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Abstract  The discipline of component based modeling and 
simulation offers promising gains including reduction in 
development cost, time, and system complexity. It also 
promotes (re)use of modular components to build complex 
simulations. Many important issues in this area have been 
addressed, but composability verification is still considered a 
daunting challenge. In our observation most of the component 
based modeling frameworks possess weak built-in support for 
the composability verification, which is required to guarantee 
the correctness of the structural, behavioral and temporal 
aspects of the composition. In this paper we stage a practical 
approach to alleviate some of the challenges in composability 
verification and propose a process to verify composability of 
real-time system models. We emphasize on dynamic semantic 
level and present our approach using Colored Petri Nets and 
State Space analysis. We also present a Field Artillery model as 
an example of real-time system and explain how our approach 
verifies model composability. 

Keywords- Composability; Verification; Real-time systems; 
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I. INTRODUCTION 

The Modeling and Simulation (M&S) community has 
been conducting research on methods and technologies to 
construct complex simulation systems by combining new or 
reusing existing simulation components. This paradigm of 
component-based modeling and simulation has gained 
growing impetus due to its promising gains including 
reduction in development cost, time, and the system 
complexity. It follows the principle of modularity which 
essentially helps to master the complexity of reality by 
decomposing it into parts [1] and by enabling the designer to 
(re)use appropriate parts for different purposes.  

Composability is the capability to select and assemble 
components in various combinations (meaningfully) to 
satisfy specific user requirements [2]. It is an important 
quality characteristic of the M&S discipline, yet difficult to 
achieve [3], [4]. This is mainly due to the underlying 
intricacies of the individual components and substantive 
subtleties of the combined effect. Composability is a 
property of the models, as it essentially contends with the 
alignment of issues on the modeling level [5], where it is 
viewed as creation of complex models from a collection of 
modular components, which might themselves be the 
abstraction of subsystems. Composability essentially relies 
on a suitable component modeling framework that must 
provide accurate reasoning for the correctness and the ability 

to leverage certain component standard. One such standard 
that support composability is the Base Object Model (BOM) 
[6], which is a SISO (Simulation Interoperability Standards 
Organization) standard. Composability is further divided into 
different sublevels, as discussed in [5], [7] and [8].  

In this paper, our focus is centered on the correctness of 
composability at the Dynamic Semantic level, which is a 
necessary condition for the credibility of overall 
composability. Dynamic Semantic Composability implies 
that the components are dynamically consistent, i.e., they 
have correct behavior, necessary to reach the desired goals 
and subsequently satisfy user requirements. In essence, a set 
of components can possibly fit together (syntactically), and 
their communication is meaningful and understood 
(semantically), but unless all components preserve essential 
behavior (dynamically), in order to reach the desired 
composition goals, the correctness of the composed model 
cannot be certified. We further elaborate that correctness of 
behavioral composability relies on three factors: firstly each 
component is at the right state while interacting with the 
others, and secondly the composition should satisfy required 
behavioral properties, as prescribed in the requirement 
specifications and thirdly the must fulfill the required time 
constraints (in case of real-time model components).  

In M&S, verification is concerned with building the 
model right. It is typically defined as a process of 
determining whether the model has been implemented 
correctly [9] and whether it is consistent with its 
specifications [10]. In principle, verification is concerned 

into a conceptual model and the conceptual model into an 

requirements are identified by means of requirements 
specification which includes a set of verification goals, listed 
in terms of desired system behavior properties such as 
deadlock freedom, live-lock freedom, mutual exclusion and 
fairness. Systems where the correctness of the system 
behavior depends not only on the logical results of the 
computations, but also on the physical time when these 
results are produced and within given time bounds, are 
known as Real-Time systems [11]. When models of such 
systems are composed, they may also require having certain 
time properties or constraints that should be satisfied for 
correct composability.  

Various approaches have been suggested concerning the 
model verification of real-time systems. A formal model of 
hierarchical time system is presented in [12] and adjoined 
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- formal verification. Another 
interesting approach uses DEVS for real-time system 
development, and transforms it to Timed Automata for 

-
approach focuses on the formal validation of semantic 
composability of time based systems [14].  

In this paper, we present composability verification of 
real time system models, where time constraints are defined 
in the requirement specification and their behavior is 
evaluated to guarantee response within the required time 
constraints. In our approach, we suggest to use BOM as a 
conceptual modeling standard, and Colored Petri Nets (CPN) 
as an executable modeling framework. We propose a formal 
Timed-CPN based component model, which is used for 
implementation and execution of BOM components (Note 
that BOM does not support time modalities, so we also 
propose a BOM extension to model Time behavior). After 
implementing BOM components (using our automatic 
transformation method) the generated CPN component 
models are composed and subjected to verification for the 
composability evaluation at dynamic semantic level. A 
verified composition of CPN component models asserts that 
its corresponding BOM conceptual model is correct, with 
respect to the given requirement specifications. We also 
present a Field Artillery model as an example to illustrate 
how our approach verifies a composed model.  

The rest of the paper is organized as follows. Section 2 
covers basic definitions and concepts used in this paper. 
Section 3 furnishes the details of our composability 
verification process. In Section 4 we discuss a case study of a 
Field Artillery model to explain our approach, whereas 
section 5 frames summary and conclusion. 

II. DEFINATIONS AND BASIC CONCEPTS 

In this section we briefly discuss some essential concepts 
that are used later in this paper.  

A. Base Object Model  

conceptual model, comprised of a group of interrelated 
elements, which can be used as a building block in the 
development and extension of simulations and simulation 

modeling that captures static descriptions of elements 
abstracted from the real system (simuland), described in 
terms of conceptual entities and events, and contains 
information on how these elements interact with each other 
in terms of Patterns of Interplay and state-machines. In this 
paper, we harness the capability of BOM as a conceptual 
modeling framework, because it provides a component 
standard as a basis of model specification; helps determine 
the appropriateness of the model or its parts for model reuse; 
and most importantly, it strongly supports composability.  

B. Colored Petri Nets  

In this paper, we incorporate Colored Petri Nets 
formalism (developed at the University of Aarhus), as an 
executable modeling framework, focusing on its Time 
extension in particular and propose to utilize its strength by 

implementing BOM based conceptual model into a Timed-
CPN based executable model. CPN is a general purpose 
discrete event graphical language for constructing models of 
concurrent systems and analyzing their properties. TCPN is 
an extension to CPN, in which tokens can carry timestamps 
in addition to the token color, which implies that the marking 
of a place where the tokens carry timestamps become timed 
multi-sets. Also, the model has a global clock, representing 
model time. The distribution of tokens on the places, 
together with their timestamps and the value of the global 
clock, is called a timed marking. For detailed explanation of 
the concepts of Timed CPN, interested readers are 

modeling and execution environment based on CPN 
language, and is used for the editing, simulation, state space 
analysis, and performance analysis of CPN models. The 
most important features of CPN tool from our point of view 
are hierarchal CPN modeling and the generation and analysis 
of state spaces. Hierarchal CPN modeling offers modular 
development. CPN tools offer facility to construct hierarchal 
CPN models, by replacing an entire CPN model with a 
substitute transition that can be connected to a main model. 
In this paper, we utilize this feature, and propose a CPN 

implementation and execution of a BOM conceptual model 
(To understand our proposed component model the 
knowledge of CPN constructs and functionality is required  
[16], [17]).  

C. State Space Analysis  

State space analysis is one of the most prominent 
approach for conducting formal analysis and verification. 
The basic idea in this approach is to calculate all possible 
system states and represent them as vertices in a directed 
graph and represent the transitions of one state to another 
state by directed edges. In theory a state space is a directed 
graph where we have a node for each reachable marking 
(system state) and an arc for each transition. A constructed 
state space can answer a large set of analysis and verification 
questions concerning the behavior of the system such as 
absence of deadlocks, the possibility of being able to reach 
good state(s), and never reach bad state(s) and the guarantee 
of reaching goal state(s). A step by step tour of state space 
analysis using CPN tools can be located at [18]. The main 
advantages of state space methods is that they can provide 
counter examples and reasoning as to why an expected 
property does not hold [19]. The main disadvantage of using 
state spaces is the state explosion problem. Even relatively 
small systems may have an astronomical or even infinite 
number of reachable states. This problem escalates severely, 
when the models include Time. A lot of effort has been 
invested in the development of reduction methods to 
alleviate this problem. Reduction methods avoid representing 
the entire state space of the system or represent the state 
space in a compact form [19]. The detail discussion of these 
methods is out of scope of this paper, however we rely on 
these methods, to alleviate the state explosion problem, in 
case the model under consideration becomes large and 
resource intensive. 
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III. COMPOSABILITY VERIFICATION PROCESS 

In this section we revisit our previously proposed 
approach [20] of dynamic semantic composability 
verification and extend it with additional features, 
particularly to support the verification of real-time system 
models. Before we discuss these additional features, we 
summarize our previous contributions as follows.  

We proposed a process for the verification of BOM based 
composed models at the dynamic semantic level. Fig. 1 
illustrates the entire process. We suggested to extend the 
BOM components into Extended BOMs (E-BOM) using our 
E-BOM editor, to include state-variables and more detailed 
transitions, with events, guards and actions. Once a standard 
BOM component is extended into E-BOM, which is 
transformed to our CPN based component model. The details 
of our proposed component model can be found in [20]. Fig. 
2 represents a generic example of our proposed CPN based 
component model with three layers namely: (i) Structural 
Layer (ii) Behavioral Layer and (iii) Communication Lauer. 
Each layer is initialized with required initial markings that 
fulfill the condition for the enabling of the transition T0 
hence the component can make progress by firing T0. 

 
Figure 2. CPN Component Model 

 
We proposed an automatic transformation method to 

convert E-BOM into CPN model. When all components are 
transformed, modeler can assemble them as a composed 
model using CPN hierarchy tools. The resultant model is 
executable in CPN environment and can be analyzed using 
state space analysis. For the purpose of verification, we 

proposed to use a Verification Template that consists of a set 
of properties representing Goal states, Generic system 
behavioral properties and scenario centric properties as 
requirements specification. The composed model is said to 
be verified at dynamic semantic level if it satisfies all the 
properties in the verification template. 

In this paper, our main contribution (differentiated from 
the previous paper [20]) is summarized as follows. We 
upgrade our previously proposed verification process by 

support Time, so we present additional features in E-BOM to 
let the modeler specify time functions, for capturing the time 
specific system behavior. We upgrade our automatic 
transformation tool; to generate Time based CPN models. 
We extend our Behavioral Layer and allow Time inscriptions 
in the transitions, which are either constant non-negative 
numerical values or random numbers based on assigned 
probability distributions. (Time inscriptions include delay or 
interval functions, discussed later in this section). We 
develop a library of state space query functions for the 
verification of our model specific properties mentioned in 
verification template. Also we include time properties as 
specification in our verification template. (We provide 
examples in our case study section). Beside time related 
extensions, we provide modifications at different parts to 
improve the overall verification process. 

A. E-BOM Extension 

We propose the time functions as extensions in the BOM 
standard (in addition to the ones previously proposed [20]). 
Time modalities do not exist originally in standard BOM. 
But when the modeling of a real-time system is under 
consideration, where time plays a key role, we need to 
provide time functions. We define three types of time 
functions, which can be assigned to a transition as shown in 
Table 1. 

Wait means the time taken by the transition to occur. It 
has constant non-zero 
tools provide this feature of assigning time delay to a 
transition. Deadline is similar to wait. The difference is that 
in deadline the component remains active and can make 
progress until a given deadline. Time out means the time 
between the enabling of a transition and a certain specified 
future time, during which it will remain enabled. If other 
components are interacting with a component having a time 
out transition, they can only progress if they communicate 
just within this interval. 

Figure 1. Composability Verification Process 
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Table 1. Time Functions 

(We provide example in our case study section). This 
feature is not available in CPN. Therefore for its 

transition for evaluating the lapse of the specified interval as 
shown in Fig. 3. 

 
Figure 3. Transition with Time out 

 
The shaded area represents our implementation of a 

timer, in CPN. Whenever the place A receives token(s), it 
enables the transition, which when fired sets the timer to run, 
starting from the current model time. This transition will 
remain enabled and can be fired multiple times, until TI is 
reached.  

B. Transformation  

When all BOMs are extended to E-BOMs with the 
proposed additional elements, our automatic transformation 
tool, transforms them into corresponding TCPN-component 
models (producing TCPN code for the three layers). The 
output is a .CPN file, with all the components generated as 
sub-modules. The modeler then composes all the 
components into a TCPN-Composed Model using CPN 
hierarchical tool. Then the model can be executed using CPN 
simulator and analyzed by performing state-space analysis. 

C. State Space Analysis 

In order to generate state-space of the entire model we 
use CPN state space calculation tool. When the state-space is 
generated, different query functions can be used to probe the 
state space graph for various verification questions. We 
proposed functions to perform our model specific queries. In 
order to verify a composed CPN model, we propose a 
verification template that consists of the verification 
questions in form of following three groups of properties.  

1) General System Properties  

State-Space analysis technique is very useful technique to 
verify general system properties such as freedom of 
deadlock, live-lock, starvation, or existence of boundedness, 
mutual exclusion, fairness, sequentiality, time-
synchronization etc. Choice of these properties as 
verification criteria depends on the modeling objectives and 
their fulfillment become necessary conditions for the 
correctness of the composition. The solution for verifying a 
generic property involves specification of the property in 
CPN terms, and definition of a query function (or algorithm), 
to reason its satisfiability or violation e.g., freedom of 
deadlock property is specified in An absence 
of a marking with no-out going arcs, in the entire state-space 
graph �������	
����
���is 
used to evaluate this assertion which returns a set of all those 
markings (if any) having no outgoing arcs. If the result of 
this query is an empty list, then we assert that the model is 
deadlock free.  

2) Goal Reachability 
 We propose to define the desired outcome of the 

function to assess if it is reachable in the state 
space or not. The goal state can be viewed as a CPN based 
translation of the requirements specification. A typical goal 
state could be certain desirable values of state-variables in 
structural layer, reaching of particular state(s) in behavioral 
layer or producing some required data at output port(s) of the 
communication layer (or a combination of all the three), in 
one or more components of the composition. A composed 
model may have multiple goals.  

3) Scenario Centric Properties  
We propose to define some safety (or unsafe) 

assumptions, which are particular to the scenario. They 
represent certain desirable (or un-desirable) situations which 
must (or must not) occur in order to satisfy (or violate) the 
requirements. These properties are not the ultimate goal(s), 
but they may become necessary conditions in order to reach 
the goals.  

4) State space Query Functions 
We develop a library of custom functions, using CPN-

ML to perform verification of the properties, specified in the 
verification template. Some of these functions are explained 
as follows:  

�����������: Finding goal state reachability is not a 
standard operation, and depends on the way Goal-State is 
defined. Most commonly, we make use of our library 

hat serves as a goal state 
reachability condition, and then use SearchNode() function 
to find those nodes, which satisfy the predicate. If one or 
more nodes are found, then it is verified that the goal is 
reachable. In cases, where it is important to know 

of transitions, lead to the goal(s), we use 
SearchArc()function with the predicate. Similarly, 
��
������������������
��������are used for 
finding nodes, having timed multi-sets with timestamps 
greater or lesser then a certain value, or between a certain 
time interval. These functions work on Timed CPN models.  
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When, a composed model satisfies all the required 
system properties, qualifies its goal state reachability, and 
fulfills the scenario centric safety criteria, we say that it is 
verified at dynamic semantic composability level. 

IV. CASE STUDY: FIELD ARTILLERY 

In this section we present a case study of a Field Artillery 
model, to explain our verification process. This case study 
consist a scenario, based on indirect fire, where the target is 
out of sight, and artillery unit is requested for fire support by 
the forward observer. Following components are composed 
in this scenario:  

Field component: Where enemy and friendly units 
are deployed.  

Observer: A soldier who observes enemy units at the 
forward location and coordinates fire support.  

BHQ: BHQ, supervises the entire operation of fire 
support at the battalion level.  

Battery: Three units of artillery batteries (cannons 
and crew) actually responsible to hit the target.  

 
We assume that a soldier observes the field and detects 

enemy units. When a target is spotted, he calls BHQ for fire 
-On-

(TOT) is the military coordination of artillery fire observed 
by multiple firing units, so that all the munitions arrive at the 
target at precisely the same time (or plus or minus three 
seconds from the prescribed time of impact). This is done in 
order to achieve maximum target destruction. BHQ assigns 

the batteries to comply. Each battery fires according to its 
target assignment. When field component receives fire, and 
if the detonation is within a destruction radius, then the target 
is said to be destroyed otherwise it is missed. If all batteries 
mange to hit the target within TOT±3 we say, that a desirable 
property have been satisfied. In order to proceed with our 
verification process, we assume that the BOM composition is 
given as an input. Fig. 4a represents BOM state-machines of 
each component in the composition. We extend each BOM 
to E-BOM, and transform it to CPN component model using 
our transformation tool. Fig. 4 presents the E-BOM and CPN 
Component Model representation of Battery component (as 
an example). [For further details we refer the interested 
readers to download complete TCPN implementation of 
Field Artillery scenario from: 
http://web.it.kth.se/~imahmood/FieldArtillery]. 

Fig. 4b describes the E-BOM including state-variables, 
communication ports and the extended transitions, whereas 

Figure 4. (a) Field Artillery BOM State-machine (b) Battery E-BOM (c) Battery CPN Component (d) CPN Compoased Model 
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Fig. 4c, illustrate one of the generated CPN component 
models. When all components are transformed, they are 
composed in a TCPN composed model as shown in Fig. 4d. 
The circles represent socket places that connect components 
with each other. The rectangles represent components that 
are transformed form E-BOM. The composed CPN model 
can now be executed and verified. We define the verification 
template in Table 2 and show how each property is verified 
using the state-space query functions: 

 
Table 2. Verification Template 

For verification, state-space is calculated using CPN 
tools. We use our state-space analysis library functions to 
perform property verification according to our verification 
template. If all three properties are satisfied, we say that the 
model is verified at dynamic semantic level, and hence 
justifies the necessary condition of the overall composability. 

V. SUMMARY & CONCLUSION 

In this paper we present a process for the verification of 
composability at dynamic semantic level, with a focus on 
models of Real-time systems. We propose to use Base 
Object Model as a conceptual modeling framework, and 
Colored Petri Nets as an executable modeling standard. We 
suggest extending standard BOM model into E-BOM, so that 
it contains necessary behavioral details, required for its im-
plementations, specially the time function. We provide an 
automatic transformation method to convert E-BOM into our 
proposed Timed CPN component model, which is useful to 
represent a model component in CPN language, yet it 
preserves the model structure and behavior conceptually 
intact. For the purpose of dynamic-semantic composability 
verification we suggest a verification template, as assessment 
criteria, which can be used to verify our executable model 
using State-space analysis. Lastly, we discuss a case study of 
Field Artillery to show how our framework verifies a given 
composition.  

Our proposed verification framework expedites the 
process of composability verification and provides suitable 
environment for finding out defects in the model 
composition. Moreover, because of numerous analysis 
methods and verification algorithms contributed by the CPN 
community over a couple of decades, CPN provides a 
significant improvement on efficient and accurate reasoning 
regarding the model correctness. We intend to fully automate 
the construction of TCPN composed model from the 
generated CPN components to further depreciate the manual 
human effort in the development. 
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