
Composability Verification of Real Time System Models using Colored Petri Nets

Imran Mahmood, Rassul Ayani, Vladimir Vlassov
School of Information and Communication Technology

KTH Royal Institute of Technology
Stockholm, Sweden

e-mail: imahmood@kth.se, ayani@kth.se,
vladv@kth.se

Farshad Moradi
Swedish Defense Research Agency (FOI)

Stockholm, Sweden
email: farshad.moradi@foi.se

Abstract The discipline of component based modeling and
simulation offers promising gains including reduction in
development cost, time, and system complexity. It also
promotes (re)use of modular components to build complex
simulations. Many important issues in this area have been
addressed, but composability verification is still considered a
daunting challenge. In our observation most of the component
based modeling frameworks possess weak built-in support for
the composability verification, which is required to guarantee
the correctness of the structural, behavioral and temporal
aspects of the composition. In this paper we stage a practical
approach to alleviate some of the challenges in composability
verification and propose a process to verify composability of
real-time system models. We emphasize on dynamic semantic
level and present our approach using Colored Petri Nets and
State Space analysis. We also present a Field Artillery model as
an example of real-time system and explain how our approach
verifies model composability.

Keywords- Composability; Verification; Real-time systems;
discrete event; Colored petri nets; Field Artillery

I. INTRODUCTION

The Modeling and Simulation (M&S) community has
been conducting research on methods and technologies to
construct complex simulation systems by combining new or
reusing existing simulation components. This paradigm of
component-based modeling and simulation has gained
growing impetus due to its promising gains including
reduction in development cost, time, and the system
complexity. It follows the principle of modularity which
essentially helps to master the complexity of reality by
decomposing it into parts [1] and by enabling the designer to
(re)use appropriate parts for different purposes.

Composability is the capability to select and assemble
components in various combinations (meaningfully) to
satisfy specific user requirements [2]. It is an important
quality characteristic of the M&S discipline, yet difficult to
achieve [3], [4]. This is mainly due to the underlying
intricacies of the individual components and substantive
subtleties of the combined effect. Composability is a
property of the models, as it essentially contends with the
alignment of issues on the modeling level [5], where it is
viewed as creation of complex models from a collection of
modular components, which might themselves be the
abstraction of subsystems. Composability essentially relies
on a suitable component modeling framework that must
provide accurate reasoning for the correctness and the ability

to leverage certain component standard. One such standard
that support composability is the Base Object Model (BOM)
[6], which is a SISO (Simulation Interoperability Standards
Organization) standard. Composability is further divided into
different sublevels, as discussed in [5], [7] and [8].

In this paper, our focus is centered on the correctness of
composability at the Dynamic Semantic level, which is a
necessary condition for the credibility of overall
composability. Dynamic Semantic Composability implies
that the components are dynamically consistent, i.e., they
have correct behavior, necessary to reach the desired goals
and subsequently satisfy user requirements. In essence, a set
of components can possibly fit together (syntactically), and
their communication is meaningful and understood
(semantically), but unless all components preserve essential
behavior (dynamically), in order to reach the desired
composition goals, the correctness of the composed model
cannot be certified. We further elaborate that correctness of
behavioral composability relies on three factors: firstly each
component is at the right state while interacting with the
others, and secondly the composition should satisfy required
behavioral properties, as prescribed in the requirement
specifications and thirdly the must fulfill the required time
constraints (in case of real-time model components).

In M&S, verification is concerned with building the
model right. It is typically defined as a process of
determining whether the model has been implemented
correctly [9] and whether it is consistent with its
specifications [10]. In principle, verification is concerned

into a conceptual model and the conceptual model into an

requirements are identified by means of requirements
specification which includes a set of verification goals, listed
in terms of desired system behavior properties such as
deadlock freedom, live-lock freedom, mutual exclusion and
fairness. Systems where the correctness of the system
behavior depends not only on the logical results of the
computations, but also on the physical time when these
results are produced and within given time bounds, are
known as Real-Time systems [11]. When models of such
systems are composed, they may also require having certain
time properties or constraints that should be satisfied for
correct composability.

Various approaches have been suggested concerning the
model verification of real-time systems. A formal model of
hierarchical time system is presented in [12] and adjoined

2013 UKSim 15th International Conference on Computer Modelling and Simulation

978-0-7695-4994-1/13 $26.00 © 2013 IEEE

DOI 10.1109/UKSim.2013.49

407

- formal verification. Another
interesting approach uses DEVS for real-time system
development, and transforms it to Timed Automata for

-
approach focuses on the formal validation of semantic
composability of time based systems [14].

In this paper, we present composability verification of
real time system models, where time constraints are defined
in the requirement specification and their behavior is
evaluated to guarantee response within the required time
constraints. In our approach, we suggest to use BOM as a
conceptual modeling standard, and Colored Petri Nets (CPN)
as an executable modeling framework. We propose a formal
Timed-CPN based component model, which is used for
implementation and execution of BOM components (Note
that BOM does not support time modalities, so we also
propose a BOM extension to model Time behavior). After
implementing BOM components (using our automatic
transformation method) the generated CPN component
models are composed and subjected to verification for the
composability evaluation at dynamic semantic level. A
verified composition of CPN component models asserts that
its corresponding BOM conceptual model is correct, with
respect to the given requirement specifications. We also
present a Field Artillery model as an example to illustrate
how our approach verifies a composed model.

The rest of the paper is organized as follows. Section 2
covers basic definitions and concepts used in this paper.
Section 3 furnishes the details of our composability
verification process. In Section 4 we discuss a case study of a
Field Artillery model to explain our approach, whereas
section 5 frames summary and conclusion.

II. DEFINATIONS AND BASIC CONCEPTS

In this section we briefly discuss some essential concepts
that are used later in this paper.

A. Base Object Model

conceptual model, comprised of a group of interrelated
elements, which can be used as a building block in the
development and extension of simulations and simulation

modeling that captures static descriptions of elements
abstracted from the real system (simuland), described in
terms of conceptual entities and events, and contains
information on how these elements interact with each other
in terms of Patterns of Interplay and state-machines. In this
paper, we harness the capability of BOM as a conceptual
modeling framework, because it provides a component
standard as a basis of model specification; helps determine
the appropriateness of the model or its parts for model reuse;
and most importantly, it strongly supports composability.

B. Colored Petri Nets

In this paper, we incorporate Colored Petri Nets
formalism (developed at the University of Aarhus), as an
executable modeling framework, focusing on its Time
extension in particular and propose to utilize its strength by

implementing BOM based conceptual model into a Timed-
CPN based executable model. CPN is a general purpose
discrete event graphical language for constructing models of
concurrent systems and analyzing their properties. TCPN is
an extension to CPN, in which tokens can carry timestamps
in addition to the token color, which implies that the marking
of a place where the tokens carry timestamps become timed
multi-sets. Also, the model has a global clock, representing
model time. The distribution of tokens on the places,
together with their timestamps and the value of the global
clock, is called a timed marking. For detailed explanation of
the concepts of Timed CPN, interested readers are

modeling and execution environment based on CPN
language, and is used for the editing, simulation, state space
analysis, and performance analysis of CPN models. The
most important features of CPN tool from our point of view
are hierarchal CPN modeling and the generation and analysis
of state spaces. Hierarchal CPN modeling offers modular
development. CPN tools offer facility to construct hierarchal
CPN models, by replacing an entire CPN model with a
substitute transition that can be connected to a main model.
In this paper, we utilize this feature, and propose a CPN

implementation and execution of a BOM conceptual model
(To understand our proposed component model the
knowledge of CPN constructs and functionality is required
[16], [17]).

C. State Space Analysis

State space analysis is one of the most prominent
approach for conducting formal analysis and verification.
The basic idea in this approach is to calculate all possible
system states and represent them as vertices in a directed
graph and represent the transitions of one state to another
state by directed edges. In theory a state space is a directed
graph where we have a node for each reachable marking
(system state) and an arc for each transition. A constructed
state space can answer a large set of analysis and verification
questions concerning the behavior of the system such as
absence of deadlocks, the possibility of being able to reach
good state(s), and never reach bad state(s) and the guarantee
of reaching goal state(s). A step by step tour of state space
analysis using CPN tools can be located at [18]. The main
advantages of state space methods is that they can provide
counter examples and reasoning as to why an expected
property does not hold [19]. The main disadvantage of using
state spaces is the state explosion problem. Even relatively
small systems may have an astronomical or even infinite
number of reachable states. This problem escalates severely,
when the models include Time. A lot of effort has been
invested in the development of reduction methods to
alleviate this problem. Reduction methods avoid representing
the entire state space of the system or represent the state
space in a compact form [19]. The detail discussion of these
methods is out of scope of this paper, however we rely on
these methods, to alleviate the state explosion problem, in
case the model under consideration becomes large and
resource intensive.

408

III. COMPOSABILITY VERIFICATION PROCESS

In this section we revisit our previously proposed
approach [20] of dynamic semantic composability
verification and extend it with additional features,
particularly to support the verification of real-time system
models. Before we discuss these additional features, we
summarize our previous contributions as follows.

We proposed a process for the verification of BOM based
composed models at the dynamic semantic level. Fig. 1
illustrates the entire process. We suggested to extend the
BOM components into Extended BOMs (E-BOM) using our
E-BOM editor, to include state-variables and more detailed
transitions, with events, guards and actions. Once a standard
BOM component is extended into E-BOM, which is
transformed to our CPN based component model. The details
of our proposed component model can be found in [20]. Fig.
2 represents a generic example of our proposed CPN based
component model with three layers namely: (i) Structural
Layer (ii) Behavioral Layer and (iii) Communication Lauer.
Each layer is initialized with required initial markings that
fulfill the condition for the enabling of the transition T0
hence the component can make progress by firing T0.

Figure 2. CPN Component Model

We proposed an automatic transformation method to

convert E-BOM into CPN model. When all components are
transformed, modeler can assemble them as a composed
model using CPN hierarchy tools. The resultant model is
executable in CPN environment and can be analyzed using
state space analysis. For the purpose of verification, we

proposed to use a Verification Template that consists of a set
of properties representing Goal states, Generic system
behavioral properties and scenario centric properties as
requirements specification. The composed model is said to
be verified at dynamic semantic level if it satisfies all the
properties in the verification template.

In this paper, our main contribution (differentiated from
the previous paper [20]) is summarized as follows. We
upgrade our previously proposed verification process by

support Time, so we present additional features in E-BOM to
let the modeler specify time functions, for capturing the time
specific system behavior. We upgrade our automatic
transformation tool; to generate Time based CPN models.
We extend our Behavioral Layer and allow Time inscriptions
in the transitions, which are either constant non-negative
numerical values or random numbers based on assigned
probability distributions. (Time inscriptions include delay or
interval functions, discussed later in this section). We
develop a library of state space query functions for the
verification of our model specific properties mentioned in
verification template. Also we include time properties as
specification in our verification template. (We provide
examples in our case study section). Beside time related
extensions, we provide modifications at different parts to
improve the overall verification process.

A. E-BOM Extension

We propose the time functions as extensions in the BOM
standard (in addition to the ones previously proposed [20]).
Time modalities do not exist originally in standard BOM.
But when the modeling of a real-time system is under
consideration, where time plays a key role, we need to
provide time functions. We define three types of time
functions, which can be assigned to a transition as shown in
Table 1.

Wait means the time taken by the transition to occur. It
has constant non-zero
tools provide this feature of assigning time delay to a
transition. Deadline is similar to wait. The difference is that
in deadline the component remains active and can make
progress until a given deadline. Time out means the time
between the enabling of a transition and a certain specified
future time, during which it will remain enabled. If other
components are interacting with a component having a time
out transition, they can only progress if they communicate
just within this interval.

Figure 1. Composability Verification Process

409

Table 1. Time Functions

(We provide example in our case study section). This
feature is not available in CPN. Therefore for its

transition for evaluating the lapse of the specified interval as
shown in Fig. 3.

Figure 3. Transition with Time out

The shaded area represents our implementation of a

timer, in CPN. Whenever the place A receives token(s), it
enables the transition, which when fired sets the timer to run,
starting from the current model time. This transition will
remain enabled and can be fired multiple times, until TI is
reached.

B. Transformation

When all BOMs are extended to E-BOMs with the
proposed additional elements, our automatic transformation
tool, transforms them into corresponding TCPN-component
models (producing TCPN code for the three layers). The
output is a .CPN file, with all the components generated as
sub-modules. The modeler then composes all the
components into a TCPN-Composed Model using CPN
hierarchical tool. Then the model can be executed using CPN
simulator and analyzed by performing state-space analysis.

C. State Space Analysis

In order to generate state-space of the entire model we
use CPN state space calculation tool. When the state-space is
generated, different query functions can be used to probe the
state space graph for various verification questions. We
proposed functions to perform our model specific queries. In
order to verify a composed CPN model, we propose a
verification template that consists of the verification
questions in form of following three groups of properties.

1) General System Properties

State-Space analysis technique is very useful technique to
verify general system properties such as freedom of
deadlock, live-lock, starvation, or existence of boundedness,
mutual exclusion, fairness, sequentiality, time-
synchronization etc. Choice of these properties as
verification criteria depends on the modeling objectives and
their fulfillment become necessary conditions for the
correctness of the composition. The solution for verifying a
generic property involves specification of the property in
CPN terms, and definition of a query function (or algorithm),
to reason its satisfiability or violation e.g., freedom of
deadlock property is specified in An absence
of a marking with no-out going arcs, in the entire state-space
graph �������	
����
���is
used to evaluate this assertion which returns a set of all those
markings (if any) having no outgoing arcs. If the result of
this query is an empty list, then we assert that the model is
deadlock free.

2) Goal Reachability
 We propose to define the desired outcome of the

function to assess if it is reachable in the state
space or not. The goal state can be viewed as a CPN based
translation of the requirements specification. A typical goal
state could be certain desirable values of state-variables in
structural layer, reaching of particular state(s) in behavioral
layer or producing some required data at output port(s) of the
communication layer (or a combination of all the three), in
one or more components of the composition. A composed
model may have multiple goals.

3) Scenario Centric Properties
We propose to define some safety (or unsafe)

assumptions, which are particular to the scenario. They
represent certain desirable (or un-desirable) situations which
must (or must not) occur in order to satisfy (or violate) the
requirements. These properties are not the ultimate goal(s),
but they may become necessary conditions in order to reach
the goals.

4) State space Query Functions
We develop a library of custom functions, using CPN-

ML to perform verification of the properties, specified in the
verification template. Some of these functions are explained
as follows:

�����������: Finding goal state reachability is not a
standard operation, and depends on the way Goal-State is
defined. Most commonly, we make use of our library

hat serves as a goal state
reachability condition, and then use SearchNode() function
to find those nodes, which satisfy the predicate. If one or
more nodes are found, then it is verified that the goal is
reachable. In cases, where it is important to know

of transitions, lead to the goal(s), we use
SearchArc()function with the predicate. Similarly,
��
������������������
��������are used for
finding nodes, having timed multi-sets with timestamps
greater or lesser then a certain value, or between a certain
time interval. These functions work on Timed CPN models.

410

When, a composed model satisfies all the required
system properties, qualifies its goal state reachability, and
fulfills the scenario centric safety criteria, we say that it is
verified at dynamic semantic composability level.

IV. CASE STUDY: FIELD ARTILLERY

In this section we present a case study of a Field Artillery
model, to explain our verification process. This case study
consist a scenario, based on indirect fire, where the target is
out of sight, and artillery unit is requested for fire support by
the forward observer. Following components are composed
in this scenario:

Field component: Where enemy and friendly units
are deployed.

Observer: A soldier who observes enemy units at the
forward location and coordinates fire support.

BHQ: BHQ, supervises the entire operation of fire
support at the battalion level.

Battery: Three units of artillery batteries (cannons
and crew) actually responsible to hit the target.

We assume that a soldier observes the field and detects

enemy units. When a target is spotted, he calls BHQ for fire
-On-

(TOT) is the military coordination of artillery fire observed
by multiple firing units, so that all the munitions arrive at the
target at precisely the same time (or plus or minus three
seconds from the prescribed time of impact). This is done in
order to achieve maximum target destruction. BHQ assigns

the batteries to comply. Each battery fires according to its
target assignment. When field component receives fire, and
if the detonation is within a destruction radius, then the target
is said to be destroyed otherwise it is missed. If all batteries
mange to hit the target within TOT±3 we say, that a desirable
property have been satisfied. In order to proceed with our
verification process, we assume that the BOM composition is
given as an input. Fig. 4a represents BOM state-machines of
each component in the composition. We extend each BOM
to E-BOM, and transform it to CPN component model using
our transformation tool. Fig. 4 presents the E-BOM and CPN
Component Model representation of Battery component (as
an example). [For further details we refer the interested
readers to download complete TCPN implementation of
Field Artillery scenario from:
http://web.it.kth.se/~imahmood/FieldArtillery].

Fig. 4b describes the E-BOM including state-variables,
communication ports and the extended transitions, whereas

Figure 4. (a) Field Artillery BOM State-machine (b) Battery E-BOM (c) Battery CPN Component (d) CPN Compoased Model

411

Fig. 4c, illustrate one of the generated CPN component
models. When all components are transformed, they are
composed in a TCPN composed model as shown in Fig. 4d.
The circles represent socket places that connect components
with each other. The rectangles represent components that
are transformed form E-BOM. The composed CPN model
can now be executed and verified. We define the verification
template in Table 2 and show how each property is verified
using the state-space query functions:

Table 2. Verification Template

For verification, state-space is calculated using CPN
tools. We use our state-space analysis library functions to
perform property verification according to our verification
template. If all three properties are satisfied, we say that the
model is verified at dynamic semantic level, and hence
justifies the necessary condition of the overall composability.

V. SUMMARY & CONCLUSION

In this paper we present a process for the verification of
composability at dynamic semantic level, with a focus on
models of Real-time systems. We propose to use Base
Object Model as a conceptual modeling framework, and
Colored Petri Nets as an executable modeling standard. We
suggest extending standard BOM model into E-BOM, so that
it contains necessary behavioral details, required for its im-
plementations, specially the time function. We provide an
automatic transformation method to convert E-BOM into our
proposed Timed CPN component model, which is useful to
represent a model component in CPN language, yet it
preserves the model structure and behavior conceptually
intact. For the purpose of dynamic-semantic composability
verification we suggest a verification template, as assessment
criteria, which can be used to verify our executable model
using State-space analysis. Lastly, we discuss a case study of
Field Artillery to show how our framework verifies a given
composition.

Our proposed verification framework expedites the
process of composability verification and provides suitable
environment for finding out defects in the model
composition. Moreover, because of numerous analysis
methods and verification algorithms contributed by the CPN
community over a couple of decades, CPN provides a
significant improvement on efficient and accurate reasoning
regarding the model correctness. We intend to fully automate
the construction of TCPN composed model from the
generated CPN components to further depreciate the manual
human effort in the development.

REFERENCES

[1] Marko Hofmann, "Component based military simulation: lessons

learned with ground combat simulation systems," in Proceedings
15th European Simulation Symposium, Delft, Netherlands, 2003.

[2] Mikel D. Petty and Eric W. Weisel, "A theory of simulation
composability," Virginia Modeling Analysis & Simulation Center,
Old Dominion University, Norfolk, Virginia, 2004.

[3] Balci, J D Arthur, and W F Ormsby, "Achieving reusability and
composability with a simulation conceptual model," Journal of
Simulation, vol. 5, no. 3, pp. 157-165, August 2011.

[4] Paul K. Davis and Robert H. Anderson, Improving the composability
of department of defense models and simulations.: RAND National
Defense Research Institute, 2003.

[5] Andreas Tolk, "Interoperability and Composability," in Modeling
and Simulation fundamentals Theoretical Underpinnings and
Practical Domains.: John Wiley, 2010, ch. 12.

[6] Paul Gustavson, "Building and Using Base Object Models (BOMs)
for Modeling and Simulation (M&S) focused Joint Training," in
Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC), Orlando, Florida, 2005.

[7] Paul Davis, "Composability," in Defense Modeling, Simulation, and
Analysis: Meeting the Challenge. Washington, D.C.: The National
Academies Press, 2006.

[8] Farshad Moradi, Rassul Ayani, Shahab Mokarizadeh, Gholam
Hossein Akbari Shahmirzadi, and Gary Tan, "A Rule-based
Approach to Syntactic and Semantic Composition of BOMs," in 11th
IEEE Symposium on Distributed Simulation and Real-Time
Applications, Chania, 2007.

[9] Osman Balci, "Verification, Validation and Accreditation of
simulation models," in Proceedings of the Winter Simulation
Conference, Atlanta, GA, 1997.

[10] Mikel D. Petty, "Verification and Validation," in Principles of
Modeling and Simulation.: John Wiley & Sons, 2009, ch. 6.

[11] Ernst-Rudiger Olderog and Henning Dierks, Real-time systems -
formal specification and automatic verification. Oldenburg,
Germany: Cambridge University Press, 2008.

[12] Alexandre David, Oliver M Möller, and Wang Yi, "Verification of
UML Statecharts with Real-Time Extensions," Uppsala, Sweden,
Tehnical Report Wang.

[13] Hesham Saadawi and Gabriel Wainer, "Verification of real-time
DEVS models," in Proceedings of the Spring Simulation
Multiconference, San Diego, CA, USA, 2009.

[14] Claudia Szabo, Yong Meng Teo, and Simon See, "A Time-based
Formalism for the Validation of Semantic Composability.," in Winter
Simulation Conference, TX, USA, 2009, pp. 1411-1422.

[15] Kurt Jensen, "An Introduction To The Practical Use Of Coloured
Petri Nets," in Lectures on Petri Nets II: Applications, Advances in
Petri Nets. London, UK: Springer, 1998, pp. 237-292.

[16] Kurt Jensen and Lars M. Kristensen, Coloured Petri Nets Modelling
and Validation of Concurrent Systems, 1st ed.: Springer, 2009.

[17] CPN Tools. [Online]. http://cpntools.org/

[18] Kurt Jensen, Søren Christense, and Lars M Kristensen, "CPN Tools
State Space Manual," Aarhus , Denmark, Manual 2006.

[19] Lars Michael Kristensen, "State Space Methods for Coloured Petri
Nets," Department of Computer Science, University of Aarhus,
Aarhus, Denmark, Ph.D. Dissertation 2000.

[20] Imran Mahmood, Rassul Ayani, Vladimir Vlassov, and Farshad
Moradi, "Verifying Dynamic Semantic Composability of BOM-
based composed models using Colored Petri Nets," 26th Workshop
on Principles of Advanced and Distributed Simulation, Zhangjiajie,
China, 2012, pp. 250-257.

412

