
Distributed Hybrid Simulation Using the HLA and
the Functional Mock-up Interface

Muhammad Usman Awais*, Peter Palenskyt, Wolfgang Mueller+, Edmund Widl§, Atiyah Elsheikh~
Austrian Institute of Technology, Vienna, Austria.

Emails:(*Muhammad.Awais.fI.tpeter.Palensky.+Wolfgang.Mueller.fI.§Edmund.Widl.~Atiyah.Elsheikh)@ait.ac.at

Abstract-High Level Architecture (HLA) and Functional
Mock-up Interface (FMI) are two simulation interoperability
standards. The HLA is older, well established and popular in
industry. The FMI is a new standard, with plenty of support
from the open source community and scientists. In this paper, it
is presented how the strengths of both, the HLA and the FMI,
can be utilized to realize a distributed hybrid (or heterogeneous)
simulation platform. Two different algorithms are proposed for
such a platform. To demonstrate the correctness of algorithms,
and their performance comparison, a simulation example is
chosen from the domain of complex energy systems.

Keywords-High Level Architecture (HLA); Functional Mock
up Interface (FMI); co-simulation; hybrid simulation; hetero
geneous simulation; distributed simulation; parallel simulation;
continuous simulation; simulation interoperability; DEVS; Open
Modelica; Modelica.

I. INTRODUCTION

With growing demand for simulation engineering, numer
ous Simulation Packages (SPs) have been developed. Most of
them are specialized in some specific field or some specific
methodology. However, when simulating multi-disciplinary
problems, there arises a need to utilize different specialized SPs
for their specific problem domain, while allowing the different
packages to share information through some mean. The HLA
is a standard for interoperability among different SPs. It was
presented in year 2000 [1], since then it is being used in
industry largely for Distributed Discrete Event Simulations
(DDES).

The FMI [2] is closely related to the work on the Modelica
specification [3]. It is widely being used as a standard for
model exchange among different SPs. The development of
the FMI is currently managed by the Modelica Association
Project (MAP) [3]. A brief overview and comparison of both
the HLA and the FMI can be seen in [4], which also presents
the idea of using the HLA and the FMI in Fixed Time Stepped
Simulations (FTSS).

In the aforementioned paper the term FMU-Federate was
introduced, originating from the fact that a Functional Mock-up
Unit (FMU) is a component that conforms to the FMI specifi
cation, while in the HLA terminology an individual simulation
component is called as a "Federate". So a simulation program
or a federate that has the capability of importing an FMU and
simulating it over the Run Time Infrastructures (RTI), can be
called as an FMU-Federate. If this program can simulate any
arbitrary FMU then it may be called as a "generic" FMU
Federate.

978-1-4799-0224-8/13/$31.00 ©2013 IEEE 7564

The current work presents two kinds of FMU-Federates,
based on the simulation algorithms used in them.

1) Fixed Time Stepped: As the name suggests, such
an FMU-Federate progresses in fixed time steps.
Typically the HLA "Time Advance Request" and
"Time Advance Request Available" services are used
by it.

2) Discrete Event Based: An FMU-Federate that pro
gresses based on the internal and external events
is considered discrete event based FMU-Federate.
Typically the HLA "Next Event Request" and "Next
Event Request Available" services are used in such
an FMU-Federate. To be able to advance time, based
on events, it has to look into the future and predict
when the next event is going to occur.

The presented platform uses both kinds of FMU-Federates
in the "Federation" (the term for whole simulation in the HLA
terminology), while the FMUs used in the test case have been
generated from continuous models, using OpenModelica [5].
It is a hybrid (heterogeneous) simulation platform, allowing
different types of simulations to run in conjunction, e.g. Fixed
Time Stepped Simulations (FTSS), Continuous Simulations
(CS), and Discrete Event based Simulations (DES). Moreover,
the FMU-Federates used in the test case are "generic", unless
there was a tool limitation. Additionally, due to the fact that the
platform uses the RTI as a regulator or master, it can be used
in any distributed computing environment, including clusters,
grids and clouds.

The rest of the document is organized as follows. Section
II discusses related work, then the two algorithms that are used
in the proposed solution, are discussed in section III. Section
IV discusses the test case in detail , and presents comparative
results. The last section V entails the conclusive remarks.

It is important to mention that the concepts described in the
section III largely depend on the understanding of, specially the
HLA, and preferably the FMI. Even if one does not have an in
depth knowledge of the FMI, one must have an understanding
of continuous simulation. Secondly, the reader should note
that in the test case presented here FMUs are continuous
simulation components. They were implemented and generated
by OpenModelica [5], yet any FMU generated by any tool
may be used. Other sections do not require such an in depth
knowledge.

II. R ELATED WORK

According to the knowledge of authors, there has been
no attempt to utilize the HLA and the FMI in conjunction,

except of [4] . However, there has been considerable amount
of work done to realize heterogeneous or hybrid simulation
environments. The Discrete EVent Specification (DEVS) com
munity has done significant amount of work on this topic. In
[6] d' Abreu and Wainer have discussed different techniques
proposed by the DEVS community to convert a continuous
state system into a DEVS model. Zeigler et al. have presented
their solution for using DEVS components with the HLA [7].
Readers knowledgeable of both the DEVS and the FMI, will
realize that the approach presented here is also applicable to
DEVS components, and it does not suffer from the flaws of the
technique presented in [7]. Comparison to previous solutions
comes in the section III-B2

Similarly Ptolemy II [8] is another project providing a
heterogeneous simulation platform. In [9] Ptolemy II and
DEVS are compared. However, intuitive representation and
GUI makes the Ptolemy II a better choice for users not
accustomed to the DEVS formalism.

III. ALGORITHMS AND MODELS

Different aspects of two proposed algorithms will be dis
cussed, in the current section. First the simpler algorithm
will be discussed, i.e. "Fixed Time Stepped Algorithm" and
then the "Discrete Event Algorithm" will be presented. Both
of these algorithms come from the concept called as "zero
lookahead based simulations", using the HLA. Fujimoto [10]
first presented the concept. This was a very abstract idea
for special types of simulations, but the research community
has not presented considerable examples of its practical use.
Current work partially fills this gap.

A. Fixed Time Stepped Algorithm

Before presenting the algorithms, lets have a look at an
ordinary approach towards fixed time stepped simulation using
the HLA. The ordinary use of the HLA involves a value called
"lookahead". This is the minimum amount of time, before
which an active federate promises not to generate any new
events. For example if a federate F with lookahead value la,
requests a time grant for time to, then it must not generate
any events before to + lao The naive approach for simulating
a continuous model would assume a small time as lookahead,
and would keep progressing in fixed time stepped fashion,
using "Time Advance Request" service of the HLA. Please
see Algorithm 1

In Algorithm 1 lines 3-6 represent a typical fixed time
advancing federate behavior. Afterwards the updates should
be applied (line 8). Each update sent from other FMU
Federates must be applied in time, so before applying the
updates the FMU should be moved forward to the time of
update . Afterwards by calling fmiSetValue function the state
variables of the model can be set. It is important to note that to
ensure correct execution, the updates should be sent in "time
stamped order". Lines 9-12 ensure that the model is progressed
to the granted time plus the lookahead value. It is important
to add the lookahead value, otherwise the update sent to the
RTI will not be valid and will generate an exception. At the
end, the updated states of the model are sent to the RTI. It is
assumed here that the simulation will start from time = 0 as
this is the case for most FMUs in practice.

7565

Algorithm 1 NaiveTimeStepped (FMUFederate model, RTIAmbassador rtia,
Time SimulationEndTime, Timelnterval step, Timelnterval lookahead)

1: time = 0
2: while time::; SimulationEndTime do
3: rtia.timeAdvanceRequest(time + step)
4: while (Time is not granted) do
5: [> Process callbacks from the RTI.
6: end while
7: [> Now time = time + step
8: [> Apply all accumulated updates, if any.
9: timel = time + lookahead

10: if model.time < time 1 then
11: [> Integrate model to timel
12: end if
13: [> Send updated states of model to the RTI.
14: end while

1) Drawbacks: The important point to be noted in Algo
rithm 1 is, the lookahead value. In fact, this is not a problem
when all the federates have same execution algorithm, with
same step size and lookahead value. The problem becomes
visible, when there is "heterogeneous" simulation, or there are
more than one type of federates, with different step sizes.

Suppose there are two federates; one time stepped F fts and
the other discrete event based Fdes. Now suppose that Ffts has
a lookahead value la fts, and Fdes has lookahead value lades,
such that lades « la fts. Suppose Fdes is a federate that turns
a switch on and off in Ffts. Now Fdes wants to turn the switch
on and off at times ton and to f f, such that ton < to f f and
toff - ton < lafts. In this case F fts will have to wait for
Fdes until it produces both events. In case there is a feedback
loop from Ffts to Fdes and the feedback has to be transmitted
during the interval [ton, tof f), then it is clear that there will
be a loss of information, because Ffts will never be able to
process event at ton before tofJ occurs, and will never be able
to transmit the effect of ton to Fdes in time.

One solution to this problem is to use very small lookahead
values , but it has been proven that a smaller lookahead value
is detrimental to parallel execution of simulation [11]. Another
solution is to vary the lookahead values during execution,
which is an even worse solution, due to two reasons. First, the
process of changing the lookahead value is not straightforward.
The RTI has to ensure guarantees given to other federates
before it really changes the lookahead value. Changing the
lookahead value during execution will also cause negative
effects on performance for the same reason, that the Lowest
Bound Time Stamp (LBTS) will have to be calculated repeti
tively [11].

2) Improvements: The solution to the above problem lies
in so called "episodic simulation" [10]. In such simulations
federates are allowed to have a zero lookahead value, and
federates are allowed to have different step sizes. The main
idea is to use the "Time Advance Request Available" service
of the HLA. For the detailed difference of the 'Time Advance
Request Available" and the "Time Advance Request" services,
reader is advised to look into [1]. One distinct difference is that
a federate can send and receive multiple events at the granted
time, when the time is requested using the "Time Advance
Request Available" service.

Algorithm 2 FixedTimeStepped (FMUFederate model , RTlAmbassador rtia,
Time SimulationEndTime, Timelnterval step)

1: time = 0
2: while time < SimulationEndTime do
3: 111+ Start- of episode.
4: rtia.timeAdvanceRequestAvailable(time + step)
5: while (Time is not granted) do
6: I> Process callbacks from the RTI.
7: end while
8: I> Now time = time + step
9: I> Apply all accumulated updates, if any.

10: if model.time < time then
11: I> Integrate model to time
12: end if
13: I> Send updated states of model to the RTI.
14: 111+ End of episode.
15: rtia.timeAdvanceRequest(time)
16: while (Time is not granted) do
17: I> Process callbacks from the RTI.
18: end while
19: I> Apply all accumulated updates, if any.
20: end while

Although seemingly Algorithm 2 is similar in structure to
Algorithm 1, yet there are semantic differences in Algorithm 2.
First, there is no concept of lookahead in Algorithm 2. In
common scenarios, at the start of each episode the RTI will
look what is the minimum time requested, and it will be
granted to the requesting federate. The federate with greater
time requested will have to wait until others have passed its
requested time. Variable step sizes are possible but it is not
advised to use "Time Advance Request Available" service for
this. It is recommended to use "Next Event Request Available"
service for federates with variable step sizes. The Algorithm 3
is related to this concept.

When federates are demanding equal time advances then
all of them will not only keep in sync all the time, but at the
end of each episode they will still have the chance to exchange
information. The updates produced by a federate running on a
slower machine, are always guaranteed to be delivered before
the end of each episode.

B. Discrete Event Algorithm

Previously, it was mentioned that the variable step sizes
may cause trouble while using Algorithm 2. The solution is
to use the "Next Event Request Available" service. For the
detailed differences, the reader is advised to consult [1]. An
important difference is, when the service "Next Event Request
Available" is called with a requested time to, then to is just
taken as a consideration, and the granted time can be anything
less than to. After the time grant federate is allowed to request
a new time to, only if the federate has received any time stamp
ordered updates. The new requested to may be to ~ to.

1) Peculiarities: The main difference of Algorithm 3 is, it
can use variable step sizes. After each time grant the federate
using Algorithm 3 will predict the time for the next event, this
is shown in line 6. The predictN extEvent function can take
many forms, but intrinsically it should only analyze the values
produced by the model so far and should predict the time when

7566

Algorithm 3 DiscreteEvent (FMUFederate model , RTlAmbassador rtia, Time
SimulationEndTime)

1: time = 0
2: while time ::; SimulationEndTime do
3: getN ewPredictedTime = True
4 : while True do
5: if getN ewPredictedTime = True then
6: eventTime +- predictN extEvent(model)
7: end if
8: I III~ Start of episode.
9: rtia. nextEventRequestAvailable(eventTime)

10: while (Time is not granted) do
11: I> Process callbacks from the RTI.
12: end while
13: I> After time grant time ::; eventTime
14: I> Apply all accumulated updates, if any.
15: if model.time < time then
16: I> Integrate model to time
17: end if
18: if time = eventTime OR updates i= ¢ then
19: I> Send updated states of model to the RTI.
20: getN ewPredictedTime +- True
21: break I> out of infinite loop to end the episode
22 : else
23: getN ewPredictedTime +- False
24: end if
25: end while
26: 111+ End of episode.
27: rtia.nextEventRequest(time)
28: while (Time is not granted) do
29: I> Process callbacks from the RTI.
30: end while
31: I> Apply all accumulated updates, if any.
32: end while

the next ""significant change will occur in the model. By and
large this is an extrapolation function, but the crucial point is to
decide what is "significant" while determining the change. In
this configuration, a fixed time stepped federate would simply
add its time step into the granted time to get the time for next
event.

If we were using Algorithm 2 then it would mean that we
are assuming the significant values of all the FMU-Federates to
occur after a fixed interval. This is similar to having "samples"
of a continuous signal. The sampling technique will suffer
from over and under sampling if the considerations of Nyquist
are not followed. The problem here is different though, in
simulations one mayor may not know the Fourier transform
of generated signal beforehand, and may not be able to select
the optimal sampling time.

The solution as proposed in [6] is to use "quantization"
instead of sampling. Quantization can take many different
forms. A simple quantization technique would be to round
the values to some significant precision. More complex forms
can be seen in any text book for signal processing e.g. [12].
Though, there is one important aspect in this regard, in the
signal processing community whenever there is a technique
mentioned for quantization, there is also a focus on removing
noise. This is not the case here, as there is no noise in
simulations, unless generated on purpose.

Second important line in Algorithm 3 is line 18. Here two
things are checked before allowing the federate to ask for the
next event. One, if the granted time is equal to the requested
time (time = eventTime), then it is obvious to request a
new time grant. If this is not the case, then the federate should
only request a new time (different from before), if and only if,
federate has received some state update from the RTI before
the recent time grant (updates i- ¢). If both of these cases are
not valid, then the federate should request the time it requested
before. Effectively, which also means that the federate does not
need to get out of its episode.

• Discrete Events _ Fixed Step Events

50000

40000

30000

20000

10000

Fig. 1: Number of events generated by Algorithm 2 and Algorithm 3

Significant advantage of Algorithm 3 is the reduced number
of events generated by it. In normal scenarios the number of
events generated by Algorithm 3 will be less than Algorithm 2.
For example Fig. 1 compares the number of events generated
in the sample test case. More details of the test case follow
shortly, here it is important to note that the number of events
generated by Algorithm 3 are a fraction of 10 as compared
to Algorithm 2. Reducing the number of events by such
a significant amount is specifically advantageous for purely
distributed simulation, when the federates reside on distant
machines. Reducing the number of events, means reducing
the communication overheads and achieving significant per
formance gains.

2) Comparison to Previous Solutions: The concept of
episodic simulation is not new, the need for it has been felt
before. Here two systems are presented that tried to achieve
the same goal of episodic simulations but they achieved it in
the wrong way. The first example is of Ziegler et al. [7] where
they are not using "available mode" services of HLA. It is
argued that instead of introducing small fixed time steps for
internal synchronization, multiple episodes could have been
used, which would remove discrepancies in the results.

EPOCHS [13] is another example where hybrid systems
have been made to run in conjunction. The researchers used
synchronization points to achieve this , which are very costly
in terms of execution. Their ineffective use produced many
errors in EPOCHS. Here the episodic execution could have
been used, which not only had improved the accuracy but also
it would have been much faster in execution.

7567

IV. T EST CASE AND R ESULTS

To demonstrate the correctness of the above presented
algorithms, a test example has been chosen. The choice was
made based on the fact that the example has been tested with
many different tools. See [14] and [15] for the details of
problem and the tools used for simulating the problem. Here
only a brief overview of the problem will be presented.

A. Model Description

There are three main components of the model

1) House: Consists of volume, a heater with controller
and an agent.

2) Environment temperature: A simple fluctuation of
ambient temperature.

3) Market: Component regulating the price of electricity
based on the consumption.

A "house" is a simple thermal system, which consumes
energy in order to maintain its temperature . An "agent" is
responsible for setting the maximum and minimum temper
ature threshold of the house, based on the price of energy.
There is a heater, which is responsible for heating the house,
it is controlled by a controller, which gets its minimum and
maximum temperature threshold from the agent. The volume
of the house has a significant effect on its temperature profile.
Each house is also attached to the ambient temperature, coming
from "environment". The "environment" is a very simplified
model, based on simple sinusoidal fluctuation of temperature.
The "market" defines the price of energy based on the total
consumption of the houses. Fig. 2 shows the overview of the
model. For details of the model and a mathematical description
see [15].

Price

Consumption

• I Thermal Flow t,

•
Fig. 2: Model overview (taken from [14])

In order to use the full functionality of the HLA RTI, there
is no option but to use a cOlmnercial version of the RTI. No
open source RTI currently offers full support for "available
mode" services. The academic version of commercial RTIs
offer a limited number of federates, hence there are only 7
houses simulated to produce results.

Significant values of the model are enumerated below,
which form the basis of comparison.

1) Average inside temperature of all the houses.
2) Price fluctuation, based on the energy consumption.

B. Types of Federates and Simulations

Three runs of the sample simulation were executed. One
with OpenModelica, as a reference for other simulations, its
results are assumed to be prefect. Second, with Algorithm 3
functioning as the main algorithm for all federates. Third,
where all of the federates were running Algorithm 2, except the
"market" federate. The "market" federate could not be used as
a time stepped federate due to a limitation in OpenModelica.
The FMU for "market" was not producing the correct results,
presumably due to the fact that it was a piecewise continuous
function.

As described earlier, all the components were first imple
mented and simulated using OpenModelica. Then the same
components were exported as FMUs, except the "market"
component. The "market" component took a reading of all
consumptions after each 15 minutes, took the averages and
calculated the new price. In the generated FMU a fluctuation of
values, was not occurring. To replace this FMU, a federate was
implemented by hand, which acted identical to the prescribed
definition of the "market". Because its step size had to be 15
minutes, in comparison to 5 second step size of rest of the
federates, so it was implemented as a "discrete event federate"
as advised in section III-A2.

The initial values for all the simulations were identical
and fixed, so the results are reproducible. The simulation was
run for 3 days of simulation time, which is 259200 seconds.
One unit of simulation time represented one second. For the
integration of FMUs, any step size could be chosen, even a
fraction of a unit was also allowed. The conununication among
FMU-Federates took place after 5 seconds of simulation time,
this is only valid for FMU-Federates using Algorithm 2. FMU
Federates using Algorithm 3 could vary their step size, so they
could send updates after arbitrary time intervals.

C. Results

Here the results of all simulations are presented compar
atively. Before comparing the results it is important to have
a look at Fig. 3, it shows the ambient temperature. It is a
simplistic sinusoidal fluctuation, which governs all the values
in the simulation.

4--/' "'"' tF It A
1- ~ ' '!'- -i f \ -\

+
bk

+
t

Fig. 3: Environment profile

In both figures, Fig. 5 and Fig. 4, upper most figure is for
Algorithm 2, middle one for Algorithm 3 and the bottom one is

7568

, .je- I ,::: t .(It

rl: T T Y'''iI 1" 'Y TT l(
"i 1 lJ.. ~ T\ c 7 , t-

FF LJ' .. ,\ .1 rt. . .. i l
, fl """

" - 'L "IlIl' ~., I

t 1 1 11

[0, 1. ,
::;, 0 .1 6

L'E '1 I ,

T TTT T , r- t- TT

r'\ T f l'~ '''1\ *+ VI-
"'va ;t ' C\ ! ... c :\ I .\ .I! " .~ '11 I .,. T ---. T T

-i' l Tt' f·j 1
,

i 0.165 1I-+-t\-f-+-+-'i·-t-±-++-;"rl:-±-+-.11

~ 0 16 11--+-f-'lhtolitJlC--f--f--+---'II~II+----4'4----f""'I,--j.w--+---'--l

Fig. 4: Results for variable "Price"

for OpenModelica. For variable "Price", the standard deviation
of Algorithm 3 from OpenModelica results is 0.0012, while for
Algorithm 2 it is 0.00108. For variable "verage Temperature",
the standard deviation of Algorithm 3 from OpenModelica
results is approx. 1.13, while for Algorithm 2 it is approx.
1.09.

It is quite clear from the results that all simulations are
behaving similarly. The minimum and maximum values are
also the same. In reality there was no difference in "market"
component using Algorithm 2 or Algorithm 3, in both cases the
price was being updated after 900 seconds (15 minutes) , and
the same code was used for both fixed step and discrete event
simulations. Only the consumption behavior of the houses
could make any difference. The small difference in the standard
deviation of both the results proves that there was no significant
change in the consumption behavior of the houses, even with
changed algorithms.

The calculation of the standard deviation was easy in this
case, as all three simulations produced results at precisely the
same time intervals. This was not the case for Fig. 5, where
approximations had to be used. As OpenModelica, Algorithm 2
and Algorithm 3 calculated values at completely different
intervals, so for the sake of comparison nearest intervals were
chosen. Hence, the value of standard deviation is not hundred
percent correct, it also includes the approximation error.

The average temperature profile in Fig. 5 also shows the
same behavior for all the simulations. Although the boundary
values of the simulations differ a little, but it is clear that
the main statistical information of the model does not change
by changing the simulation platform and algorithms used for
simulation.

50,000 100,000 150,000 200,000 250,000

Fig. 5: Results for variable "Average Temperature"

V. CONCLUSION

The paper presents a novel idea of using the HLA in con
junction with the FMI specific FMUs. Two different algorithms
have been presented. It is shown that the algorithms presented
are suitable for distributed hybrid simulation, where individual
simulation components may be discrete event based, fixed time
step based, or continuous simulation components. A test case
has been presented that shows the correctness of results, taking
results generated by OpenModelica as a reference.

The test case was designed to use FMUs pertaining to
continuous simulation domain, as the challenges of simulat
ing continuous models in distributed environments are much
greater than DES or FTSS models. One FMU-Federate in both
simulations was a discrete event FMU-Federate, which used a
fixed interval for the time advance (900 seconds). It was not
a "generic" FMU-Federate, as its implementation was done
separately. This was the "market" component, which could
not be generated as an FMU due to the limitations in the
OpenModelica FMU generation process.

For variables which show mixed behavior, having regions
where the solution curve displays much variation, and is
smooth otherwise. Algorithm 3 can vary its step size in dif
ferent regions, provided the prediction method used to predict

7569

future events is well suited, while Algorithm 2 (fixed step) will
have to shift to quite small step sizes, causing performance
issues, by raising the number of events. In the presented test
case, the number of events generated by Algorithm 3 (discrete
event) were a fraction of 10 as compared to Algorithm 2 (fixed
step).

It is important to note that in the examined test case, all
input to output relationships are stable and smooth. In cases
where a small change in an input can cause big changes in the
system, achieving stability can be challenging. This is one of
the areas of our further research.

REFERENCES

[1] S. I. S. Committee et al., IEEE standard for modeling and simulation
(M&S) high level architecture (HLA)-IEEE std 1516-2000, 1516.1-
2000, 1516.2-2000., Institute of Electrical and Electronics Engineers
Std. , 2000.

[2] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. ClauB, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold et aI., "The func
tional mockup interface for tool independent exchange of simulation
models ," in Modelica'201J Conference, March, 2011 , pp. 20- 22 .

[3] Modelica.org. [Online]. Available: https:llwww.modelica.org/projects

[4] M. Awais, P. Palensky, A. Elsheikh , E. Widl, and M. Stifter, "The high
level architecture RTI as a master to the functional mock-up interface
components," in ICNC 2013 International Workshop on Cyber-Physical
System (CPS) and its Computing and Networking Design. IEEE, 2013.

[5] P. Fritzson, Introduction to Modeling and Simulation of Technical and
Physical Systems with Modelica. Wiley-IEEE Press, Sep. 2011.

[6] M. C. D ' Abreu and G. A. Wainer, "Models for contino us and hybrid
system simulation ," in Winter Simulation Conference - WSC, 2003.

[7] B. Zeigler, G. Ball, H. Cho, J. Lee, and H. Sarjoughian, "Implementa
tion of the devs formalism over the hlalrti: Problems and solutions," in
Simulation Interoperation Workshop (SIW) , no. 99S-SIW, 1999, p. 065.

[8] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, "Taming heterogeneity-the ptolemy approach,"
Proceedings of the IEEE, vol. 91, no. I , pp. 127- 144, 2003.

[9] S. Kim, H. Sarjoughian, and Y. Elamvazhuthi , "Devs-suite: a simulator
supporting visual experimentation design and behavior monitoring," in
Proceedings of the 2009 Spring Simulation Multiconference on ZZZ.
Society for Computer Simulation International , 2009, p. 161.

[10] R. M. Fujimoto, "Zero lookahead and repeatability in the high level
architecture," in Proceedings of the 1997 Spring Simulation Interoper
ability Workshop. Citeseer, 1997, pp. 3-7.

[II] K. Perumalla, "Parallel and distributed simulation: traditional techniques
and recent advances," in Proceedings of the 38th conference on Winter
simulation. Winter Simulation Conference, 2006, pp. 84- 95.

[12] A. Y. Oppenheim, R. W. Schafer, J. R. Buck et al., Discrete-time signal
processing. Prentice-hall Englewood Cliffs, 1989, vol. 2.

[13] K. Hopkinson, X. Wang, R. Giovanini , J. Thorp, K. Birman , and
D. Coury, "Epochs: a platform for agent-based electric power and
communication simulation built from commercial off-the-shelf com
ponents," Power Systems, IEEE Transactions on, vol. 21 , no. 2, pp.
548- 558, 2006.

[14] E. Widl, P. Palensky, and A. Elsheikh, "Evaluation of two approaches
for simulating cyber-physical energy systems," in Proceedings of the
38th IEEE Conference on Industrial Electron ics IECON 2012, Mon
treal, Canada, 2012 .

[15] A. Elsheikh, E. Widl, and P. Palensky, "Simulating complex energy
systems with modelica: A primary evaluation ," in 2012 6th IEEE
International Conference on Digital Ecosystems Technologies (DEST).
IEEE, 2012, pp. 1- 6.

