components. A DEVS-based
system is composed of coupled (structural) and atomic
(behavioral) entities. Atomic components can be viewed as
entities communicating with each other by sending/receiving
messages via ports. The behavior of each atomic component is
given by a state machine. DEVS promotes component-based
model-driven development. It supports model continuity where
an entire system can be built upon existing components. With
DEVS incremental replacement capability, simulation blocks
are replaced by actual hardware, providing an excellent solution
to modeling and simulating complex and risky systems.

In this work, using DEVS theory, the overall vehicle
architecture is modeled and simulated in an incremental
development approach, focusing on a single component at a
time. Software-in-the-loop and hardware-in-the-loop
simulations is integrated with our proposed model in the future
to examine fuel efficiency and validate the vehicle control
system for performance, safety, and fuel economy.

II. BACKGROUND

For the EcoCAR 2 competition, ERAU is building a series
plugin hybrid electric vehicle (PHEV). This architecture was
chosen by the EcoEagles team for its versatility and high
simulated efficiently. The vehicle uses a Remy [3] HVH250-
090-P [4] electric motor to drive the vehicle's front wheels. The
motor will be powered by an A123 (lithium-ion battery) [5]
donated energy storage system (ESS) running at a nominal
292V. When the battery is depleted, a General Motors [6]
donated I.7L diesel engine coupled to a second Remy motor
will act as a generator to supply power to the battery and
traction motor. This architecture allows the vehicle to have an
estimated all-electric range of approximately 40 miles, with an
overall range of over 350 miles. A high-level overview of the
vehicle architecture is shown in Figure 1.

Rear Wheel

@
Rear Wheel

@

Front Wheel

� � ".,,� �
,------+ Battery X- Traction 1 1

(ESS) Mot�

@ Engine J Front Wheel

Figure 1. Vehicle architecture.

We are interested in modeling the components outlined in
Figure 1, given their following descriptions:
• ESS -Energy Storage System - is the battery pack built by

the EcoCAR students, with 16.2 kWh capacity. It is a high
voltage energy.

• Generator - Converts mechanical energy to electrical
energy in order to charge the ESS from the diesel.

• Traction Motor -Converts electrical energy to mechanical
energy. It is attached to the E-Transmission that powers the
wheel.

• Engine-I.7 Liter turbo Diesel that runs on B20 Bio diesel.
The engine is not connected to the wheels, its sole purpose
is to generate charge for the ESS when the ESS charge
depletes to 30%. When this occurs the diesel will start to
maintain charge levels in the ESS.

• APM -is the Auxiliary Power Module. Its main purpose is
to convert 300 Volts to 12 Volts to maintain the charge on
the battery since there is no alternator.

• Inverters - There are two inverters: a Traction Motor
inverter that converts DC to AC and vice versa and a
Generator inverter that converts AC to DC.

Our model-driven design approach is to take one component
at a time and model it based on the specifications for that
component and the appropriate mathematical equation(s)
embedded. All of the necessary inputs for the component will
be itemized, utilizing DEVS-based components. DEVS uses
state machines to isolate the different states that the component
can be in and simulates its behavior. The embedded
mathematical equations will aid in producing output that can
then be verified and validated. Each component is built using
the same framework and methodology. Once all components
have been modeled, test plans will be formulated for each
component. Then, the next step would be combining all of the
components into the system level and formulate test plans for
the system as a whole, then conducting integrated and system
tests for the purpose of verifying and validating the overall
system behavior and performance.

III. RELATED WORK ON MODEL-BASED DESIGN

With the increased demand and complexity of hybrid
vehicles, model-based design has gained a lot of attention from
automobile industry and related researchers. Traditionally,
model-based design was only used for developing controllers.
Recently, there has been noticeable effort among researchers
demonstrating how model-based techniques can be used
throughout the design process as well. The key focus has been
on highlighting the ability of model-based design techniques in
continually verifying that design requirements are being met at
each step throughout the process. In [1] a model-based design
of a hybrid vehicle is given using the Mathworks SimDriveLine
and SimPowerSystems features. They also used Mathworks
Stateflow for developing the control strategy of the vehicle
based on state machine. Universal modeling languages such as
SysML and UML were used in [9] in developing control
architecture and strategy for hybrid electric vehicle. Mathworks
Simulink was then used to implement the actual control
strategy. Pisu and Rizzoni [10] compared four supervisory
control techniques for hybrid electric vehicles. They techniques
presented were Finite-State Machine (FSM), Equivalent
Consumption Minimization Strategy (ECMS), H" Control, and
Dynamic Programming. Using each of the methods, first the
vehicle model used for simulating the control strategies was
outlined. Then mathematical models for all the vehicle
components were then presented. And [mally a curve fit model
was used for engine fuel consumption. Unfortunately those
methods are not practical for in-vehicle use due to extreme
offline computational complexity and prior knowledge of the
drive cycle in developing the optimal solution. A number of
efforts [11][12] used hardware-in-the-Ioop (HIL) to simulate
the vehicle's control system. The HIL system provides a risk
free and cost-effective experimental environment, as errors are
found earlier in development, reducing correction cost. Such
testing strategy provides progression from desktop to HIL,
dynamometer, and finally to on-road testing. Each step included

incremental replacement of simulated models with real
components.

Designed for generic dynamic systems, DEVS is a powerful
technology for incremental model-based designs and
development. The work presented here is the first attempt to
using discrete-event continuous-time system theory for the full
design of a hybrid vehicle.

IV. VEHICLE COMPONENTS MODELING AND SIMULATION

WITH DEVS

Among the existing modeling and simulation techniques, the
DEVS (Discrete Event System Specification) formalism [1] is
regarded as one of the most developed general-purpose M&S
frameworks for Discrete Event Dynamic Systems (DEDS). In
DEVS, a real system is decomposed into behavioral (atomic)
and structural (coupled) components. The system under study
is modeled as a top coupled component encapsulating atomic or
other internal coupled components. Components are linked
through their input/output ports and interact with each other by
sending/receiving event messages. Events can arrive at any time
through input ports, but due to the discrete-event nature of
DEVS, acceptable data can only be processed in a discrete
fashion. The behavior of an atomic component is given by a
state machine. Through their life time, atomic entities go
through various states when transitions are triggered by
incoming events.

Component-based DEVS provided us with a step-by-step
design approach. First the system's overall architecture is
defined within the DEVS framework. Then the internal
behavior of each component is defined using a state machine.
Fig. 2 illustrates the DEVS-based high-level System
Architecture of our hybrid vehicle composed of four coupled
components (Generator, Traction Motor, Engine, and Battery)

and four atomic entities (Inverter - inv, APM, AC, Traction
Inverter - Trac inv.).

Engine

Generator

Fig. 2. Hybrid vehicle DE VS-based system architecture.

A. Energy Storage System

The Energy Storage System (ESS) is an electrical lithium
ion battery system that produces power to power the PHEV. The
ESS is comprised of two major components: Battery and a
battery management system. As defined in Figure 3, it is
composed of two internal components.

• The Battery (an atomic component) is the slave to the
entire system, where its main function is to do what the
battery management system tells it to do.

• The Battery Management System (a coupled component)
is considered the brain of the battery because it monitors,
controls and connected to the micro-autobox of the car via
the Controller Area Network (CAN bus).

Energy Storage System

CAN info

chargeOu
Contactor signa Is

BMS
hargeln Battery

Fig. 3: Energy Storage System.

The internal behavior of the Battery component is defined
using the state diagram in Figure 4. Here we present the details
for the Battery component. EcoCAR is a plug-in hybrid electric
vehicle (PHEV) which provides battery recharge capability to
restore to full charge by connecting a plug to an external electric
power source. As shown in Figure 2, our PHEV shares the
characteristics of both a conventional hybrid electric vehicle,
having an electric motor and an internal combustion engine, and
of an all-electric vehicle with a plug to connect to the electrical
grid. We model the Battery component as a coupled DEVS
system with an input indicating charge arriving, and an output
representing charge departure.

The abstract architecture of the Battery component is given
in Fig. 4.

dep lete

cha rgeln : ,

Battery
, ,

Fig. 4. Battery coupled component.

char�e
, ,

Out

The fonnal DEVS specifications of the Battery atomic
component are given as following:

Battery = <X, Y, S, Oint, Oext, A., ta>
Where X is the set of inputs, Y is the set of outputs, S defines
possible states, Oint is the internal transition function (defmes the
behavior upon state change), Oext is the external transition
function (defmes the behavior upon arrival of input), A.
describes the output generation, and ta provides the states
durations. According to the definitions and terminologies of
PHEV, the vehicle's battery can be in one of the following
modes of operation:
• Charge-depleting (CD) mode: An operating mode in

which the energy storage state-of-charge (SOC) may
fluctuate but, on average, decreases while the vehicle is
driven.

• Charge-sustaining (CS) mode: An operating mode in
which the energy storage SOC may fluctuate but, on
average, is maintained at a certain level while the vehicle
is driven. This is the common operating mode of
commercial HEVs.

• All-electric range (AER) mode: The vehicle is driven
with motor only (with the combustion engine oft), range is
the total miles driven electrically before the engine turns on
for the first time.

• Blended or charge-depleting hybrid (CDR) mode: An
operating mode in which the energy storage SOC
decreases, on average, while the vehicle is driven· the
engine is used occasionally to support power requests:

• Zero-emission vehicle (ZEV) range: The same as AER;
there are no tailpipe emissions when the vehicle is in
electric vehicle mode.

These modes defme the internal behavior of the Battery
component. Thus, the state diagram is given based on two
generic states (CD and CS) as follows:

,...
+., �
� /
�:
ro ,
-5 \ I'

X= (chargeln, 1)

- ' ... _;'
g. X= (deplete, 1)

Fig. 5. Battery state diagram.

The
.
st�t� .

diagram is interpreted as following: the Battery
model IS Imtlally at state CS (initial state is denoted by double
border) indicating charge sustaining. Given a state duration of
1 second for CS state, this means that every one second the state
of the Battery is reset to CS allowing for periodic increment of
the charge (this can be modeled using a state variable that is
incremented by one every time the Battery enters CS state).
However, this behavior can be interrupted when an input arrives
thro�gh the deplete port indicating usage of the Battery and thus
causmg state change to CD. As the Battery enters the CD state
periodic charge depletion will occur, indicated by sending a�
output event to the destination component (e.g. AC, APM, or
the Tr

.
action Inverter). The depletion phase will continue by

depletmg an amount of charge every one second, until the
batter� r�ceives

.
ch�rge from a source (engine or through

pluggmg-m). ThiS IS when an event arrives through the
chargeln port, causing an immediate state transition to the CS
state.

.
With the Battery structural diagram from Fig. 4 and the state

diagram above, the Battery formal DEVS specification is given
below.

Battery = <X, Y, S, Oi nt, 0ext, A.., ta>
X = {(chargeln, 1), (deplete, 1)}

Y = {(chargeOut, 1)}

S = {CD, CS}

Oint (S -> S'l{

if(S = CD) -> S = CD

if(S = CS) -> S = CS

}
A.. (S -> Y){

if (S = CD) � out(chargeOut, 1)

}

OeXl (S,e,X -> S'l{

if (S = = CD && e = anytime && X = = (chargeln, 1)) � S = CS

if(S = = CS && e = anytime && X = = (deplete,1)) � S = CD

}
ta(S -> R+){ CD � 1, CS � 1}

Fig. 6. Battery formal DE VS specificatIOn.

B. Battery Management System

The Battery Management System (BMS) contains two major
com�on�nts:

.
a battery control unit (bcu) and a battery

momtonng umt (bmu). The overall responsibility of the BMS is
to protect the battery from unsafe temperature, voltage and
current, and to monitor the status of the battery itself such as its
temperature, calculate state of charge (SOC) and read CAN
in

.
coming CAN messages and send outgoing CAN messages.

FIgure 7 shows the conceptual diagram of the BMS. The BMS
receives information through CAN bus, Read sensors and
Contactor Signals. Contactor signals are the only means the
battery can protect itself in case of unsafe parameters. The
contactors are controlled by the battery control unit (bcu). In the
event that the battery monitoring unit (bmu) within the bmu
receives information from the CAN bus that indicates an error
or unsafe parameters, it then sends a signal to the bcu. Then, the
bcu sends one of two possible signals: close contactors or open
contactors. In the event of key ignition the signal will close
contactors provided that all operational parameters are safe and
then charge will flow in or out of the battery. In the event of
unsafe parameters the signal will open contactors which will
break the circuit connection and stop charge flow in or out of
the battery.

Battery Management System
sensorsln CANinfo

""7" Battery
Monitoring msgs

Unit CAN
Bus

signalln signalOut
It

cmdOut
Battery
Control

Unit

Figure 7. Battery Management System.

The internal behavior of bmu and bcu is defined next using
the state diagram in Figure 8 and Figure 9.

Battery Monitoring Unit

x = (signa lin, 1)

X = (templn, 1)

X= (currentln, 1)

'
"

X= (voltageln, 1)

\
\
\

y= (outCANinfo,\l.)
\

, ,

Figure 8. bmu state diagram.

.... _---------

y = (outMSG, "error")

, ,
\

y= (batterylnfo, 1

X= (templn, 1)

X= (currentlln, 1)

X= (voltageln, 1)

The Battery Monitoring Unit (bmu) has 4 states: the initial
state is "Wait for Input", "Battery Assessment", "Calculate
SOC" and "Send Status". The initial state has duration of (<Xl)
and it will remain it this state unless it receives the input: X =

(inCANinfo, 1), X = (signaIIn, 1), X = (tempIn, 1), X =

(currentIn, 1), X = (voltage In, 1), where the state changes to
"Battery Assessment". The "Battery Assessment" has duration
of IOms where it can produce an error message if the anomalies
are detected. If no anomalies were detected the state changes to
"Calculate SOC" which has a duration of 50ms. In this state the
current state of charge (SOC) of the battery is calculated in
percentages and an output of Y = (batteryInfo,l) which will
include the calculated SOC, voltage, current, and temperature
of the battery and after 50ms the state changes to "Send Status".
The "Send Status" produces an output of Y= (outCANinfo,l)
which is the battery information that will be transmitted over
Controller Area Network (CAN). For duration of 0 ms and
changes state to the initial state of "Wait for Info".

Battery Control Unit

x = (si nalln,l)

X= (templn, 1)

X= (currentlln, 1)

X= (voltageln, 1) ---

.... _-_

Y = (outMsg, "erro r")

Y = (cmdOut, 1)
\

\

Send

Oms

Figure 9. bcu state diagram.

X= (templn, 1)

X= (currentlln, 1)

X= (voltageln, 1)

The Battery Control Unit state diagram has three states: the
initial state of "Wait for Input", "Verify Safe Parameters", and
"Send Command". The initial state has duration of (<Xl) since the
state will not change unless it receives the required input as
shown in the state diagram. When the bcu receives the input, it
changes its state to "Verify Safe Parameters" for duration of
IOms. In this state the battery runs comparisons of the data

being received from the battery sensors against the safe ranges
specified for the battery. If the comparison shows the
parameters are unsafe then an "error" message is sent out as an
internal output Y= outMsg. After 10ms "Verify Safe
Parameters" state changes to "Send Command" which has
duration of Oms. In this state a command is sent out as output:
Y = (cmdOut, 0 /1) and returns to the initial state "Wait for
Input". The command can be one of two possible commands:
open contactors (0) or close contactors (1). In an unsafe
situation an "open contactor" signal will be sent; however in
other cases where the parameters were safe and charge wants to
enter the battery then the command sent out would be close
contactors".

CAN Bus

x = (inCANinfo, 1)

I
" Y =(outCANinfo, 0)

,-"

Figure 10. CAN Bus state diagram.

The CAN bus state diagram (Figure 10) depicts two basic
states: "Receive" and "Send". The "Receive" state is the initial
state which has duration of (<Xl) because it will not change unless
is receives an input: X= inCANinfo. Once inCANinfo is
received the CAN bus changes state to "Send" which has a
duration of Oms. In the "Send" state the battery transmits all of
the information out to the micro-autobox of the car as the
output: Y = (outCANinfo, 1) which then sends the relevant
information to various components of the car that requires the
information for operation. The CAN bus acts like a client server
operation so it changes state based on demand and priority.

A. Traction Motor

The Traction Motor is a three-phase motor that receives input
from the traction inverter. The Traction Motor produces torque
and speed based on the input commands that are received from
the micro-autobox of the car that is received by the inverter and
passed to the motor. The traction motor converts AC to DC and
vice versa and it contains a temperature sensor for the motor .
The Traction Motor is comprised of a Temperature Sensor and
a Motor. The traction Motor internal structure is presented in
Figure 11

Traction Motor

�empC Templn

� Temp sensor

IL Torque
Va
Vb Motor Regen
Vc

Vout Speed

Figure 11. TractIOn Motor.

The internal behavior of the Motor and Temperature Sensor
is presented in Figure 12 and Figure 13.

Temperatur e Sensor

x = (signal, 1)

,
.... __ y =(tempOut, 1)

Figure 12. Temperature Sensor state diagram.

The Temperature Sensor state diagram has 2 states: the initial
state is "Receive" and the other state is "Send". The "Receive"
state has duration of (00) and the "Send" state has duration of
IOms. The behavior of the Temperature Sensor is simple just as
the CAN Bus, in that it stays in receive state unless it receives
an input: X = (signal, 1) which changes the state to "Send". The
"Send" state will send the acquired temperature sensor data as
an output, Y = (tempOut, 1) and after 10ms it changes the state
to its initial state of "Receive".

Y =(tempOut, 1)
Y =(Power, 1)
Y =(torque, 1):
Y =(speed, 1) '

Traction Motor

-_

Figure 13. (Traction) Motor state diagram.

The Traction Motor state diagram has 3 states: The initial
state is "Wait for Input", "Active" and "Handle Event". When
the initial state which remains in duration of (00) unless it
receives an input: X = (signal, 1) which changes the state to
"Active". The "Active" has duration for 10ms and produces an
output of Y = tempOut which is received from the temperature
sensor. In this state the Traction Motor may receive several
requests which when received changes its state to "Handle
Event". The inputs are: X = torque; X = speed; which are
commands being received. Additionally an input of X= regen
may occur if regenerative braking is achieved. In this state the
traction motor will execute the request, for example: if the
request was "torque" which is torque command that was

received from the micro-autobox, then the "Handle Event" state
will set the commanded torque, then the state is changed after
Oms to state, "Active". The output generated in "Handle Event"
are Y = torque; Y = speed and if there is regenerative braking
an output of Y = Vout. The state can remain in "Active" until an
input of X = (signal, 0) is received which changes the state to
the initial state.

V. EXPERIMENTS

In order to execute our DEVS simulations, we implement
our models using a DEVS development environment called
CD++ [13]. The CD++ toolkit provides an easy-to-use
framework to implement DEVS models in C++. In this paper
we only present the simulation results from executing the
Battery atomic component.

First a model file ("Battery.MA") is written defining the
structure of the Battery coupled component in terms of
encapsulated atomic entities and the linkage among them as
well as input/outputs to the external environment (which could
be another coupled or atomic component, e.g. Inverter or AC).
The Battery Model file is defined as follows:

[top]
components : battery@Battery
out chargeOut
in charge In
Link chargeIn chargeIn@battery
Link deplete deplete@battery
Link chargeOut@battery chargeOut

Next, a ".cpp" and a corresponding ".h" file are created for
every atomic component to implement its behavior. The CD++
tool provides a template for these two files, making it a very
simple and quick task. The ".h" file includes definition of that
atomic component's states, the time duration for each state, and
declarations for the four core DEVS methods: initial, internal
transition, external transition, and output function. A DEVS
developer provides the implementation for these four functions
by mapping the DEVS atomic definition and behavior (as
defined on the state diagram) to source code.

The "Battery.h" and "Battery.cpp" excerpts are shown in
Figure 14 and Figure 15.

class batter y : public Atomic{

protected:

Model &initFunction();

Model &externalFunction(const ExternalMessage &);

Model &internalFunction (const InternalMessage &);

Model &OutputFunction(const InternalMessage &);

private :

const Port &chargeln; //i np ut po rts

const Por t &deplete;

const Por t &contactorSignal;

Port &chargeOut; //o utput ports

Port &batteryl n f o;

enum State{ C D , CS }; //Battery states

State state;

}; / / c lass Battery

Fig. 14. Excerpts of "Battery. h".

Model &battery: : externalFuncti on(const

ExternalMessage &msg {
if ((state == CO) && (msg . po rt() == cha rgeln» {

estate = msg . valu e() ;

state = CS;
holdl n(Atomic:: active, t) ;llstate dur ati on

II rest of the code omitted

Model &battery: :internalFun cti on(const

internalMessage &) {

sw itch (state) {
case CS:

state = CO;
passivate() ;llstate durati on=infin ity

break;

case CD:
state = CS;
passivate() ;llstate durati on=infin ity

break;

1 ; 11 rest of the code omitted

Model &battery: : output Functi on (const

I nternalMessage &msg) {
sw itch (state) {

case CD:
sendOutput(msg . time() , chargeOut, estate) ;

break ;

1 ;llend sw itch

retu rn *thi s ;

Fig. 15. Excerpts of "Battery.cpp"

DEVS unit testing can be performed by analyzing the
behavior of each atomic unit separately. For this purpose, an
atomic component is injected with various inputs and timing
sets, and the corresponding outputs and their timing are verified
against the model specification as outlined on the state diagram.
In order to test the Battery component, fust an event file is
created specifying the value, the port, and the time at which an
input event is injected into the component. Table 1 illustrates
the content of the event file (".ev"). The event file has the
following format:

TABLE 1. "IN.EV " FILE FOR TESTING THE BATTERY UNIT.
eventTime eventvalue

00:00:50 chargeln 1

Given this input, according to the Battery state diagram the
following scenario should occur: assume the Battery is in state
CD indicating that there will be a periodic loss of charge at a
rate of n_volts per second. While in charge-depleting state, if a
charge event arrives, the model immediately transits to charge

sustaining state where its charge will be incremented at a rate
of n_volts per second. Since no output is generated while in
state CS, we should expect nothing to be written to the ".out"
file, indicating no output generation.

Once all atomic units are tested separately, their
corresponding coupled components are then tested (incremental

integrated testing). By grouping integrated tests, fmally an
overall system integrated test can be conducted verifying that
the system works as a whole.

VI. CONCLUSION

This paper discussed a new model-driven design, simulation,
and modeling technique developed at Embry-Riddle
Aeronautical University for the EcoCAR 2 project. We
presented an overall design of a hybrid-electric vehicle using
the discrete-event dynamic system (DEVS theory). Given the
component-oriented and highly-reusable capabilities of DEVS,
the components defined in this work can be used "as-is" or in
an extended version for designing and simulating any type of
vehicle (electric, hybrid electric, hybrid, fuel-burning, etc.).
Since DEVS is a mathematical formalism, it is backboned with
guaranteed correctness and reliability. Any system
implemented using DEVS is easily scalable, verifiable, and
testable. This work attempts to provide a complete and freely
available DEVS-based package for modeling and simulation of
vehicles.

REFERENCE

[I] Mahapatra. S., Egel, T., Hassan, R., Shenoy, R., and Carone, M. "Model
Based Design for Hybrid Electric Vehicle Systems". SAE 2008
International World Congress, Detroit, MT. 2008.

[2] Argonne National Labs, "EcoCAR 2," [Online]. Available:
http://www.ecocar2.org/ecocarchallenge.

[3] Remy, "Remy - Company Overview," [Online]. Available:
www.remyinc.com/AboutOverview.aspx.

[4] Remy, "HVH250-090P," [Online]. Available:
http://www.remyinc.com/docs/HVH250_r3_Sept_2010.pdf.

[5] A123, "About AI23," [Online]. Available:
http://www.aI23systems.com/about-us.htm.

[6] General Motors, "About GM," [Online]. Available:
http://www.gm.com/company/aboutGM.html.

[7] Zeigler, B., Praehofer, P. H., and Kim, T. G. "Theory of Modeling and
Simulation". Academic Press. 2000.

[8] Smith, B, Raj, L., Wong, G., Stansbury, R. "Intelligent control system for
improving the efficiency of a series hybrid for the EcoCAR 2 challenge".
IEEE SoutheastCon. 2012.

[9] Marco, J, Cacciatori, E. 'The Use of Model Based Design Techniques in
the Design of Hybrid Electric Vehicles". 3rd Institution of Engineering
and Technology Conference on Automotive Electronics, June 28-29,
Warwick, UK. 2007.

[IO]Pisu, P., Rizzoni, G. "A Comparative Study Of Supervisory Control
Strategies for Hybrid Electric Vehicles", IEEE Transactions on Control
Systems Technology, 15(3). 2007.

[I I] Ramaswamy, D., et. al."A Case Study in Hardware-In-the-Loop Testing:
Development of an ECU for a Hybrid Electric Vehicle", SAE Paper 2004-
01-0303, SAE 2004 International World Congress, March 8-11, Detroit,
Ml. 2004.

[12] Deng, Y., Li, H., Foo, S. "Controller Hardware-In-the-Loop Simulation for
Design of Power Management Strategies for Fuel Cell Vehicle with
Energy Storage", Vehicle Power and Propulsion Conference, September
7-10, Dearborn, MI. 2009.

[13]G. Wainer, "CD++: A Toolkit to Develop DEVS Models", Software -
Practice and Experience, 32(13), pp. 1261-1306,2002.

