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Abstract-High Level Architecture (HLA) and Functional 
Mock-up Interface (FMI) are two simulation interoperability 
standards. The HLA is older, well established and popular in 
industry. The FMI is a new standard, with plenty of support 
from the open source community and scientists. In this paper, it 
is presented how the strengths of both, the HLA and the FMI, 
can be utilized to realize a distributed hybrid (or heterogeneous) 
simulation platform. Two different algorithms are proposed for 
such a platform. To demonstrate the correctness of algorithms, 
and their performance comparison, a simulation example is 
chosen from the domain of complex energy systems. 

Keywords-High Level Architecture (HLA); Functional Mock
up Interface (FMI); co-simulation; hybrid simulation; hetero
geneous simulation; distributed simulation; parallel simulation; 
continuous simulation; simulation interoperability; DEVS; Open
Modelica; Modelica. 

I. INTRODUCTION 

With growing demand for simulation engineering, numer
ous Simulation Packages (SPs) have been developed. Most of 
them are specialized in some specific field or some specific 
methodology. However, when simulating multi-disciplinary 
problems, there arises a need to utilize different specialized SPs 
for their specific problem domain, while allowing the different 
packages to share information through some mean. The HLA 
is a standard for interoperability among different SPs. It was 
presented in year 2000 [1], since then it is being used in 
industry largely for Distributed Discrete Event Simulations 
(DDES). 

The FMI [2] is closely related to the work on the Modelica 
specification [3]. It is widely being used as a standard for 
model exchange among different SPs. The development of 
the FMI is currently managed by the Modelica Association 
Project (MAP) [3]. A brief overview and comparison of both 
the HLA and the FMI can be seen in [4], which also presents 
the idea of using the HLA and the FMI in Fixed Time Stepped 
Simulations (FTSS). 

In the aforementioned paper the term FMU-Federate was 
introduced, originating from the fact that a Functional Mock-up 
Unit (FMU) is a component that conforms to the FMI specifi
cation, while in the HLA terminology an individual simulation 
component is called as a "Federate". So a simulation program 
or a federate that has the capability of importing an FMU and 
simulating it over the Run Time Infrastructures (RTI), can be 
called as an FMU-Federate. If this program can simulate any 
arbitrary FMU then it may be called as a "generic" FMU
Federate. 
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The current work presents two kinds of FMU-Federates, 
based on the simulation algorithms used in them. 

1) Fixed Time Stepped: As the name suggests, such 
an FMU-Federate progresses in fixed time steps. 
Typically the HLA "Time Advance Request" and 
"Time Advance Request Available" services are used 
by it. 

2) Discrete Event Based: An FMU-Federate that pro
gresses based on the internal and external events 
is considered discrete event based FMU-Federate. 
Typically the HLA "Next Event Request" and "Next 
Event Request Available" services are used in such 
an FMU-Federate. To be able to advance time, based 
on events, it has to look into the future and predict 
when the next event is going to occur. 

The presented platform uses both kinds of FMU-Federates 
in the "Federation" (the term for whole simulation in the HLA 
terminology), while the FMUs used in the test case have been 
generated from continuous models, using OpenModelica [5]. 
It is a hybrid (heterogeneous) simulation platform, allowing 
different types of simulations to run in conjunction, e.g. Fixed 
Time Stepped Simulations (FTSS), Continuous Simulations 
(CS), and Discrete Event based Simulations (DES). Moreover, 
the FMU-Federates used in the test case are "generic", unless 
there was a tool limitation. Additionally, due to the fact that the 
platform uses the RTI as a regulator or master, it can be used 
in any distributed computing environment, including clusters, 
grids and clouds. 

The rest of the document is organized as follows. Section 
II discusses related work, then the two algorithms that are used 
in the proposed solution, are discussed in section III. Section 
IV discusses the test case in detail , and presents comparative 
results. The last section V entails the conclusive remarks. 

It is important to mention that the concepts described in the 
section III largely depend on the understanding of, specially the 
HLA, and preferably the FMI. Even if one does not have an in 
depth knowledge of the FMI, one must have an understanding 
of continuous simulation. Secondly, the reader should note 
that in the test case presented here FMUs are continuous 
simulation components. They were implemented and generated 
by OpenModelica [5], yet any FMU generated by any tool 
may be used. Other sections do not require such an in depth 
knowledge. 

II. R ELATED WORK 

According to the knowledge of authors, there has been 
no attempt to utilize the HLA and the FMI in conjunction, 



except of [4] . However, there has been considerable amount 
of work done to realize heterogeneous or hybrid simulation 
environments. The Discrete EVent Specification (DEVS) com
munity has done significant amount of work on this topic. In 
[6] d' Abreu and Wainer have discussed different techniques 
proposed by the DEVS community to convert a continuous 
state system into a DEVS model. Zeigler et al. have presented 
their solution for using DEVS components with the HLA [7]. 
Readers knowledgeable of both the DEVS and the FMI, will 
realize that the approach presented here is also applicable to 
DEVS components, and it does not suffer from the flaws of the 
technique presented in [7]. Comparison to previous solutions 
comes in the section III-B2 

Similarly Ptolemy II [8] is another project providing a 
heterogeneous simulation platform. In [9] Ptolemy II and 
DEVS are compared. However, intuitive representation and 
GUI makes the Ptolemy II a better choice for users not 
accustomed to the DEVS formalism. 

III. ALGORITHMS AND MODELS 

Different aspects of two proposed algorithms will be dis
cussed, in the current section. First the simpler algorithm 
will be discussed, i.e. "Fixed Time Stepped Algorithm" and 
then the "Discrete Event Algorithm" will be presented. Both 
of these algorithms come from the concept called as "zero 
lookahead based simulations", using the HLA. Fujimoto [10] 
first presented the concept. This was a very abstract idea 
for special types of simulations, but the research community 
has not presented considerable examples of its practical use. 
Current work partially fills this gap. 

A. Fixed Time Stepped Algorithm 

Before presenting the algorithms, lets have a look at an 
ordinary approach towards fixed time stepped simulation using 
the HLA. The ordinary use of the HLA involves a value called 
"lookahead". This is the minimum amount of time, before 
which an active federate promises not to generate any new 
events. For example if a federate F with lookahead value la, 
requests a time grant for time to, then it must not generate 
any events before to + lao The naive approach for simulating 
a continuous model would assume a small time as lookahead, 
and would keep progressing in fixed time stepped fashion, 
using "Time Advance Request" service of the HLA. Please 
see Algorithm 1 

In Algorithm 1 lines 3-6 represent a typical fixed time 
advancing federate behavior. Afterwards the updates should 
be applied (line 8). Each update sent from other FMU
Federates must be applied in time, so before applying the 
updates the FMU should be moved forward to the time of 
update . Afterwards by calling fmiSetValue function the state 
variables of the model can be set. It is important to note that to 
ensure correct execution, the updates should be sent in "time 
stamped order". Lines 9-12 ensure that the model is progressed 
to the granted time plus the lookahead value. It is important 
to add the lookahead value, otherwise the update sent to the 
RTI will not be valid and will generate an exception. At the 
end, the updated states of the model are sent to the RTI. It is 
assumed here that the simulation will start from time = 0 as 
this is the case for most FMUs in practice. 
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Algorithm 1 NaiveTimeStepped (FMUFederate model, RTIAmbassador rtia, 
Time SimulationEndTime, Timelnterval step, Timelnterval lookahead) 

1: time = 0 
2: while time::; SimulationEndTime do 
3: rtia.timeAdvanceRequest(time + step) 
4: while (Time is not granted) do 
5: [> Process callbacks from the RTI. 
6: end while 
7: [> Now time = time + step 
8: [> Apply all accumulated updates, if any. 
9: timel = time + lookahead 

10: if model.time < time 1 then 
11: [> Integrate model to timel 
12: end if 
13: [> Send updated states of model to the RTI. 
14: end while 

1) Drawbacks: The important point to be noted in Algo
rithm 1 is, the lookahead value. In fact, this is not a problem 
when all the federates have same execution algorithm, with 
same step size and lookahead value. The problem becomes 
visible, when there is "heterogeneous" simulation, or there are 
more than one type of federates, with different step sizes. 

Suppose there are two federates; one time stepped F fts and 
the other discrete event based Fdes. Now suppose that Ffts has 
a lookahead value la fts, and Fdes has lookahead value lades, 
such that lades « la fts. Suppose Fdes is a federate that turns 
a switch on and off in Ffts. Now Fdes wants to turn the switch 
on and off at times ton and to f f, such that ton < to f f and 
toff - ton < lafts. In this case F fts will have to wait for 
Fdes until it produces both events. In case there is a feedback 
loop from Ffts to Fdes and the feedback has to be transmitted 
during the interval [ton, tof f), then it is clear that there will 
be a loss of information, because Ffts will never be able to 
process event at ton before tofJ occurs, and will never be able 
to transmit the effect of ton to Fdes in time. 

One solution to this problem is to use very small lookahead 
values , but it has been proven that a smaller lookahead value 
is detrimental to parallel execution of simulation [11]. Another 
solution is to vary the lookahead values during execution, 
which is an even worse solution, due to two reasons. First, the 
process of changing the lookahead value is not straightforward. 
The RTI has to ensure guarantees given to other federates 
before it really changes the lookahead value. Changing the 
lookahead value during execution will also cause negative 
effects on performance for the same reason, that the Lowest 
Bound Time Stamp (LBTS) will have to be calculated repeti
tively [11]. 

2) Improvements: The solution to the above problem lies 
in so called "episodic simulation" [10]. In such simulations 
federates are allowed to have a zero lookahead value, and 
federates are allowed to have different step sizes. The main 
idea is to use the "Time Advance Request Available" service 
of the HLA. For the detailed difference of the 'Time Advance 
Request Available" and the "Time Advance Request" services, 
reader is advised to look into [1]. One distinct difference is that 
a federate can send and receive multiple events at the granted 
time, when the time is requested using the "Time Advance 
Request Available" service. 



Algorithm 2 FixedTimeStepped (FMUFederate model , RTlAmbassador rtia, 
Time SimulationEndTime, Timelnterval step) 

1: time = 0 
2: while time < SimulationEndTime do 
3: 111+ Start- of episode. 
4: rtia.timeAdvanceRequestAvailable(time + step) 
5: while (Time is not granted) do 
6: I> Process callbacks from the RTI. 
7: end while 
8: I> Now time = time + step 
9: I> Apply all accumulated updates, if any. 

10: if model.time < time then 
11: I> Integrate model to time 
12: end if 
13: I> Send updated states of model to the RTI. 
14: 111+ End of episode. 
15: rtia.timeAdvanceRequest(time) 
16: while (Time is not granted) do 
17: I> Process callbacks from the RTI. 
18: end while 
19: I> Apply all accumulated updates, if any. 
20: end while 

Although seemingly Algorithm 2 is similar in structure to 
Algorithm 1, yet there are semantic differences in Algorithm 2. 
First, there is no concept of lookahead in Algorithm 2. In 
common scenarios, at the start of each episode the RTI will 
look what is the minimum time requested, and it will be 
granted to the requesting federate. The federate with greater 
time requested will have to wait until others have passed its 
requested time. Variable step sizes are possible but it is not 
advised to use "Time Advance Request Available" service for 
this. It is recommended to use "Next Event Request Available" 
service for federates with variable step sizes. The Algorithm 3 
is related to this concept. 

When federates are demanding equal time advances then 
all of them will not only keep in sync all the time, but at the 
end of each episode they will still have the chance to exchange 
information. The updates produced by a federate running on a 
slower machine, are always guaranteed to be delivered before 
the end of each episode. 

B. Discrete Event Algorithm 

Previously, it was mentioned that the variable step sizes 
may cause trouble while using Algorithm 2. The solution is 
to use the "Next Event Request Available" service. For the 
detailed differences, the reader is advised to consult [1]. An 
important difference is, when the service "Next Event Request 
Available" is called with a requested time to, then to is just 
taken as a consideration, and the granted time can be anything 
less than to. After the time grant federate is allowed to request 
a new time to, only if the federate has received any time stamp 
ordered updates. The new requested to may be to ~ to. 

1) Peculiarities: The main difference of Algorithm 3 is, it 
can use variable step sizes. After each time grant the federate 
using Algorithm 3 will predict the time for the next event, this 
is shown in line 6. The predictN extEvent function can take 
many forms, but intrinsically it should only analyze the values 
produced by the model so far and should predict the time when 
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Algorithm 3 DiscreteEvent (FMUFederate model , RTlAmbassador rtia, Time 
SimulationEndTime) 

1: time = 0 
2: while time ::; SimulationEndTime do 
3: getN ewPredictedTime = True 
4 : while True do 
5: if getN ewPredictedTime = True then 
6: eventTime +- predictN extEvent( model) 
7: end if 
8: I III~ Start of episode. 
9: rtia. nextEventRequestAvailable( eventTime) 

10: while (Time is not granted) do 
11: I> Process callbacks from the RTI. 
12: end while 
13: I> After time grant time ::; eventTime 
14: I> Apply all accumulated updates, if any. 
15: if model.time < time then 
16: I> Integrate model to time 
17: end if 
18: if time = eventTime OR updates i= ¢ then 
19: I> Send updated states of model to the RTI. 
20: getN ewPredictedTime +- True 
21: break I> out of infinite loop to end the episode 
22 : else 
23: getN ewPredictedTime +- False 
24: end if 
25: end while 
26: 111+ End of episode. 
27: rtia.nextEventRequest(time) 
28: while (Time is not granted) do 
29: I> Process callbacks from the RTI. 
30: end while 
31: I> Apply all accumulated updates, if any. 
32: end while 

the next ""significant change will occur in the model. By and 
large this is an extrapolation function, but the crucial point is to 
decide what is "significant" while determining the change. In 
this configuration, a fixed time stepped federate would simply 
add its time step into the granted time to get the time for next 
event. 

If we were using Algorithm 2 then it would mean that we 
are assuming the significant values of all the FMU-Federates to 
occur after a fixed interval. This is similar to having "samples" 
of a continuous signal. The sampling technique will suffer 
from over and under sampling if the considerations of Nyquist 
are not followed. The problem here is different though, in 
simulations one mayor may not know the Fourier transform 
of generated signal beforehand, and may not be able to select 
the optimal sampling time. 

The solution as proposed in [6] is to use "quantization" 
instead of sampling. Quantization can take many different 
forms. A simple quantization technique would be to round 
the values to some significant precision. More complex forms 
can be seen in any text book for signal processing e.g. [12]. 
Though, there is one important aspect in this regard, in the 
signal processing community whenever there is a technique 
mentioned for quantization, there is also a focus on removing 
noise. This is not the case here, as there is no noise in 
simulations, unless generated on purpose. 



Second important line in Algorithm 3 is line 18. Here two 
things are checked before allowing the federate to ask for the 
next event. One, if the granted time is equal to the requested 
time (time = eventTime), then it is obvious to request a 
new time grant. If this is not the case, then the federate should 
only request a new time (different from before), if and only if, 
federate has received some state update from the RTI before 
the recent time grant (updates i- ¢). If both of these cases are 
not valid, then the federate should request the time it requested 
before. Effectively, which also means that the federate does not 
need to get out of its episode. 

• Discrete Events _ Fixed Step Events 

50000 

40000 

30000 

20000 

10000 

Fig. 1: Number of events generated by Algorithm 2 and Algorithm 3 

Significant advantage of Algorithm 3 is the reduced number 
of events generated by it. In normal scenarios the number of 
events generated by Algorithm 3 will be less than Algorithm 2. 
For example Fig. 1 compares the number of events generated 
in the sample test case. More details of the test case follow 
shortly, here it is important to note that the number of events 
generated by Algorithm 3 are a fraction of 10 as compared 
to Algorithm 2. Reducing the number of events by such 
a significant amount is specifically advantageous for purely 
distributed simulation, when the federates reside on distant 
machines. Reducing the number of events, means reducing 
the communication overheads and achieving significant per
formance gains. 

2) Comparison to Previous Solutions: The concept of 
episodic simulation is not new, the need for it has been felt 
before. Here two systems are presented that tried to achieve 
the same goal of episodic simulations but they achieved it in 
the wrong way. The first example is of Ziegler et al. [7] where 
they are not using "available mode" services of HLA. It is 
argued that instead of introducing small fixed time steps for 
internal synchronization, multiple episodes could have been 
used, which would remove discrepancies in the results. 

EPOCHS [13] is another example where hybrid systems 
have been made to run in conjunction. The researchers used 
synchronization points to achieve this , which are very costly 
in terms of execution. Their ineffective use produced many 
errors in EPOCHS. Here the episodic execution could have 
been used, which not only had improved the accuracy but also 
it would have been much faster in execution. 
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IV. T EST CASE AND R ESULTS 

To demonstrate the correctness of the above presented 
algorithms, a test example has been chosen. The choice was 
made based on the fact that the example has been tested with 
many different tools. See [14] and [15] for the details of 
problem and the tools used for simulating the problem. Here 
only a brief overview of the problem will be presented. 

A. Model Description 

There are three main components of the model 

1) House: Consists of volume, a heater with controller 
and an agent. 

2) Environment temperature: A simple fluctuation of 
ambient temperature. 

3) Market: Component regulating the price of electricity 
based on the consumption. 

A "house" is a simple thermal system, which consumes 
energy in order to maintain its temperature . An "agent" is 
responsible for setting the maximum and minimum temper
ature threshold of the house, based on the price of energy. 
There is a heater, which is responsible for heating the house, 
it is controlled by a controller, which gets its minimum and 
maximum temperature threshold from the agent. The volume 
of the house has a significant effect on its temperature profile. 
Each house is also attached to the ambient temperature, coming 
from "environment". The "environment" is a very simplified 
model, based on simple sinusoidal fluctuation of temperature. 
The "market" defines the price of energy based on the total 
consumption of the houses. Fig. 2 shows the overview of the 
model. For details of the model and a mathematical description 
see [15]. 

Price 

Consumption 

• I Thermal Flow t, 

• 
Fig. 2: Model overview (taken from [14]) 

In order to use the full functionality of the HLA RTI, there 
is no option but to use a cOlmnercial version of the RTI. No 
open source RTI currently offers full support for "available 
mode" services. The academic version of commercial RTIs 
offer a limited number of federates, hence there are only 7 
houses simulated to produce results. 

Significant values of the model are enumerated below, 
which form the basis of comparison. 



1) Average inside temperature of all the houses. 
2) Price fluctuation, based on the energy consumption. 

B. Types of Federates and Simulations 

Three runs of the sample simulation were executed. One 
with OpenModelica, as a reference for other simulations, its 
results are assumed to be prefect. Second, with Algorithm 3 
functioning as the main algorithm for all federates. Third, 
where all of the federates were running Algorithm 2, except the 
"market" federate. The "market" federate could not be used as 
a time stepped federate due to a limitation in OpenModelica. 
The FMU for "market" was not producing the correct results, 
presumably due to the fact that it was a piecewise continuous 
function. 

As described earlier, all the components were first imple
mented and simulated using OpenModelica. Then the same 
components were exported as FMUs, except the "market" 
component. The "market" component took a reading of all 
consumptions after each 15 minutes, took the averages and 
calculated the new price. In the generated FMU a fluctuation of 
values, was not occurring. To replace this FMU, a federate was 
implemented by hand, which acted identical to the prescribed 
definition of the "market". Because its step size had to be 15 
minutes, in comparison to 5 second step size of rest of the 
federates, so it was implemented as a "discrete event federate" 
as advised in section III-A2. 

The initial values for all the simulations were identical 
and fixed, so the results are reproducible. The simulation was 
run for 3 days of simulation time, which is 259200 seconds. 
One unit of simulation time represented one second. For the 
integration of FMUs, any step size could be chosen, even a 
fraction of a unit was also allowed. The conununication among 
FMU-Federates took place after 5 seconds of simulation time, 
this is only valid for FMU-Federates using Algorithm 2. FMU
Federates using Algorithm 3 could vary their step size, so they 
could send updates after arbitrary time intervals. 

C. Results 

Here the results of all simulations are presented compar
atively. Before comparing the results it is important to have 
a look at Fig. 3, it shows the ambient temperature. It is a 
simplistic sinusoidal fluctuation, which governs all the values 
in the simulation. 

4--/' "'"' tF It A 
1- ~ ' '!'- -i f \ -\ 

+ 
bk 

+ 
t 

Fig. 3: Environment profile 

In both figures, Fig. 5 and Fig. 4, upper most figure is for 
Algorithm 2, middle one for Algorithm 3 and the bottom one is 
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Fig. 4: Results for variable "Price" 

for OpenModelica. For variable "Price", the standard deviation 
of Algorithm 3 from OpenModelica results is 0.0012, while for 
Algorithm 2 it is 0.00108. For variable "verage Temperature", 
the standard deviation of Algorithm 3 from OpenModelica 
results is approx. 1.13, while for Algorithm 2 it is approx. 
1.09. 

It is quite clear from the results that all simulations are 
behaving similarly. The minimum and maximum values are 
also the same. In reality there was no difference in "market" 
component using Algorithm 2 or Algorithm 3, in both cases the 
price was being updated after 900 seconds (15 minutes) , and 
the same code was used for both fixed step and discrete event 
simulations. Only the consumption behavior of the houses 
could make any difference. The small difference in the standard 
deviation of both the results proves that there was no significant 
change in the consumption behavior of the houses, even with 
changed algorithms. 

The calculation of the standard deviation was easy in this 
case, as all three simulations produced results at precisely the 
same time intervals. This was not the case for Fig. 5, where 
approximations had to be used. As OpenModelica, Algorithm 2 
and Algorithm 3 calculated values at completely different 
intervals, so for the sake of comparison nearest intervals were 
chosen. Hence, the value of standard deviation is not hundred 
percent correct, it also includes the approximation error. 

The average temperature profile in Fig. 5 also shows the 
same behavior for all the simulations. Although the boundary 
values of the simulations differ a little, but it is clear that 
the main statistical information of the model does not change 
by changing the simulation platform and algorithms used for 
simulation. 



50,000 100,000 150,000 200,000 250,000 

Fig. 5: Results for variable "Average Temperature" 

V. CONCLUSION 

The paper presents a novel idea of using the HLA in con
junction with the FMI specific FMUs. Two different algorithms 
have been presented. It is shown that the algorithms presented 
are suitable for distributed hybrid simulation, where individual 
simulation components may be discrete event based, fixed time 
step based, or continuous simulation components. A test case 
has been presented that shows the correctness of results, taking 
results generated by OpenModelica as a reference. 

The test case was designed to use FMUs pertaining to 
continuous simulation domain, as the challenges of simulat
ing continuous models in distributed environments are much 
greater than DES or FTSS models. One FMU-Federate in both 
simulations was a discrete event FMU-Federate, which used a 
fixed interval for the time advance (900 seconds). It was not 
a "generic" FMU-Federate, as its implementation was done 
separately. This was the "market" component, which could 
not be generated as an FMU due to the limitations in the 
OpenModelica FMU generation process. 

For variables which show mixed behavior, having regions 
where the solution curve displays much variation, and is 
smooth otherwise. Algorithm 3 can vary its step size in dif
ferent regions, provided the prediction method used to predict 
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future events is well suited, while Algorithm 2 (fixed step) will 
have to shift to quite small step sizes, causing performance 
issues, by raising the number of events. In the presented test 
case, the number of events generated by Algorithm 3 (discrete 
event) were a fraction of 10 as compared to Algorithm 2 (fixed 
step ). 

It is important to note that in the examined test case, all 
input to output relationships are stable and smooth. In cases 
where a small change in an input can cause big changes in the 
system, achieving stability can be challenging. This is one of 
the areas of our further research. 
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