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Abstract—Component-based software development is an 
important trend in software engineering. Using this approach, 
a system can be constructed from a set of individual 
components (i.e. pieces of software with defined interfaces and 
functionality). On deployment, components are usually not 
tested for their correct functionality since this is considered to 
be implied. Simulation tests are nevertheless often used to 
determine extra-functional properties and quality of services. 
However, only models of the components are usually used for 
such testing. In this paper, we present the SimCo – a 
simulation framework for testing of real software components 
in a simulation environment. This enables thorough tests of 
components without the need to create their (potentially 
incorrect) models. The SimCo itself is constructed from 
components as well in order to enable its modularity and 
usability. The utilization of the SimCo is demonstrated on a 
case study involving component-based application for the 
control of a road traffic crossroad. 

Keywords—software component, simulation framework, 
simulation testing, crossroad control 

I.  INTRODUCTION 
Component-based software development is an important 

trend in software engineering, which emerged at the turn of 
the century and become widespread during the last decade. 
Using the component approach, an application can be 
constructed from a set of individual software components. 
These components are pieces of software with clear inter-
faces and well-defined functionality, but with no externally 
observable inner states. So, each software component can be 
considered as a black box [1]. 

The software components are used in order to maximize 
reusability and third party composition. This means that a 
programmer, which creates a component-based application, 
is often not the author of the individual components. So, the 
software components are usually not tested by third parties 
for they correct functionality, since this is considered to be 
ensured by the manufacturer of the component. Nevertheless, 
simulation tests are often used to determine extra-functional 
properties of the components and their quality of services, 
which can also play a significant role in the designed 
component-based application. Some examples of such 
testing can be found in [2] and [3]. The testing of the 
software components is an important branch in contemporary 

research. However, in most cases, only the models of 
software components are used for simulation testing [4]. 

In this paper, we present the SimCo – a simulation 
framework, which is designed for testing of real software 
components in a simulation environment. This enables 
thorough testing of the software components without 
necessity to create their models, which can be potentially 
incorrect. The simulation framework itself is component-
based (i.e. constructed from individual software components) 
in order to maximize its modularity and usability [5]. 

II. DISCRETE SIMULATION      
There are two types of simulation, regarding their 

approach to simulated time – time step simulations and 
discrete-event simulations. Time step simulations divide time 
into equally-sized time intervals (time steps). During each 
step, states of all simulated objects are recalculated. Discrete 
event simulations recalculate the state of the system only 
when an event occurs. Unlike the time step simulation, the 
time is changed irregularly from one event to another [6]. 

A. Handling of Events in the Discrete Event Simulations 
Using the discrete event simulation, the time progress is 

ensured by the interpreting of events. Each event contains a 
time stamp determining when it should occur in the 
simulation and an action, which shall be executed [6]. 

All events are handled by a calendar. When simulation is 
started, the calendar chooses the event with the earliest time 
stamp, sets simulation time to the time of the event, and 
performs the action of the event. Then, next event according 
to the time stamp is chosen from the calendar and executed 
and so on. Each event can cause the creation of one or more 
new events, which are being added to the calendar [6]. 

The simulation is stopped when calendar contains no 
more events or at a specified simulation time. 

B. Features of the Discrete Event Simulations 
The discrete event simulation allows using a finer 

division of simulation time, but is advantageous only when 
events are not abundant. The execution of each event brings 
overhead, which slows down the calculation. In a discrete 
event simulation, time between two events can be arbitrary 
long or short. Events are also useful when a long period of 
simulated time without any event might occur. In that case, 
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the simulator does not need to compute simulation steps 
without any activity and can just skip to the nearest event [6]. 

III. COMPONENT MODELS AND FRAMEWORKS 
As was stated before, a software component is a well-

defined black box entity, which has no externally observable 
state. It is a part of third party composition (i.e. author of the 
component can be and often is different from the author of 
the component-based application, which utilizes the 
component). This abstract definition is common for all 
software components as view on software components and 
understanding of them is very diverse. Therefore, there is no 
universally accepted more specific definition. The matter is 
well discussed in [1]. 

Component models specify how software components 
look, behave, and interact, which results in diversity of 
component understanding mentioned above. Component 
models also specify if there are one or more types of 
components. 

A component framework is an implementation of a 
specific component model. There are many component 
models and even more component frameworks used and 
developed in industry and in research sphere. For this paper, 
three of them are important (see following sections). 

A. OSGi 
The OSGi component model is a dynamic component 

model designed for Java programming language [7]. There 
are several OSGi frameworks, which implement the OSGi 
component model. In such an OSGi framework, it is possible 
to install, start, stop, and uninstall the individual software 
components and entire component-based applications 
without necessity to restart the framework itself [8]. 

A software component in an OSGi framework is known 
as a bundle. An OSGi bundle has the form of a standard Java 
.jar file with a specific manifest file describing the features 
of the bundle, provided services, required bundles, and so on. 
Each bundle can contain any number of classes and can 
provide arbitrarily complex functionality. 

OSGi bundles communicate through services. Services 
are implementations of specific interfaces, which were 
registered in the OSGi framework by OSGi bundles 
containing these implementations. Services are one of the 
most important parts of the OSGi framework, as component-
based applications are built from bundles connected with the 
services. Services are registered directly in the code of the 
bundle or by the Component Service Runtime for 
declaratively specified services. To register a service, the 
OSGi bundle needs the context of the bundle, which is 
provided by the entry point of the bundle called bundle 
activator. The services can be registered as easy as depicted 
in Fig. 1. 

Various OSGi frameworks are commonly used in many 
different  industry areas such as vehicles, cell phones, PDAs, 
 

 
Figure 1.  Example of a service registration in OSGi 

 
Figure 2.  Example of bean definitions in a Spring configuration file 

and so on. The widespread of the OSGi frameworks is the 
reason, why it was chosen for the implementation of the 
SimCo simulation framework. 

B. Spring 
The Spring framework 1  offers a number of features 

useful for development of enterprise-grade component-based 
applications. Among these features are inversion of control, 
aspect-oriented programming, transaction of management, 
remote access, and others [8]. 

Spring enables easy configuration of elements using a 
XML configuration file. The basic elements of a Spring-
based application are so-called Spring beans defined in the 
XML configuration file along with their dependencies (for 
an example, see Fig. 2). 

C. SpringDM 
The SpringDM (abbreviation of Spring Dynamic 

Modules) for OSGi service platform2 improves the manage-
ability of the OSGi services [8]. It enables to develop OSGi 
bundles with definition of their dependencies and other 
features in Spring configuration files. 

 The SpringDM must be installed in the target OSGi 
framework. Once it is installed and running, it checks every 
newly installed bundle to the OSGi framework, whether it is 
a SpringDM bundle (i.e. contains a Spring configuration file) 
or not. If the newly installed bundle is a SpringDM bundle, 
its services are registered in the OSGi framework using the 
Spring configuration file. An example of service registration 
in SpringDM is depicted in Fig. 3. 

IV. COMPONENT-BASED SIMULATION OF COMPONENTS 
Now, as we discussed both simulation and software 

components issues, we can focus on simulation of software 
components. The SimCo simulation framework was 
developed in order to enable simulation of components. 
Simultaneously, the framework itself is constructed from 
software components in order to ensure its modularity and 
simple  future  development.  Hence, both  the  simulation  of 
 

 
Figure 3.  Example of a service registration in SpringDM 

                                                           
1 http://springframework.org/  
2 http://www.springsource.com/osgi  
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components and the component-based simulation are 
described in following sections. 

A. Component-based Simulation of Software Components 
Component-based simulation frameworks are quite 

common. They began to emerge in last decade of the 20th 
century (for example, see [9] or [10]) and the research in this 
area continues till today (contemporary examples can be 
found in [11] or [12]). The component-based frameworks 
can be utilized for a general simulation [13], [14], but can be 
also focused on a specific area (e.g. simulation of computer 
networks [12]). The most important feature of the 
component-based simulations is their variability [12], [14]. 

The contemporary research of the component-based 
simulations is focused mainly on the relationship between 
the individual components using a specific component model 
and/or framework [11], [13]. Another important area is the 
utilization of the software components in a distributed 
computing environment [15], [16]. 

However, component-based simulations of software 
components are very rare. Although component-based 
simulations, which do not simulate software components 
[11], [12], [13], and monolithic (i.e. not component-based) 
simulations of software components [17], [18], [19] exist, 
there are virtually no examples of combination of both 
approaches. 

B. Simulation Testing of Software Components  
Simulation testing of software components is often 

focused on quality of services (QoS) provided by the 
components and on their extra-functional properties (for 
example, see [20] or [21]). The software components, which 
are intended for distributed computing environment, are also 
tested for this purpose [21], [22]. 

It should be noted that the functionality of the software 
components should be theoretically ensured by their manu-
facturers. However, as stated in Section III, authors of the 
component-based applications often use components created 
by other party. This means, these authors cannot be certain 
that a proper testing of the particular components has been 
carried out. Because the software components created by an 
unknown manufacturer can be even a security risk (intenti-
onal or unintentional) [22], their correct functionality should 
not be implicitly assumed without a proper verification. 

 Another aspect is that the particular software 
components and the entire component-based application can 
be running on a wide variety of devices (from a distributed 
computing cluster to a PDA or a microcontroller). The 
various computational powers of these devices can 
significantly influence the quality of services of the software 
components. Therefore, the target devices and their features 
should be taken into account during the simulation testing of 
the components. 

As arise from paragraphs above, wide variety of 
properties of the software components can be and are tested 
using simulation. However, the real components are rarely 
used directly. Instead, models of components are created and 
utilized for simulation testing purposes. Often, only a static 
description of the software component (e.g. consumption of 

resources, description of behavior etc.) is used [20]. For this 
purpose, specific descriptive languages have also been 
developed [4], [23]. The utilization of the models instead of 
real components enables to focus on specific features of the 
components. However, it is possible to miss an important 
factor during the creation of the model of the software 
component or even introduce an error into the model. More 
importantly, it can be difficult to create a model of a 
component if its source code in unavailable. This is a most 
common scenario, since components are often considered to 
be black-boxes (see Section I). 

V. SIMCO SIMULATION FRAMEWORK 
Considering the issues of the simulation testing based 

only on models of the software components mentioned in 
previous section, we have developed the SimCo simulation 
framework. The SimCo enables the direct testing of real 
software components in a simulated environment [5], [24]. It 
is described in detail in [24]. However, in order to keep this 
paper self-contained, we will mention all its important 
features in the following sections. 

A. Component Framework  Selection  
The SimCo simulation framework itself is created from 

software components in order to ensure its modularity. It 
utilizes OSGi/SpringDM software components (bundles), 
because of dynamic nature of the OSGi (see Section III.A) 
and easy manageability of the services using the SpringDM 
(see Section III.C). 

The software components, which can be tested using the 
SimCo simulation framework, are also expected to be OSGi 
bundles. The reason is that the transformation of a 
component from one component model to another is a 
difficult task. Since the OSGi component model and its 
implementations are quite widespread (see Section III.A), 
this restriction is not a big issue. 

B. Simulation Type Selection 
As was stated in Section II.A, there are two types of 

discrete computer simulation, which are commonly used – 
the event-driven and time-stepped simulations. Both were 
considered for the SimCo simulation framework, which is 
designed for running of real software components in a 
simulated environment, observation, and controlling of the 
actions performed on and by the components. 

The actions of the software components (i.e. invocation 
of the methods/services) can be performed arbitrary (from 
the simulation framework point of view) and there can be 
long time intervals between two successive actions. Hence, 
an event-driven simulation, where events correspond to 
performed actions is more suitable than a time-stepped 
simulation, which is suited for regular calculations.  

The event driven approach also allows speedup of the 
simulation. If the real components are waiting for a 
complicated calculation, which should be provided by the 
simulation environment, it is possible to use some pre-
calculated values instead of a real calculation. The 
simulation time can be then advanced by the time interval, 
which would be required for the calculation.  
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For the reasons mentioned above, the event-driven 
approach is used in the SimCo simulation framework [24]. 

C. Types of Components of the Simulation Framework 
There are several types of the software components in the 

SimCo simulation framework. 
First type is represented by the components, from which 

the simulation framework itself is constructed. These core 
components provide basic services necessary for functioning 
of the simulation. Among them, the Calendar is most 
important. All events, which occur during the simulation run, 
are managed by this component. So, it controls the progress 
of the entire simulation [24]. Of course, there also other 
components, which provide additional functionality such as 
logging, visualization, and so on. Newly required 
functionality can be easily added in the form of software 
component(s) due to the component-based design of the 
simulation framework. 

Second type is represented by real components, which 
shall be tested using the SimCo simulation framework. In 
one simulation experiment, there can be one or more real 
components, which can interact among each other and with 
the simulation environment [5]. 

The simulation environment of the real tested 
components consists of the third type of the components – 
the simulated components. These components provide 
services, which are required by the real tested components. 
So, the real tested components (second type) have available 
all services they need for their functionality and they are not 
aware that they are running in a simulated environment [5]. 

On the other hand, the SimCo simulation framework 
must have a full control of the real tested components. 
Hence, all interactions between the real (second type) and 
simulated (third type) components are performed using the 
calendar and the events. This can be accomplished easily, 
since the logic necessary for the interaction with the calendar 
can be added to the simulated components [24]. Neverthe-
less, the interactions between two real tested components 
must be treated in the same way, but it is not possible to add 
any new logic to the real components, since they are 
considered black boxes. Hence, there is the fourth type of 
components – so called intermediate components. These 
components wrap the services provided by the real tested 
components. They provide the same services and functiona-
lity, but ensure the interaction with the calendar (see Fig. 4). 

For a more detailed description of the particular types of 
the components and their interactions, see [5] and [24]. 

 

 
Figure 4.  Utilization of the intermediate component 

D. Real Components vs. Simulated Environment 
There are several issues regarding the running of the real 

software components in a simulated environment. First of 
all, the simulation used in the SimCo simulation framework 
is event-based (see Section V.B), which means that the 
simulation time advances irregularly from one time stamp of 
an event to another. On the other hand, the real components 
are constructed to run using the regularly incremented real 
time of the computer. This discrepancy of the time flow can 
be problematic if the real component utilizes some time 
services from the Java Core API [24]. 

Similar problems can occur when the component requires 
the connection to a remote server. Such an activity is 
undesirable, since it is not under control of the SimCo 
simulation framework [24]. 

In order to solve the mentioned issues, the Java Core API 
methods providing input/output and time services, which can 
be invocated by the real tested components, must be adapted 
to meet the needs of the SimCo simulation framework. For 
example, the methods involving time should return values 
taking into account the simulation time, the remote 
connection could be only simulated, and so on [24].  

There are several possibilities how to achieve this 
including aspect-oriented programming, manipulation with 
the Java Core API source code, or manipulating the imports 
of Java Core API methods in the real tested components’ 
bytecode. For a more detailed description of these 
approaches, see [5] and [24]. 

E. Simulation Scenarios   
Each simulation testing of real components is described 

in a simulation scenario. It is a XML file containing the 
settings of the entire simulation (e.g. the time, at which the 
simulation should end), description of the particular 
components (including their types), and description of the 
events, which shall occur during the simulation (see Fig. 5). 

Besides the main scenario file, each component 
(regardless its type) has a separate XML file with its further 
description. This file can contain for example the description 
of the behavior of the simulated component [5]. Neverthe-
less, the files do not contain the description of the relations 
of the components. This information is sought directly from 
the OSGi/SpringDM framework. For a more detailed 
description of the simulation scenarios, see [24]. 

 

 
Figure 5.  Example of a simulation scenario 
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VI. CASE STUDY: TRAFFIC CROSSROAD CONTROL 
In order to demonstrate how the simulation testing of 

software components using SimCo simulation framework 
works, two case studies were created. The first one is the 
File manager. This case study represents a typical 
component-based application without dependencies on any 
specific hardware. The File manager is a convenient 
application for demonstration of simulation testing, since it 
provides wide variety of services (e.g. viewing of files of 
different types, various compression algorithms, local and 
remote access, etc.). These services can be implemented with 
different quality, which can be easily tested [24]. The File 
manager case study is described in [24] in detail. 

The second case study – the Traffic crossroad control – 
is described in the remainder of this paper. This case study 
represents a component-based application for the control of 
road traffic in a crossroad using traffic lights and/or variable 
traffic signs. Such an application is expected to run on a 
specific hardware and utilize a variety of hardware sensors. 
Hence, the simulation testing is very convenient, because the 
hardware devices can be also simulated and no access to the 
real devices is required. Moreover, similar to the File 
manager, there are several services of the application, which 
can be implemented with various qualities of services (e.g. 
traffic control algorithm, algorithm for optic detection of 
vehicles, etc.). These qualities can be easily tested using the 
SimCo simulation framework. 

A. Structure of the Traffic Crossroad Control Application 
The components of the Traffic crossroad control 

application and their relations are depicted in Fig. 6. For the 
purpose of the testing, the components, which include 
handling of real hardware devices, were replaced by the 
simulated components. These components were only 
simulating the corresponding functionality (see Fig. 6). 

There are nine software components in the Traffic 
crossroad control application. The TrafficCrossroad 
component provides information about the structure of the 
traffic crossroad (number and orientation of arms, numbers 
of  traffic lanes in these arms,  positions of  traffic lights  and 
 

 
Figure 6.  Utilized software components and their relations 

sensors, and so on). Its simulated version also incorporates a 
simulation of road traffic (see Section VI.B).  

The ControlPanel component provides the user interface 
for the entire application. It allows for example to activate or 
deactivate the traffic lights, set parameters for the traffic 
control algorithm, display collected traffic statistics, and so 
on. The TrafficControlAlgorithm component incorporates an 
algorithm for control of traffic lights and variable signs. This 
algorithm can require information about the situation in 
particular traffic lanes of the traffic crossroad provided by 
the sensors accessible via the SensorAccess component. 

There are two different types of sensors represented by 
two simulated components. The InductionLoop component 
represents the induction loops places in the particular traffic 
lanes of the crossroad. Such a loop is able to detect, whether 
there is a vehicle above it. The OpticDetection component 
represents detection of the number of vehicles in a traffic 
lane using a camera above the lane and image recognition. 
These sensors are usually able to distinguish, whether there 
is one, two, three vehicles or a larger number of vehicles in 
the traffic lanes. This means that for a larger number of 
vehicles, the accurate number is not at the disposal. The 
simulated versions of the sensor components utilize the 
“perfect” information about the numbers of vehicles in traffic 
lanes obtained from the simulation of road traffic (provided 
by the TrafficCrossroad component), which is not at the 
disposal in a real situation. Hence, they reduce this 
information to a form, which is at disposal in a real situation. 

The traffic control algorithm can control traffic lights of 
the crossroad using the TrafficLightsController component 
and variable signs using the VariableSignController 
component (if the variable signs are present and the traffic 
control algorithm utilizes them). 

The StatisticsCollector component collects and 
summarizes the statistics of the traffic in the crossroad using 
the data from the sensors acquired via the SensorAccess 
component. The summarized statistics can be than viewed 
using the ControlPanel component.  

B. Utilized Simulation of Road Traffic 
As mentioned in previous section, the TrafficCrossroad 

simulated component incorporates besides the information 
about the crossroad also a road traffic simulation. This 
simulation is necessary for testing of traffic control 
algorithms and other aspects of the Traffic crossroad control 
component-based application. It substitutes the real traffic on 
an actual traffic crossroad. 

The road traffic simulation can be visualized as can be 
seen in Fig. 7. It is a time-stepped simulation based on a car 
following model [25] adapted for the needs of a single 
crossroad. The positions of the vehicles are recalculated in 
each time step, whose length is adjustable, and set to 0.1 
second by default. Such as short time step enables very 
smooth movement of the vehicles.  

All main aspects of the road traffic are modeled. There 
are six types of vehicles [26] with different lengths and 
widths. The vehicles react on the traffic lights, do not enter 
the crossroad if they are unable to leave it, and respect all 
other traffic regulations. 
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Figure 7.  Visualization of the road traffic simulation 

VII. TESTS AND RESULTS        
In order to demonstrate the use of the SimCo simulation 

framework, a testing of the quality of two different traffic 
control algorithms was performed. The qualities of the 
algorithms were compared using the mean vehicle queues 
lengths in particular traffic lanes of the crossroad. Both 
algorithms are able to control the traffic in a non-conflict 
way (i.e. they are functionally correct), but the lengths of the 
vehicle queues determine the fluency of the traffic through 
the crossroad. The shorter the queues are, the better the 
control algorithm is.  

A. Tested Traffic Crossroad 
The testing was performed using model of one traffic 

crossroad inspired by  an  actual crossroad of  the Pilsen city.   
 

 
Figure 8.  Scheme of the traffic crossorad used for tesing 

The crossroad incorporates four arms with several incoming 
and outgoing traffic lanes in each arm (see Fig. 8). For 
control of the traffic, standard traffic lights are used.  

The actual crossroad also incorporates two-way tram 
lane, but this lane is not incorporated in the model of the 
crossroad. 

The numbers of vehicles arriving to the particular traffic 
lanes of the crossroad were based on the observation of the 
actual crossroad. Pseudorandom generators of traffic flow 
with exponential distribution with accordingly set parameters 
were used for adding of new vehicles into the particular 
traffic lanes. 

B. Traffic Crossroad Control Application Used for Testing 
For the testing, the Traffic crossroad control application 

described in Section VI was used. There were six simulated 
components (depicted using dashed line in Fig. 6), which 
created environment for three real components (depicted 
using solid line in Fig. 6).  

Two implementation of the TrafficControlAlgorithm 
component were created. Each implementation utilizes a 
different algorithm for control of traffic in the crossroad 
using traffic lights. Both algorithms are briefly described in 
following section.  

C. Tested Traffic Control Algorithms 
First implementation of the TrafficControlAlgorithm 

component utilizes a simple static algorithm for control of 
the traffic. This algorithm uses preset time intervals for green 
and red light signals in particular traffic lanes. The optimal 
lengths of these signals for one isolated crossroad can be 
determined using mathematical methods [27]. Because the 
time intervals do not change over time, the algorithm does 
not require any sensor input with information about the 
traffic in the crossroad. 

The lengths of the time intervals of the green and red 
light signals were determined by direct observation of the 
traffic in the actual traffic crossroad, on which the model of 
the traffic crossroad for testing is based. However, this actual 
crossroad uses a dynamic algorithm for control of traffic (see 
next paragraphs). Hence, the lengths of the time intervals are 
only approximate. The time intervals of green and red signals 
for particular traffic lanes used in the model of the crossroad 
are depicted in Fig. 9. 
 

 
Figure 9.  Lenghts of the time intervals of the static algoritm  
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Figure 10.  Minimal and maximal lengths of the particular phases 

The second implementation of the TrafficControlAlgo-
ritm component utilizes a dynamic algorithm for control of 
the traffic – the Vehicle actuated signal control (VASC).  

Using this algorithm, the green and red light signals in 
particular traffic lanes are grouped into phases with fixed 
order. In each phase, there is a configuration of the green and 
red signals. Each phase has a minimal and a maximal length. 
When a phase is active, it lasts at least till the end of its 
minimal length. Then, the traffic lanes with green light signal 
are being observed using sensors. If there is a vehicle 
detected in one or more of the observed traffic lanes, the 
length of the phase is prolonged for a small amount of time. 
This continues until no vehicle is detected or the maximal 
length of the phase is reached [28]. 

This algorithm is used in the actual crossroad, on which 
the model of crossroad for testing is based. The minimal and 
maximal lengths of the particular phases are loosely based on 
direct observation (see Fig. 10). 

D. Measured Results 
During the testing, the mean lengths of vehicle queues in 

particular traffic lanes of the crossroad were observed. These 
values could be obtained easily from the simulation of the 
traffic crossroad (TrafficCrossroad component). The results 
are depicted in Fig. 11 and summarized in Table I. Each 
value was calculated as average from ten simulation runs. 
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Figure 11.  Lenghts of vehicle queues in particular traffic lanes 

As can be seen in Fig. 11 and Table I, the control of the 
traffic crossroad using the TrafficControl component with 
VASC algorithm ensures shorter vehicle queues in nearly 
every traffic lane than using the TrafficControl component 
with static algorithm. This is an expected behavior, because 
the VASC algorithms should provide better control of the 
traffic than the static algorithm. 

The results also show the utilization of the SimCo 
simulation framework and the simulated components for 
testing of the properties of the real tested components. In this 
particular case, the simulated components (TrafficCrossroad, 
TrafficLightsController, InductionLoop, etc.) enable to test 
the properties of various implementations of the TrafficCon-
trolAlgorithm component without access to the real hardware 
of the traffic crossroad. 

TABLE I.  LENGHTS OF VEHICLE QUEUES IN TRAFFIC LANES 

 Mean vehicle queue length [number of vehicles] 
Traffic lane ID VASC algorithm Static algorithm 

1-1 6.6292 22.1786 
1-2 1.2105 1.4416 
2-1 1.0041 1.1849 
2-2 0.7621 0.8575 
2-3 1.4850 1.8035 
3-1 2.0473 2.0356 
3-2 1.5396 1.9733 
3-3 2.4485 2.4745 
3-1 1.4551 1.7416 
3-2 1.7666 2.4301 
3-3 0.0699 0.0892 

VIII. FUTURE WORK 
In our future work, we will focus on unresolved issues of 

the SimCo simulation framework and on its testing using the 
described and also other case studies. 

A. Solving the Issues of the SimCo Simulation Framework 
The main unresolved issue of the SimCo simulation 

framework is the handling of Java Core API calls of the real 
tested components, which involve time or remote 
connections (see Section V.D). The most promising solution 
seems to be the replacing of these potentially dangerous API 
calls of the real tested components using the AOP or 
manipulation of their bytecode. In our future work, we will 
focus on its implementation and testing 

B. Further Testing using the Presented Case Study 
Another direction of our future work is utilization of the 

described case study and other case studies for further testing 
of the SimCo simulation framework and extending of its 
abilities.  

In the described case study, it should be for example 
considered that the component application for crossroad 
traffic control is likely to be running on a computer with 
restricted computational power and/or limited memory. This 
can negatively influence the TrafficControlAlgorithm 
component or other components. Hence, it would be 
convenient to enable to simulate the restricted hardware 
conditions to provide the environment for the real tested 
components, in which they are intended to be running. Then, 
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measuring of response time of particular services of the 
components can be performed without necessity to use real 
crossroad hardware. 

IX. CONCLUSION 
In this paper, we described the SimCo simulation 

framework for testing of the real software components in 
simulated environment. The simulated environment 
constitutes from simulated components, which provide 
required services for the real tested components. The 
simulated components also enable testing and measuring of 
the extra-functional properties, quality of services, and also 
functionality of the real tested components.  

The functionality of the SimCo framework was 
demonstrated on a case study – the component based 
application for road traffic crossroad control. Two 
implementation of the TrafficControlAlgorihtm component 
were tested and their qualities of control of traffic were 
compared using mean lengths of the vehicle queues in 
particular traffic lanes. As expected, the VASC dynamic 
algorithm gave betters results than the static algorithm. 

In our future work, we fill focus on finishing, enhancing, 
and further testing of the SimCo simulation framework as 
discussed in previous section. 
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