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Abstract— Decision-makers increasingly need to bring to-
gether multiple models across a broad range of disciplines to
guide investment and policy decisions around highly complex
issues such as population health and safety. We discuss the
use of the Smarter Planet Platform for Analysis Simulation
of Health (Splash) for cross-disciplinary modeling, simulation,
sensitivity analysis, and optimization in the setting of complex
systems of systems. Splash is a prototype system that allows
combination of existing heterogeneous simulation models and
datasets to create composite simulation models of complex
systems. Splash, built on a combination of data-integration,
workflow management, and simulation technologies, facilitates
loose coupling of models via data exchange. We describe
the various components of Splash, with an emphasis on the
experiment-management component. This latter component
uses user-supplied metadata about models and datasets to
provide, via an interactive GUI, a unified view over all of the
parameters in all of the component models that make up a
composite model, a mechanism for selecting the factors to vary,
and a means for allowing users to easily specify experimental
designs for the selected factors. The experiment manager also
provides a mechanism for systematically varying the inputs to
the composite models. We show how the experiment manager
can be used to implement some simple stochastic-optimization
functionality by implementing the Rinott procedure for select-
ing the best system. We also implement a sensitivity-analysis
method based on a fractional-factorial experimental design. We
demonstrate this technology via a composite model comprising
a financial-rate model and a healthcare payer model.

I. INTRODUCTION

Simulation-based optimization is a powerful and increas-
ingly popular approach to the design and operation of
highly complex systems over a wide variety of domains. For
instance, the current list of test problems in the SimOpt.org
library [1] includes applications to vehicle routing, supply
chains, healthcare facilities, fisheries management, finance,
call centers, voting machines, air transportation networks,
and more. Other recent application domains have included
electrical grids [2] and environmental policymaking [3].
Methodology for simulation optimization has developed
along with applications; see, e.g., Chapters 17–21 in [4].

Currently, simulation optimization algorithms are typically
applied to individual, domain-specific simulation models to
solve relatively contained optimization problems. Simulation
is increasingly being used, however, to guide investment
and policy decisions around highly complex issues such as
population health and safety [5]. In this setting, decision-
makers increasingly need to bring together multiple models
across a broad range of disciplines. Such model composition
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is required to capture the behavior of complex “systems
of systems” and gain synergistic understanding of highly
complicated problems, avoiding unintended consequences
of policy, investment, and operational decisions; see, e.g.,
[6], [7] in the setting of food, climate, and health. This
composition task is extremely hard, because domain experts
have different worldviews, use different vocabularies, sit in
different organizations, and have often invested consider-
able effort in developing and implementing their models
using different programming paradigms and development
platforms. So how might widely disparate simulation models
be combined, and what are the implications for simulation-
optimization methodology? These questions are the focus of
this paper.

Our approach to enabling cross-disciplinary modeling and
simulation is embodied in the Smarter Planet Platform for
Analysis and Simulation of Health (Splash). Splash [8] is
a prototype platform for combining existing heterogeneous
simulation models and datasets to create composite sim-
ulation models of complex systems. To facilitate interdis-
ciplinary collaboration and model re-use, Splash facilitates
loose coupling of models via data exchange, building upon
and extending existing data integration technology. The
component models run asynchronously and communicate
with each other by reading and writing datasets. Typically,
data transformations between models are needed to en-
sure compatibility. Such transformations are designed semi-
automatically in Splash: the modeler uses an intelligent GUI
to specify a given transformation, and Splash then auto-
matically compiles the specification into runtime code. The
key ingredient for detecting incompatibilities and designing
transformations, as well as for executing composite mod-
els, is user-supplied metadata about each component model
and dataset. Splash shares some features with the CIShell
open-source platform for software interoperability [9], but
is specifically tailored to simulation modeling and analy-
sis, providing tools for semi-automated data transformation,
time-series alignment, experiment management, and more,
as discussed in what follows.

Our design philosophy, inspired by recent developments
in information management, contrasts with more traditional
approaches. These include (1) writing a single monolithic
model, (2) creating component models that are then com-
piled together (see, e.g., [10], [11]), (3) adopting common
standards and interfaces such as DEVS [12] or OpenMI [13],
or (4) deploying distributed-simulation frameworks such as
the High Level Architecture [14]. In the latter approach,
custom communication logic is added to pre-existing models,
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which are then run in a tightly synchronized manner based
on the exchange of time-stamped events. All of these existing
approaches have drawbacks that hinder cross-disciplinary
collaboration. Monolithic models can be difficult and expen-
sive to build, verify, validate, and maintain—see, e.g., [15] or
[16, pp. 4–6]—and require fine grained collaboration across
disciplines and organizations. Both traditional component
modeling and distributed simulation approaches typically
require extensive re-coding of existing models, as well as
unrealistic requirements with respect to use of common
standards across heterogeneous scientific and engineering
disciplines; see [8] for further discussion. Splash attempts
to overcome these barriers by combining and extending
information-integration, workflow-management, and simula-
tion technologies.

In Section II, we describe the key elements of Splash that
enable the design and execution of a composite simulation
model. This discussion both summarizes and updates the
description of the Splash platform given in [8]. We then (Sec-
tion III) describe Splash’s experiment-manager component,
which allows systematic execution of a composite model
over different sets of experimental parameters specified by
the user. This component requires extensions to the original
metadata language, and provides a GUI that consolidates
the entire set of model parameters and permits design of
experiments. Experiments designed in the GUI can be de-
scribed using an “experiment markup language” (EML) and
saved for future re-use or modification. Next, we show how
the new experiment manager and the EML language can be
used to implement some simple stochastic-optimization and
sensitivity-analysis functionality. Specifically, we implement
(Section IV) an optimization component that allows Splash
to select the best value for a control variable from among a
small set of feasible values, using the Rinott [17] selection
procedure, as enhanced by Nelson and Matejic [18]. We also
implement (Section V) a main-effects analysis capability,
based on an underlying two-level fractional-factorial design;
see, for example, the textbook of Allen [19, pp. 70–73]. In
Section VI, we apply this technology to a small composite
model comprising a simple financial-rate model together
with a healthcare payer model based on Park et al. [20].
We conclude in Section VII with a discussion of future
directions.

II. COMPOSITE MODELING WITH SPLASH

In Splash, domain experts contribute, and use, component
simulation models and data sources. (Statistical models and
optimization models can also be handled by the system.)
Contributors register their models and data sources in the
Splash repository. A designer of a composite model can then
discover these components, connect them together, set up
and run simulation experiments, and subsequently analyze,
visualize, and share the results. The new composite model, as
well as any useful datasets generated during the simulation
experiments, can be registered in the repository and thus be
made available to other model designers. In this section, we

<actor name="Financial Rate Model"
actor_type="model"
model_type="Simulation"
simulation_type="Continuous stochastic"
owner="IBM"
version="1.0"
note="Implemented in C++"
reference="See comments in Source Code">
<description>
usage: ratemode -pparfile -cx

</description>
...

Fig. 1. SADL Wizard screenshot and snippet of resulting SADL code

describe the design process for a composite model and how
a single simulation run is executed.

A. Registration of Models and Datasets

Models and data must be registered with Splash before
they can be used, to create Splash model actors and Splash
data actors. These “actors” are components of Splash that
encapsulate the framework’s knowledge about the various
models and data sources. This knowledge is specified via
metadata files, written in the Splash Actor Description Lan-
guage (SADL), that are created by the system as part of the
registration process.

The SADL file for a model actor is created via a SADL
“wizard”, and contains pointers to the SADL files for the
model’s input data sources and the output datasets; each of
these data sources and sinks is represented as a Splash data
actor. The model SADL file also contains information on
where and how the model is to be accessed and executed,
as well as “provenance” data such as the model’s owner,
model type, the history of edits made to the SADL file,
a summary description of the model’s functionality, and
pointers to references—such as scientific papers, URLs, and
reviews—about the interpretation, assumptions, applicability,
and quality of the model; see Figure 1. As can be seen
from the figure, the description language uses an XML-style
syntax.

The SADL file for a data actor specifies information
such as the data schema, data-source location, commands
to access the data, and so on. A schema may be specified
in industry-standard XSD format (a dialect of XML). The
SADL file also describes important characteristics of each
attribute (i.e., field) in the data-source records, such as
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measurement units, a description of the semantics of the
attribute, general constraints on the data—e.g., weight must
lie between 0 and 400 pounds and pre-tax income must
exceed after-tax income. Such information is crucial for
sensible composition of models, as well as automated error
checking and problem detection. SADL files for certain data
sources, such as those containing time series data, have
additional metadata, for instance, documenting that a time
series comprises regular observations in continuous time with
one tick equal to 15 minutes. Similarly, the SADL file may
contain geospatial metadata. The current prototype primarily
handles data sources that correspond to files on disk; in future
work we will extend Splash to handle other types of data
sources such as database management systems and data from
web-service calls.

Our prototype does not yet support a search capability
over the Splash repository, but this functionality will become
increasingly important as the size of the repository grows.
We envision that to create a composite model in Splash,
a user will search through the repository using keyword
queries or structured queries over the SADL metadata. Using
ontologies and ranking techniques, the discovery component
will retrieve and display the “most relevant and compatible”
models and data, in a manner reminiscent of web-service
discovery [21].

B. Designing Composite Models

After identifying a suitable set of component models in the
repository, a modeler then puts together these models in the
Splash design environment. The current prototype relies on
the Kepler scientific workflow system [22] to provide a visual
design environment; indeed, our “actor” terminology derives
from Kepler. A user designs a composite model by dragging
icons from the repository window and dropping them into the
design workspace; these icons represent Splash data actors
and model actors, as well as mapper actors that execute data
transformations. The user then connects the components and
configures the mapper actors (as described below).

Fig. 2. Design environment showing a simple composite healthcare model

Figure 2 shows a screenshot of a simple composite model
comprising two component models. The PHI (Predictive

Health Institute) model is derived from1 an agent-based
simulation model developed by Park et al. [20] to explore
the economic performance of a wellness program for man-
aging heart disease and diabetes under alternative payment
models (capitated—i.e., fixed—payments to the healthcare
provider, outcome-based payments, or a combination of the
two). The PHI model takes as input a time series of the
annual healthcare inflation rate, general economic inflation
rate, and discount rate (cost of capital). This time series is
provided by the displayed financial-rate (FR) model, which
is an extremely simple random-walk model used here for
demonstration purposes. We will use this composite FR-PHI
model as a running example.

The output dataset of the FR model is passed through
a Splash mapper actor named SplashDataTransformer to
create the corresponding input dataset of financial rates for
the PHI model. In this very simple model, the mapper
actor essentially copies the data unchanged. In general,
however, output data produced by one or more upstream
“source” models may need to be combined together and
transformed in sophisticated ways to create input data for
a downstream “target” model. Splash provides a number of
tools to detect source/target mismatches and allow the semi-
automatic creation of data transformations. In particular, if a
source model outputs a time series which is then input to a
target model, Splash will use the metadata in the SADL files
for these models to automatically detect time mismatches—
e.g., if the source model outputs data every second but the
target model needs data every 0.5 seconds—and will pop up
a visual interface (see Figure 3) that allows the user to choose
a time alignment method for each data field in the time
series; in this case, a menu of interpolation methods such as
linear, cubic-spline, or nearest-neighbor will be displayed.
Depending on the relative time granularity of the source
and target time series, as well as the type of data item
to be imputed (an instantaneous measurement, cumulative
amount since last tick, or cumulative amount since start of
measurement period) the interface can also display a menu of
appropriate aggregation or allocation transformations. Splash
will also automatically glean from the SADL metadata the
information needed to handle missing data, “boundary” data
points at the beginning or end of a time series, and so on. In
ongoing work, we are adding corresponding transformation
capabilities for geospatial data.

In a similar manner, Splash provides a visual interface
as in Figure 4 for the interactive design of “structural”
data transformations from multiple source schemas to an
input schema. The interface is based on an extension of
the Clio [23] tool for design of schema mappings. The user
draws a line from a source attribute to a target attribute to
identify a correspondence between them; future versions of
Splash will use schema-matching technologies to automati-
cally suggest such correspondences. Various transformations
can be specified to merge together one or more source

1The model in [20] is programmed in AnyLogic; we use a simplified
version of the model written in Python and provided to us by the authors.
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Fig. 3. Visual interface for designing time-alignment transformations.

Fig. 4. Visual interface for designing structural data transformations.

attributes to create a target attribute, and the system will auto-
matically add simple transformations such as measurement-
unit corrections (e.g., kilograms to pounds).

The data-transformation specifications from each of the
foregoing design steps is saved in a file, using a specification
language—XML schema mapping language (XSML) for
structural mappings and a novel time alignment markup
language (TAML) for time alignments. The transformations
can later be reloaded into the GUIs for re-use or modification.

C. Code Generation and Execution of Composite Models

Once the user has finished designing a data transformation,
the system automatically generates runtime code to execute
the transformation during a simulation run. This step serves
to instantiate a Splash mapper actor, which can be stored
in the Splash repository. Because the execution of large,
high-resolution models can generate enormous amounts of

data, it is important to ensure that the transformations be
carried out in a fast and scalable manner. Currently, Splash
compiles a data transformation into JAQL [24] code, which
will execute the transformation on the Hadoop platform for
massive parallel MapReduce processing of data. See [25] for
a detailed description of Splash’s time-alignment framework
and [26] for a description of a novel MapReduce algorithm
for cubic-spline interpolation in Splash, based on distributed
stochastic gradient descent.

To perform an individual simulation run of a composite
model, the current prototype uses Kepler’s “director” mech-
anism to orchestrate the execution of the component Splash
model actors and mapping actors. In our example, the FR
model executes first, followed by the SplashDataTransformer
mapper and then the PHI model. In general, it is possible to
execute multiple groups of component models and mappers
in parallel, if allowed by the structure of the composite
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model. Currently, Splash most easily handles composite
models in which the data flow can be represented as a
directed acyclic graph, so that there is always a clear notion
of upstream and downstream models. In ongoing work, we
are exploring different ways of approximating bi-directional
causality between a pair of models.

For our simple example, all models and data sources
reside on the same computer as Splash. In general, Splash
can execute models remotely. Indeed, upon invocation, a
Splash model actor or mapping actor simply synthesizes an
appropriate command-line string for executing the model or
mapping code and sends it to an appropriate destination.
This remote execution capability can be important if certain
models must be executed on specialized hardware or exe-
cuted behind a firewall for security or privacy reasons. We
intend to eventually enhance Splash with mechanisms for
automatically reconfiguring parts of a simulation-experiment
workflow among distributed data and models, moving models
to data or vice versa, applying filtering or data-reduction op-
erations to datasets before transmitting them over a network
to a downstream model, avoiding redundant computations
within a run, and so on. This rich research area related
to experiment-execution optimization can be viewed as a
major extension to database query-optimization technology
as described, for example, in [27, Ch. 16].

We envision two modes of model execution. The first
mode supports debugging and “test driving” a composite
model, both when the model is first created and later on,
if the model produces unusual or counterintuitive results
that merit deeper investigation. For this type of execution,
scientific-workflow functionality can be very valuable, in that
it is easy to send copies of the intermediate data produced
by component models to, say, a visualization actor for
plotting or a statistical-analysis actor to run diagnostics or
perform validation. (Kepler currently has native support for
the R statistical package, for example.) The second type of
execution comprises “production runs” where the model is
executed under a range of different inputs and parameter
values to study its behavior for purposes of calibration,
validation, prediction, sensitivity analysis, and optimization.
This latter mode of operation lies within the purview of the
experiment manager component, which we discuss next.

III. EXPERIMENT MANAGEMENT

The Splash experiment manager forms the foundation
for sensitivity analysis and simulation optimization. Key
challenges in this setting include (1) providing a unified
view over all of the parameters in all of the component
models that make up a composite model, (2) providing
a mechanism for selecting the factors to vary, and (3)
allowing users to easily specify experimental designs for
the selected factors. An additional challenge is to provide
a mechanism for systematically varying the inputs to the
composite models; in general, each model will have been
developed in isolation, with no view towards having the
model be part of an ensemble. We discuss Splash’s solutions
to each of these issues in the following sections. As will

be seen, extensions to the SADL metadata language play a
crucial role in enabling experiment management. The goals
of our experiment manager are similar to those of the script-
based Nimrod toolset for computational experiments in a
grid-computing environment [28].

We use standard experimental-design terminology
throughout: an experiment comprises the systematic
variation of a finite set of factors to study their effect on
system behavior. We focus throughout on the case where
each factor can take on multiple values, or levels. By
fixing each factor at one of its levels, we obtain a specific
experimental condition. Because composite models are
often stochastic in nature, we typically want to run multiple
Monte Carlo replications for each condition that we study.
The design specification for a simulation experiment then
comprises a set of conditions to simulate, along with the
number of replications for each condition. (The number of
replications can vary from one condition to another.) One
standard experimental design is the full-factorial design, in
which every possible condition is simulated. For k factors
with two levels each, for example, there are 2k conditions,
with multiple replications required for each condition.
Typically, this design is too expensive and so the usual
goal is to find a design with fewer conditions that will still
capture the most important relationships between factor
values and system behavior; see, e.g., [29], [30], [31].

A. Specifying Factors

We divide Splash data sources into data files whose values
remain constant over an experiment and parameter files
having one or more model parameters that correspond to
experimental factors, and hence are varied over the course
of the experiment. Referring to Figure 2, for example, the
PopulationInput data source comprises a file that contains
physical characteristics for each member of a simulated
population (age at start of simulation, 10-year heart risk,
and so on); this file is randomly sampled with replacement
to produce new members of the simulation population when
needed. In our experiments the characteristics of a population
remain fixed, and so PopulationInput is viewed as a data file.
On the other hand, the data source ParameterInput contains
PHI model parameters that will be varied from condition
to condition—such as the population growth rate, capitation
amount per patient, terminal age at which the patient ex-
its the program, and payment model (the relative fraction
of the capitation versus outcome-based components of the
healthcare provider’s revenue)—and thus ParameterInput is
considered to be a parameter file. Note that the name of the
population data file might be considered a parameter in some
experiments if it is of interest, say, to compare results for a
given urban population to those for a given rural population.

We extend the SADL syntax to let an attribute in the
input data source for a model be flagged as a potential
experimental factor. Consider, for example, the snippet from
the file ParameterInput.sadl shown in Figure 5. The
parameter terminalAge is identified as a potential experi-
mental factor, and the model provider has recommended
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<attribute name="terminalAge"
description="age at which person exits program"
measurement_type="numerical"
unit = year
datatype="double"
experiment_default_values="65 70 75"
experiment_factor="true"

/>

Fig. 5. A snippet of ParameterInput.sadl

<attributes>
<attribute
name="population"
description="population data file input to PHI_Model"
datatype="string"
experiment_factor="true"
experiment_default_values="/default_dir/populationdata.csv"
label="-o"

/>
<attribute
name="parameters"
description="pathname for file containing parameter data"
datatype="string"
experiment_factor="false"
experiment_default_values="/default_dir/data/params.csv"
label="-p"

/>
<attribute
name="rseed"
description="Pseudorandom number seed for PHI Model"
datatype="integer"
experiment_default_values="1234"
experiment_factor="false"
label="-r"
random_seed="true"

/>
</attributes>

Fig. 6. A snippet of PHI ModelCLPF.SADL

default low, medium, and high level values for this pa-
rameter as 65, 70, and 75. A file is considered to be a
parameter file if experiment factor="true" for at
least one attribute in the file. (If a model parameter is
supposed to stay constant throughout an experiment, then we
set experiment factor="false" and specify a single
experiment default value.)

Besides being read from a file on disk, the other way
in which parameters are routed to a component simulation
model is via arguments given on the command line when
invoking the model. For instance, the PHI model is invoked
as
> PHI -o /default_dir/populationdata.csv \

-p /default_dir/data/params.csv -r 132453 ...

where the command-line parameters include the name of
the population characteristics file to use, the name of a file
of additional parameter values to read, and a seed for the
pseudorandom number generator used by the model.

In Splash, we conceptually view such data as
being read from a “command-line parameter file”
PHI ModelCLPF.csv containing the data values, i.e.,
the two filename strings, the integer pseudorandom number
seed, and so on. This data source is encapsulated as a Splash
data actor and described by a file PHI ModelCLPF.sadl
that gives the data type, units, description, and so on, for
each of the command-line parameters. See Figure 2, in
which each model has a CLPF data source, and Figure 6,

Fig. 7. Identification of experimental factors

which displays a snippet of the SADL file for the PHI
model CLPF. In most respects a CLPF file is treated just
like any other parameter file.

B. Designing Experiments

Experiments are designed using a GUI that brings together
all of the potential experimental factors in a composite
model. Specifically, the experiment manager first identifies
the set of “base” parameter files in a composite model, that
is, those parameter files whose contents are not derived from
the output of any component model. In the composite model
of Figure 2, for example, the data sources FinancialParams
and PHI ModelCLPF correspond to base parameter files but
financial2 does not. The GUI then systematically reads the
SADL files corresponding to each of the base input parameter
files, and displays all of the parameters in each file that have
been flagged as potential experimental factors; see Figure 7.
As shown in the figure, the user then indicates which of the
potential experimental factors should actually be treated as
factors in the experiment of interest. Default levels for the
selected factors are obtained from the SADL description, as
discussed previously, and can be modified in the GUI.

The user can then specify the experimental design, either
by selecting a standard design from a drop-down menu,
or by explicitly specifying the desired set of conditions.
Similarly, the user can specify a fixed number of Monte
Carlo replications to use for all of the conditions, or can
specify a desired number of replications for each condition
individually; see Figure 8.

The experimental design specification is saved in a file,
using an experiment markup language (EML). As with
the markup languages for data transformations, the EML
representation of an experiment can be loaded into the ex-
periment manager at a later time for purposes of experiment
modification or re-execution. Figure 9 gives some snippets of
an EML file, which specifies the composite model to run, the
top-level directory for holding the simulation outputs, the set
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Fig. 8. Design of an experiment

of factors and their levels, along with the specific level values
and number of replications for each condition. Observe that,
for the experiment described by the EML snippet, the entire
population is treated as an experimental factor, with two
levels corresponding to an urban and a rural population. The
EML file also specifies a global pseudorandom number seed
to use for the experiment; the issue of seed management is
discussed in the next section.

C. Executing Experiments

For each simulation run in an experiment, Splash must first
prepare all of the data sources expected by the component
models. The procedure for a given data source depends on
how the data is “routed” to the model.

Perhaps the simplest data source to deal with is the set of
command line arguments for a given component model. In
this case Splash simply generates the appropriate invocation
command for the model—as in the PHI example of Sec-
tion III-A—which is then executed on the machine where
the model resides. Any argument values that change from
condition to condition are obtained from the EML file, and
any other unchanging, default argument values are obtained
from the SADL file corresponding to the model’s CLPF. The
CLPF SADL file also contains information needed to format
each command line argument, such as the command line flag,
if any; see Figure 6. (If the interpretation of command-line
parameters depends on the order of the parameters rather
than explicit flags, then this order is captured in the CLPF
SADL file.)

For a data source that corresponds to a file of parameter
values, Splash needs to synthesize a version of the file
having the correct value for each parameter, and then put
the file in a location where the model expects it. Splash
currently supports a few standard file formats, and we are
currently implementing a template system, similar to that in
[28], to deal with non-standard formats. The idea is that a
model developer can take a “typical” input parameter file

<eml model="FR-PHI" date="06/22/2012">
<archive>user/model/fin-phi/fin-phi.splash</archive>
<experiment-directory>/user/expts</experiment-directory>
<global-seed>1234</global-seed>

<experiment-factors>
<submodel name= "PHI_Model">
<datasource name="PHI_ModelCLPF">
<factor name="popdata">

<value>"popUrban.dat"</value>
<value>"popRural.dat"</value>

</factor>
</datasource>
<datasource name="ParameterInput">
<factor name="PaymentModel">

<value>0.0</value>
<value>0.5</value>
<value>1.0</value>

</factor>
<factor name="CapAmount">
<value>100</value>
<value>3000</value>

</factor>
</datasource>
</submodel>

</experiment-factors>

<experiments>
<condition no="1" replication="20">
<factor name="PHI_ModelCLPF#popdata"

value="popUrban.dat"/>
<factor name="ParameterInput#PaymentModel"

value="0"/>
<factor name="ParameterInput#CapAmount" value="100"/>

</condition>
<condition no="2" replication="10">
<factor name="PHI_ModelCLPF#popdata"

value="popRural.dat"/>
<factor name="PaymentModel" value="0.5"/>
<factor name="CapAmount" value="100"/>

</condition>
</experiments>

</eml>

Fig. 9. A snippet of an EML file

and create a template by replacing every specific data value
that may vary across experimental conditions with a symbol
that identifies the parameter. For instance, the line

TEMPERATURE = 35.2 PRESSURE = 120

would be replaced by

TEMPERATURE = @TEMP(5.1f) PRESSURE = @PRESS(4d)

to identify the parameters TEMP and PRESS. The template
information can then be used to generate parameter files with
varying values of temperature and pressure. The goal here
is to enable a fairly generic mechanism for dealing with a
large class of idiosyncratic file formats without forcing model
developers to write a separate wrapper for each such format.
This mechanism can also be used to parse nonstandard output
files from source models or generate nonstandard input files
for target models as part of the data transformations that
occur during a simulation run of a composite model.

Putting a synthesized parameter file in the correct location
can be as simple as putting the file in some preferred
directory and synthesizing an appropriate command-line
argument that specifies the filepath. For example, we can
put params.csv, a parameter file for the PHI model, in
directory /default dir/data/ and then create a CLPF
as in Figure 6, which will in turn lead to the synthesis
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of an invocation command as in Section III-A. In a more
difficult situation, the filepath might be hard-wired into the
model’s code. In this case, the expected filepath is specified
in the model’s SADL file, so that Splash can create the
appropriate directory, copy the synthesized parameter file to
this directory, and rename the file as needed, prior to model
execution. Data read from standard input can be handled in
a similar manner.

Splash has analogous capabilities for handling the out-
put from simulation models. In general, the user specifies
a top-level directory to hold the output files from a set
of experiments, and Splash creates subdirectories for each
(experiment, condition) pair. Each such subdirectory holds
the output from the corresponding Monte Carlo replications.
Output files with a hardwired destination may need to
be copied from a model-specified directory to the user’s
preferred directory.

Currently, the Splash prototype executes Monte Carlo
replications in a straightforward manner by repeatedly ex-
ecuting the entire composite model; each such execution in-
vokes every component model at least once. Clearly, there are
opportunities for improving efficiency. For example, suppose
that one of the component models is deterministic, expensive
to execute, and does not receive input from other component
models. It may then be worthwhile to cache the model’s
output during the first replication; subsequent replications
can simply read from the cache, avoiding repeated execution
of the model. More generally, it might be advantageous to
execute fewer replications for component stochastic models
with low variability in the output than for models with high
variability, and then combine sample paths in a bootstrap-
like manner; such ideas are related to notions of “splitting”
as in [32, Sec. 6.3].

We conclude this section by discussing one of the more
challenging issues that arises when running experiments
over stochastic composite models, namely, dealing with the
pseudorandom number generators (PRNGs) in the various
component models. Most stochastic simulation models use
PRNGs, which take as input an integer value called a seed
and apply a deterministic recursion to generate sequences of
seeds that appear to be statistically random; this sequence
of seeds forms a cycle, since the generator will eventually
return to its starting state. The potential problem is that
two component models might inadvertently use sequences of
seeds that overlap, which would induce spurious statistical
correlations between the models.

Splash currently handles PRNG seeding as follows. The
SADL syntax for a component model allows specification
of the PRNG(s) used by the model, and the mechanism by
which the seed for the generator is set. In the easiest case, the
initial seed is a parameter of the model that can be set by
the experiment manager; see, for example, the PHI model
invocation example in Section III-A, where the seed may
be specified on the command line. The experiment manager
allows specification of a global seed (see Figure 9) which is
used by Splash to generate initial seeds for each replication
of each component model. Provided that the PRNG for

a component model is different from Splash’s PRNG—
currently the WELL19973a generator [33]—the initial seeds
provided by Splash will map to locations on the component-
model PRNG cycle that will appear to be chosen at random.
If the length of the latter cycle is sufficiently long, then
the cycle segments “consumed” during different replications
will be unlikely to overlap and the statistical performance
should be acceptable. If the generators are the same, then
initial seeds can be chosen to explicitly avoid overlap of
seed subsequences; see [34] for some pertinent techniques
and analysis.

Some component models do not allow fine-grained control
of seeds. For example, some models derive their initial
seed from the system clock. Since both knowledge about
and control over PRNGs may be limited, we expect that
diagnostics and statistical testing will play an important
role in avoiding erroneous or misleading simulation results.
For example, in the debugging mode of model execution
mentioned in Section II-C, the user could run statistical
tests of independence on pairs of model output sequences
that are supposed to be independent according to the model
definition, perhaps after batching the outputs [4, Sec. 15].

IV. OPTIMIZATION

In this section, we describe how we can exploit the
experiment manager functionality to support rudimentary
simulation-based optimization over a composite model. As
discussed below, the current Splash prototype uses the R
statistical package for the supporting statistical calculations
and final graphical display of results.

Our goal is to select the best value of a control vari-
able from among a small number of feasible values. Here
“best” means the value that maximizes an expected “reward”
(typically revenue or profit). Specifically, we implemented
the well known Rinott two-stage selection procedure for
choosing the best system under an indifference-zone relax-
ation [17]. In our setting, each “system” corresponds to
the composite model running under a fixed value of the
control variable. Note that the control variable may actually
correspond to a vector of model parameters, as long as the
number of distinct parameter vectors considered is small. For
example, one “control-variable value” might correspond to a
capitation rate of $200 per program participant per year and
a payment-model factor of 0.1, whereas another value might
correspond to a capitation rate of $100 and a payment-model
factor of 0.5. We chose to add the Rinott procedure first
because of its simplicity and relative ease of implementation
in Splash.

The general setting for the Rinott procedure is a small col-
lection of systems S1, S2, . . . , Sk (typically k ≤ 20), where
the expected reward of the system Si is an unknown constant
µi that can be only be estimated via stochastic simulation.
That is, µi = E[Yi], where Yi represents the noisy output
from a single simulation run of Si. The goal is to select the
system having the largest expected reward, ensuring that the
probability of correct selection exceeds a specified constant
C; e.g., take C = 0.95 to be 95% certain that the best system
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is selected. To make the computation tractable, we assume
that any two systems having rewards within δ units of each
other are considered equally acceptable, where the length δ
of the “indifference zone” is specified by the user, based
on practical considerations. Thus we consider a selection
“correct” if the expected reward for the selected system is
greater than or equal to µ∗− δ, where µ∗ = max1≤i≤k µi is
the maximum expected reward; if the difference in expected
reward between the two best systems is greater than δ, then,
with probability C, we will in fact have selected the best
system. (Without an indifference zone, a huge number of
Monte Carlo replications might be required to distinguish
between two systems whose expected rewards are very close
to each other.)

To allow additional inferences about the alternative sys-
tems, the algorithm also provides interval estimates for
the set of quantities { γ1, γ2, . . . , γk }, where γi = µi −
maxj 6=i µj . These quantities indicate the relative perfor-
mance of the various systems. For example, suppose that
we are comparing k = 3 systems and, unbeknown to us,
(µ1, µ2, µ3) = (1, 2, 7). Then (γ1, γ2, γ3) = (−6,−5, 5),
indicating that S3 has the highest reward and is, in fact, 5
units more profitable than the best (most remunerative) of
the other solutions. Similarly, S2 is 5 units less profitable
than the best of the other solutions, and S1 is 6 units less
profitable than the best of the other solutions. The γi values
are especially useful for identifying near-optimal solutions,
which might be easier to implement in practice than the best
solution while still incurring high rewards.

In more detail, the outputs of the basic Rinott selection
procedure are used to provide a confidence interval Ji =
[ai, bi] for each γi. With probability C, these intervals are
simultaneously correct, in that each interval Ji contains the
unknown quantity γi [18, Th. 2]. The intervals provide
probabilistic bounds on how suboptimal each system can be.
Moreover, with probability C, intervals with ai < bi ≤ 0
correspond to systems that can be eliminated from being
considered as the best, and a system with 0 ≤ ai < bi is
unambiguously the best. A system with ai < 0 < bi is a
contender for being the best. This type of procedure goes by
the name of “multiple comparisons with the best” (MCB).

The Rinott procedure is given as Algorithm 1. In stage 1,
which corresponds to steps 2–5, n0 initial replications are
run for each system Si. Based on the sample mean X̄i

and sample variance Vi of the reward for Si, the algo-
rithm computes (step 5) the total number of replications
Ni of system Si needed to make a correct selection with
the required probability C. The quantity h = h(n0, k, C)
appearing in step 5 is a tabulated constant whose value
is based on the assumption that each stage-1 mean X̄i is
normally distributed. In stage 2, additional replications of
Si are run (step 6) to bring the total number of replications
to Ni. Based on the final estimates Ȳ1, Ȳ2, . . . , Ȳk of the
expected rewards µ1, µ2, . . . , µk, one of the Si’s is selected
as the best system. In the final step, the algorithm computes
confidence intervals for γ1, γ2, . . . , γk.

Figure 10 illustrates how the optimizer component of

Algorithm 1 Rinott Selection Procedure with MCB
Require: k, n0, C, δ

1: for i = 1 to k do
2: Simulate Si to obtain Yi,1, Yi,2, . . . , Yi,n0

3: X̄i ← (1/n0)
∑n0

j=1 Yi,j
4: Vi ←

(
1/(n0 − 1)

)
(
∑n0

j=1(Yi,j − X̄i)
2

5: Ni ← max
(
n0, dh

2Vi

δ2 e
)

,
6: Simulate Si to obtain Yi,n0+1, Yi,n0+2, . . . , Yi,Ni

.
7: Ȳi ← (1/N1)

∑N1

j=1 Yi,j
8: end for
9: Select system with largest value of Ȳi as the best

10: for i = 1 to k do
11: Form confidence interval [ai, bi] for γi, where

ai = min
(
0, Ȳi −maxj 6=i Ȳj − δ)

bi = max
(
0, Ȳi −maxj 6=i Ȳj + δ)

12: end for

Fig. 10. Optimization process flow

Splash uses the experiment manager to perform the Rinott
procedure. The user, employing the Splash experiment man-
ager GUI, specifies the feasible values of the control variable
as a set of conditions, and also specifies the indifference zone
δ and the probability C of correct selection. The optimizer
component then determines the number n0 of stage-1 replica-
tions and creates an EML file to run the experiments, which
is then passed to the experiment manager for execution.2

The optimizer then processes the output files created by
the experiment manager to extract the stage-1 sample mean
and variance of the reward for each condition simulated. In
general, this extraction step might require the user to provide
a routine for computing the reward from the output of a given
simulation run; this component is represented in Figure 10 by
a black circle. The optimizer then determines the number of
stage-2 replications for each condition and creates an EML
file, which is passed to the experiment manager for execu-
tion. When the experiment manager completes, the optimizer
computes the overall sample means Ȳ1, Ȳ2, . . . , Ȳk, which
serve as the final estimates of the expected system rewards.
The optimizer then selects as best the system Si having the

2In the simplest implementation, n0 is simply set to a fixed value
between 20 and 50, to try and ensure that each stage-1 sample mean X̄i is
approximately normally distributed (by the central limit theorem). A more
sophisticated approach would adaptively determine n0 by executing some
pilot runs and testing the sample means for approximate normality.
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largest Ȳi value and computes the MCB confidence intervals.
Finally, the results are displayed to the user.

V. SENSITIVITY ANALYSIS

Because a composite model will typically have many
parameters, it is usually essential to determine which of the
parameters have the greatest effects on system performance.
These sensitive parameters can then be used for optimiza-
tion purposes as described above. Sensitivity information is
important in its own right: sensitive parameters can become
a focal point for policy and investment decisions, and may
also drive data-collection efforts, since such parameters must
be estimated very carefully.

To demonstrate the use of the Splash experiment manager
for efficient sensitivity analysis, we implemented several
simple methods for main-effects assessment described in
[19]. Specifically, “high” and “low” values for each of a
small set of k factors are specified by the user, based on
practical considerations. The sensitivity-analysis component
then generates an orthogonal fractional-factorial design using
R’s FrF2 library. For k = 7 factors, one such design is as
follows:

A B C D E F G
-1 -1 -1 1 1 1 -1
1 -1 -1 -1 -1 1 1

-1 1 -1 -1 1 -1 1
1 1 -1 1 -1 -1 -1

-1 -1 1 1 -1 -1 1
1 -1 1 -1 1 -1 -1

-1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1

This design prescribes eight experimental conditions, one
per row. Each column corresponds to a factor (here labeled
A–G). The symbol “−1” (resp., “1”) in the ith row and
jth column indicates that the jth factor is to be set to its
low (resp., high) value in the ith experiment. The design
is orthogonal in that the columns are mutually orthogonal:
the inner product of any two columns equals 0. Importantly,
each factor is set to its low and high value equally often
in the experimental conditions, i.e., a factor is low in four
conditions and high in the remaining four conditions. The
plan is to run n i.i.d. Monte Carlo replications for each
condition and average the results. The goal here is to run
enough replications so that the distribution of each average is
approximately normal, and so we typically choose n between
20 and 50. The design is called fractional factorial since
the number of experimental conditions tested is much less
than the 2k possible conditions. In our example, there are
27 = 128 possible conditions, of which only eight are run.
With n = 20 Monte Carlo replications, this represents a
reduction from 2,560 to 160 total simulation runs of the
composite model.

Based on the foregoing specification, Splash synthesizes
an EML file embodying the above experiment, and sends it to
the experiment manager for execution. After the experiments

have been run, the results can be displayed in a main-
effects plot. For each factor, the plot displays the average
system response over the four conditions in which the factor
is low and over the four conditions in which it is high—
the effect size for a factor is the difference between these
averages. The resulting plot indicates both the direction of
the response (increasing or decreasing) as the factor value
increases, as well as the relative magnitude of the responses.
To determine the statistical significance of the effects, the
effect sizes can be displayed in a normal probability plot
(sometimes called a Daniel plot). The k effect sizes are
plotted, in increasing order, against the 1/k quantiles of the
standard normal distribution. If there were no factor effects,
then the observations would fall roughly on a straight line;
deviations from such a line indicate significant effects. Splash
uses the MEPlot and DanielPlot functions in R’s DOE.base
package to create main-effects and Daniel plots.

VI. CASE STUDY

To demonstrate Splash’s optimization and sensitivity-
analysis functionality, we experimented with the composite
FR-PHI model described earlier. The model estimates a
number of economic metrics associated with the wellness
program; we focus on the profit to PHI, the wellness provider.
A key control variable is the payment-model parameter α. A
value of 0 corresponds to a pure capitation system where PHI
receives a fixed dollar amount per program participant per
year; a value of 1 corresponds to a pure pay-for-outcome
system in which PHI is paid according to the (estimated)
illness-related costs that are avoided for each participant
due to PHI health interventions. A value between 0 and 1
corresponds to a combination of these payment methods. To
make the model a bit more interesting from an optimization
point of view for purposes of our demonstration, we modified
the model slightly so that, as α increases and PHI revenue
becomes increasingly linked to patient health outcomes, the
healthcare providers spend increasing amounts of time and
resources on each program participant during office visits,
examinations, and so on, increasing healthcare delivery costs
which counterbalance revenue increases due to improved
health outcomes.

Figures 11 and 12 show the output from the Rinott
optimization procedure. Conditions C1-C9 correspond to α
values of 0.1, 0.2, . . . , 0.9. As can be seen in Figure 11,
condition C5 (which corresponds to setting α = 0.5) is
selected as best; under an indifference zone value of δ =
$250, 000, this decision is correct with probability 95%.
Figure 12 shows the corresponding MCB plot. As can be
seen, values of α less then 0.5 or greater than 0.6 can be
rejected as suboptimal with 95% confidence. At this level of
confidence, there is no value of α that is unambiguously
superior; the two values of α = 0.5 and α = 0.6 are
both contenders to be the true optimal value. The confidence
intervals show that neither solution yields a profit far from
the true optimal profit, so both solutions are quite acceptable.

Figures 13 and 14 show the output from the sensitivity
analysis. The parameters studied are the capitation amount,
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Fig. 11. Optimizer results: Best payment model

Fig. 12. MCB intervals for payment models

payment model parameter (α), terminal age at which partic-
ipants leave the program, yearly heart-risk and diabetes-risk
reductions due to PHI interventions, and the mean drift in the
rates of economic inflation and healthcare-cost inflation. Fig-
ures 13 shows that the PHI profit is monotonically increasing
in each of these parameters. Perhaps surprisingly, the most
sensitive variable is the terminal age followed (probably
not surprisingly) by the capitation amount. The Daniel plot
in Figure 14 indicates that these two effects are the only
statistically significant effects of those considered (based on
the experiments conducted).

We emphasize that our experiments involve a modification
of a simplified version of the model in [20], so the results
reported here cannot be taken at face value. Our case study
does, however, serve to illustrate the types of analyses that
are possible in the current Splash prototype.

Fig. 13. Main-effects plot for composite model

Fig. 14. Daniel plot of estimated effects

VII. CONCLUSIONS

We have illustrated the Splash platform for cross-
disciplinary modeling and simulation, with an emphasis
on recent experiment-management capabilities and potential
application to simulation-based optimization and sensitivity
analysis. Our approach combines simulation methodology
with information-management technology, especially tech-
niques for data exchange and workflow management. As
can be seen, metadata about component models, datasets,
transformations, and experiments plays an important role in
enabling Splash’s new functionality.

Splash is a work in progress, and we are planning to
enhance the platform in a variety of ways. We will in-
corporate other simulation optimization algorithms, such
as metamodel-based optimization, stochastic approximation,
and discrete optimization over large feasible sets. One in-
teresting challenge in the setting of discrete optimization
is to try and coordinate PRNG seeds to apply efficiency
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improvement techniques such as common random num-
bers [4, p. 513]. We also intend to add more sophisti-
cated techniques for sensitivity analysis, such as frequency-
domain methodology [35], and factor screening, such as
controlled sequential bifurcation and controlled sequential
factorial design [36]. Other platform improvements, besides
those discussed already, include supporting grid computing
as in [28] and maintaining privacy and security of data
and models where appropriate. The key goal, however, is
enabling collaboration, and we envision that Splash will
support a collaborative forum similar to ManyEyes [37],
where data, models, and visualizations can be uploaded,
shared, annotated, and rated by a community of users.
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