
Simulating Mobile and Distributed Systems

with DEUS and ns-3

Michele Amoretti1, Marco Picone2, Francesco Zanichelli2, Gianluigi Ferrari2

(1) SITEIA.PARMA, (2) Information Engineering Dept.

Università degli Studi di Parma

43124 Parma, Italy

Email: {michele.amoretti, marco.picone, francesco.zanichelli, gianluigi.ferrari}@unipr.it

Abstract—Mobile and distributed systems are characterized by
decentralized goals and control, with high levels of concurrency
and asynchronous interaction. Their qualitative and quantitative
analysis is usually based on discrete event modeling and simula-
tion. As most simulation tools target a specific class of problems,
only a few of them may be considered truly general-purpose, yet
they can hardly support the analysis of distributed systems with
thousands of nodes, characterized by a high level of churn (node
joins and departures) and reconfiguration of connections among
nodes. To fill this gap, a few years ago we started developing
an open-source, general-purpose and discrete event simulation
tool, called DEUS, which is application-level oriented, Java-based,
and characterized by ease of use and flexibility. However, it
does not provide any package for simulating networking layers
and their implementation is not foreseen, since a number of
specialized tools are already available. In this paper, we present a
general methodology for achieving a more realistic DEUS-based
simulation of mobile and distributed systems, by leveraging on
ns-3, which is generally known as a highly reliable and complete
open-source tool for the discrete event simulation of Internet
systems. In particular, we describe our positive experience in
using ns-3’s LTE-EPC package to support the simulation of a
peer-to-peer overlay scheme called Distributed Geographic Table
(DGT), which allows mobile nodes to efficiently share information
without centralized control.

Keywords—Discrete Event Simulation, Mobile and Distributed
Systems, DEUS, ns-3

I. INTRODUCTION

Mobile and distributed systems are the result of the inter-

connection of several nodes — characterized by decentralized

goals and control — that as a whole exhibit one or more prop-

erties (i.e., behavior) which are not easily inferred from the

properties of the individual parts. Such systems are complex,

because the interactions of the nodes determine their future

individual states and that of the system [1]. Moreover, they

usually exhibit high levels of concurrency and asynchrony and

their performance may be highly influenced by the changing

environmental conditions of the environment (e.g., if they

move).

For the qualitative and quantitative analysis of such sys-

tems, discrete event modeling and simulation (in which time

jumps from event to event) are usually adopted [2]. In order

to choose the proper simulation environment, the following

criteria should be taken into account: simulation architecture

(the operation and the design of the simulator), usability (how

easy the simulator is to learn and use), extensibility (the

possibility to modify the standard behavior of the simulator

in order to support specific protocols), configurability (how

easily the simulator can be configured and with which level of

detail), scalability (the ability to simulate how a P2P protocol

scales with thousands, or more, nodes), statistics (how much

the results are meaningful and easy to manipulate), reusability

(the possibility to use the simulation code to write the real

application).

By looking at the state of the art, it is evident that almost

every simulation tool targets a specific class of problems. Only

few of them may be considered general-purpose. Among these,

the most advanced, in our opinion, is CD++ [3], which is

a modeling environment that allows to define and execute

Discrete Event System Specification (DEVS) models [2].

OMNeT++ is another well-known general purpose discrete

event simulation tool, which has been publicly available since

1997 [4]. Like CD++, OMNeT++ is based on the concept

of simple and compound modules. The user defines the

structure of the model (the modules and their interconnection)

using a topology description language called NED. OMNeT++

has been used in numerous domains from queueing network

simulations to wireless and ad-hoc network simulations, from

business process simulation to peer-to-peer network, optical

switch and storage area network simulations.

Unfortunately, the above simulation tools are not partic-

ularly suitable for the analysis of distributed systems with

thousands of nodes, characterized by a high level of churn

(node joins and departures), and reconfiguration of connections

among nodes. To fill this gap, in 2009 we started a project

for the development of an open source, Java-based, general-

purpose discrete event simulation tool, called DEUS [5]. To

simulate a distributed system at the application level, DEUS

is particularly convenient, because of its extreme ease of

use and flexibility. However, it does not provide packages

for simulating networking layers, and we do not foresee to

implement them. For this reason, until now the scheduling of

application-level events to simulate the exchange of messages

among nodes has been necessarily configured by the user,

using reasonable values — which can be considered as a naive

approach.

978-1-4799-0838-7/13/$31.00 ©2013 IEEE 107

In this paper, we present a general methodology for ob
taining realistic DEUS-based simulation of mobile and dis
tributed systems, leveraging on a highly reliable and complete
open source tool for the discrete event simulation of Internet
systems, namely ns-3 [6]. The latter relies on high-quality
contributions of the community to develop new models, debug
or maintain existing ones, and share results. In particular,
we describe our positive experience in integrating ns-3 's
LENA LTE-EPC package [7] to support the network-aware
simulation of a peer-to-peer overlay scheme called Distributed
Geographic Table (DGT), which allows mobile nodes to ef
ficientl y share geo-referenced information without centralized
control. To the best of our knowledge, OVNIS [8] is the only
other tool which integrates ns-3 with a higher level discrete
event platform, namely the SUMO road traffic simulator [9].
However, the only available release of OVNIS is the initial
one, which includes an outdated version of ns-3.

The paper is organized as follows. Section II recalls the
main features of DEUS and ns-3. Section III illustrates the
methodology we propose for simulating mobile and distributed
systems, using ns-3 to improve the realism of DEUS-based
simulations. Section IV describes a challenging case study
(regarding a peer-to-peer overlay network operating on top
of LTE) we have addressed by means of the proposed
methodology. Section V compares the results obtained with
the proposed methodology with those obtained with a naive
approach which models only the application layer. Finally,
Section VI concludes the paper with a discussion of future
work.

II. OVERVIEW OF DEUS AND Ns-3

In this section, we summarize the main features of DEUS
and ns-3, to pave the way for the presentation of our method
ology for integrating them - which is illustrated in Section
III.

A. DEUS in a nutshell

DEUS is a general-purpose discrete event simulation envi
ronment. It is a free, open source software project (with GPLv2
licensing). DEUS is multi-platform, being developed in Java.
Its APIs allow developers to implement (by sub-classing) (i)
nodes, i.e. the entities which interact in a complex system,
leading to emergent behaviors such as humans, pets, cells,
robots or intelligent agents; (ii) events, e.g., node births and
deaths, interactions among nodes, interactions with the envi
ronment, logs and so on; and (iii) processes, either stochastic
or deterministic ones, constraining the timeliness of events.

Fig. 1 illustrates how DEUS simulation models, in terms
of XML configuration files and Java code, are created (using
also a Visual Editor), and then executed by means of the
Automator and the Engine. The former allows to perform
sensitivity analysis, by setting ranges for node and process
parameters. The Engine is the core of DEUS, managing the
event queue and the simulation loop.

A node may represent a dynamic system characterized by
a set of possible states, whose transition functions may be
implemented either in the source code of the events associated
to the node, or in the source code of the node itself. Multi
scale modeling of complex system can be achieved by defining
nodes of different complexity and connecting them. DEUS
comes with a library of predefined, common processes, and
many others can be implemented by the user.

Figure 1: Discrete event simulation with DEUS.

Sample code is available on the web site of project DEUS. a

Recently we have published an "USN resilience example",
which simulates an Unstructured Supernode Network (USN)
[10], i.e., a peer-to-peer overlay network characterized by
a group of peers, denoted as "supernodes," which have the
responsibility of routing messages. Conversely, other peers
("leaf" nodes) are only resource providers and consumers, and
need to connect to the supernode layer in order to publish and
discover resources. In the considered scenario, if the lifetime
L of a leaf node is longer than d, then at time d the leaf
node becomes a supernode and connects to m other randomly
selected supernodes. The simulation allows to evaluate the
node degree distribution and the probability of isolations of
the supernodes, as functions of m. On a Macbook Pro with
4 GB of 1067 MHz DDR3 RAM and a 2.4 GHz Intel Core
2 Duo processor, simulating a network with 1000 nodes takes
a couple of minutes. With 10000 nodes it takes, on average,
half an hour.

ahttp://code.google.comJp/deus/

108

Figure 2: Discrete event simulation with DEUS and ns-3.

Such an appreciable performance is due to the fact that
only the application-level logic is being simulated, considering
stochastic variables such as the inter-arrival time and the life
time of the nodes, and neglecting communication delays. To
simulate data exchange among peers, it would be necessary to
define message delivery events with realistic timing processes.
Of course it would be possible to implement, using the API
of DEUS, the detailed simulation of the networking layers.
Fortunately, this is not necessary, thanks to possibility to use
dedicated simulation tools, such as ns-3, to fully characterize
the communication delays.

B. ns-3 in a nutshell

ns-3 is a discrete-event network simulator for Internet
systems. It is a free, open source software project (with GPLv2
licensing) organized around research community development
and maintenance. Like its predecessor ns-2, ns-3 relies on C++
for the implementation of the simulation models. However,
ns-3 no longer uses oTcl scripts to control the simulation,
thus overcoming the problems which were introduced by
the combination of C++ and oTcl in ns-2. Instead, network
simulations in ns-3 can be implemented in pure C++, while
parts of the simulation optionally can be realized using Python
as well.

Moreover, ns-3 integrates architectural concepts and code
from GTNetS [11], a simulator with good scalability char
acteristics. These design decisions were made at expense
of compatibility - porting ns-2 models to ns-3 must be
done in a manual way. Besides performance improvements,

the simulator has an extended feature set. For example, ns
3 supports the integration of real implementations code by
providing standard APIs, such as Berkeley sockets or POSIX
threads, which are transparently mapped to the simulation.

Among the packages being developed for ns-3, the LENA
LTE-EPC is particularly rich and efficient [7]. In the LTE-EPC
simulation model, there are two main components:

• the LTE Model, which includes the LTE Radio Protocol
stack (RRC, PDCP, RLC, MAC, PHY); these entities
reside entirely within the User Equipment (UE) and the
E-UTRAN Node B (eNB) nodes;

• the EPC Model, including core network interfaces, pro
tocols and entities, which reside within the SGW, PGW
and MME nodes, and partially within the eNB nodes.

III. PROPOSED METHODOLOGY

To simulate a distributed system with DEUS, it is necessary
to write the classes which represent nodes, events and pro
cesses. Node may represent devices, servers, virtual machines,
applications, etc. Events may be associated to specific nodes
(e.g., start, connection, disconnection, internally/externally
triggered state change, stop, etc.), or involving several nodes (it
is the case of logging events). To simulate a message delivery
from one node to another, it is necessary to define the sender,
the destination and to schedule a "delivered message" event
in the future (in terms of virtual time of the simulation). The
scheduling time of such an event must be set using a suitable

109

process, selected among those that are provided by the DEUS

API, or defined by the user, possibly.

For example, if the purpose of the simulation is to measure

the average delay of propagating multi-hop messages within

a network of nodes (e.g. a peer-to-peer network), the value

of each link’s delay must be realistic, taking into account

the underlying networking infrastructure. In particular, if the

communication is wireless, estimating the delay of point-to-

point communication is a challenging task.

The direct integration of DEUS with ns-3, with the former

that ”calls” the latter to compute a delay value every time

a node must send a message to another node, taking into

account current surrounding conditions, is unpractical and

would highly increase the simulation time. Instead, a more

effective and efficient solution (illustrated in Fig. 2) includes

the following steps:

1) identify the main sub-system types, each one being char-

acterized by specific networking features;

2) with ns-3: create detailed simulation models of the sub-

systems (i.e., sub-models), and measure their character-

istic transmission delays;

3) with DEUS: simulate the whole distributed system, with

refined scheduling of communication events, taking into

account the transmission delays computed at step 2.

For example, if the overlay network relies on a cellular

network, the sub-model to be characterized with ns-3 could be

a set of cells. Its size should be significantly large, with respect

to the system to be simulated with DEUS. If such a system is

a peer-to-peer network, the end-to-end communication among

couples of peers could span few or many cells, depending

on the overlay scheme. Multi-cell communication may have a

very high data rate, in case base stations are connected by op-

tical fibers [12]. However, inter-cell interference and horizontal

handover could be taken into account, when simulating mobile

nodes. Moreover, the simulation of each cell should take into

account the presence of other mobile nodes, that are not

directly involved in the distributed application of interest, but

consume significant resources. Finally, the same sub-system

could be simulated with different geographic conditions, e.g.

in a city (with small cells, buildings, and noisy channel), or

in a rural area (with larger cells and a less disturbed channel).

For the case study illustrated in next section, we have

modified the C++ class which creates the logs for the RLC

protocol, in the LENA LTE-EPC package. The modified class

logs a discretized probability density function (PDF) of the

RLC packet delay. The latter is then used to generate realistic

packet delays in the DEUS-based simulations, using the well-

known inversion method [13], which is based on the inverse

probability theorem. The main steps are:

• choose the cumulative distribution function F (x) of the

random variable to be sampled;

• generate a set of uniform random numbers such that R ∼
U(0, 1);

• compute the random variate Xi = F
−1(Ri).

To this purpose, the discretized PDF of the RLC packet

delay is approximated either with a Multimodal Gaussian

PDF (whose inversion has a high computational cost, un-

fortunately), or with a histogram PDF (whose inversion is

straightforward).

IV. CASE STUDY

We applied the proposed methodology to the modeling and

simulation of the Distributed Geographic Table (DGT), which

is a peer-to-peer overlay scheme with the main objective to

provide support for mobile node localization. Compared to

centralized localization approaches, the DGT is more scalable,

since its performance (in terms of responsiveness, complete-

ness and robustness) remains valuable also for a large number

of nodes, and when the nodes’ dynamics are very high [14].

In a DGT-based system, the responsibility for maintaining

information about the position of active peers is distributed

among nodes, for which a change in the set of participants

causes a minimal amount of disruption.

Every peer maintains a set of geo-buckets (GB), each one

being a (regularly updated) list of known peers sorted by

their distance from the Global Position of the peer itself.

GBs can be represented as concentric circles, each one having

a different (application-specific) radius and thickness. The

distance between two DGT peers is defined as the actual

geographic distance between their locations in the world. The

neighborhood of a geographic location is the group of nodes

located inside a given region surrounding that location.

The main service provided by the DGT overlay is to route

requests to find available peers in a specific area, i.e., to

determine the neighborhood of a generic global position (Fig.

3). The routing process is based on the evaluation of the region

of interest centered in the target position. The idea is that

each peer involved in the routing process selects, among its

known neighbors, those that presumably know a large number

of peers located inside or close to the chosen area centered in

the target point. If a contacted node cannot find a match for

the request, it does return a list of closest nodes, taken from its

routing table. This procedure can be used both to maintain the

peer’s local neighborhood and to find available nodes close to

a generic target.

Further details about the DGT can be found, for example,

in recent articles by Picone et al. [14], [15]. Simulation results

presented there were obtained by means of a DEUS simulation

model, integrated with Google Maps for having a realistic

characterization of the urban environment (the city of Parma).

However, simplistic assumptions on the packet transmission

delay were made.

To better characterize the communication among DGT peers

in the urban environment, we defined the sub-model illustrated

in Fig. 4, using ns-3 with the Lena LTE-EPC package.b

bWe used the latest version, released the 23rd of January 2013.

110

Figure 3: Propagation of a query between nodes to retrieve
the neighborhood of a local or remote region of interest.

The latter provides (1) the E-UTRA part of the Long Term
Evolution (LTE) technology, dealing with PRY, MAC and
Scheduler functionalities, and (2) support for the LTE RLC
and PDCP protocol, together with EPC data plane features,
such as the S1-U interface and the SGW and PGW entities.
Shortly, such an ns-3 package supports the detailed simulation
of end-to-end IP connectivity over LTE-EPC.

Figure 4: Bird's-eye view of the simulated scenario, with n ==
200 DGT nodes and v == 96 other UEs randomly placed within
the buildings. The geo-buckets of the DGT node in the bottom
right comer of the map are also drawn, to show that the side
length of the considered area equals the GB radius.

We considered DGT peers having GBs with radius of 2 km.
Thus, we defined a square area having side length l == 2 km,
with a grid of r == 10 roads (5 in N-S direction, and 5 in
W-E direction) and vehicles running over them (with linear
density 8 == 10 vehicles/km). Drivers are provided with User
Equipments (UEs), which execute a DGT-based application.
The total amount of DGT UEs is n == r8l == 200.

Parallel roads are spaced by l/4 == 0.5 km. Between
each pair of parallel roads, there are four large build-

Table 1: Buildings
Building # Parameters Values
1..16 Xmin [m] 100

X m a x [m] 300
Ymin [m] 100
Ymax [m] 300
Zmin [m] a
Zmax [m] 21
floors 7
walls type Concretewnhwindows

Table 2: eNBs and UEs
Device type # Parameters Values
eNB Ullsandwidth [RB] 50

DIBandwidth [RB] 50
DIEarfcn 50
UIEarfcn 18100
Z [m] 23
Tx Power 49
Noise Figure 5

UE Tx Power 23
Noise Figure 9

ings with squared area, each one having seven floors. Ta
ble 1 describes such buildings in detail. Randomly lo
cated within each building, there are v /16 other UEs,
where v is their total amount. The pathloss model is
ns3::BuildingsPropagationLossModel.

On top of each building, exactly in the middle, there is an
eNB, i.e. a base station which serves a subset of the n+v UEs.
Table 2 reports the configuration parameters for the eNBs and
the UEs. Regarding the eNBs, they have FDD paired spectrum,
with 50 Resource Blocks (RBs) for the uplink, which means
a nominal transmission rate of 50 Mbps, and the same for the
downlink - like currently deployed LTE systems.

DGT UEs use UDP to send four types of DGT packets to
each other. The first type, called Descriptor, is for neighbor
hood consistency maintenance purposes. Such a packet has the
following structure:

• key: int (4 bytes)
• timestamp: float (4 bytes)
• lat: double (8 bytes)
• Ing: double (8 bytes)

where key is the identifier of the peer in the DGT overlay
network, timestamp is the current time, and latllng indicate
the location of the node. Considering also the 12 bytes header,
the size of the DGT packet is 36 bytes.

The second type of packet is the Lookup Request, which
is used to search for remote nodes placed around a specified
location. Its structure is the following:

• senderKey: int (4 bytes)
• lat: double (8 bytes)
• Ing: double (8 bytes)

111

where senderKey is the identifier of the peer in the DGT

overlay network that sends the request, and lat/lng indicate

the location of interest. With the 12 bytes header, the size of

such a DGT packet is 32 bytes.

The third packet type is the Lookup Response, which is

sent by a DGT node as a reply to a lookup request, if the node

owns the searched resource / information. The structure of the

packet is the following:

• senderKey: int (4 bytes)

• lat: double (8 bytes)

• lng: double (8 bytes)

• descriptors: Descriptor[20] (≤ 480 bytes)

where senderKey is the identifier of the peer in the DGT

overlay network that sends the response, lat/lng indicate its

location, and descriptors is a list of maximum 20 node

descriptors. Considering the 12 bytes header, the maximum

size of such a DGT packet is 512 bytes.

Finally, traffic information packets have the following struc-

ture:

• trafficMessage: String (30 bytes)

• senderDescr: Descriptor (24 bytes)

• ttl: float (4 bytes)

• range: double (8 bytes)

where trafficMessage is the message to be transmitted (e.g.,

”traffic jam”), senderDescr is the descriptor of the sender

DGT node, ttl is the time to live of the message, i.e., the

number of re-propagations it can be subject to, and range

indicates the radius of the dissemination circle, which spatially

limits the forwarding process.

We set an inter-packet interval of 50 ms for all types of DGT

messages. Thus, the maximum rate is 512 × 20 ≃ 10 kB/s,

while the minimum is 32 × 20 = 0.64 kB/s. In a dynamic

DGT (the one we simulate with DEUS), packets are not sent

periodically. For example, descriptors are sent only every ǫ
meters. Lookup requests are sent only when necessary, as well

as lookup responses. Traffic information messages are sent

only when something interesting can be communicated to the

other nodes (for example, a traffic jam or an incident).

The other UEs transmit and receive VoIP packets (using

UDP) with a remote host located in the Internet. Such packets

have a 12 bytes header and a 13 bytes payload, and inter-

packet interval of 20 ms (we considered the AMR 4.75 kbps

codec).

Each eNB has a scheduler which allocates RBs (which

are the smallest elements of resource allocation) to users for

predetermined amount of time. In these simulations, the Pro-

portional Fair scheduler is used (ns3::PfFfMacScheduler),

which tries to maintain a balance between two competing

interests: trying to maximize total wireless network throughput

while at the same time allowing all users at least a minimal

level of service.

V. RESULTS

The ns-3 simulations were executed on a Ubuntu Linux

11.10 x86 64 machine with 16 GB of RAM and double quad

core processor Intel(R) Xeon(R) Intel Xeon E5504 2.00 GHz.

Each simulation was repeated with 20 different seeds for the

random number generator.

For the DGT packet flow, we analyzed the uplink and

downlink delays — to this purpose, we modified the logger

of the LTE LENA package in ns-3 (as previously stated, in

section III). The probability density function (PDF) of the

uplink delay is basically a delta function, centered on 4 ms

(Fig. 5). Instead, the PDF of the downlink delay can be

approximated by a multimodal function, with three peaks (Fig.

6), with the following formula:

fd(x) = 0.05g(x, 9, 2)+0.62g(x, 116, 32)+0.33g(x, 172, 28)

where g(x, µ, σ) is the normal PDF with mean µ and standard

deviation σ (in milliseconds). The observed packet loss was

less than 2%.

We further investigated the statistics of the downlink delay,

by performing the following tests. We configured one DGT

node (referred as probe node, from now on) in order to send

only small packets (32 bytes), while the other send all possible

packets (as described in section IV. We ran the simulations

and we plotted the PDF of the delay observed by the probe

node. We repeated the experiment by configuring the probe

node in order to send only large packets (512 bytes). We

obtained the same PDF of the previous test. Such a PDF

matches the multimodal one observed in the first experiment

(the one which is approximated by fd(x)). Thus, the delay

distribution is not affected by the size of the packet, if all

nodes send packets whose type is randomly selected.

We performed the probe test also in other two cases, namely

when all nodes always send small packets, and when they all

send large packets. In the first case, the PDF is approximated

by a normal density function with µ = 9 ms and σ = 2 ms

(the first peak of fd(x)). In the second case, the resulting PDF

is approximated by a bimodal PDF, whose peaks correspond

to the second and third peaks of fd(x).

To include such an important result into the DEUS simula-

tion model of the DGT, we have refined the latter by means of

a new algorithm for sending messages between DGT nodes:

if (msgType = ”descriptor”) then
msgSize ← 36

else if (thenmgType = ”lookup request”)
msgSize ← 32

else if (thenmsgType = ”lookup response”)
msgSize ← 512

else if (thenmsgType = ”traffic information”)
msgSize ← 76

end if
msgDelay ← Multimodal(µ1,µ2,µ3,σ1,σ2,σ3,w1,w2,w3)+Dup

sendMessage(msgType, msgSize, msgDelay)

where µ1 = 9 ms, µ2 = 116 ms, µ3 = 172 ms, σ1 = 2 ms,

112

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

f u
(x

)

x [ms]

sim

Figure 5: PDF of the uplink delay for DGT packets, obtained

from ns-3.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 50 100 150 200 250 300

f d
(x

)

x [ms]

sim
trimodal(x)

Figure 6: PDF of the downlink delay for DGT packets,

obtained from ns-3.

σ2 = 32 ms, σ3 = 28 ms, w1 = 0.05, w2 = 0.62, w3 = 0.33
and Dup = 4 ms. The Multimodal() function is our porting

of the Univariate Multimodal Generator of random Numbers

(UMGRN) implemented by A. Suinesiaputra for MATLAB

[16].

The proposed solution is a considerable improvement with

respect to our previous DEUS-based DGT simulation model,

which used, for every transmission, an exponential delay with

mean value obtained by considering the nominal uplink and

downlink.

We simulated a DGT overlay with 1000 mobile vehicles,

over a period of 10 hours. In the first half of such a period,

the network grows from 0 to 1000 nodes. In the second half,

the size of the network remains stable. We logged the average

packet delay and amount of sent data per node, computed on

the whole overlay network. Fig. 7 and 8 compare the results

obtained with the old simulation model, and those obtained

with the refined one.

 0

 0.05

 0.1

 0.15

 0.2

 0 1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 p

a
c
k
e

t
d

e
la

y
 [

s
]

t [h]

DEUS only
DEUS + ns-3

Figure 7: Average packet delay, measured with DEUS, for the

simulated DGT overlay network with 1000 vehicles.

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 s

e
n

t
d

a
ta

 p
e

r
n

o
d

e
 [

K
B

/s
]

t [h]

DEUS only
DEUS + ns-3

Figure 8: Average amount of sent data per node, measured

with DEUS, for the simulated DGT overlay network with 1000

vehicles.

As we expected, in the refined model the average delay

is higher than the one obtained with the naive model, which

is based on nominal uplink and downlink values. Also the

average amount of sent data is higher, because in the refined

model we take into account also the header of the packets

(12 bytes are 1/3 of Descriptor packets, which are the most

frequently sent).

The DEUS simulations were executed on a Macbook Pro

with 4 GB of 1067 MHz DDR3 RAM and a 2.4 GHz Intel

Core 2 Duo processor. Unfortunately, generating delays by

means of the Multimodal() function is time-consuming (each

simulation run may take up to 15 hours). An alternative

approach is to use the histogram approximation illustrated in

Fig.6. With the latter, we obtained almost the same results

given by the simulations based on Multimodal(), but in 1/10
of the time — the same time required by the old simulation

model. Thus, in future research works we will definitely use

113

the histogram approximation.

VI. CONCLUSION

In this paper we have described a general methodology

for obtaining realistic simulations of mobile and distributed

systems, leveraging on DEUS and ns-3. The former allows to

easily model and simulate application-level mechanisms and

protocols, involving a large number of nodes with complex dy-

namics, while the latter is one of the best tools for simulating

Internet systems down to the physical layer. We have illus-

trated a case study regarding a peer-to-peer overlay scheme,

called DGT, whose main objective is to provide support for

mobile node localization. To improve the characterization of

the communication among DGT nodes, we have modeled and

simulated a representative sub-system with ns-3, using the

LTE-EPC package. Obtained packet delays have allowed to

refine the DEUS-based simulation with 1000 mobile nodes.

Regarding future work, we plan to realize even more de-

tailed simulation models using ns-3, not only for simulating

the DGT but also other types of mobile and distributed sys-

tems. In particular, we are interested in applying the proposed

approach to the study of Mobile Clouds, i.e. systems in

which mobile applications dynamically offload their tasks,

to preserve the battery charge of their devices, or simply to

exploit the high performance of the Cloud.

REFERENCES

[1] C. Gershenson and F. Heylighen, “How can we think the complex?”
in Managing Organizational Complexity: Philosophy, Theory and Ap-

plication, K. Richardson, Ed. Charlotte, NC, USA: Information Age
Publishing, 2005, pp. 47–71.

[2] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and

Simulation, 2nd Ed. Academic Press, 2000.

[3] G. Wainer, “CD++: a toolkit to develop devs models,” Software -

Practice and Experience, vol. 32, no. 13, pp. 1–46, Nov. 2002.

[4] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in 1st International Conference on Simulation Tools and

Techniques for Communications, Networks and Systems (SIMUTools

2008), Marseille, France, Mar. 2008.

[5] M. Amoretti, M. Agosti, and F. Zanichelli, “DEUS: a discrete event
universal simulator,” in 2nd ICST/ACM International Conference on

Simulation Tools and Techniques (SIMUTools 2009), Rome, Italy, Mar.
2009.

[6] “ns-3 official homepage,” http://www.nsnam.org, 2013.

[7] N. Baldo, M. Requena-Esteso, J. Nin-Guerreo, and M. Miozzo, “A new
model for the simulation of the LTE-EPC data plane,” in 5th ICST/ACM

International Conference on Simulation Tools and Techniques (SIMU-

Tools 2009), Sirmione, Italy, Mar. 2012.

[8] Y. Pigne, “The OVNIS platform,” http://ovnis.gforge.uni.lu, 2010.

[9] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO -
Simulation of Urban MObility: An overview,” in SIMUL 2011, The Third

International Conference on Advances in System Simulation, Barcelona,
Spain, October 2011, pp. 63–68.

[10] M. Amoretti, “A modeling framework for unstructured supernode net-
works,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1707–1710, Oct. 2012.

[11] G. Riley, “Large scale network simulations with GTNetS,” in Winter

Simulation Conference), New Orleans, Louisiana, USA, Dec. 2003.

[12] A. Nagate, K. Hoshino, M. Mikami, and T. Fujii, “A field trial of multi-
cell cooperative transmission over LTE system,” in IEEE International

Conference on Communications (ICC 2011), Kyoto, Japan, Mar. 2011.

[13] M. Guizani, A. Rayes, B. Khan, and A. A-Fuqaha, Network Modeling

and Simulation, 1st Ed. Wiley, 2010.

[14] M. Picone, M. Amoretti, and F. Zanichelli, “Evaluating the robustness
of the DGT approach for smartphone-based vehicular networks,” in
Proceedings of the 2011 IEEE 36th Conference on Local Computer

Networks, ser. LCN ’11, 2011, pp. 820–826.
[15] ——, “Proactive neighbor localization based on distributed geographic

table,” in Proceedings of the 8th International Conference on Advances

in Mobile Computing and Multimedia, ser. MoMM ’10, 2010, pp. 305–
312.

[16] A. Suinesiaputra, “Univariate Multimodal Random Number Generator
for MATLAB,” http://www.mathworks.com/matlabcentral/fileexchange/
6488-univariate-multimodal-random-number-generator/content/umgrn.
m, Dec. 2004.

114

