
Testing a Component-based Application for Road Traffic Crossroad Control using
the SimCo Simulation Framework

Tomáš Potužák, Richard Lipka, P�emek Brada, Pavel Herout
Department of Computer Sciences and Engineering

University of West Bohemia
Plzen, Czech Republic

e-mail: {tpotuzak, lipka, brada, herout}@kiv.zcu.cz

Abstract—Component-based software development is an
important trend in software engineering. Using this approach,
a system can be constructed from a set of individual
components (i.e. pieces of software with defined interfaces and
functionality). On deployment, components are usually not
tested for their correct functionality since this is considered to
be implied. Simulation tests are nevertheless often used to
determine extra-functional properties and quality of services.
However, only models of the components are usually used for
such testing. In this paper, we present the SimCo – a
simulation framework for testing of real software components
in a simulation environment. This enables thorough tests of
components without the need to create their (potentially
incorrect) models. The SimCo itself is constructed from
components as well in order to enable its modularity and
usability. The utilization of the SimCo is demonstrated on a
case study involving component-based application for the
control of a road traffic crossroad.

Keywords—software component, simulation framework,
simulation testing, crossroad control

I. INTRODUCTION
Component-based software development is an important

trend in software engineering, which emerged at the turn of
the century and become widespread during the last decade.
Using the component approach, an application can be
constructed from a set of individual software components.
These components are pieces of software with clear inter-
faces and well-defined functionality, but with no externally
observable inner states. So, each software component can be
considered as a black box [1].

The software components are used in order to maximize
reusability and third party composition. This means that a
programmer, which creates a component-based application,
is often not the author of the individual components. So, the
software components are usually not tested by third parties
for they correct functionality, since this is considered to be
ensured by the manufacturer of the component. Nevertheless,
simulation tests are often used to determine extra-functional
properties of the components and their quality of services,
which can also play a significant role in the designed
component-based application. Some examples of such
testing can be found in [2] and [3]. The testing of the
software components is an important branch in contemporary

research. However, in most cases, only the models of
software components are used for simulation testing [4].

In this paper, we present the SimCo – a simulation
framework, which is designed for testing of real software
components in a simulation environment. This enables
thorough testing of the software components without
necessity to create their models, which can be potentially
incorrect. The simulation framework itself is component-
based (i.e. constructed from individual software components)
in order to maximize its modularity and usability [5].

II. DISCRETE SIMULATION
There are two types of simulation, regarding their

approach to simulated time – time step simulations and
discrete-event simulations. Time step simulations divide time
into equally-sized time intervals (time steps). During each
step, states of all simulated objects are recalculated. Discrete
event simulations recalculate the state of the system only
when an event occurs. Unlike the time step simulation, the
time is changed irregularly from one event to another [6].

A. Handling of Events in the Discrete Event Simulations
Using the discrete event simulation, the time progress is

ensured by the interpreting of events. Each event contains a
time stamp determining when it should occur in the
simulation and an action, which shall be executed [6].

All events are handled by a calendar. When simulation is
started, the calendar chooses the event with the earliest time
stamp, sets simulation time to the time of the event, and
performs the action of the event. Then, next event according
to the time stamp is chosen from the calendar and executed
and so on. Each event can cause the creation of one or more
new events, which are being added to the calendar [6].

The simulation is stopped when calendar contains no
more events or at a specified simulation time.

B. Features of the Discrete Event Simulations
The discrete event simulation allows using a finer

division of simulation time, but is advantageous only when
events are not abundant. The execution of each event brings
overhead, which slows down the calculation. In a discrete
event simulation, time between two events can be arbitrary
long or short. Events are also useful when a long period of
simulated time without any event might occur. In that case,

2012 38th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-4790-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SEAA.2012.18

175

the simulator does not need to compute simulation steps
without any activity and can just skip to the nearest event [6].

III. COMPONENT MODELS AND FRAMEWORKS
As was stated before, a software component is a well-

defined black box entity, which has no externally observable
state. It is a part of third party composition (i.e. author of the
component can be and often is different from the author of
the component-based application, which utilizes the
component). This abstract definition is common for all
software components as view on software components and
understanding of them is very diverse. Therefore, there is no
universally accepted more specific definition. The matter is
well discussed in [1].

Component models specify how software components
look, behave, and interact, which results in diversity of
component understanding mentioned above. Component
models also specify if there are one or more types of
components.

A component framework is an implementation of a
specific component model. There are many component
models and even more component frameworks used and
developed in industry and in research sphere. For this paper,
three of them are important (see following sections).

A. OSGi
The OSGi component model is a dynamic component

model designed for Java programming language [7]. There
are several OSGi frameworks, which implement the OSGi
component model. In such an OSGi framework, it is possible
to install, start, stop, and uninstall the individual software
components and entire component-based applications
without necessity to restart the framework itself [8].

A software component in an OSGi framework is known
as a bundle. An OSGi bundle has the form of a standard Java
.jar file with a specific manifest file describing the features
of the bundle, provided services, required bundles, and so on.
Each bundle can contain any number of classes and can
provide arbitrarily complex functionality.

OSGi bundles communicate through services. Services
are implementations of specific interfaces, which were
registered in the OSGi framework by OSGi bundles
containing these implementations. Services are one of the
most important parts of the OSGi framework, as component-
based applications are built from bundles connected with the
services. Services are registered directly in the code of the
bundle or by the Component Service Runtime for
declaratively specified services. To register a service, the
OSGi bundle needs the context of the bundle, which is
provided by the entry point of the bundle called bundle
activator. The services can be registered as easy as depicted
in Fig. 1.

Various OSGi frameworks are commonly used in many
different industry areas such as vehicles, cell phones, PDAs,

Figure 1. Example of a service registration in OSGi

Figure 2. Example of bean definitions in a Spring configuration file

and so on. The widespread of the OSGi frameworks is the
reason, why it was chosen for the implementation of the
SimCo simulation framework.

B. Spring
The Spring framework 1 offers a number of features

useful for development of enterprise-grade component-based
applications. Among these features are inversion of control,
aspect-oriented programming, transaction of management,
remote access, and others [8].

Spring enables easy configuration of elements using a
XML configuration file. The basic elements of a Spring-
based application are so-called Spring beans defined in the
XML configuration file along with their dependencies (for
an example, see Fig. 2).

C. SpringDM
The SpringDM (abbreviation of Spring Dynamic

Modules) for OSGi service platform2 improves the manage-
ability of the OSGi services [8]. It enables to develop OSGi
bundles with definition of their dependencies and other
features in Spring configuration files.

 The SpringDM must be installed in the target OSGi
framework. Once it is installed and running, it checks every
newly installed bundle to the OSGi framework, whether it is
a SpringDM bundle (i.e. contains a Spring configuration file)
or not. If the newly installed bundle is a SpringDM bundle,
its services are registered in the OSGi framework using the
Spring configuration file. An example of service registration
in SpringDM is depicted in Fig. 3.

IV. COMPONENT-BASED SIMULATION OF COMPONENTS
Now, as we discussed both simulation and software

components issues, we can focus on simulation of software
components. The SimCo simulation framework was
developed in order to enable simulation of components.
Simultaneously, the framework itself is constructed from
software components in order to ensure its modularity and
simple future development. Hence, both the simulation of

Figure 3. Example of a service registration in SpringDM

1 http://springframework.org/
2 http://www.springsource.com/osgi

176

components and the component-based simulation are
described in following sections.

A. Component-based Simulation of Software Components
Component-based simulation frameworks are quite

common. They began to emerge in last decade of the 20th
century (for example, see [9] or [10]) and the research in this
area continues till today (contemporary examples can be
found in [11] or [12]). The component-based frameworks
can be utilized for a general simulation [13], [14], but can be
also focused on a specific area (e.g. simulation of computer
networks [12]). The most important feature of the
component-based simulations is their variability [12], [14].

The contemporary research of the component-based
simulations is focused mainly on the relationship between
the individual components using a specific component model
and/or framework [11], [13]. Another important area is the
utilization of the software components in a distributed
computing environment [15], [16].

However, component-based simulations of software
components are very rare. Although component-based
simulations, which do not simulate software components
[11], [12], [13], and monolithic (i.e. not component-based)
simulations of software components [17], [18], [19] exist,
there are virtually no examples of combination of both
approaches.

B. Simulation Testing of Software Components
Simulation testing of software components is often

focused on quality of services (QoS) provided by the
components and on their extra-functional properties (for
example, see [20] or [21]). The software components, which
are intended for distributed computing environment, are also
tested for this purpose [21], [22].

It should be noted that the functionality of the software
components should be theoretically ensured by their manu-
facturers. However, as stated in Section III, authors of the
component-based applications often use components created
by other party. This means, these authors cannot be certain
that a proper testing of the particular components has been
carried out. Because the software components created by an
unknown manufacturer can be even a security risk (intenti-
onal or unintentional) [22], their correct functionality should
not be implicitly assumed without a proper verification.

 Another aspect is that the particular software
components and the entire component-based application can
be running on a wide variety of devices (from a distributed
computing cluster to a PDA or a microcontroller). The
various computational powers of these devices can
significantly influence the quality of services of the software
components. Therefore, the target devices and their features
should be taken into account during the simulation testing of
the components.

As arise from paragraphs above, wide variety of
properties of the software components can be and are tested
using simulation. However, the real components are rarely
used directly. Instead, models of components are created and
utilized for simulation testing purposes. Often, only a static
description of the software component (e.g. consumption of

resources, description of behavior etc.) is used [20]. For this
purpose, specific descriptive languages have also been
developed [4], [23]. The utilization of the models instead of
real components enables to focus on specific features of the
components. However, it is possible to miss an important
factor during the creation of the model of the software
component or even introduce an error into the model. More
importantly, it can be difficult to create a model of a
component if its source code in unavailable. This is a most
common scenario, since components are often considered to
be black-boxes (see Section I).

V. SIMCO SIMULATION FRAMEWORK
Considering the issues of the simulation testing based

only on models of the software components mentioned in
previous section, we have developed the SimCo simulation
framework. The SimCo enables the direct testing of real
software components in a simulated environment [5], [24]. It
is described in detail in [24]. However, in order to keep this
paper self-contained, we will mention all its important
features in the following sections.

A. Component Framework Selection
The SimCo simulation framework itself is created from

software components in order to ensure its modularity. It
utilizes OSGi/SpringDM software components (bundles),
because of dynamic nature of the OSGi (see Section III.A)
and easy manageability of the services using the SpringDM
(see Section III.C).

The software components, which can be tested using the
SimCo simulation framework, are also expected to be OSGi
bundles. The reason is that the transformation of a
component from one component model to another is a
difficult task. Since the OSGi component model and its
implementations are quite widespread (see Section III.A),
this restriction is not a big issue.

B. Simulation Type Selection
As was stated in Section II.A, there are two types of

discrete computer simulation, which are commonly used –
the event-driven and time-stepped simulations. Both were
considered for the SimCo simulation framework, which is
designed for running of real software components in a
simulated environment, observation, and controlling of the
actions performed on and by the components.

The actions of the software components (i.e. invocation
of the methods/services) can be performed arbitrary (from
the simulation framework point of view) and there can be
long time intervals between two successive actions. Hence,
an event-driven simulation, where events correspond to
performed actions is more suitable than a time-stepped
simulation, which is suited for regular calculations.

The event driven approach also allows speedup of the
simulation. If the real components are waiting for a
complicated calculation, which should be provided by the
simulation environment, it is possible to use some pre-
calculated values instead of a real calculation. The
simulation time can be then advanced by the time interval,
which would be required for the calculation.

177

For the reasons mentioned above, the event-driven
approach is used in the SimCo simulation framework [24].

C. Types of Components of the Simulation Framework
There are several types of the software components in the

SimCo simulation framework.
First type is represented by the components, from which

the simulation framework itself is constructed. These core
components provide basic services necessary for functioning
of the simulation. Among them, the Calendar is most
important. All events, which occur during the simulation run,
are managed by this component. So, it controls the progress
of the entire simulation [24]. Of course, there also other
components, which provide additional functionality such as
logging, visualization, and so on. Newly required
functionality can be easily added in the form of software
component(s) due to the component-based design of the
simulation framework.

Second type is represented by real components, which
shall be tested using the SimCo simulation framework. In
one simulation experiment, there can be one or more real
components, which can interact among each other and with
the simulation environment [5].

The simulation environment of the real tested
components consists of the third type of the components –
the simulated components. These components provide
services, which are required by the real tested components.
So, the real tested components (second type) have available
all services they need for their functionality and they are not
aware that they are running in a simulated environment [5].

On the other hand, the SimCo simulation framework
must have a full control of the real tested components.
Hence, all interactions between the real (second type) and
simulated (third type) components are performed using the
calendar and the events. This can be accomplished easily,
since the logic necessary for the interaction with the calendar
can be added to the simulated components [24]. Neverthe-
less, the interactions between two real tested components
must be treated in the same way, but it is not possible to add
any new logic to the real components, since they are
considered black boxes. Hence, there is the fourth type of
components – so called intermediate components. These
components wrap the services provided by the real tested
components. They provide the same services and functiona-
lity, but ensure the interaction with the calendar (see Fig. 4).

For a more detailed description of the particular types of
the components and their interactions, see [5] and [24].

Figure 4. Utilization of the intermediate component

D. Real Components vs. Simulated Environment
There are several issues regarding the running of the real

software components in a simulated environment. First of
all, the simulation used in the SimCo simulation framework
is event-based (see Section V.B), which means that the
simulation time advances irregularly from one time stamp of
an event to another. On the other hand, the real components
are constructed to run using the regularly incremented real
time of the computer. This discrepancy of the time flow can
be problematic if the real component utilizes some time
services from the Java Core API [24].

Similar problems can occur when the component requires
the connection to a remote server. Such an activity is
undesirable, since it is not under control of the SimCo
simulation framework [24].

In order to solve the mentioned issues, the Java Core API
methods providing input/output and time services, which can
be invocated by the real tested components, must be adapted
to meet the needs of the SimCo simulation framework. For
example, the methods involving time should return values
taking into account the simulation time, the remote
connection could be only simulated, and so on [24].

There are several possibilities how to achieve this
including aspect-oriented programming, manipulation with
the Java Core API source code, or manipulating the imports
of Java Core API methods in the real tested components’
bytecode. For a more detailed description of these
approaches, see [5] and [24].

E. Simulation Scenarios
Each simulation testing of real components is described

in a simulation scenario. It is a XML file containing the
settings of the entire simulation (e.g. the time, at which the
simulation should end), description of the particular
components (including their types), and description of the
events, which shall occur during the simulation (see Fig. 5).

Besides the main scenario file, each component
(regardless its type) has a separate XML file with its further
description. This file can contain for example the description
of the behavior of the simulated component [5]. Neverthe-
less, the files do not contain the description of the relations
of the components. This information is sought directly from
the OSGi/SpringDM framework. For a more detailed
description of the simulation scenarios, see [24].

Figure 5. Example of a simulation scenario

178

VI. CASE STUDY: TRAFFIC CROSSROAD CONTROL
In order to demonstrate how the simulation testing of

software components using SimCo simulation framework
works, two case studies were created. The first one is the
File manager. This case study represents a typical
component-based application without dependencies on any
specific hardware. The File manager is a convenient
application for demonstration of simulation testing, since it
provides wide variety of services (e.g. viewing of files of
different types, various compression algorithms, local and
remote access, etc.). These services can be implemented with
different quality, which can be easily tested [24]. The File
manager case study is described in [24] in detail.

The second case study – the Traffic crossroad control –
is described in the remainder of this paper. This case study
represents a component-based application for the control of
road traffic in a crossroad using traffic lights and/or variable
traffic signs. Such an application is expected to run on a
specific hardware and utilize a variety of hardware sensors.
Hence, the simulation testing is very convenient, because the
hardware devices can be also simulated and no access to the
real devices is required. Moreover, similar to the File
manager, there are several services of the application, which
can be implemented with various qualities of services (e.g.
traffic control algorithm, algorithm for optic detection of
vehicles, etc.). These qualities can be easily tested using the
SimCo simulation framework.

A. Structure of the Traffic Crossroad Control Application
The components of the Traffic crossroad control

application and their relations are depicted in Fig. 6. For the
purpose of the testing, the components, which include
handling of real hardware devices, were replaced by the
simulated components. These components were only
simulating the corresponding functionality (see Fig. 6).

There are nine software components in the Traffic
crossroad control application. The TrafficCrossroad
component provides information about the structure of the
traffic crossroad (number and orientation of arms, numbers
of traffic lanes in these arms, positions of traffic lights and

Figure 6. Utilized software components and their relations

sensors, and so on). Its simulated version also incorporates a
simulation of road traffic (see Section VI.B).

The ControlPanel component provides the user interface
for the entire application. It allows for example to activate or
deactivate the traffic lights, set parameters for the traffic
control algorithm, display collected traffic statistics, and so
on. The TrafficControlAlgorithm component incorporates an
algorithm for control of traffic lights and variable signs. This
algorithm can require information about the situation in
particular traffic lanes of the traffic crossroad provided by
the sensors accessible via the SensorAccess component.

There are two different types of sensors represented by
two simulated components. The InductionLoop component
represents the induction loops places in the particular traffic
lanes of the crossroad. Such a loop is able to detect, whether
there is a vehicle above it. The OpticDetection component
represents detection of the number of vehicles in a traffic
lane using a camera above the lane and image recognition.
These sensors are usually able to distinguish, whether there
is one, two, three vehicles or a larger number of vehicles in
the traffic lanes. This means that for a larger number of
vehicles, the accurate number is not at the disposal. The
simulated versions of the sensor components utilize the
“perfect” information about the numbers of vehicles in traffic
lanes obtained from the simulation of road traffic (provided
by the TrafficCrossroad component), which is not at the
disposal in a real situation. Hence, they reduce this
information to a form, which is at disposal in a real situation.

The traffic control algorithm can control traffic lights of
the crossroad using the TrafficLightsController component
and variable signs using the VariableSignController
component (if the variable signs are present and the traffic
control algorithm utilizes them).

The StatisticsCollector component collects and
summarizes the statistics of the traffic in the crossroad using
the data from the sensors acquired via the SensorAccess
component. The summarized statistics can be than viewed
using the ControlPanel component.

B. Utilized Simulation of Road Traffic
As mentioned in previous section, the TrafficCrossroad

simulated component incorporates besides the information
about the crossroad also a road traffic simulation. This
simulation is necessary for testing of traffic control
algorithms and other aspects of the Traffic crossroad control
component-based application. It substitutes the real traffic on
an actual traffic crossroad.

The road traffic simulation can be visualized as can be
seen in Fig. 7. It is a time-stepped simulation based on a car
following model [25] adapted for the needs of a single
crossroad. The positions of the vehicles are recalculated in
each time step, whose length is adjustable, and set to 0.1
second by default. Such as short time step enables very
smooth movement of the vehicles.

All main aspects of the road traffic are modeled. There
are six types of vehicles [26] with different lengths and
widths. The vehicles react on the traffic lights, do not enter
the crossroad if they are unable to leave it, and respect all
other traffic regulations.

179

Figure 7. Visualization of the road traffic simulation

VII. TESTS AND RESULTS
In order to demonstrate the use of the SimCo simulation

framework, a testing of the quality of two different traffic
control algorithms was performed. The qualities of the
algorithms were compared using the mean vehicle queues
lengths in particular traffic lanes of the crossroad. Both
algorithms are able to control the traffic in a non-conflict
way (i.e. they are functionally correct), but the lengths of the
vehicle queues determine the fluency of the traffic through
the crossroad. The shorter the queues are, the better the
control algorithm is.

A. Tested Traffic Crossroad
The testing was performed using model of one traffic

crossroad inspired by an actual crossroad of the Pilsen city.

Figure 8. Scheme of the traffic crossorad used for tesing

The crossroad incorporates four arms with several incoming
and outgoing traffic lanes in each arm (see Fig. 8). For
control of the traffic, standard traffic lights are used.

The actual crossroad also incorporates two-way tram
lane, but this lane is not incorporated in the model of the
crossroad.

The numbers of vehicles arriving to the particular traffic
lanes of the crossroad were based on the observation of the
actual crossroad. Pseudorandom generators of traffic flow
with exponential distribution with accordingly set parameters
were used for adding of new vehicles into the particular
traffic lanes.

B. Traffic Crossroad Control Application Used for Testing
For the testing, the Traffic crossroad control application

described in Section VI was used. There were six simulated
components (depicted using dashed line in Fig. 6), which
created environment for three real components (depicted
using solid line in Fig. 6).

Two implementation of the TrafficControlAlgorithm
component were created. Each implementation utilizes a
different algorithm for control of traffic in the crossroad
using traffic lights. Both algorithms are briefly described in
following section.

C. Tested Traffic Control Algorithms
First implementation of the TrafficControlAlgorithm

component utilizes a simple static algorithm for control of
the traffic. This algorithm uses preset time intervals for green
and red light signals in particular traffic lanes. The optimal
lengths of these signals for one isolated crossroad can be
determined using mathematical methods [27]. Because the
time intervals do not change over time, the algorithm does
not require any sensor input with information about the
traffic in the crossroad.

The lengths of the time intervals of the green and red
light signals were determined by direct observation of the
traffic in the actual traffic crossroad, on which the model of
the traffic crossroad for testing is based. However, this actual
crossroad uses a dynamic algorithm for control of traffic (see
next paragraphs). Hence, the lengths of the time intervals are
only approximate. The time intervals of green and red signals
for particular traffic lanes used in the model of the crossroad
are depicted in Fig. 9.

Figure 9. Lenghts of the time intervals of the static algoritm

180

Figure 10. Minimal and maximal lengths of the particular phases

The second implementation of the TrafficControlAlgo-
ritm component utilizes a dynamic algorithm for control of
the traffic – the Vehicle actuated signal control (VASC).

Using this algorithm, the green and red light signals in
particular traffic lanes are grouped into phases with fixed
order. In each phase, there is a configuration of the green and
red signals. Each phase has a minimal and a maximal length.
When a phase is active, it lasts at least till the end of its
minimal length. Then, the traffic lanes with green light signal
are being observed using sensors. If there is a vehicle
detected in one or more of the observed traffic lanes, the
length of the phase is prolonged for a small amount of time.
This continues until no vehicle is detected or the maximal
length of the phase is reached [28].

This algorithm is used in the actual crossroad, on which
the model of crossroad for testing is based. The minimal and
maximal lengths of the particular phases are loosely based on
direct observation (see Fig. 10).

D. Measured Results
During the testing, the mean lengths of vehicle queues in

particular traffic lanes of the crossroad were observed. These
values could be obtained easily from the simulation of the
traffic crossroad (TrafficCrossroad component). The results
are depicted in Fig. 11 and summarized in Table I. Each
value was calculated as average from ten simulation runs.

0

5

10

15

20

25

1-1 1-2 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3
Traffic lanes

M
ea

n
qu

eu
e

le
ng

th

VASC algoritm Static algorithm

Figure 11. Lenghts of vehicle queues in particular traffic lanes

As can be seen in Fig. 11 and Table I, the control of the
traffic crossroad using the TrafficControl component with
VASC algorithm ensures shorter vehicle queues in nearly
every traffic lane than using the TrafficControl component
with static algorithm. This is an expected behavior, because
the VASC algorithms should provide better control of the
traffic than the static algorithm.

The results also show the utilization of the SimCo
simulation framework and the simulated components for
testing of the properties of the real tested components. In this
particular case, the simulated components (TrafficCrossroad,
TrafficLightsController, InductionLoop, etc.) enable to test
the properties of various implementations of the TrafficCon-
trolAlgorithm component without access to the real hardware
of the traffic crossroad.

TABLE I. LENGHTS OF VEHICLE QUEUES IN TRAFFIC LANES

 Mean vehicle queue length [number of vehicles]
Traffic lane ID VASC algorithm Static algorithm

1-1 6.6292 22.1786
1-2 1.2105 1.4416
2-1 1.0041 1.1849
2-2 0.7621 0.8575
2-3 1.4850 1.8035
3-1 2.0473 2.0356
3-2 1.5396 1.9733
3-3 2.4485 2.4745
3-1 1.4551 1.7416
3-2 1.7666 2.4301
3-3 0.0699 0.0892

VIII. FUTURE WORK
In our future work, we will focus on unresolved issues of

the SimCo simulation framework and on its testing using the
described and also other case studies.

A. Solving the Issues of the SimCo Simulation Framework
The main unresolved issue of the SimCo simulation

framework is the handling of Java Core API calls of the real
tested components, which involve time or remote
connections (see Section V.D). The most promising solution
seems to be the replacing of these potentially dangerous API
calls of the real tested components using the AOP or
manipulation of their bytecode. In our future work, we will
focus on its implementation and testing

B. Further Testing using the Presented Case Study
Another direction of our future work is utilization of the

described case study and other case studies for further testing
of the SimCo simulation framework and extending of its
abilities.

In the described case study, it should be for example
considered that the component application for crossroad
traffic control is likely to be running on a computer with
restricted computational power and/or limited memory. This
can negatively influence the TrafficControlAlgorithm
component or other components. Hence, it would be
convenient to enable to simulate the restricted hardware
conditions to provide the environment for the real tested
components, in which they are intended to be running. Then,

181

measuring of response time of particular services of the
components can be performed without necessity to use real
crossroad hardware.

IX. CONCLUSION
In this paper, we described the SimCo simulation

framework for testing of the real software components in
simulated environment. The simulated environment
constitutes from simulated components, which provide
required services for the real tested components. The
simulated components also enable testing and measuring of
the extra-functional properties, quality of services, and also
functionality of the real tested components.

The functionality of the SimCo framework was
demonstrated on a case study – the component based
application for road traffic crossroad control. Two
implementation of the TrafficControlAlgorihtm component
were tested and their qualities of control of traffic were
compared using mean lengths of the vehicle queues in
particular traffic lanes. As expected, the VASC dynamic
algorithm gave betters results than the static algorithm.

In our future work, we fill focus on finishing, enhancing,
and further testing of the SimCo simulation framework as
discussed in previous section.

ACKNOWLEDGMENT
This work is supported by the Grant Agency of the Czech

Republic under grant “Methods of development and
verification of component-based applications using natural
language specifications,” Czech Science Foundation
(GACR) 103/11/1489.

REFERENCES
[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software –

Beyond Object-Oriented Programming. ACM Press, New York,
2000.

[2] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82(1), 2009, pp. 3–22.

[3] P. C. Heam, O. Kouchnarenko, and J. Voinot, “Component
Simulation-based Substitutivity Managing QoS Aspects,” Electronic
Notes in Theoretical Computer Science, vol. 260, 2010, pp. 109–123.

[4] A. Cansado, L. Henrio, E. Madelaine, and P. Valenzuela, “Unifying
Architectural and Behavioural Specifications of Distributed
Components,” Electronic Notes in Theoretical Computer Science,
vol. 260, 2010, pp. 25–45.

[5] T. Potuzak, R. Lipka, J. Snajberk, P. Brada, and P. Herout, “Design of
a Component-based Simulation Framework for Component Testing
using SpringDM”, ECBS-EERC 2011 – 2011 Second Eastern
European Regional Conference on the Engineering on Computer
Based Systems, Bratislava, 2011, pp. 167-168.

[6] R. M. Fujimoto, Parallel and Distributed Simulation Systems. John
Wiley & Sons, New York, 2000.

[7] The OSGi Alliance, “OSGi Service Platform Core Specification,”
release 4, version 4.2, 2009.

[8] D. Rubio, Pro Spring Dynamic Modules for OSGiTM Service
Platform. Apress, USA, 2009.

[9] J. A. Miller, Y. Ge, and J. Tao, “Component-Based Simulation
Environments: JSIM as a Case Study Using Java Beans,” Proceedings

of the 1998 Winter Simulation Conference, Washington DC, 1998,
pp. 373–381.

[10] C. R. Harrell and D. A. Hicks, “Simulation Software Component
Architecture for Simulation-Based Enterprise Applications,”
Proceedings of the 1998 Winter Simulation Conference, Washington
DC, 1998, pp. 1717–1721.

[11] F. Moradi, P. Nordvaller, and R. Ayani, “Simulation Model
Composition using BOMs,” Proceedings of the Tenth IEEE
International Symposium on Distributed Simulation and Real-Time
Applications (DS-RT'06), Malaga, 2006.

[12] D. M. Rao and P. A. Wilsey, “Multi-resolution Network Simulations
using Dynamic Component Substitution,” Proceedings of the 9th Int’l
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’01), Cincinnati, 2001.

[13] A. Buss and C. Blair, “Composability and Component-Bases Discrete
Evenet Simulation,” Proceedings of the 2007 Winter Simulation
Konference, Washington DC, 2007, pp. 694–702.

[14] A. Buss, “Component Based Simulation Modeling with SIMKIT,”
Proceedings of the 2002 Winter Simulation Conference, San Diego,
2002, pp. 243–249.

[15] A. Verbraeck, “Component-based Distributed Simulations. The Way
Forward?,” Proceedings of the 18th Workshop on Parallel and
Distributed Simulation (PADS’04), Kufstein, 2004.

[16] G. A. Wainer, R. Madhoun, and K. Al-Zoubi, “Distributed simulation
of DEVS and Cell-DEVS models in CD++ using Web-Services,”
Simulation Modelling Practice and Theory, vol. 16, 2008, pp. 1266–
1292.

[17] K. Cai, T. Y. Chen, Y. Li, W. Ning, and Y. T. Yu, “Adaptive Testing
of Software Components,” 2005 ACM Symposium on Applied
Computing, Santa Fe, 2005, pp. 1463–1469.

[18] L. Gallagher and J. Offutt, “Automatically Testing Interacting
Software Components,” Proceedings of the 1st International
Workshop on Automation of Software Test, Shanghai, 2006, pp. 57–
63.

[19] D. C. Craig and W. M. Zuberek, “Compatibility of Software
Components – Modeling and Verification,” Proceedings of the
International Conference on Dependability of Computer Systems
(DEPCOS-RELCOMEX’06), Szklarska Poreba, 2006.

[20] S. Becker, H. Koziolek, and R. Reussner, “Model-Based Performance
Prediction with the Palladio Component Model,” Proceedings of the
6th international workshop on Software and performance, Buenos
Aires, 2007.

[21] E. Bondarev, J. Muskens, P. de With, M. Chaudron, and J. Lukkien,
“Predicting Real-Time Properties of Component Assemblies: A
Scenario-Simulation Approach,” EUROMICRO'04, Rennes, 2004.

[22] G. An and J. S. Park, “Cooperative Component Testing Architecture
in Collaborating Network Environment,” Lecture Notes in Computer
Science, vol. 4610, Springer-Verlag, 2007.

[23] J. Wu, L. Yang, and X. Luo, “Jata: A Language for Distributed
Component Testing,” 15th Asia-Pacific Software Engineering
Conference, Beijing 2008.

[24] R. Lipka, T. Potužák, P. Brada, and P. Herout, “SimCo – Hybrid
Simulator for Testing of Component Based Applications”, SOFSEM
2013, Spindleruv Mlyn, 2013, submitted for publication.

[25] P. G. Gipps: “A behavioural car following model for computer
simulation”, Transp. Res. Board, vol. 15-B(2), 1981, pp. 403–414.

[26] T. Potuzak, Methods for Reduction of Inter-process communication
in Distributed Simulation of Road Traffic, Doctoral thesis, University
of West Bohemia, Pilsen, 2009.

[27] S. Guberini�, G. Šenborn, and B. Lazi�, Optimal Traffic Control,
CRC Press, New York, 2008.

[28] H. Taale, “Comparing Methods to Optimise Vehicle Actuated Signal
Control,” Procceedings of Eleventh International Conference on Road
Transport Information and Control, London, 2002, pp. 114–119.

182

